MATH 4604 Spring 2018, Final exam

Handout date: Saturday 12 May 2018
Instructor: Scot Adams

PRINT YOUR NAME:

PRINT YOUR @umn.edu EMAIL ADDRESS:

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind.

Turn off all mobile electronic devices.
I. Definitions
A. (5 pts) Let X be a metric space and let $s \in X^{\mathbb{N}}$. Then s_{\bullet} is Cauchy means...
B. (5 pts) Let X and Y be metric spaces, let $f: X \rightarrow Y$ and let $K \geqslant 0$. Then f is K-Lipschitz means...
C. (5 pts) Let V and W be finite dimensional vector spaces and let $p \geqslant 0$. Let $\|\bullet\| \in \mathcal{N}(V)$. Then $\check{\mathfrak{o}}_{p}(V, W,\|\bullet\|):=\cdots$
D. (5 pts) Let V and W be finite dimensional vector spaces. and let $f: V \rightarrow W$. Let $p \in V$. Then $\operatorname{LINS}_{p}^{V, W} f=\cdots$
E. (5 pts) Let V and W be finite dimensional vector spaces and let $f: V \rightarrow W$. Then $D f: V \rightarrow L(V, W)$ is defined by \ldots
F. (5 pts) Let \mathcal{S} be a set of sets. Then \mathcal{S} is a ring of sets means: ...
II. True or false (no partial credit):
a. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. Assume: $\forall x \in \mathbb{R}, f^{\prime}(x)>0$. Then f is strictly increasing.
b. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Assume that $f^{\prime}(0)>0$. Then there exists $\delta>0$ such that f is increasing on $(0, \delta)$.
c. (5 pts) Let $f:[1,2] \hookrightarrow \mathbb{R}$. Assume that f is continuous. Then f^{-1} is continuous.
d. $(5 \mathrm{pts}) \forall f, g \in \widehat{\mathcal{O}}_{3}(\mathbb{R}, \mathbb{R}), \quad f g \in \widehat{\mathcal{O}}_{9}(\mathbb{R}, \mathbb{R})$.
e. (5 pts) Let \mathcal{I} denote the set of all intervals. Then \mathcal{I} is a ring of sets.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE
I. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
I. $\mathrm{D}, \mathrm{E}, \mathrm{F}$
II. a,b,c,d,e
III. 1
III. 2
III. 3
III. 4
III. Hand-graded problems. Show work.

1. (10 pts) Find a function $f \in \widehat{\mathcal{O}}_{2}(\mathbb{R}, \mathbb{R})$ such that $0 \notin \operatorname{dom}\left[f^{\prime \prime}\right]$.
2. (10 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and assume that $\operatorname{dom}\left[f^{\prime \prime}\right]=\mathbb{R}$, i.e., that f is twice differentiable on \mathbb{R}. Assume that $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=0$. Show that $f \in \breve{\mathcal{O}}_{2}(\mathbb{R}, \mathbb{R})$.
3. (10 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Assume that $\operatorname{dom}\left[f^{\prime}\right]=\mathbb{R}$. Assume that, for all $x \in \mathbb{R}$, we have $\left|f^{\prime}(x)\right| \leqslant 5$. Show that f is 5 -Lipschitz.
4. (15 pts.) Let $* \in S B\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and let $f:=\Delta_{*}: \mathbb{R}^{2} \rightarrow \mathbb{R}$. That is, let $*: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be symmetric and bilinear, and define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(u)=u * u$. Show: there exists $K \geqslant 0$ such that, for all $x, y \in \mathbb{R}$, we have $|f(x, y)| \leqslant K \cdot\left[x^{2}+y^{2}\right]$.
Hint: You may use, without proof: For all $x, y \in \mathbb{R}$,

$$
\begin{aligned}
x^{2} & \leqslant x^{2}+y^{2} \\
2 \cdot|x| \cdot|y| & \leqslant x^{2}+y^{2} \quad \text { and } \\
y^{2} & \leqslant x^{2}+y^{2}
\end{aligned}
$$

