MATH 4604 Spring 2018, Midterm \#2

Handout date: Thursday 22 March 2018
Instructor: Scot Adams

PRINT YOUR NAME:

PRINT YOUR @umn.edu EMAIL ADDRESS:

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind.

Turn off all mobile electronic devices.
I. Definitions
A. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}, S \subseteq \mathbb{R}$. Then f is \mathbf{c} / \mathbf{d} on S means: ...
B. (5 pts) Let X and Y be topological spaces, and let $f: X \rightarrow Y$. Then f is closed means: . .
C. (5 pts) Let X be a topological space, let $p \in X$, and let $f: X \rightarrow \mathbb{R}$. Then f has a local maximum at p in X means: ...
D. (5 pts) Let V be a vector space and let $\|\bullet\|: V \rightarrow[0, \infty)$. Then $\|\bullet\|$ is a norm on V means: ...
E. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Then f is semimonotone means: ...
F. (5 pts) Let X and Y be topological spaces, and let $f: X \rightarrow Y$. Then $\operatorname{dct}[f]:=\cdots$.
II. True or false (no partial credit):
a. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $1-1$ and continuous. Then f^{-1} is continuous.
b. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be 1-1 and continuous. Then f is strictly monotone.
c. (5 pts) Let $f:[1,2] \rightarrow[3,4]$ be continuous. Then f is closed.
d. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. Assume that $f^{\prime}(0)=1$. Then there exists $\delta>0$ such that f is strictly increasing on $(-\delta, \delta)$.
e. (5 pts) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ both be differentiable. Assume that $f^{\prime}=g^{\prime}$. Assume that $f(0)=g(0)$. Then $f=g$.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE
I. A, B, C
I. D,E,F
II. a,b,c,d,e
III. 1
III. 2
III. 3
III. 4
III. Hand-graded problems. Show work.

1. (10 pts) Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(0)=2, f^{\prime}(0)=3$, $f^{\prime \prime}(0)=4$ and $f^{\prime \prime \prime}(0)=6$.
2. (10 pts) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{5}+x^{3}+x$. Let $g:=f^{-1}$. Note that $g(3)=1$. Compute $g^{\prime}(3)$.
3. (10 pts) Let $S:=(0, \infty)$. Recall: $\exp : \mathbb{R} \hookrightarrow>S$ is defined by

$$
\exp (x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots
$$

Let $\ln :=\exp ^{-1}: S \rightarrow \mathbb{R}$. Let $q \in S$. Show: $\ln ^{\prime}(q)=1 / q$.
Hint: Recall that $\exp ^{\prime}=\exp$.
4. (15 pts.) Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Assume: $\forall t \in \mathbb{R}, \quad f^{\prime \prime}(t)=-\frac{f(t)}{1+[f(t)]^{2}}$.

Define $P, K: \mathbb{R} \rightarrow \mathbb{R}$ by $P(t)=\ln \left(1+[f(t)]^{2}\right)$ and $K(t)=\left[f^{\prime}(t)\right]^{2}$. Show that $P+K$ is constant.

