
Quantified equivalences

(1) Axiom of Extensionality / Set-equality equivalency: Let A and

B be sets. Then “A “ B” is equivalent to the quantified state-

ment “@x, r px P Aq ô px P Bq s”.

(2) Subset equivalency: Let A and B be sets. Then “A Ď B” is

equivalent to the quantified statement “@x P A, rx P B s”.

(3) Union equivalency / Intersection equivalency: Let S be a set

of sets. Then, @z,
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(4) Function-equality equivalency: Let f and g be functions and

let S be a set. Assume that domrf s Ď S and that domrgs Ď S.

Then the statement “f “ g” is equivalent to the quantified

statement “@x P S, r fpxq “ gpxq s”.

(5) Union-closure equivalency: Let S be a set of sets, X a set.

Then “X P xSyY” is equivalent to the quantified statement

“@z P X, DA P S s.t. z P A Ď X”. In other words, “some of

the sets in S will cover X exactly” is equivalent to “every point

of X can be covered by a set from S without going outside X”.

(6) Base equivalency: Let B be any set of sets. Then the state-

ment “B is a base for a topology” is equivalent to “xByY is

a topology”, which is equivalent to the quantified statement

“@U, V P B, U X B P xByY”. In other words, a set of sets is a

base for a topology iff “each pairwise-intersection is a union”.

(7) Forward-image containment equivalency: Let f be a function.

Let S, T be sets. Then “f˚pSq Ď T” is equivalent to the quan-

tified statement “@x P domrf s, p r x P S s ñ r fpxq P T s q”.

(8) Open equivalency: Let X be a topological space, W Ď X. Then

“W is open in X” is equivalent to the quantified statement

“@q P W, DV P NXpqq s.t. V Ď W”. In other words, “the set

is open” is equivalent to “every point of the set is covered by a

neighborhood that stays inside the set”.

(9) Closure point equivalency: Let Z be a topological space, S Ď Z,

q P Z. Then the statement “q P ClZpSq” is equivalent to the

quantified statement “@U P NZpqq s.t. U X S ‰ H”.
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(10) Interior point equivalency: Let Z be a topological space, S Ď Z,

q P Z. Then the statement “q P IntZpSq” is equivalent to the

quantified statement “DU P NZpqq s.t. U Ď S”.

(11) Boundary point equivalency: Let Z be a topological space, let

S Ď Z and let q P Z. Then “q P BZpSq” is equivalent to the

quantified statement “@U P NZpqq, U X S ‰ H ‰ UzS”.

(12) Limit point equivalency: Let Z be a topological space, let S Ď Z

and let q P Z. Then “q P LPZpSq” is equivalent to the quantified

statement “@P P Nˆ
Z pqq, P X S ‰ H”.

(13) Topological space function-limit equivalency: Let Y and Z be

topological spaces, f : Y 99K Z, a P Y , b P Z. Then: “f Ñ b

in Z near a in Y ” is equivalent to the quantified statement

“@V P NZpbq, DU P Nˆ
Y paq s.t., @x P domrf s,

r x P U s ñ r fpxq P V s”.

(14) Metric space function-limit equivalency: Let Y and Z be metric

spaces and let f : Y 99K Z Let a P Y , b P Z. Then: “f Ñ b

in Z near a in Y ” is equivalent to the quantified statement

“@ε ą 0, Dδ ą 0 s.t., @x P domrf s,

r 0 ă dY px, aq ă δ s ñ r dZ p fpxq , b q ă ε s”.

(15) Normed vector space function-limit equivalency: Let Y and Z

be normed vector spaces, f : Y 99K Z, a P Y , b P Z. Then:

“f Ñ b in Z near a in Y ” is equivalent to the quantified state-

ment “@ε ą 0, Dδ ą 0 s.t., @x P domrf s,

r 0 ă | x ´ a |Y ă δ s ñ r | rfpxqs ´ b |Z ă ε s”.

(16) Topological space sequence-limit equivalency: Let Z be a topo-

logical space. Let s P ZN, b P Z. Then: “s‚ Ñ b in Z” is

equivalent to “@V P NZpbq, DK P N s.t., @j P N,

r j ě K s ñ r sj P V s”.

(17) Metric space sequence-limit equivalency: Let Z be a metric

space. Let s P ZN, b P Z. Then “s‚ Ñ b in Z” is equivalent

to the quantified statement “@ε ą 0, DK P N s.t., @j P N,

r j ě K s ñ r dZ p sj , b q ă ε s”.
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(18) Normed vector space sequence-limit equivalency: Let Z be a

normed vector space, s P ZN, b P Z. Then: “s‚ Ñ b in Z” is

equivalent to “@ε ą 0, DK P N s.t., @j P N,

r j ě K s ñ r |sj ´ b|Z ă ε s”.

(19) Topological space continuity equivalency: Let Y and Z be topo-

logical spaces, let f : Y 99K Z and let a P domrf s. Then the

statement “f is pY, Zq-continuous at a” is equivalent to the

statement “@V P NZpfpaqq, DU P NY paq s.t., @x P domrf s,

r x P U s ñ r fpxq P V s”.

(20) Metric space continuity equivalency: Let Y and Z be metric

spaces, let f : Y 99K Z and let a P domrf s. Then the statement

“f is pY, Zq-continuous at a” is equivalent to the quantified

statement “@ε ą 0, Dδ ą 0 s.t., @x P domrf s,

r dY px , a q ă δ s ñ r dZp fpxq , fpaq q ă ε s”.

(21) Normed vector space continuity equivalency: Let Y and Z be

normed vector spaces, let f : Y 99K Z and let a P domrf s.

Then the statement “f is pY, Zq-continuous at a” is equivalent

to the quantified statement “@ε ą 0, Dδ ą 0 s.t., @x P domrf s,

r | x ´ a |Y ă δ s ñ r | rfpxqs ´ rfpaqs |Z ă ε s”.

(22) K-bounded quantified equivalence: Let V , W be normed vector

spaces, T P LpV,W q, K ě 0. Then:

r T is K-bounded s ô r @u P SV , |T pxq|W ď K s.

(23) Another K-bounded quantified equivalence: Let V and W be

normed vector spaces, T P LpV,W q and K ě 0. Then:

r T is K-bounded s ô r @x P V, |T pxq|W ď K ¨ |x|V s.

(24) δ-bounded below quantified equivalence: Let V , W be normed

vector spaces, T P LpV,W q, δ ą 0. Then:

r T is δ-bdd below s ô r @u P SV , |T pxq|W ě δ s.

(25) Another δ-bounded below quantified equivalence: Let V and W

be normed vector spaces, T P LpV,W q and δ ą 0. Then:

r T is δ-bdd below s ô r @x P V, |T pxq|W ě δ ¨ |x|V s.

Other useful facts

(A) For any set S of sets, for any X P S, we have: X Ď
Ť

S.
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(B) For any vector space V , for any k P N, for any x1, . . . , xk P V ,

x tx1, . . . , xku ylin “ t c1x1 ` ¨ ¨ ¨ ` ckxk | c1, . . . , ck P R u.

(C) For any function f , for any set S, for any x, if [ ( x P domrf s )

and ( x P S ) ], then [ fpxq P f˚pSq ].


