Quantified equivalences

- (1) Axiom of Extensionality / Set-equality equivalency: Let A and B be sets. Then "A = B" is equivalent to the quantified statement " $\forall x$, [$(x \in A) \Leftrightarrow (x \in B)$]".
- (2) Subset equivalency: Let A and B be sets. Then " $A \subseteq B$ " is equivalent to the quantified statement " $\forall x \in A, [x \in B]$ ".
- (3) Union equivalency / Intersection equivalency: Let \mathcal{S} be a set of sets. Then, $\forall z$,

$$\left(\begin{bmatrix} z \in \bigcup \mathcal{S} \end{bmatrix} \iff [\exists X \in \mathcal{S} \text{ s.t. } z \in X] \right) \qquad \&$$
$$\left(\begin{bmatrix} z \in \bigcap \mathcal{S} \end{bmatrix} \iff [\forall X \in \mathcal{S}, z \in X] \right).$$

- (4) Function-equality equivalency: Let f and g be functions and let S be a set. Assume that dom $[f] \subseteq S$ and that dom $[g] \subseteq S$. Then the statement "f = g" is equivalent to the quantified statement " $\forall x \in S$, [f(x) = g(x)]".
- (5) Union-closure equivalency: Let \mathcal{S} be a set of sets, X a set. Then " $X \in \langle \mathcal{S} \rangle_{\cup}$ " is equivalent to the quantified statement " $\forall z \in X, \exists A \in \mathcal{S} \text{ s.t. } z \in A \subseteq X$ ". In other words, "some of the sets in \mathcal{S} will cover X exactly" is equivalent to "every point of X can be covered by a set from \mathcal{S} without going outside X".
- (6) Base equivalency: Let \mathcal{B} be any set of sets. Then the statement " \mathcal{B} is a base for a topology" is equivalent to " $\langle \mathcal{B} \rangle_{\cup}$ is a topology", which is equivalent to the quantified statement " $\forall U, V \in \mathcal{B}, U \cap B \in \langle \mathcal{B} \rangle_{\cup}$ ". In other words, a set of sets is a base for a topology iff "each pairwise-intersection is a union".
- (7) Forward-image containment equivalency: Let f be a function. Let S, T be sets. Then " $f_*(S) \subseteq T$ " is equivalent to the quantified statement " $\forall x \in \text{dom}[f]$, ($[x \in S] \Rightarrow [f(x) \in T]$)".
- (8) Open equivalency: Let X be a topological space, $W \subseteq X$. Then "W is open in X" is equivalent to the quantified statement " $\forall q \in W, \exists V \in \mathcal{N}_X(q) \text{ s.t. } V \subseteq W$ ". In other words, "the set is open" is equivalent to "every point of the set is covered by a neighborhood that stays inside the set".
- (9) Closure point equivalency: Let Z be a topological space, $S \subseteq Z$, $q \in Z$. Then the statement " $q \in \operatorname{Cl}_Z(S)$ " is equivalent to the quantified statement " $\forall U \in \mathcal{N}_Z(q)$ s.t. $U \cap S \neq \emptyset$ ".

- (10) Interior point equivalency: Let Z be a topological space, $S \subseteq Z$, $q \in Z$. Then the statement " $q \in \operatorname{Int}_Z(S)$ " is equivalent to the quantified statement " $\exists U \in \mathcal{N}_Z(q)$ s.t. $U \subseteq S$ ".
- (11) Boundary point equivalency: Let Z be a topological space, let $S \subseteq Z$ and let $q \in Z$. Then " $q \in \partial_Z(S)$ " is equivalent to the quantified statement " $\forall U \in \mathcal{N}_Z(q), U \cap S \neq \emptyset \neq U \setminus S$ ".
- (12) Limit point equivalency: Let Z be a topological space, let $S \subseteq Z$ and let $q \in Z$. Then " $q \in LP_Z(S)$ " is equivalent to the quantified statement " $\forall P \in \mathcal{N}_Z^{\times}(q), P \cap S \neq \emptyset$ ".
- (13) Topological space function-limit equivalency: Let Y and Z be topological spaces, $f: Y \dashrightarrow Z$, $a \in Y$, $b \in Z$. Then: " $f \to b$ in Z near a in Y" is equivalent to the quantified statement " $\forall V \in \mathcal{N}_Z(b), \exists U \in \mathcal{N}_Y^{\times}(a) \text{ s.t.}, \forall x \in \text{dom}[f],$

$$[x \in U] \quad \Rightarrow \quad [f(x) \in V]".$$

(14) Metric space function-limit equivalency: Let Y and Z be metric spaces and let $f: Y \dashrightarrow Z$ Let $a \in Y, b \in Z$. Then: " $f \to b$ in Z near a in Y" is equivalent to the quantified statement " $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}, \forall x \in \text{dom}[f],$

$$\left[0 < d_Y(x,a) < \delta \right] \quad \Rightarrow \quad \left[d_Z(f(x),b) < \varepsilon \right]".$$

(15) Normed vector space function-limit equivalency: Let Y and Z be normed vector spaces, $f: Y \dashrightarrow Z$, $a \in Y$, $b \in Z$. Then: " $f \rightarrow b$ in Z near a in Y" is equivalent to the quantified statement " $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}, \forall x \in \text{dom}[f],$

$$\begin{bmatrix} 0 < |x - a|_Y < \delta \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} |[f(x)] - b|_Z < \varepsilon \end{bmatrix}".$$

(16) Topological space sequence-limit equivalency: Let Z be a topological space. Let $s \in Z^{\mathbb{N}}$, $b \in Z$. Then: " $s_{\bullet} \to b$ in Z" is equivalent to " $\forall V \in \mathcal{N}_{Z}(b), \exists K \in \mathbb{N} \text{ s.t.}, \forall j \in \mathbb{N},$

$$[j \ge K] \implies [s_j \in V]".$$

(17) Metric space sequence-limit equivalency: Let Z be a metric space. Let $s \in Z^{\mathbb{N}}$, $b \in Z$. Then " $s_{\bullet} \to b$ in Z" is equivalent to the quantified statement " $\forall \varepsilon > 0, \exists K \in \mathbb{N} \text{ s.t.}, \forall j \in \mathbb{N}$,

$$[j \ge K] \implies [d_Z(s_j, b) < \varepsilon]".$$

(18) Normed vector space sequence-limit equivalency: Let Z be a normed vector space, $s \in Z^{\mathbb{N}}$, $b \in Z$. Then: " $s_{\bullet} \to b$ in Z" is equivalent to " $\forall \varepsilon > 0, \exists K \in \mathbb{N} \text{ s.t.}, \forall j \in \mathbb{N},$

$$[j \ge K] \implies [|s_j - b|_Z < \varepsilon]$$
"

(19) Topological space continuity equivalency: Let Y and Z be topological spaces, let $f: Y \dashrightarrow Z$ and let $a \in \text{dom}[f]$. Then the statement "f is (Y, Z)-continuous at a" is equivalent to the statement " $\forall V \in \mathcal{N}_Z(f(a)), \exists U \in \mathcal{N}_Y(a) \text{ s.t.}, \forall x \in \text{dom}[f],$

$$\left[x \in U \right] \quad \Rightarrow \quad \left[f(x) \in V \right]".$$

(20) Metric space continuity equivalency: Let Y and Z be metric spaces, let $f: Y \dashrightarrow Z$ and let $a \in \text{dom}[f]$. Then the statement "f is (Y, Z)-continuous at a" is equivalent to the quantified statement " $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}, \forall x \in \text{dom}[f]$,

$$\left[d_Y(x, a) < \delta \right] \quad \Rightarrow \quad \left[d_Z(f(x), f(a)) < \varepsilon \right]^n.$$

(21) Normed vector space continuity equivalency: Let Y and Z be normed vector spaces, let $f : Y \dashrightarrow Z$ and let $a \in \text{dom}[f]$. Then the statement "f is (Y, Z)-continuous at a" is equivalent to the quantified statement " $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}, \forall x \in \text{dom}[f]$,

$$\left[|x - a|_Y < \delta \right] \quad \Rightarrow \quad \left[|[f(x)] - [f(a)]|_Z < \varepsilon \right]^n.$$

(22) K-bounded quantified equivalence: Let V, W be normed vector spaces, $T \in L(V, W), K \ge 0$. Then:

 $[T \text{ is } K \text{-bounded }] \Leftrightarrow [\forall u \in S_V, |T(x)|_W \leqslant K].$

(23) Another K-bounded quantified equivalence: Let V and W be normed vector spaces, $T \in L(V, W)$ and $K \ge 0$. Then:

 $[T \text{ is } K \text{-bounded }] \iff [\forall x \in V, |T(x)|_W \leqslant K \cdot |x|_V].$

(24) δ -bounded below quantified equivalence: Let V, W be normed vector spaces, $T \in L(V, W), \delta > 0$. Then:

 $[T \text{ is } \delta\text{-bdd below }] \Leftrightarrow [\forall u \in S_V, |T(x)|_W \ge \delta].$

(25) Another δ -bounded below quantified equivalence: Let V and W be normed vector spaces, $T \in L(V, W)$ and $\delta > 0$. Then:

 $[T \text{ is } \delta \text{-bdd below }] \Leftrightarrow [\forall x \in V, |T(x)|_W \ge \delta \cdot |x|_V].$

Other useful facts

(A) For any set S of sets, for any $X \in S$, we have: $X \subseteq \bigcup S$.

- (B) For any vector space V, for any $k \in \mathbb{N}$, for any $x_1, \ldots, x_k \in V$, $\langle \{x_1, \ldots, x_k\} \rangle_{\text{lin}} = \{ c_1 x_1 + \cdots + c_k x_k \mid c_1, \ldots, c_k \in \mathbb{R} \}.$
- (C) For any function f, for any set S, for any x, if $[(x \in \text{dom}[f])$ and $(x \in S)]$, then $[f(x) \in f_*(S)]$.
- 4