Solutions for MATH 4604 (Advanced Calculus II) Spring 2018

Homework 14: Due on Tuesday 1 May
14-1. Let W be a normed vector space, let $f: \mathbb{R} \rightarrow W$ and let $p \in \mathbb{R}$. Show: $\left(f_{p}^{T}\right)^{\prime}(0)=f^{\prime}(p)$.

Proof: Let $g:=f_{p}^{T}$. Want: $g^{\prime}(0)=f^{\prime}(p)$. As $g^{\prime}(0)=\lim _{0} S S_{g}^{0}$ and $f^{\prime}(p)=\lim _{0} S S_{f}^{p}$, it suffices to show: $S S_{g}^{0}=S S_{f}^{p}$. Want: $\forall h \in \mathbb{R}$, $\left(S S_{g}^{0}\right)(h)=\left(S S_{f}^{p}\right)(h)$. Given $h \in \mathbb{R}$. Want: $\left(S S_{g}^{0}\right)(h)=\left(S S_{f}^{p}\right)(h)$.

We have

$$
\begin{aligned}
{[g(0+h)]-[g(0)]=} & {[g(h)]-[g(0)] } \\
= & {\left[\left(f_{p}^{T}\right)(h)\right]-\left[\left(f_{p}^{T}\right)(0)\right] } \\
= & {[[f(p+h)]-[f(p)]] } \\
& \quad-[[f(p+0)]-[f(p)]] \\
= & {[f(p+h)]-[f(p)] . }
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(S S_{g}^{0}\right)(h) & =\frac{[g(0+h)]-[g(0)]}{h} \\
& =\frac{[f(p+h)]-[f(p)]}{h}=\left(S S_{f}^{p}\right)(h)
\end{aligned}
$$

as desired. QED
14-2. Let V, W be finite dimensional vector spaces, $\alpha, \beta: V \rightarrow W$, $p \geqslant 0$. Assume: $\alpha=\beta$ near 0_{V} and $\alpha \in \breve{\mathcal{O}}_{p}(V, W)$. Show: $\beta \in \breve{\mathcal{O}}_{p}(V, W)$.
Proof: By assumption, choose $U \in \mathcal{N}_{V}\left(0_{V}\right)$ s.t. $\alpha=\beta$ on U. Also,
(A) $\operatorname{dom}[\alpha] \in \mathcal{N}_{V}\left(0_{V}\right)$,
(B) $\alpha\left(0_{V}\right)=0_{W} \quad$ and
(C) α is continuous at 0_{V}.

Let $D:=\operatorname{dom}[\alpha]$. By (A), we have $D \in \mathcal{N}_{V}\left(0_{V}\right)$. As $D, U \in \mathcal{N}_{V}\left(0_{V}\right)$, we get $D \cap U \in \mathcal{N}_{V}\left(0_{V}\right)$. We wish to show:
(1) $\operatorname{dom}[\beta] \in \mathcal{N}_{V}\left(0_{V}\right)$,
(2) $\beta\left(0_{V}\right)=0_{W} \quad$ and
(3) β is continuous at 0_{V}.

Proof of (1): Since we have $D \cap U \in \mathcal{N}_{V}\left(0_{V}\right)$, it suffices to show: $D \cap U \subseteq \operatorname{dom}[\beta]$. We want: $\forall x \in D \cap U, x \in \operatorname{dom}[\beta]$. Let $x \in D \cap U$ be given. We want to show: $x \in \operatorname{dom}[\beta]$.

We have: $x \in D$ and $x \in U$. Since $x \in D$, we get $\alpha(x) \neq 0$. Since $x \in U$, we get $\alpha(x)=\beta(x)$. Since $\beta(x)=\alpha(x) \neq \Theta$, we get $x \in \operatorname{dom}[\beta]$, as desired. End of proof of (1).

Proof of (2): Since $U \in \mathcal{N}_{V}\left(0_{V}\right), 0_{V} \in U$. So, since $\alpha=\beta$ on U, we get $\alpha\left(0_{V}\right)=\beta\left(0_{V}\right)$. By (B), we have $\alpha\left(0_{V}\right)=0_{W}$.

Then $\beta\left(0_{V}\right)=\alpha\left(0_{V}\right)=0_{W}$, as desired. End of proof of (2).
Proof of (3): Choose $|\bullet|_{V} \in \mathcal{N}(V)$ and $|\bullet|_{W} \in \mathcal{N}(W)$. We wish to show: $\forall \varepsilon>0, \exists \delta>0$ such that, $\forall x \in \operatorname{dom}[\beta]$,

$$
\left[0<\left|x-0_{V}\right|_{V}<\delta\right] \quad \Rightarrow \quad\left[\left|[\beta(x)]-\left[\beta\left(0_{V}\right)\right]\right|_{W}<\varepsilon\right] .
$$

Let $\varepsilon>0$ be given. We wish to show: $\exists \delta>0$ such that, $\forall x \in \operatorname{dom}[\beta]$,

$$
\left[0<\left|x-0_{V}\right|_{V}<\delta\right] \quad \Rightarrow \quad\left[\left|[\beta(x)]-\left[\beta\left(0_{V}\right)\right]\right|_{W}<\varepsilon\right] .
$$

Since $D \cap U \in \mathcal{N}_{V}\left(0_{V}\right)$ and since $\mathcal{B}_{V}\left(0_{V}\right)$ is a neighborhood base at 0_{V} in V, choose $\rho>0$ such that $B_{V}\left(0_{V}, \rho\right) \subseteq D \cap U$. By (C), choose $\tau>0$ such that, $\forall x \in D$,

$$
\left[0<\left|x-0_{V}\right|_{V}<\tau\right] \quad \Rightarrow \quad\left[\left|[\alpha(x)]-\left[\alpha\left(0_{V}\right)\right]\right|_{W}<\varepsilon\right] .
$$

Let $\delta:=\min \{\rho, \tau\}$. Then $\delta>0, \delta \leqslant \rho$ and $\delta \leqslant \tau$. Want: $\forall x \in \operatorname{dom}[\beta]$,

$$
\left[0<\left|x-0_{V}\right|_{V}<\delta\right] \quad \Rightarrow \quad\left[\left|[\beta(x)]-\left[\beta\left(0_{V}\right)\right]\right|_{W}<\varepsilon\right] .
$$

Let $x \in \operatorname{dom}[\beta]$ be given. We wish to show:

$$
\left[0<\left|x-0_{V}\right|_{V}<\delta\right] \quad \Rightarrow \quad\left[\left|[\beta(x)]-\left[\beta\left(0_{V}\right)\right]\right|_{W}<\varepsilon\right] .
$$

Assume $0<\left|x-0_{V}\right|_{V}<\delta$. Want: $\left|[\beta(x)]-\left[\beta\left(0_{V}\right)\right]\right|_{W}$.
We have $0<\left|x-0_{V}\right|<\rho$ and $0<\left|x-0_{V}\right|<\tau$. Since $\left|x-0_{V}\right|_{V}<\rho$, we get $x \in B_{V}\left(0_{V}, \rho\right)$. So, since $B_{V}\left(0_{V}, \rho\right) \subseteq D \cap U$, we see that $x \in D \cap U$. Then $x \in D$ and $x \in U$. Since $x \in U$, by choice of U, we have $\alpha(x)=\beta(x)$. By (2), we have $\beta\left(0_{V}\right)=0_{W}$. So, by (B), we have $\beta\left(0_{V}\right)=\alpha\left(0_{V}\right)$. Since $x \in D$ and since $0<\left|x-0_{V}\right|_{V}<\tau$, by choice of τ, we conclude that $\left|[\alpha(x)]-\left[\alpha\left(0_{V}\right)\right]\right|_{W}<\varepsilon$. Then

$$
\left|[\beta(x)]-\left[\beta\left(0_{V}\right)\right]\right|_{W}=\left|[\alpha(x)]-\left[\alpha\left(0_{V}\right)\right]\right|_{W}<\varepsilon,
$$

as desired. End of proof of (3). QED
14-3. Let $\delta>0$, let $I:=(-\delta, \delta)$ and let $\alpha: \mathbb{R} \rightarrow \mathbb{R}$. Assume: $\forall x \in I$, $\alpha(x) \in[0 \mid x]$. Show that $\alpha \in \widehat{\mathcal{O}}_{1}(\mathbb{R}, \mathbb{R})$.

Proof: Let $|\bullet| \in \mathcal{N}(\mathbb{R})$ denote absolute value. We wish to show: $\alpha \in[|\bullet|] \cdot[\widehat{\mathcal{O}}(\mathbb{R}, \mathbb{R})]$. Let $\beta:=\operatorname{adj}_{0}^{0}(\alpha /|\bullet|)$. It suffices to show:
(1) $\beta \in \widehat{\mathcal{O}}(\mathbb{R}, \mathbb{R}) \quad$ and
(2) $\alpha=[|\bullet|] \cdot \beta$.

Proof of (1): We wish to show: $\exists U \in \mathcal{N}_{\mathbb{R}}(0)$ such that

$$
[U \subseteq \operatorname{dom}[\beta]] \quad \text { and } \quad\left[\sup \left|\beta_{*}(U)\right|<\infty\right]
$$

Since $I=(-\delta, \delta)$, we see that I is open in \mathbb{R}. So since $0 \in I$, we get $I \in \mathcal{N}_{\mathbb{R}}(0)$. Let $U:=I$. We wish to show:
(A) $U \subseteq \operatorname{dom}[\beta] \quad$ and
(B) $\sup \left|\beta_{*}(U)\right|<\infty$.

Proof of (A) : Since $U=I$, we wish to show $I \subseteq \operatorname{dom}[\beta]$. Since $\beta(0)=0 \neq \odot$, we get $0 \in \operatorname{dom}[\beta]$. It remains to show: $I_{0}^{\times} \subseteq \operatorname{dom}[\beta]$.

We wish to show: $\forall x \in I_{0}^{\times}, x \in \operatorname{dom}[\beta]$. Let $x \in I_{0}^{\times}$be given. We wish to show: $x \in \operatorname{dom}[\beta]$.

Since $x \in I_{0}^{\times}$, we get $x \in I$ and $x \neq 0$. Since $x \neq 0$, we get $|x| \neq 0$ and $\beta(x)=[|\alpha(x)|] /[|x|]$. Since $x \in I$, we get $\alpha(x) \in[0 \mid x] \subseteq \mathbb{R}$. So, since $|x| \neq 0$, we get $[\alpha(x)] /[|x|] \in \mathbb{R}$. Then $\beta(x)=[|\alpha(x)|] /[|x|] \in \mathbb{R}$, so $\beta(x) \neq \Theta^{*}$, and so $x \in \operatorname{dom}[\beta]$, as desired. End of proof of (A).

Proof of (B) : It suffices to show $\sup \left|\beta_{*}(U)\right| \leqslant 1$. We wish to show: $\left|\beta_{*}(U)\right| \leqslant 1$. As $U=I$, we wish to show: $\left|\beta_{*}(I)\right| \leqslant 1$. Since

$$
|\beta(0)|=|0|=0 \leqslant 1
$$

it remains to show: $\left|\beta_{*}\left(I_{0}^{\times}\right)\right| \leqslant 1$.
We wish to show: $\forall x \in \operatorname{dom}[\beta]$,

$$
\left[x \in I_{0}^{\times}\right] \quad \Rightarrow \quad[|\beta(x)| \leqslant 1] .
$$

Let $x \in \operatorname{dom}[\beta]$ be given. We wish to show:

$$
\left[x \in I_{0}^{\times}\right] \quad \Rightarrow \quad[|\beta(x)| \leqslant 1]
$$

Assume: $x \in I_{0}^{\times}$. Want: $|\beta(x)| \leqslant 1$.
Since $x \in I_{0}^{\times}$, we get $x \in I$ and $x \neq 0$. Let $y:=|x|$. As $x \neq 0, y>0$. Since $x \neq 0, \beta(x)=[\alpha(x)] /[|x|]$. That is, $\beta(x)=[\alpha(x)] / y$. Since $y>0$, we get $|y|=y$. Then $|\beta(x)|=[|\alpha(x)|] /[|y|]=[|\alpha(x)|] / y$. Since $x \in I$, we get $\alpha(x)=[0 \mid x]$. We have $-|x| \leqslant x \leqslant|x|$, i.e., $-y \leqslant x \leqslant y$. Since $-y \leqslant 0$ and $-y \leqslant x$ we get $-y \leqslant \min \{0, x\}$. Since $0 \leqslant y$ and $x \leqslant y$, we get $\max \{0, x\} \leqslant y$. Then

$$
[0 \mid x]=[\min \{0, x\}, \max \{0, x\}] \subseteq[-y, y]
$$

Then $\alpha(x) \in[0 \mid x]=[-y, y]$, so $-y \leqslant \alpha(x) \leqslant y$, so $|\alpha(x)| \leqslant y$. Then $|\alpha(x)| / y \leqslant 1$. Then $|\beta(x)|=|\alpha(x)| / y \leqslant 1$, as desired. End of proof of (B). End of proof of (1).

Proof of (2): We have $0 \in(-\delta, \delta)=I$, so $\alpha(0) \in[0 \mid 0]=\{0\}$, so $\alpha(0)=0$. Also $\beta(0)=0$. Then

$$
\alpha(0)=0=0 \cdot 0=[|0|] \cdot[\beta(0) \mid] .
$$

It remains to show: $\alpha=[|\bullet|] \cdot \beta$ on \mathbb{R}_{0}^{\times}. We wish to show: $\forall x \in \mathbb{R}_{0}^{\times}$, $\alpha(x)=[|x|] \cdot[\beta(x)]$. Let $x \in \mathbb{R}_{0}^{\times}$be given. Want: $\alpha(x)=[|x|] \cdot[\beta(x)]$.

Since $x \neq 0$, it follows that $\beta(x)=[\alpha(x)] /[|x|]$. We conclude that $\alpha(x)=[|x|] \cdot[\beta(x)]$, as desired. End of proof of (2). QED

14-4. Let $k \in \mathbb{N}_{0}$ and let $f \in \breve{\mathcal{O}}_{k}(\mathbb{R}, \mathbb{R})$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$. Assume that $g^{\prime}=f$ near 0 . Assume that $g(0)=0$. Show that $g \in \breve{\mathcal{O}}_{k+1}(\mathbb{R}, \mathbb{R})$.

Proof: Let $|\bullet| \in \mathcal{N}(\mathbb{R})$ denote absolute value. Let $\psi:=\operatorname{adj}_{0}^{0}\left(g /\left[|\bullet|^{k+1}\right]\right)$. So, since $\psi=g /\left[|\bullet|^{k+1}\right]$ on \mathbb{R}_{0}^{\times}, we get $g=|\bullet|^{k+1} \cdot \psi$ on \mathbb{R}_{0}^{\times}. So, since $g(0)=0=\left[|0|^{k+1}\right] \cdot[\psi(0)]$, we see that $g=|\bullet|^{k+1} \cdot \psi$ on \mathbb{R}. Then $g=|\bullet|^{k+1} \cdot \psi$. We wish to show: $g \in\left[|\bullet|^{k+1}\right] \cdot[\check{\mathcal{O}}(\mathbb{R}, \mathbb{R})]$. It therefore suffices to show: $\psi \in \breve{\mathcal{O}}(\mathbb{R}, \mathbb{R})$. Since $\psi(0)=0$, we need to show:

$$
\left[\operatorname{dom}[\psi] \in \mathcal{N}_{\mathbb{R}}(0)\right] \quad \text { and } \quad[\psi \text { is continuous at } 0] .
$$

We have $\breve{\mathcal{O}}_{k}(\mathbb{R}, \mathbb{R})=[|\bullet|] \cdot[\breve{\mathcal{O}}(\mathbb{R}, \mathbb{R})]$, so, since $f \in \breve{\mathcal{O}}_{k}(\mathbb{R}, \mathbb{R})$, choose $\phi \in \breve{\mathcal{O}}(\mathbb{R}, \mathbb{R})$ s.t. $f=|\bullet| \cdot \phi$. Then $\operatorname{dom}[f]=(\operatorname{dom}[|\bullet|]) \cap(\operatorname{dom}[\phi])$, so, since $\operatorname{dom}[\phi] \subseteq \mathbb{R}=\operatorname{dom}[|\bullet|]$, we get $\operatorname{dom}[f]=\operatorname{dom}[\phi]$. Since $g=|\bullet|^{k+1} \cdot \psi$, we get $\operatorname{dom}[g]=(\operatorname{dom}[|\bullet|]) \cap(\operatorname{dom}[\psi])$, so, since $\operatorname{dom}[\psi] \subseteq \mathbb{R}=\operatorname{dom}[|\bullet|]$, we get $\operatorname{dom}[g]=\operatorname{dom}[\psi]$.

Since $g^{\prime}=f$ near 0 , choose $U \in \mathcal{N}_{\mathbb{R}}(0)$ s.t. $f=g^{\prime}$ on U. Let $D:=\operatorname{dom}[\phi]$. Since $\phi \in \breve{\mathcal{O}}(\mathbb{R}, \mathbb{R})$, we have $D \in \mathcal{N}_{\mathbb{R}}(0)$. So, since $U \in \mathcal{N}_{\mathbb{R}}(0)$, we get $D \cap U \in \mathcal{N}_{\mathbb{R}}(0)$. So, since $\mathcal{B}_{\mathbb{R}}(0)$ is a neighborhood base at 0 in \mathbb{R}, choose $\rho>0$ s.t. $B_{\mathbb{R}}(0, \rho) \subseteq D \cap U$. Let $I:=(-\rho, \rho)$. Then $I \in \mathcal{N}_{\mathbb{R}}(0)$. Also, $I=B_{\mathbb{R}}(0, \rho) \subseteq D \cap U$, so $I \subseteq D$ and $I \subseteq U$.

We have $I \subseteq D=\operatorname{dom}[\phi]=\operatorname{dom}[f]$. Since $f=g$ on U and since $I \subseteq U$, it follows that $f=g^{\prime}$ on I. So, since $I \subseteq \operatorname{dom}[f]$, we get $I \subseteq \operatorname{dom}\left[g^{\prime}\right]$. Then $I \subseteq \operatorname{dom}\left[g^{\prime}\right] \subseteq \operatorname{dom}[g]=\operatorname{dom}[\psi]$. So, since $I \in \mathcal{N}_{\mathbb{R}}(0)$, it follows that $\operatorname{dom}[\psi] \in \mathcal{N}_{\mathbb{R}}(0)$. It only remains to show that ψ is continuous at 0 . We want: $\forall \varepsilon>0, \exists \delta>0$ s.t., $\forall x \in \operatorname{dom}[\psi]$,

$$
[|x-0|<\delta] \quad \Rightarrow \quad[|[\psi(x)]-[\psi(0)]|<\varepsilon]
$$

Let $\varepsilon>0$ be given. We wish to show: $\exists \delta>0$ s.t., $\forall x \in \operatorname{dom}[\psi]$,

$$
[0<|x-0|<\delta] \quad \Rightarrow \quad[|[\psi(x)]-[\psi(0)]|<\varepsilon] .
$$

As $\phi \in \breve{\mathcal{O}}(\mathbb{R}, \mathbb{R}), \phi$ is continuous at 0 . Choose $\tau>0$ s.t., $\forall \alpha \in D$,

$$
[0<|\alpha-0|<\tau] \quad \Rightarrow \quad[|[\phi(\alpha)]-[\phi(0)]|<\varepsilon] .
$$

Let $\delta:=\min \{\rho, \tau\}$. Then $\delta \leqslant \rho$ and $\delta \leqslant \tau$. We want: $\forall x \in \operatorname{dom}[\psi]$,

$$
[0<|x-0|<\delta] \quad \Rightarrow \quad[|[\psi(x)]-[\psi(0)]|<\varepsilon] .
$$

Let $x \in \operatorname{dom}[\psi]$ be given. We wish to show:

$$
[0<|x-0|<\delta] \quad \Rightarrow \quad[|[\psi(x)]-[\psi(0)]|<\varepsilon] .
$$

Assume: $0<|x-0|<\delta$. We wish to show: $|[\psi(x)]-[\psi(0)]|<\varepsilon$. Since $\psi(0)=0$, we wish to prove: $|\psi(x)|<\varepsilon$.

Since I is an interval and $0 \in(-\delta, \delta)=I$, we know: $[0 \mid x] \subseteq I$. Then $[0 \mid x] \subseteq I \subseteq \operatorname{dom}\left[g^{\prime}\right]$, so g is c / d on $[0 \mid x]$. So, by the Mean Value Theorem, choose $\alpha \in(0 \mid x)$ s.t. $g^{\prime}(\alpha)=D Q_{g}(0, x)$. Since $g(0)=0$, we get $D Q_{g}(0, x)=[g(x)] / x$. We have $\alpha \in(0 \mid x) \subseteq[0 \mid x] \subseteq I$. So, since $g^{\prime}=f$ on I, we get $g^{\prime}(\alpha)=f(\alpha)$. Recall that $f=|\bullet|^{k} \cdot \phi$ and that $g=|\bullet|^{k+1} \cdot \psi$. Then

$$
\begin{aligned}
|\alpha|^{k} \cdot[\phi(\alpha)] & =f(\alpha)=g^{\prime}(\alpha)=D Q_{g}(0, x) \\
& =[g(x)] / x=|x|^{k+1} \cdot[\psi(x)] / x .
\end{aligned}
$$

Let $y:=|x|$. Taking absolute values gives $|\alpha|^{k} \cdot|\phi(\alpha)|=y^{k+1} \cdot|\psi(x)| / y$. Then $|\psi(x)|=[|\alpha| / y]^{k} \cdot|\phi(\alpha)|$. Want: $[|\alpha| / y]^{k} \cdot|\phi(\alpha)|<\varepsilon$.

We have $-|x| \leqslant x \leqslant|x|$, i.e., $-y \leqslant x \leqslant y$. Since $-y \leqslant 0$ and $-y \leqslant x$, we see that $-y \leqslant \min \{0, x\}$. Since $0 \leqslant y$ and $x \leqslant y$, see that $\max \{0, x\} \leqslant y$. Then $[0 \mid x]=[\min \{0, x\}, \max \{0, x\}] \subseteq[-y, y]$. Then $\alpha \in(0 \mid x) \subseteq[0 \mid x]=[-y, y]$, so $-y \leqslant \alpha \leqslant y$, so $|\alpha| \leqslant y$. Then $[|\alpha| / y]^{k} \leqslant 1$. It therefore suffices to show: $|\phi(\alpha)|<\varepsilon$.

Since $\alpha \in I=(-\delta, \delta)$, we see that $|\alpha|<\delta$. Since $\alpha \in(0 \mid x)$, we see that $\alpha \neq 0$, so $|\alpha|>0$. Then $0<|\alpha|<\delta \leqslant \tau$. Then $0<|\alpha-0|<\tau$. So, since $\alpha \in I \subseteq D$, by choice of τ, we get $|[\phi(\alpha)]-[\phi(0)]|<\varepsilon$. Since $\phi \in \breve{\mathcal{O}}(\mathbb{R}, \mathbb{R})$, we have $\phi(0)=0$. Then $|\phi(\alpha)|<\varepsilon$, as desired. QED

14-5. Let V, W be finite dimensional vector spaces. Let $f, g: V \rightarrow W$. Let $p \in V$. Assume: $f=g$ near p. Show: $\operatorname{LINS}_{p} f \subseteq \operatorname{LINS}_{p} g$.

Proof: We wish to show: $\forall L \in \operatorname{LINS}_{p} f, L \in \operatorname{LINS}_{p} g$. Let $L \in \operatorname{LINS}_{p} f$ be given. We wish to show: $L \in \operatorname{LINS}_{p} g$.

As $L \in \operatorname{LINS}_{p} f$, we get $f_{p}^{T}-L \in \breve{\mathcal{O}}_{1}(V, W)$. Want: $g_{p}^{T}-L \in \breve{\mathcal{O}}_{1}(V, W)$. By HW\#14-2, it suffices to show: $f_{p}^{T}-L=g_{p}^{T}-L$ near 0_{V}.

Since $f=g$ near p, choose $U \in \mathcal{N}_{V}(p)$ s.t. $f=g$ on U. Choose $|\bullet| \in \mathcal{N}(V)$. Since $\mathcal{B}_{V}(p)$ is a neighborhood base at p in V, choose $\delta>0$ s.t. $B_{V}(p, \delta) \subseteq U$. Let $A:=B_{V}\left(0_{V}, \delta\right)$. Then $A \in \mathcal{N}_{V}\left(0_{V}\right)$, so it suffices to show: $f_{p}^{T}-L=g_{p}^{T}-L$ on A. We wish to show: $\forall h \in A$, $\left(f_{p}^{T}-L\right)(h)=\left(g_{p}^{T}-L\right)(h)$. Let $h \in A$ be given. We wish to show: $\left(f_{p}^{T}-L\right)(h)=\left(g_{p}^{T}-L\right)(h)$. Want: $\left[f_{p}^{T}(h)\right]-[L(h)]=\left[g_{p}^{T}(h)\right]-[L(h)]$. It suffices to prove: $f_{p}^{T}(h)=g_{p}^{T}(h)$.

Since $h \in A=B_{V}\left(0_{V}, \delta\right)$, we get $\left|h-0_{V}\right|<\delta$. Let $x:=p+h$. Then $|x-p|=|h|=\left|h-0_{V}\right|<\delta$, so $x \in B_{V}(p, \delta)$. So, since $B_{V}(p, \delta) \subseteq U$, we get $x \in U$. So, since $f=g$ on U, we get $f(x)=g(x)$. As $U \in \mathcal{N}_{V}(p)$, we get $p \in U$. So, since $f=g$ on U, we get $f(p)=g(p)$. Then

$$
\begin{aligned}
\left(f_{p}^{T}\right)(h) & =[f(p+h)]-[f(p)] \\
& =[f(x)]-[f(p)] \\
& =[g(x)]-[g(p)] \\
& =[g(p+h)]-[g(p)]=\left(g_{p}^{T}\right)(h)
\end{aligned}
$$

as desired. QED

Homework 13: Due on Tuesday 24 April
13-1. Let V, W be finite dimensional VSs. Show: $L(V, W) \subseteq \widehat{\mathcal{O}}_{1}(V, W)$.
Proof: Want: $\forall T \in L(V, W), T \in \widehat{\mathcal{O}}_{1}(V, W)$. Let $T \in L(V, W)$ be given. Want: $T \in \widehat{\mathcal{O}}_{1}(V, W)$.

Since $T \in L(V, W)$, it follows that $T\left(0_{V}\right)=0_{W}$. Let $|\bullet|_{V} \in \mathcal{N}(V)$, $|\bullet|_{W} \in \mathcal{N}(W)$. Let $\alpha:=\operatorname{adj}_{0_{V}}^{0_{W}}\left(T /|\bullet|_{V}\right)$. Then $T=|\bullet|_{V} \cdot \alpha$ on $V_{0_{V}}^{\times}$. So, since $T\left(0_{V}\right)=0_{W}=0 \cdot 0_{W}=\left|0_{V}\right|_{V} \cdot\left[\alpha\left(0_{V}\right)\right]$, we conclude that $T=|\bullet|_{V} \cdot \alpha$. It suffices to show: $\alpha \in \widehat{\mathcal{O}}(V, W)$. We wish to show: $\exists U \in \mathcal{N}_{V}\left(0_{V}\right)$ such that: $[U \subseteq \operatorname{dom}[\alpha]]$ and $\left[\sup \left|\alpha_{*}(U)\right|_{W}<\infty\right]$.

We have $V \in \mathcal{N}_{V}\left(0_{V}\right)$. Let $U:=V$. We wish to show:

$$
[U \subseteq \operatorname{dom}[\alpha]] \quad \text { and } \quad\left[\sup \left|\alpha_{*}(U)\right|_{W}<\infty\right]
$$

Since $U=V \subseteq V=\operatorname{dom}[\alpha]$, it remains to show: $\sup \left|\alpha_{*}(U)\right|_{W}<\infty$.
By (1) of Theorem 46.2 p. 331, $T: V \rightarrow W$ is bounded. We define $M:=\widehat{T}_{V W}$. Then $0 \leqslant M<\infty$. Also, $T: V \rightarrow W$ is M-bounded. It suffices to show: sup $\left|\alpha_{*}(U)\right|_{W} \leqslant M$. We wish to show: $\left|\alpha_{*}(U)\right|_{W} \leqslant M$.

We wish to show: $\forall x \in \operatorname{dom}[\alpha],[x \in U] \Rightarrow\left[|\alpha(x)|_{W} \leqslant M\right]$. Let $x \in \operatorname{dom}[\alpha]$ be given. We want: $[x \in U] \Rightarrow\left[|\alpha(x)|_{W} \leqslant M\right]$. Assume: $x \in U$. We wish to show: $|\alpha(x)|_{W} \leqslant M$.

One of the following must be true:

$$
\begin{aligned}
& \text { (1) } x=0_{V} \quad \text { or } \\
& \text { (2) } x \neq 0_{V} \text {. }
\end{aligned}
$$

Case (1): As $\alpha(x)=\alpha\left(0_{V}\right)=0_{W},|\alpha(x)|_{W}=\left|0_{W}\right|_{W}=0 \leqslant M$, as desired. End of case (1).

Case (2): We have $\alpha(x)=[T(x)] /\left[|x|_{V}\right]$. Since T is M-bounded, we have $|T(x)|_{W} \leqslant M \cdot|x|_{V}$. Then

$$
|\alpha(x)|_{W}=\left|\frac{T(x)}{|x|_{V}}\right|_{W}=\frac{|T(x)|_{W}}{|x|_{V}} \leqslant M
$$

as desired. End of case (2). QED
13 -2. Let $m, n \in \mathbb{N}$. Let $V:=\left(\mathbb{R}^{m},|\bullet|_{m, 1}\right)$ and let $W:=\left(\mathbb{R}^{n},|\bullet|_{n, 1}\right)$. Let Z be a normed vector space. Let $* \in B(V, W, Z)$. Show: $\exists K \geqslant 0$ such that, $\forall v \in V, \forall w \in W, \quad|v * w|_{Z} \leqslant K \cdot|v|_{V} \cdot|w|_{W}$.

Proof: Let $K:=\max \left\{\left|e_{i}^{m} * e_{j}^{n}\right|_{Z} \mid i \in[1 . . m], j \in[1 . . n]\right\}$. We wish to show: $\forall v \in V, \forall w \in W,|v * w|_{Z} \leqslant K \cdot|v|_{V} \cdot|w|_{W}$. Let $v \in V, w \in W$ be given. We wish to show: $|v * w|_{Z} \leqslant K \cdot|v|_{V} \cdot|w|_{W}$.

Since $|\bullet|_{V}=|\bullet|_{m, 1}$, we see that $|v|_{V}=\sum_{i=1}^{m}\left|v_{i}\right|$. Since $|\bullet|_{W}=|\bullet|_{n, 1}$, we see that $|w|_{W}=\sum_{j=1}^{n}\left|w_{j}\right|$. Since $v=\sum_{i=1}^{m} v_{i} e_{i}^{m}$ and $w=\sum_{j=1}^{n} w_{j} e_{j}^{n}$, we get $v * w=\sum_{i=1}^{m} \sum_{j=1}^{n} v_{i} w_{j}\left(e_{i}^{m} * e_{j}^{n}\right)$. Then, by subadditivity of $|\bullet|_{Z}$, we have $|v * w|_{Z} \leqslant \sum_{i=1}^{m} \sum_{j=1}^{n}\left|v_{i} w_{j}\left(e_{i}^{m} * e_{j}^{n}\right)\right|_{Z}$. We have: $\forall i \in[1 . . m], \forall j \in[1 . . n]$,

$$
\left|v_{i} w_{j}\left(e_{i}^{m} * e_{j}^{n}\right)\right|_{Z}=\left|v_{i}\right| \cdot\left|w_{j}\right| \cdot\left|e_{i}^{m} * e_{j}^{n}\right|_{Z} \leqslant\left|v_{i}\right| \cdot\left|w_{j}\right| \cdot K .
$$

Then

$$
\begin{aligned}
|v * w|_{Z} & \leqslant \sum_{i=1}^{m} \sum_{j=1}^{n}\left(\left|v_{i}\right| \cdot\left|w_{j}\right| \cdot K\right) \\
& =K \cdot \sum_{i=1}^{m} \sum_{j=1}^{n}\left(\left|v_{i}\right| \cdot\left|w_{j}\right|\right) \\
& =K \cdot\left[\sum_{i=1}^{m}\left|v_{i}\right|\right] \cdot\left[\sum_{j=1}^{n}\left|w_{j}\right|\right] \\
& =K \cdot|v|_{V} \cdot|w|_{W}
\end{aligned}
$$

as desired. QED
13-3. Let $\ell, m, n \in \mathbb{N}$. Let $U:=\left(\mathbb{R}^{\ell},|\bullet|_{\ell, 1}\right)$, let $V:=\left(\mathbb{R}^{m},|\bullet|_{m, 1}\right)$ and let $W:=\left(\mathbb{R}^{n},|\bullet|_{n, 1}\right)$. Let Z be a normed vector space. Let $F \in T(U, V, W, Z)$. Show: $\exists K \geqslant 0$ such that, $\forall u \in U, \forall v \in V, \forall w \in W$,

$$
|F(u, v, w)|_{Z} \leqslant K \cdot|u|_{U} \cdot|v|_{V} \cdot|w|_{W}
$$

Proof: Let $K:=\max \left\{\left|F\left(e_{h}^{\ell}, e_{i}^{m}, e_{j}^{n}\right)\right|_{Z} \mid h \in[1 . . \ell], i \in[1 . . m], j \in[1 . . n]\right\}$. We wish to show: $\forall u \in U, \forall v \in V, \forall w \in W$,

$$
|F(u, v, w)|_{Z} \leqslant K \cdot|u|_{U} \cdot|v|_{V} \cdot|w|_{W}
$$

Given $u \in U, v \in V, w \in W$. Want: $|F(u, v, w)|_{Z} \leqslant K \cdot|u|_{U} \cdot|v|_{V} \cdot|w|_{W}$.
Since $|\bullet|_{U}=|\bullet|_{\ell, 1}$, we see that $|u|_{U}=\sum_{h=1}^{\ell}\left|u_{h}\right|$. Since $|\bullet|_{V}=|\bullet|_{m, 1}$, we see that $|v|_{V}=\sum_{i=1}^{m}\left|v_{i}\right|$. Since $|\bullet|_{W}=|\bullet|_{n, 1}$, we see that $|w|_{W}=\sum_{j=1}^{n}\left|w_{j}\right|$.
Since $u=\sum_{h=1}^{m} u_{h} e_{h}^{\ell}$ and $v=\sum_{i=1}^{m} v_{i} e_{i}^{m}$ and $w=\sum_{j=1}^{n} w_{j} e_{j}^{n}$, we get

$$
F(u, v, w)=\sum_{h=1}^{\ell} \sum_{i=1}^{m} \sum_{j=1}^{n} u_{h} v_{i} w_{j}\left(F\left(e_{h}^{\ell}, e_{i}^{m}, e_{j}^{n}\right)\right)
$$

Then, by subadditivity of $|\bullet|_{Z}$, we have

$$
|F(u, v, w)|_{Z} \leqslant \sum_{h=1}^{\ell} \sum_{i=1}^{m} \sum_{j=1}^{n}\left|u_{h} v_{i} w_{j}\left(F\left(e_{h}^{\ell}, e_{i}^{m}, e_{j}^{n}\right)\right)\right|_{Z}
$$

We have: $\forall h \in[1 . . \ell], \forall i \in[1 . . m], \forall j \in[1 . . n]$,

$$
\begin{aligned}
\left|u_{h} v_{i} w_{j}\left(F\left(e_{h}^{\ell}, e_{i}^{m}, e_{j}^{n}\right)\right)\right|_{Z} & =\left|u_{h}\right| \cdot\left|v_{i}\right| \cdot\left|w_{j}\right| \cdot\left|F\left(e_{h}^{\ell}, e_{i}^{m}, e_{j}^{n}\right)\right|_{Z} \\
& \leqslant\left|u_{h}\right| \cdot\left|v_{i}\right| \cdot\left|w_{j}\right| \cdot K
\end{aligned}
$$

Then

$$
\begin{aligned}
|F(u, v, w)|_{Z} & \leqslant \sum_{h=1}^{\ell} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(\left|u_{h}\right| \cdot\left|v_{i}\right| \cdot\left|w_{j}\right| \cdot K\right) \\
& =K \cdot \sum_{h=1}^{\ell} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(\left|u_{h}\right| \cdot\left|v_{i}\right| \cdot\left|w_{j}\right|\right) \\
& =K \cdot\left[\sum_{h=1}^{\ell}\left|u_{h}\right|\right] \cdot\left[\sum_{i=1}^{m}\left|v_{i}\right|\right] \cdot\left[\sum_{j=1}^{n}\left|w_{j}\right|\right] \\
& =K \cdot|u|_{U} \cdot|v|_{V} \cdot|w|_{W}
\end{aligned}
$$

as desired. QED
13-4. Let U, V and W be finite dimensional normed vector spaces. Let Z be a normed vector space. Let $F \in T(U, V, W, Z)$. Show: $\exists K \geqslant 0$ such that, $\forall u \in U, \forall v \in V, \forall w \in W$,

$$
|F(u, v, w)|_{Z} \leqslant K \cdot|u|_{U} \cdot|v|_{V} \cdot|w|_{W} .
$$

Proof: Let $\ell:=\operatorname{dim} U, m:=\operatorname{dim} V$ and $n:=\operatorname{dim} W$. Choose

$$
A \in \mathrm{OB}(U), \quad B \in \mathrm{OB}(V) \quad \text { and } \quad C \in \mathrm{OB}(W)
$$

Let $U^{\prime}:=\left(\mathbb{R}^{\ell},|\bullet|_{\ell, 1}\right)$, let $V^{\prime}:=\left(\mathbb{R}^{m},|\bullet|_{m, 1}\right)$ and let $W^{\prime}:=\left(\mathbb{R}^{n},|\bullet|_{n, 1}\right)$. Define $F^{\prime} \in T\left(U^{\prime}, V^{\prime}, W^{\prime}, Z\right)$ by

$$
F^{\prime}(u, v, w)=F\left(L_{A}(u), L_{B}(v), L_{C}(w)\right)
$$

By HW\#13-3, choose $K^{\prime} \geqslant 0$ s.t., $\forall u^{\prime} \in U^{\prime}, \forall v^{\prime} \in V^{\prime}, \forall w^{\prime} \in W^{\prime}$,

$$
\left|F^{\prime}\left(u^{\prime}, v^{\prime}, w^{\prime}\right)\right|_{Z} \leqslant K^{\prime} \cdot\left|u^{\prime}\right|_{U^{\prime}} \cdot\left|v^{\prime}\right|_{V^{\prime}} \cdot\left|w^{\prime}\right|_{W^{\prime}}
$$

By (1) of Theorem 46.2 p. 331, the maps

$$
L_{A}^{-1}: U \rightarrow U^{\prime}, \quad L_{B}^{-1}: V \rightarrow V^{\prime} \quad \text { and } \quad L_{C}^{-1}: W \rightarrow W^{\prime}
$$

are all bounded. Let

$$
Q:=\left(L_{A}^{-1}\right) \hat{U, U^{\prime}}, \quad R:=\left(L_{B}^{-1}, \hat{V}, V^{\prime} \quad \text { and } \quad S:=\left(L_{C}^{-1}\right) \hat{W}, W^{\prime} .\right.
$$

Then $L_{A}^{-1}: U \rightarrow U^{\prime}$ is Q-bounded, $L_{B}^{-1}: V \rightarrow V^{\prime}$ is R-bounded and $L_{C}^{-1}: W \rightarrow W^{\prime}$ is S-bounded. Let $K:=K^{\prime} \cdot Q \cdot R \cdot S$. We wish to show: $\forall u \in U, \forall v \in V, \forall w \in W$,

$$
|F(u, v, w)|_{Z} \leqslant K \cdot|u|_{U} \cdot|v|_{V} \cdot|w|_{W}
$$

Let $u \in U, v \in V$ and $w \in W$ be given. We wish to show:

$$
|F(u, v, w)|_{Z} \leqslant K \cdot|u|_{U} \cdot|v|_{V} \cdot|w|_{W}
$$

Since $L_{A}^{-1}: U \rightarrow U^{\prime}$ is Q-bounded, since $L_{B}^{-1}: V \rightarrow V^{\prime}$ is R-bounded and since $L_{C}^{-1}: W \rightarrow W^{\prime}$ is S-bounded, we get

$$
\begin{aligned}
\left|L_{A}^{-1}(u)\right|_{U^{\prime}} & \leqslant Q \cdot|u|_{U} \\
\left|L_{B}^{-1}(v)\right|_{V^{\prime}} & \leqslant R \cdot|v|_{V} \quad \text { and } \\
\left|L_{C}^{-1}(w)\right|_{W^{\prime}} & \leqslant S \cdot|w|_{W}
\end{aligned}
$$

Let $u^{\prime}:=\left(L_{A}^{-1}\right)(u), v^{\prime}:=\left(L_{B}^{-1}\right)(v)$ and $w^{\prime}:=\left(L_{C}^{-1}\right)(w)$. Then

$$
\left|u^{\prime}\right|_{U^{\prime}} \leqslant Q \cdot|u|_{U}, \quad\left|v^{\prime}\right|_{V^{\prime}} \leqslant R \cdot|v|_{V}, \quad \text { and } \quad\left|w^{\prime}\right|_{W^{\prime}} \leqslant S \cdot|w|_{W}
$$

By choice of K^{\prime}, we have

$$
\left|F^{\prime}\left(u^{\prime}, v^{\prime}, w^{\prime}\right)\right|_{Z} \leqslant K^{\prime} \cdot\left|u^{\prime}\right|_{U^{\prime}} \cdot\left|v^{\prime}\right|_{V^{\prime}} \cdot\left|w^{\prime}\right|_{W^{\prime}}
$$

Since $L_{A}\left(u^{\prime}\right)=u, L_{B}\left(v^{\prime}\right)=v$ and $L_{C}\left(w^{\prime}\right)=w$, by definition of F^{\prime}, we get $F^{\prime}\left(u^{\prime}, v^{\prime}, w^{\prime}\right)=F(u, v, w)$. Then

$$
\begin{aligned}
|F(u, v, w)|_{Z} & \leqslant\left|F^{\prime}\left(u^{\prime}, v^{\prime}, w^{\prime}\right)\right|_{Z} \\
& \leqslant K^{\prime} \cdot\left|u^{\prime}\right|_{U^{\prime}} \cdot\left|v^{\prime}\right|_{V^{\prime}} \cdot\left|w^{\prime}\right|_{W^{\prime}} \\
& \leqslant K^{\prime} \cdot Q \cdot|u|_{U} \cdot R \cdot|v|_{V} \cdot S \cdot|w|_{W} \\
& =K^{\prime} \cdot Q \cdot R \cdot S \cdot|u|_{U} \cdot|v|_{V} \cdot|w|_{W} \\
& =K \cdot|u|_{U} \cdot|v|_{V} \cdot|w|_{W}
\end{aligned}
$$

as desired. QED
13-5. Let $S V, W$ and Z all be finite dimensional vector spaces, and let $* \in B(V, W, Z)$. Show: $[\widehat{\mathcal{O}}(S, V)]{ }_{S}^{*}[\widehat{\mathcal{O}}(S, W)] \subseteq \widehat{\mathcal{O}}(S, Z)$.

Proof: We wish to show: $\forall \alpha \in \widehat{\mathcal{O}}(S, V), \forall \beta \in \widehat{\mathcal{O}}(S, W)$, we have: $\alpha{ }_{S}^{*} \beta \in \widehat{\mathcal{O}}(S, Z)$. Let $\alpha \in \widehat{\mathcal{O}}(S, V)$ and $\beta \in \widehat{\mathcal{O}}(S, W)$ be given. We wish to show: $\alpha{ }_{S}^{*} \beta \in \widehat{\mathcal{O}}(S, Z)$.

Choose $|\bullet|_{S} \in \mathcal{N}(S)$ and $|\bullet|_{V} \in \mathcal{N}(V)$ and $|\bullet|_{W} \in \mathcal{N}(W)$ and $|\bullet|_{Z} \in \mathcal{N}(Z)$. By Theorem 49.1 p. 359, choose $C \geqslant 0$ such that, $\forall v \in V, \forall w \in W,|v * w|_{Z} \leqslant C \cdot|v|_{V} \cdot|w|_{W}$.

Since $\alpha \in \widehat{\mathcal{O}}(S, V)$, choose $P \in \mathcal{N}_{S}\left(0_{S}\right)$ such that

$$
P \subseteq \operatorname{dom}[\alpha] \quad \text { and } \quad \sup \left|\alpha_{*}(P)\right|_{V}<\infty
$$

Let $K:=\sup \left|\alpha_{*}(P)\right|_{V}$. Then $0 \leqslant K<\infty$ and $\left|\alpha_{*}(P)\right|_{V} \leqslant K$.
Since $\beta \in \widehat{\mathcal{O}}(S, W)$, choose $Q \in \mathcal{N}_{S}\left(0_{S}\right)$ such that

$$
Q \subseteq \operatorname{dom}[\beta] \quad \text { and } \quad \sup \left|\beta_{*}(Q)\right|_{W}<\infty
$$

Let $L:=\sup \left|\beta_{*}(Q)\right|_{W}$. Then $0 \leqslant L<\infty$ and $\left|\beta_{*}(Q)\right|_{W} \leqslant L$.
Let $\gamma:=\alpha{ }_{S}^{*} \beta$. We wish to show: $\gamma \in \widehat{\mathcal{O}}(S, Z)$. We wish to show: $\exists R \in \mathcal{N}_{S}\left(0_{S}\right)$ such that

$$
R \subseteq \operatorname{dom}[\gamma] \quad \text { and } \quad \sup \left|\gamma_{*}(R)\right|_{Z}<\infty
$$

Since $P \in \mathcal{N}_{S}\left(0_{S}\right)$ and $Q \in \mathcal{N}_{S}\left(0_{S}\right)$, it follows that $P \cap Q \in \mathcal{N}_{S}\left(0_{S}\right)$. Let $R:=P \cap Q$. We wish to show:

$$
R \subseteq \operatorname{dom}[\gamma] \quad \text { and } \quad \sup \left|\gamma_{*}(R)\right|_{Z}<\infty
$$

Since $\gamma=\alpha \underset{S}{*} \beta$, it follows that $\operatorname{dom}[\gamma]=(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta])$.
Since $P \subseteq \operatorname{dom}[\alpha]$ and $Q \subseteq \operatorname{dom}[\beta]$, it follows that

$$
P \cap Q \quad \subseteq \quad(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta])
$$

Then $R=P \cap Q \subseteq(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta])=\operatorname{dom}[\gamma]$. It remains to show that $\sup \left|\gamma_{*}(R)\right|_{Z}<\infty$.

Let $M:=C K L$. Then $0 \leqslant M<\infty$. It suffices to show that $\sup \left|\gamma_{*}(R)\right|_{Z} \leqslant M$. We wish to show: $\forall x \in \operatorname{dom}[\gamma]$,

$$
[x \in R] \quad \Rightarrow \quad\left[|\gamma(x)|_{Z} \leqslant M\right]
$$

Let $x \in \operatorname{dom}[\gamma]$ be given. We wish to show:

$$
[x \in R] \quad \Rightarrow \quad\left[|\gamma(x)|_{Z} \leqslant M\right] .
$$

Assume: $x \in R$. Want: $|\gamma(x)|_{Z} \leqslant M$.
We have $x \in \operatorname{dom}[\gamma] \subseteq \operatorname{dom}[\alpha]$ and $x \in R \subseteq P$, so $\alpha(x) \in \alpha_{*}(P)$. Then $|\alpha(x)|_{V} \in\left|\alpha_{*}(P)\right|_{V} \leqslant K$. Let $v:=\alpha(x)$. Then $|v|_{V} \leqslant K$. We have $x \in \operatorname{dom}[\gamma] \subseteq \operatorname{dom}[\beta]$ and $x \in R \subseteq Q$, so $\beta(x) \in \beta_{*}(Q)$. Then $|\beta(x)|_{W} \in\left|\beta_{*}(Q)\right|_{W} \leqslant L$. Let $w:=\beta(x)$. Then $|w|_{W} \leqslant L$.

We have $\gamma(x)=(\alpha \underset{S}{*} \beta)(x)=[\alpha(x)] *[\beta(x)]=v * w$. By the choice of C, we have $|v * w|_{Z} \leqslant C \cdot|v|_{V} \cdot|w|_{W}$.

Then $|\gamma(x)|_{Z}=|v * w|_{Z} \leqslant C \cdot|v|_{V} \cdot|w|_{W} \leqslant C K L=M$. QED

Homework 12: Due on Tuesday 17 April
12-1. Let V and W both be finite dimensional vector spaces, and let $|\bullet|,\|\bullet\| \in \mathcal{N}(W)$. Show: $\widehat{\mathcal{O}}(V, W,|\bullet|) \subseteq \widehat{\mathcal{O}}(V, W,\|\bullet\|)$.
Proof: Want: $\forall \alpha \in \widehat{\mathcal{O}}(V, W,|\bullet|), \alpha \in \widehat{\mathcal{O}}(V, W,\|\bullet\|)$. Let $\alpha \in \widehat{\mathcal{O}}(V, W,|\bullet|)$ be given. Want: $\alpha \in \widehat{\mathcal{O}}(V, W,\|\bullet\|)$. Want: $\exists U \in \mathcal{N}_{V}\left(0_{V}\right)$ such that

$$
[U \subseteq \operatorname{dom}[\alpha]] \quad \text { and } \quad\left[\sup \left\|\alpha_{*}(U)\right\|<\infty\right]
$$

Since $\alpha \in \widehat{\mathcal{O}}(V, W,|\bullet|)$, choose $U \in \mathcal{N}_{V}\left(0_{V}\right)$ such that

$$
[U \subseteq \operatorname{dom}[\alpha]] \quad \text { and } \quad\left[\sup \left|\alpha_{*}(U)\right|<\infty\right]
$$

Want: $\sup \left\|\alpha_{*}(U)\right\|<\infty$.
Let $M:=\sup \left|\alpha_{*}(U)\right|$. Then $\left|\alpha_{*}(U)\right| \leqslant M$. By Theorem 46.3 p. 332, $|\bullet| \approx\|\bullet\|$, so $\|\bullet\| \ll|\bullet|$, so choose $K>0$ s.t. $\|\bullet\| \leqslant K \cdot|\bullet|$. It suffices to show: $\left\|\alpha_{*}(U)\right\| \leqslant K M$. We want: $\forall x \in \operatorname{dom}[\alpha]$,

$$
[x \in U] \quad \Rightarrow \quad[\|\alpha(x)\| \leqslant K M] .
$$

Let $x \in \operatorname{dom}[\alpha]$ be given. We wish to prove:

$$
[x \in U] \quad \Rightarrow \quad[\|\alpha(x)\| \leqslant K M] .
$$

Assume that $x \in U$. We wish to show: $\|\alpha(x)\| \leqslant K M$.
Since $x \in \operatorname{dom}[\alpha]$ and $x \in U$, we get $|\alpha(x)| \in\left|\alpha_{*}(U)\right|$. So, since $\left|\alpha_{*}(U)\right| \leqslant M$, we get $|\alpha(x)| \leqslant M$. Since $\|\bullet\| \leqslant K \cdot|\bullet|$, we get $\|\alpha(x)\| \leqslant K \cdot|\alpha(x)|$. Then $\|\alpha(x)\| \leqslant K \cdot|\alpha(x)| \leqslant K M$, as desired. QED

12-2. Let V and W both be finite dimensional vector spaces, and let $\alpha: V \rightarrow W$. Assume that $\operatorname{dom}[\alpha] \in \mathcal{N}_{V}\left(0_{V}\right)$. Assume that α is continuous at 0_{V}. Show: $\alpha \in \widehat{\mathcal{O}}(V, W)$.

Proof: Choose $|\bullet|_{V} \in \mathcal{N}(V)$ and $|\bullet|_{W} \in \mathcal{N}(W)$. We wish to show: $\exists U \in \mathcal{N}_{V}\left(0_{V}\right)$ such that

$$
[U \subseteq \operatorname{dom}[\alpha]] \quad \text { and } \quad\left[\sup \left|\alpha_{*}(U)\right|_{W}<\infty\right]
$$

Let $z:=\alpha\left(0_{V}\right)$. Since α is continuous at 0_{V}, choose $\delta>0$ such that, $\forall x \in \operatorname{dom}[\alpha]$, we have: $\left[|x|_{V}<\delta\right] \Rightarrow\left[|[\alpha(x)]-z|_{W}<1\right]$. We define $U:=(\operatorname{dom}[\alpha]) \cap\left(B_{V}\left(0_{V}, \delta\right)\right)$. Since $\operatorname{dom}[\alpha] \in \mathcal{N}_{V}\left(0_{V}\right)$ and since $B_{V}\left(0_{V}, \delta\right) \in \mathcal{N}_{V}\left(0_{V}\right)$, it follows that $U \in \mathcal{N}_{V}\left(0_{V}\right)$. Moreover, we have both $U \subseteq \operatorname{dom}[\alpha]$ and $U \subseteq B_{V}\left(0_{V}, \delta\right)$. It remains
to show: $\sup \left|\alpha_{*}(U)\right|_{W}<\infty$. Let $M:=1+\left[|z|_{W}\right]$. It suffices to show: $\left|\alpha_{*}(U)\right|_{W} \leqslant M$. We wish to prove: $\forall x \in \operatorname{dom}[\alpha]$,

$$
[x \in U] \quad \Rightarrow \quad\left[|\alpha(x)|_{W} \leqslant M\right] .
$$

Let $x \in \operatorname{dom}[\alpha]$ be given. We wish to prove:

$$
[x \in U] \quad \Rightarrow \quad\left[|\alpha(x)|_{W} \leqslant M\right] .
$$

Assume that $x \in U$. We wish to prove: $|\alpha(x)|_{W} \leqslant M$.
Since $x \in U \subseteq B_{V}\left(0_{V}, \delta\right)$, we conclude that $|x|_{V}<\delta$. So, since $x \in \operatorname{dom}[\alpha]$, by choice of δ, we conclude that: $|[\alpha(x)]-z|_{W}<1$. Let $y:=\alpha(x)$. Then $|y-z|_{W}<1$, and we wish to prove: $|y|_{W} \leqslant M$.

Since $y=(y-z)+z$, we get $|y|_{W} \leqslant\left[|y-z|_{W}\right]+\left[|z|_{W}\right]$. Then $|y|_{W}<1+\left[|z|_{W}\right]=M$, as desired. QED

12-3. Let V and W both be finite dimensional vector spaces, and let $|\bullet|,\|\bullet\| \in \mathcal{N}(V)$, and let $p>0$. Show:
(1) ${\check{\varsigma_{o}}}_{p}(V, W,|\bullet|) \subseteq \check{\mathcal{o}}_{p}(V, W,\|\bullet\|) \quad$ and
(2) $\widehat{\mathcal{O}}_{p}(V, W,|\bullet|) \subseteq \widehat{\mathcal{O}}_{p}(V, W,\|\bullet\|)$.

Proof: Let $\alpha:=\operatorname{adj}_{0_{V}}^{1}\left(\left[\|\bullet\|^{p}\right] /\left[|\bullet|^{p}\right]\right), \beta:=\operatorname{adj}_{0_{V}}^{1}\left(\left[|\bullet|^{p}\right] /\left[\|\bullet\|^{p}\right]\right)$. Then $\alpha, \beta: V \rightarrow \mathbb{R}$. Also, for all $x \in V \backslash\left\{0_{V}\right\}$, we have:

$$
(\alpha \beta)(x)=\left[\frac{\|x\|^{p}}{|x|^{p}}\right] \cdot\left[\frac{|x|^{p}}{\|x\|^{p}}\right]=1=C_{V}^{1}(x)
$$

So, since $(\alpha \beta)\left(0_{V}\right)=1 \cdot 1=1=C_{V}^{1}\left(0_{V}\right)$, we conclude that $\alpha \beta=C_{V}^{1}$.
By Theorem 46.3 p. 332, $|\bullet| \approx\|\bullet\|$, so $|\bullet| \ll\|\bullet\|$, so choose $C>0$ such that $|\bullet| \leqslant C \cdot\|\bullet\|$. Then, for all $x \in V \backslash\left\{0_{V}\right\}$,

$$
\beta(x)=\frac{|x|^{p}}{\|x\|^{p}}=\left[\frac{|x|}{\|x\|}\right]^{p} \leqslant\left[\frac{C \cdot\|x\|}{\|x\|}\right]^{p}=C^{p} .
$$

Let $K:=\max \left\{C^{p}, 1\right\}$. Then $K \geqslant 1$, so $K>0$. Also, for all $x \in V$, we have $0 \leqslant \beta(x) \leqslant K$, and so $|\beta(x)|=\beta(x) \leqslant K$. Choose $\|\|\bullet\| \mid \in \mathcal{N}(W)$.

Claim A: $\check{\mathcal{O}}(V, W) \subseteq \alpha \cdot[\check{\mathcal{O}}(V, W)]$. Proof of Claim A: We wish to show: $\forall \gamma \in \breve{\mathcal{O}}(V, W), \gamma \in \alpha \cdot[\check{\mathcal{O}}(V, W)]$. Let $\gamma \in \breve{\mathcal{O}}(V, W)$ be given. Want: $\gamma \in \alpha \cdot[\check{\mathcal{O}}(V, W)]$. Since $\gamma=\gamma \cdot C_{V}^{1}=\gamma \cdot[\alpha \beta]=\alpha \cdot[\beta \gamma]$, it suffices to show that $\beta \gamma \in \breve{\mathcal{O}}(V, W)$. We wish to show:

- $\operatorname{dom}[\beta \gamma] \in \mathcal{N}_{V}\left(0_{V}\right)$,
- $(\beta \gamma)\left(0_{V}\right)=0_{W} \quad$ and
- $\beta \gamma: V \rightarrow W$ is continuous at 0_{V}.

Since $\gamma \in \check{\mathcal{O}}(V, W)$, it follows that:

- $\operatorname{dom}[\gamma] \in \mathcal{N}_{V}\left(0_{V}\right)$,
- $\gamma\left(0_{V}\right)=0_{W} \quad$ and
- $\gamma: V \rightarrow W$ is continuous at 0_{V}.

Since $\operatorname{dom}[\beta]=V$ and since $\operatorname{dom}[\gamma] \subseteq V$, we get $\operatorname{dom}[\beta \gamma]=\operatorname{dom}[\gamma]$. Then $\operatorname{dom}[\beta \gamma]=\operatorname{dom}[\gamma] \in \mathcal{N}_{V}\left(0_{V}\right)$. Also, $(\beta \gamma)\left(0_{V}\right)=1 \cdot 0_{W}=0_{W}$. It remains to show: $\beta \gamma: V \rightarrow W$ is continuous at 0_{V}. We wish to show: $\forall \varepsilon>0, \exists \delta>0$ such that, for all $x \in \operatorname{dom}[\beta \gamma]$,

$$
[|x|<\delta] \quad \Rightarrow \quad[\|\mid(\beta \gamma)(x)\| \|<\varepsilon]
$$

Let $\varepsilon>0$ be given. Want: $\exists \delta>0$ such that, for all $x \in \operatorname{dom}[\beta \gamma]$,

$$
[|x|<\delta] \quad \Rightarrow \quad[\|\|(\beta \gamma)(x)\|\|<\varepsilon]
$$

As $\gamma: V \rightarrow W$ is continuous at 0_{V}, choose $\delta>0$ s.t., $\forall x \in \operatorname{dom}[\gamma]$,

$$
[|x|<\delta] \quad \Rightarrow \quad[\||\gamma(x) \||<\varepsilon / K]
$$

We wish to show: $\forall x \in \operatorname{dom}[\beta \gamma]$,

$$
[|x|<\delta] \quad \Rightarrow \quad[\|\|(\beta \gamma)(x)\|\|<\varepsilon]
$$

Let $x \in \operatorname{dom}[\beta \gamma]$ be given. We wish to show:

$$
[|x|<\delta] \quad \Rightarrow \quad[\|\|(\beta \gamma)(x) \mid\|<\varepsilon]
$$

Assume that $|x|<\delta$. We wish to show: $\|\mid(\beta \gamma)(x)\| \|<\varepsilon$.
We have $x \in \operatorname{dom}[\beta \gamma] \subseteq \operatorname{dom}[\gamma]$. So, since $|x|<\delta$, by choice of δ, we get: $\|\mid \gamma(x)\| \|<\varepsilon / K$.

We have $x \in \operatorname{dom}[\beta \gamma] \subseteq \operatorname{dom}[\gamma]$, so, as $x \in U, \gamma(x) \in \gamma_{*}(U)$. Then

$$
\|\mid \gamma(x)\|\|\in\| \gamma_{*}(U)\| \| \leqslant \sup \| \| \gamma_{*}(U)\| \|=M
$$

Recall: $|\beta(x)| \leqslant K$. Then

$$
\begin{aligned}
\|\|(\beta \gamma)(x)\|\| & =\| \|[\beta(x)] \cdot[\gamma(x)]\| \| \\
& =|\beta(x)| \cdot|\|\gamma(x) \mid\| \\
& <K \cdot(\varepsilon / K)=\varepsilon
\end{aligned}
$$

as desired. End of proof of Claim A.
Claim B: $\widehat{\mathcal{O}}(V, W) \subseteq \alpha \cdot[\widehat{\mathcal{O}}(V, W)]$. Proof of Claim B: We wish to show: $\forall \gamma \in \widehat{\mathcal{O}}(V, W), \gamma \in \alpha \cdot[\widehat{\mathcal{O}}(V, W)]$. Let $\gamma \in \widehat{\mathcal{O}}(V, W)$ be given. Want: $\gamma \in \alpha \cdot[\widehat{\mathcal{O}}(V, W)]$. Since $\gamma=\gamma \cdot C_{V}^{1}=\gamma \cdot[\alpha \beta]=\alpha \cdot[\beta \gamma]$, it suffices to show that $\beta \gamma \in \widehat{\mathcal{O}}(V, W)$. Want: $\exists U \in \mathcal{N}_{V}\left(0_{V}\right)$ such that

$$
U \subseteq \operatorname{dom}[\beta \gamma] \quad \text { and } \quad \sup \left\|\left\|(\beta \gamma)_{*}(U)\right\|\right\|<\infty
$$

Since $\gamma \in \widehat{\mathcal{O}}(V, W)=\widehat{\mathcal{O}}(V, W,|\bullet|)$, choose $U \in \mathcal{N}_{V}\left(0_{V}\right)$ such that

$$
U \subseteq \operatorname{dom}[\gamma] \quad \text { and } \quad \sup \left\|\left|\gamma_{*}(U)\right|\right\|<\infty .
$$

We wish to show:

$$
U \subseteq \operatorname{dom}[\beta \gamma] \quad \text { and } \quad \sup \left\|\left\|(\beta \gamma)_{*}(U)\right\|\right\|<\infty
$$

As $\operatorname{dom}[\beta]=V$ and $\operatorname{dom}[\gamma] \subseteq V$, we get $\operatorname{dom}[\beta \gamma]=\operatorname{dom}[\gamma]$. Then $U \subseteq \operatorname{dom}[\gamma]=\operatorname{dom}[\beta \gamma]$. It remains to show: $\sup \left\|\left\|(\beta \gamma)_{*}(U)\right\|\right\|<\infty$.

Let $M:=\sup \left\|\mid \gamma_{*}(U)\right\| \|$. It suffices to show: $\left\|\left\|(\beta \gamma)_{*}(U)\right\|\right\| K M$. We wish to show: $\forall x \in \operatorname{dom}[\beta \gamma]$,

$$
[x \in U] \quad \Rightarrow \quad[\|\|(\beta \gamma)(x)\|\| \leqslant K M .
$$

Let $x \in \operatorname{dom}[\beta \gamma]$ be given. We wish to show:

$$
[x \in U] \quad \Rightarrow \quad[\|\|(\beta \gamma)(x)\| \leqslant K M] .
$$

Assume that $x \in U$. Want: $\|\|(\beta \gamma)(x)\|\| \leqslant K M$
We have $x \in \operatorname{dom}[\beta \gamma] \subseteq \operatorname{dom}[\gamma]$, so, as $x \in U, \gamma(x) \in \gamma_{*}(U)$. Then

$$
\|\mid \gamma(x)\|\|\in\| \gamma_{*}(U)\| \| \leqslant \sup \| \| \gamma_{*}(U)\| \|=M
$$

Recall: $|\beta(x)| \leqslant K$. Then

$$
\|\|(\beta \gamma)(x)\|\|=\| \|[\beta(x)] \cdot[\gamma(x)]\| \|=|\beta(x)| \cdot\|\mid \gamma(x)\| \| \leqslant M,
$$

as desired. End of proof of Claim B.
Claim C: $\left[|\bullet|^{p}\right] \cdot \alpha=\|\bullet\|^{p}$. Proof of Claim C: On $V \backslash\left\{0_{V}\right\}$, we have $\left[|\bullet|^{p}\right] \cdot \alpha=\left[|\bullet|^{p}\right] \cdot\left[\|\bullet\|^{p} /|\bullet|^{p}\right]=\|\bullet\|^{p}$, so it suffices to show that $\left(\left[|\bullet|^{p}\right] \cdot \alpha\right)\left(0_{V}\right)=\left(\|\bullet\|^{p}\right)\left(0_{V}\right)$.

We have $\left(\left[|\bullet|^{p}\right] \cdot \alpha\right)\left(0_{V}\right)=0^{p} \cdot 1=0^{p}=\left(\|\bullet\|^{p}\right)\left(0_{V}\right)$, as desired. End of proof of Claim C.

Proof of (1): By Claim A, $\left[|\bullet|^{p}\right] \cdot[\check{\mathcal{o}}(V, W)] \subseteq\left[|\bullet|^{p}\right] \cdot \alpha \cdot[\check{\mathcal{o}}(V, W)]$. By Claim C, $\left[|\bullet|^{p}\right] \cdot \alpha \cdot[\check{\mathcal{O}}(V, W)]=\|\bullet\|^{p} \cdot[\check{\mathcal{o}}(V, W)]$. Then

$$
\begin{aligned}
\check{\mathcal{O}}_{p}(V, W,|\bullet|) & =\left[|\bullet|^{p}\right] \cdot[\check{\mathcal{O}}(V, W)] \\
& \subseteq\left[|\bullet|^{p}\right] \cdot \alpha \cdot[\check{\mathcal{O}}(V, W)] \\
& =\left[\|\bullet\|^{p}\right] \cdot[\check{\mathscr{O}}(V, W)] \\
& =\check{\mathcal{o}}_{p}(V, W,\|\bullet\|),
\end{aligned}
$$

as desired. End of proof of (1).

Proof of (2): By Claim B, $\left[|\bullet|^{p}\right] \cdot[\widehat{\mathcal{O}}(V, W)] \subseteq\left[|\bullet|^{p}\right] \cdot \alpha \cdot[\widehat{\mathcal{O}}(V, W)]$. By Claim C, $\left[|\bullet|^{p}\right] \cdot \alpha \cdot[\widehat{\mathcal{O}}(V, W)]=\|\bullet\|^{p} \cdot[\widehat{\mathcal{O}}(V, W)]$. Then

$$
\begin{aligned}
\widehat{\mathcal{O}}_{p}(V, W,|\bullet|) & =\left[|\bullet|^{p}\right] \cdot[\widehat{\mathcal{O}}(V, W)] \\
& \subseteq\left[|\bullet|^{p}\right] \cdot \alpha \cdot[\widehat{\mathcal{O}}(V, W)] \\
& =\left[\|\bullet\|^{p}\right] \cdot[\widehat{\mathcal{O}}(V, W)] \\
& =\widehat{\mathcal{O}}_{p}(V, W,\|\bullet\|),
\end{aligned}
$$

as desired. End of proof of (2). QED
12-4. Let V and W both be finite dimensional vector spaces, and let $p, q \geqslant 0$. Assume $p<q$. Show: $\breve{\mathcal{O}}_{p}(V, W) \supseteq \widehat{\mathcal{O}}_{q}(V, W)$.

Proof: We want: $\forall \gamma \in \widehat{\mathcal{O}}_{q}(V, W), \gamma \in \breve{\mathcal{O}}_{p}(V, W)$. Let $\gamma \in \widehat{\mathcal{O}}_{q}(V, W)$ be given. We wish to show: $\gamma \in \breve{\mathcal{O}}_{p}(V, W)$.

Chose $|\bullet| \in \mathcal{N}(V)$. Then $\widehat{\mathcal{O}}_{q}(V, W)=\left[|\bullet|^{q}\right] \cdot[\widehat{\mathcal{O}}(V, W)]$ and $\check{\mathcal{O}}_{p}(V, W)=\left[|\bullet|^{p}\right] \cdot[\check{\mathcal{O}}(V, W)]$. We have $\gamma \in\left[|\bullet|^{q}\right] \cdot[\widehat{\mathcal{O}}(V, W)]$. We wish to show: $\gamma \in\left[|\bullet|^{p}\right] \cdot \breve{\mathcal{O}}(V, W)$.

Since $\gamma \in \widehat{\mathcal{O}}_{q}(V, W)=\left[|\bullet|^{q}\right] \cdot[\widehat{\mathcal{O}}(V, W)]$, choose $\alpha \in \widehat{\mathcal{O}}(V, W)$ such that $\gamma=\left[|\bullet|^{q}\right] \cdot \alpha$. Choose $\|\bullet\| \in \mathcal{N}(W)$. Since $\alpha \in \widehat{\mathcal{O}}(V, W)$, choose $U \in \mathcal{N}_{V}\left(0_{V}\right)$ such that

$$
U \subseteq \operatorname{dom}[\alpha] \quad \text { and } \quad \sup \left\|\alpha_{*}(U)\right\|<\infty .
$$

Since $\operatorname{dom}[\alpha] \supseteq U \in \mathcal{N}_{V}\left(0_{V}\right)$, we see that $\operatorname{dom}[\alpha] \in \mathcal{N}_{V}\left(0_{V}\right)$.
Let $\beta:=\left[|\bullet|^{q-p}\right] \cdot \alpha$. Then $\left[|\bullet|^{p}\right] \cdot \beta=\left[|\bullet|^{q}\right] \cdot \alpha$. Then

$$
\gamma=\left[|\bullet|^{q}\right] \cdot \alpha=\left[|\bullet|^{p}\right] \cdot \beta,
$$

and so it suffices to show: $\beta \in \breve{\mathcal{O}}(V, W)$. We wish to show:

- $\operatorname{dom}[\beta] \in \mathcal{N}_{V}\left(0_{V}\right)$,
- $\beta\left(0_{V}\right)=0_{W} \quad$ and
- $\beta: V \rightarrow W$ is continuous at 0_{V}.

Because dom $\left[|\bullet|^{q-p}\right]=V$ and because dom $[\alpha] \subseteq V$, we conclude that $\operatorname{dom}\left[\left[|\bullet|^{q-p}\right] \cdot \alpha\right]=\operatorname{dom}[\alpha]$. Then

$$
\operatorname{dom}[\beta]=\operatorname{dom}\left[\left[|\bullet|^{q-p}\right] \cdot \alpha\right]=\operatorname{dom}[\alpha] .
$$

Then $\operatorname{dom}[\beta]=\operatorname{dom}[\alpha] \in \mathcal{N}_{v}\left(0_{V}\right)$. Also,

$$
\beta\left(0_{V}\right)=\left(\left[|\bullet|^{q-p}\right] \cdot \alpha\right)\left(0_{V}\right)=0^{q-p} \cdot\left[\alpha\left(0_{V}\right)\right]=0_{W} .
$$

It remains to show: $\beta: V \rightarrow W$ is continuous at 0_{V}. We wish to show: $\forall \varepsilon>0, \exists \delta>0$ such that, $\forall x \in \operatorname{dom}[\beta]$,

$$
[|x|<\delta] \quad \Rightarrow \quad[\|\beta(x)\|<\varepsilon]
$$

Let $\varepsilon>0$ be given. We wish to show: $\exists \delta>0$ such that, $\forall x \in \operatorname{dom}[\beta]$,

$$
[|x|<\delta] \quad \Rightarrow \quad[\|\beta(x)\|<\varepsilon]
$$

Since $U \in \mathcal{N}_{V}\left(0_{V}\right)$ and since $\mathcal{B}_{V}\left(0_{V}\right)$ is a neighborhood base at 0_{V} in V, choose $\rho>0$ such that $B\left(0_{V}, \rho\right) \subseteq U$. Let $M:=\left(\sup \left\|\alpha_{*}(U)\right\|\right)+1$. Then $M>0$ and $\left\|\alpha_{*}(U)\right\|<M$. Let $\tau:=(\varepsilon / M)^{1 /(q-p)}$. We define $\delta:=\min \{\rho, \tau\}$. We wish to show: $\forall x \in \operatorname{dom}[\beta]$,

$$
[|x|<\delta] \quad \Rightarrow \quad[\|\beta(x)\|<\varepsilon]
$$

Let $x \in \operatorname{dom}[\beta]$ be given. We wish to show:

$$
[|x|<\delta] \quad \Rightarrow \quad[\|\beta(x)\|<\varepsilon]
$$

Assume that $|x|<\delta$. We wish to show: $\|\beta(x)\|<\varepsilon$.
Since $|x|<\delta \leqslant \rho$, we get $x \in B_{V}\left(0_{V}, \rho\right)$. So, since $B_{V}\left(0_{V}, \rho\right) \subseteq U$, $x \in U$. So, since $x \in \operatorname{dom}[\beta]=\operatorname{dom}[\alpha]$, we have $\alpha(x) \in \alpha_{*}(U)$. Then $\|\alpha(x)\| \in\left\|\alpha_{*}(U)\right\|<M$. Since $\beta=\left[|\bullet|^{q-p}\right] \cdot \alpha$, we conclude that $\beta(x)=\left[|x|^{q-p}\right] \cdot[\alpha(x)]$. Since $|x|<\delta \leqslant \tau$, we get $|x|^{q-p}<\tau^{q-p}$. Then $\|\beta(x)\|=\left[|x|^{q-p}\right] \cdot\|\alpha(x)\|<\left[\tau^{q-p}\right] \cdot M=[\varepsilon / M] \cdot M=\varepsilon$. QED
$12-5$. Let $p, q \geqslant 0$. Show:

$$
\begin{aligned}
& \left(\left[\left(\breve{\mathcal{O}}_{p}(\mathbb{R}, \mathbb{R})\right) \cdot\left(\breve{\mathcal{O}}_{q}(\mathbb{R}, \mathbb{R})\right) \subseteq \check{\mathcal{O}}_{p+q}(\mathbb{R}, \mathbb{R})\right] \quad\right. \text { and } \\
& \left.\left[\left(\breve{\mathcal{O}}_{q}(\mathbb{R}, \mathbb{R})\right) \circ\left(\breve{\mathcal{O}}_{p}(\mathbb{R}, \mathbb{R})\right) \subseteq \breve{\mathcal{O}}_{q p}(\mathbb{R}, \mathbb{R})\right]\right) .
\end{aligned}
$$

Proof: Let $\check{\mathcal{O}}:=\breve{\mathcal{O}}(\mathbb{R}, \mathbb{R})$. By (1) of Fact 47.10 p. 342, we have $\check{\mathcal{O}} \cdot \breve{\mathcal{O}} \subseteq \check{\mathcal{O}}$. Then

$$
\begin{aligned}
\left(\breve{\mathcal{O}}_{p}(\mathbb{R}, \mathbb{R})\right) \cdot\left(\check{\mathcal{O}}_{q}(\mathbb{R}, \mathbb{R})\right) & =|\bullet|^{p} \cdot \check{\mathcal{O}} \cdot|\cdot|^{q} \cdot \check{\mathcal{O}} \\
& =|\cdot|^{p} \cdot|\cdot|^{q} \cdot \check{\mathcal{O}} \cdot \check{\mathcal{O}} \\
& \subseteq|\cdot|^{p+q} \cdot \check{\mathcal{O}} \\
& =\breve{\mathcal{O}}_{p+q}(\mathbb{R}, \mathbb{R}) .
\end{aligned}
$$

It remains to show: $\left(\breve{\mathcal{O}}_{q}(\mathbb{R}, \mathbb{R})\right) \circ\left(\breve{\mathcal{O}}_{p}(\mathbb{R}, \mathbb{R})\right) \subseteq \breve{\mathcal{O}}_{q p}(\mathbb{R}, \mathbb{R})$. We want: $\forall f \in \breve{\mathcal{O}}_{p}(\mathbb{R}, \mathbb{R}), \forall g \in \breve{\mathcal{O}}_{q}(\mathbb{R}, \mathbb{R}), g \circ f \in \breve{\mathcal{O}}_{q p}(\mathbb{R}, \mathbb{R})$. Let $f \in \breve{\mathcal{O}}_{p}(\mathbb{R}, \mathbb{R})$ and $g \in \breve{\mathcal{O}}_{q}(\mathbb{R}, \mathbb{R})$ be given. We wish to prove: $g \circ f \in \breve{\mathcal{O}}_{q p}(\mathbb{R}, \mathbb{R})$.

Since $f \in \breve{\mathcal{O}}_{p}(\mathbb{R}, \mathbb{R})=|\bullet|^{p} \cdot \breve{\mathcal{O}}$, choose $\delta \in \check{\mathcal{O}}$ s.t. $f=|\bullet|^{p} \cdot \delta$. Since $g \in \breve{\mathcal{O}}_{p}(\mathbb{R}, \mathbb{R})=|\bullet|^{q} \cdot \check{\mathcal{O}}$, choose $\varepsilon \in \check{\mathcal{O}}$ s.t. $g=|\bullet|^{q} \cdot \varepsilon$. For all $x \in \mathbb{R}$,

Then $g \circ f=|\bullet|^{q p} \cdot|\delta|^{q} \cdot[\varepsilon \circ f]$.
By Fact 47.12 p. 342 , (with V and W both replaced by $\mathbb{R},\|\bullet\|$ by $|\bullet|$ and p by $q),|\check{\mathcal{o}}|^{q} \subseteq \check{\mathcal{O}}$. Then $|\delta|^{q} \in|\check{\mathcal{O}}|^{q} \subseteq \check{\mathcal{O}}$.
We have $f \in \breve{\mathcal{O}}_{p}(\mathbb{R}, \mathbb{R}) \subseteq \breve{\mathcal{O}}_{0}(\mathbb{R}, \mathbb{R})=\check{\mathcal{O}}$. By (1) of Fact 47.11 p. 342 (with V, W and X all replaced by \mathbb{R}), $\check{\mathfrak{o}} \circ \check{\mathcal{O}} \subseteq \check{\mathcal{O}}$. Then $\varepsilon \circ f \in \check{\mathcal{O}} \circ \check{\mathcal{O}} \subseteq \check{\mathcal{O}}$.

Recall that $\check{\mathcal{O}} \cdot \check{\mathcal{O}} \subseteq \check{\mathcal{O}}$. Then $|\delta|^{q} \cdot[\varepsilon \circ f] \in \check{\mathcal{O}} \cdot \check{\mathcal{O}} \subseteq \check{\mathcal{O}}$. It follows that $g \circ f=|\bullet|^{q p} \cdot|\delta|^{q} \cdot[\varepsilon \circ f] \in|\bullet|^{q p} \cdot \check{\mathcal{O}}=\check{\mathcal{O}}_{q p}(\mathbb{R}, \mathbb{R})$, as desired. QED

Homework 11: Due on Tuesday 10 April
11-1. Let $S \subseteq \mathbb{R}$. Assume that S has a minimum. (That is, assume: $\exists a \in S$ s.t. $a \leqslant S$.) Show that $\inf S=\min S \in S$.

Proof: Choose $a \in S$ s.t. $a \leqslant S$. Since $a \leqslant S$, we get $a \in \operatorname{LB}(S)$. Since $a \in S$ and $a \in \operatorname{LB}(S)$, we get $a \in S \cap[\mathrm{LB}(S)]$.

Claim: $S \cap[\mathrm{LB}(S)]=\{a\}$. Proof of Claim: Since $a \in S \cap[\mathrm{LB}(S)]$, we have $\{a\} \subseteq S \cap[\operatorname{LB}(S)]$. We wish to show: $S \cap[\operatorname{LB}(S)] \subseteq\{a\}$. We wish to show: $\forall z \in S \cap[\operatorname{LB}(S)], z \in\{a\}$. Let $z \in S \cap[\operatorname{LB}(S)]$ be given. We wish to show: $z \in\{a\}$. We wish to show: $z=a$.

We have both $z \in S$ and $z \in \operatorname{LB}(S)$. Also, since $a \leqslant S$, it follows that $S \geqslant a$. Since $z \in S \geqslant a$, we get $z \geqslant a$. It remains to show: $z \leqslant a$.

Since $z \in \mathrm{LB}(S)$, it follows that $z \leqslant S$. So, since $a \in S$, we conclude that $z \leqslant a$, as desired. End of proof of Claim.

By the Claim, $\operatorname{ELT}(S \cap[\operatorname{LB}(S)])=\operatorname{ELT}\{a\}$. Then

$$
\min S=\operatorname{ELT}(S \cap[\operatorname{LB}(S)])=\operatorname{ELT}\{a\}=a
$$

 $\inf S={ }^{*} \min S=a \neq \Theta$, so $\inf S=a$. Then $\inf S=a=\min S$. It remains to show: $\min S \in S$.

We have $\min S=a \in S$, as desired. QED

11-2. Let U be a vector space, let $|\bullet|,\|\bullet\| \in \mathcal{N}(V)$ and let $S \subseteq U$. Let $V:=(U,|\bullet|)$ and let $W:=(U,\|\bullet\|)$. Assume both that $|\bullet| \ll\|\bullet\|$, and that S is bounded in W. Show that S is bounded in V.

Proof: Since S is bounded in W, choose $A \in \mathcal{B}_{W}$ s.t. $S \subseteq A$. Since $A \in \mathcal{B}_{W}$, choose $p \in W$ and $r>0$ s.t. $A=B_{W}(p, r)$. Since $|\bullet| \ll\|\bullet\|$, choose $K>0$ s.t. $|\bullet| \leqslant K \cdot\|\bullet\|$. It suffices to show: $S \subseteq B_{V}(p, K r)$. We wish to show: $\forall q \in S, q \in B_{V}(p, K r)$. Let $q \in S$ be given. We wish to show: $q \in B_{V}(p, K r)$. That is, we wish to show: $|q-p|_{V}<K r$.

Since $q \in S \subseteq A=B_{W}(p, r)$, it follows that $|q-p|_{W}<r$. So, since $K>0$, we get $K \cdot|q-p|_{W}<K r$. We have $|\bullet|_{V}=|\bullet|$ and $|\bullet|_{W}=\|\bullet\|$. Then $|q-p|_{V}=|q-p|$ and $|q-p|_{W}=\|q-p\|$.

Since $|\bullet| \leqslant K \cdot\|\bullet\|$, we get $|q-p| \leqslant K \cdot\|q-p\|$. Then

$$
|q-p|_{V}=|q-p| \leqslant K \cdot\|q-p\|=K \cdot|q-p|_{W}<K r
$$

as desired. QED
11-3. Let V and W be normed vector spaces, and let $T \in L(V, W)$. Assume that $T: V \rightarrow W$ is bounded below. Show that T is 1-1.

Proof: By (3) of Fact 44.3 p. 319, it suffices to show: $\operatorname{ker}[T]=\left\{0_{V}\right\}$. By (1) of Fact 44.3 p. 319, $\operatorname{ker}[T]$ is a vector subspace of V, and so $\left\{0_{V}\right\} \subseteq \operatorname{ker}[T]$. We wish to show: $\operatorname{ker}[T] \subseteq\left\{0_{V}\right\}$. We wish to show: $\forall x \in \operatorname{ker}[T], x \in\left\{0_{V}\right\}$. Given $x \in \operatorname{ker}[T]$. Want: $x \in\left\{0_{V}\right\}$.

Since $x \in \operatorname{ker}[T]=T^{*}\left(\left\{0_{W}\right\}\right)$, we get $T x \in\left\{0_{W}\right\}$. Then $T x=0_{W}$.
Since T is bounded below, we see that $\check{T}>0$. Let $\varepsilon:=\check{T}$. Then $\varepsilon>0$ and T is ε-bounded below. Then, by HW\#10-1, $|T x|_{W} \geqslant \varepsilon|x|_{V}$. Then $\varepsilon|x|_{V} \leqslant|T x|_{W}=\left|0_{W}\right|_{W}=0$. Since $\varepsilon>0$ and $\varepsilon|x|_{V} \leqslant 0$, we see that $|x|_{V} \leqslant 0$. So, since $|x|_{V} \geqslant 0$, we get $|x|_{V}=0$. It follows that $x=0_{V}$, so $x \in\left\{0_{V}\right\}$, as desired. QED

11-4. Let $T \in L\left(\mathbb{R}^{4}, \mathbb{R}^{4}\right)$ be defined by $T x=\left(6 x_{1}, 5 x_{2}, 8 x_{3}, 7 x_{4}\right)$, and define $V:=\left(\mathbb{R}^{4},|\bullet|_{4,2}\right)$. Show that $\breve{T}_{V V}=5$ and that $\widehat{T}_{V V}=8$.

Proof: We wish to show:
(1) $\check{T}_{V V} \leqslant 5$,
(2) $\check{T}_{V V} \geqslant 5$,
(3) $\widehat{T}_{V V} \leqslant 8 \quad$ and
(4) $\widehat{T}_{V V} \geqslant 8$.

Let e. be the standard basis of \mathbb{R}^{4}. Then

$$
e_{1}=(1,0,0,0), e_{2}=(0,1,0,0), \quad e_{3}=(0,0,1,0), e_{4}=(0,0,0,1)
$$

So, since $|\bullet|_{V}=|\bullet|_{4,2}$, we get

$$
\left|e_{1}\right|_{V}=\left|e_{2}\right|_{V}=\left|e_{3}\right|_{V}=\left|e_{4}\right|_{V}=1,
$$

so $e_{1}, e_{2}, e_{3}, e_{4} \in S_{V}$. So, since $e_{1}, e_{2}, e_{3}, e_{4} \in V=\operatorname{dom}[T]$, we conclude that $T\left(e_{1}\right), T\left(e_{2}\right), T\left(e_{3}\right), T\left(e_{4}\right) \in T_{*}\left(S_{V}\right)$. Let $E:=E \ell \ell_{T}$. Then

$$
E=T_{*}\left(S_{V}\right), \quad \check{T}_{V V}=\inf |E|_{V}, \quad \hat{T}_{V V}=\sup |E|_{V}
$$

We have $T\left(e_{1}\right), T\left(e_{2}\right), T\left(e_{3}\right), T\left(e_{4}\right) \in T_{*}\left(S_{V}\right)=E$.
Proof of (1): We have $T\left(e_{2}\right)=5 e_{2}$. Also, $\left|5 e_{2}\right|_{V}=5 \cdot\left|e_{2}\right|_{V}=5 \cdot 1=5$. Then $5 e_{2}=T\left(e_{2}\right) \in E$. Then $5=\left|5 e_{2}\right|_{V} \in|E|_{V} \geqslant \inf \left|E_{V}\right|=\check{T}_{V V}$. Then $\breve{T}_{V V} \leqslant 5$, as desired. End of proof of (1).

Proof of (2): We want: $T: V \rightarrow V$ is 5 -bounded below. We want: $\forall x \in V,|T x|_{V} \geqslant 5 \cdot|x|_{V}$. Given $x \in V$. Want: $|T x|_{V} \geqslant 5 \cdot|x|_{V}$.

We have

$$
\begin{aligned}
|T x|_{V}^{2} & =\left|\left(6 x_{1}, 5 x_{2}, 8 x_{3}, 7 x_{4}\right)\right|_{V}^{2}=\left|\left(6 x_{1}, 5 x_{2}, 8 x_{3}, 7 x_{4}\right)\right|_{4,2}^{2} \\
& =\left(6 x_{1}\right)^{2}+\left(5 x_{2}\right)^{2}+\left(8 x_{3}\right)^{2}+\left(7 x_{4}\right)^{2} \\
& =36 x_{1}^{2}+25 x_{2}^{2}+64 x_{3}^{2}+49 x_{4}^{2} \\
& \geqslant 25 x_{1}^{2}+25 x_{2}^{2}+25 x_{3}^{2}+25 x_{4}^{2} \\
& =25\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
& =25 \cdot|x|_{4,2}^{2}=25 \cdot|x|_{V}^{2} .
\end{aligned}
$$

So, since $25 \cdot|x|_{V}^{2} \geqslant 0$, we get $\sqrt{|T x|_{V}^{2}} \geqslant \sqrt{25 \cdot|x|_{V}^{2}}$. Then

$$
|T x|_{V}=\sqrt{|T x|_{V}^{2}} \geqslant \sqrt{25 \cdot|x|_{V}^{2}}=\sqrt{25} \cdot \sqrt{|x|_{V}^{2}}=5 \cdot|x|_{V}
$$

as desired. End of proof of (2).
Proof of (3): We wish to show: $T: V \rightarrow V$ is 8 -bounded. We want: $\forall x \in V,|T x|_{V} \leqslant 8 \cdot|x|_{V}$. Given $x \in V$. Want: $|T x|_{V} \leqslant 8 \cdot|x|_{V}$.

We have

$$
\begin{aligned}
|T x|_{V}^{2} & =\left|\left(6 x_{1}, 5 x_{2}, 8 x_{3}, 7 x_{4}\right)\right|_{V}^{2}=\left|\left(6 x_{1}, 5 x_{2}, 8 x_{3}, 7 x_{4}\right)\right|_{4,2}^{2} \\
& =\left(6 x_{1}\right)^{2}+\left(5 x_{2}\right)^{2}+\left(8 x_{3}\right)^{2}+\left(7 x_{4}\right)^{2} \\
& =36 x_{1}^{2}+25 x_{2}^{2}+64 x_{3}^{2}+49 x_{4}^{2} \\
& \leqslant 64 x_{1}^{2}+64 x_{2}^{2}+64 x_{3}^{2}+64 x_{4}^{2} \\
& =64\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
& =64 \cdot|x|_{4,2}^{2}=64 \cdot|x|_{V}^{2} .
\end{aligned}
$$

So, since $0 \leqslant|T x|_{V}^{2}$, we get $\sqrt{|T x|_{V}^{2}} \leqslant \sqrt{64 \cdot|x|_{V}^{2}}$. Then

$$
|T x|_{V}=\sqrt{|T x|_{V}^{2}} \leqslant \sqrt{64 \cdot|x|_{V}^{2}}=\sqrt{64} \cdot \sqrt{|x|_{V}^{2}}=8 \cdot|x|_{V}
$$

as desired. End of proof of (3).
Proof of (4): We have $T\left(e_{3}\right)=8 e_{3}$. Also, $\left|8 e_{3}\right|_{V}=8 \cdot\left|e_{3}\right|_{V}=8 \cdot 1=8$. Then $8 e_{3}=T\left(e_{3}\right) \in E$. Then $8=\left|8 e_{3}\right|_{V} \in|E|_{V} \leqslant \sup \left|E_{V}\right|=\widehat{T}_{V V}$. Then $\check{T}_{V V} \geqslant 8$, as desired. End of proof of (4). QED

11-5. Let V and W be normed vector spaces and let $T: V \hookrightarrow>W$ be a vector space isomorphism. Assume $T: V \rightarrow W$ is bounded below. Show that $T^{-1}: W \rightarrow V$ is bounded.

Proof: As $T: V \rightarrow W$ is bounded below, $\breve{T}_{V W}>0$. Let $\varepsilon:=\breve{T}_{V W}$. Then $\varepsilon>0$ and $T: V \rightarrow W$ is ε-bounded below. Let $K:=1 / \varepsilon$. Then $K>0, K \varepsilon=1$, and it suffices to show: $T^{-1}: W \rightarrow V$ is K-bounded. We wish to show: $\forall y \in W,\left|T^{-1}(y)\right|_{V} \leqslant K \cdot|y|_{W}$. Let $y \in W$ be given. We wish to show: $\left|T^{-1}(y)\right|_{V} \leqslant K \cdot|y|_{W}$.

Let $x:=T^{-1}(y)$. Then $T x=y$. Since $T: V \rightarrow W$ is ε-bounded below, we get $|T x|_{W} \geqslant \varepsilon \cdot|x|_{V}$. So, since $K>0, K \cdot|T x|_{W} \geqslant(K \varepsilon) \cdot|x|_{V}$. So, since $K \varepsilon=1$, we get $K \cdot|T x|_{W} \geqslant|x|_{V}$. That is, $|x|_{V} \leqslant K \cdot|T x|_{W}$. Then $\left|T^{-1}(y)\right|_{V}=|x|_{V} \leqslant K \cdot|T x|_{W}=K \cdot|y|_{W}$, as desired. QED

Homework 10: Due on Tuesday 3 April

10-1. Let V and W be normed vector spaces, $T \in L(V, W)$ and $\varepsilon>0$. Show: [T is ε-bounded below] $\Leftrightarrow\left[\forall x \in V,|T x|_{W} \geqslant \varepsilon|x|_{V}\right]$.

Proof: Proof of \Rightarrow : Assume that T is ε-bounded below. We want: $\forall x \in V,|T x|_{W} \geqslant \varepsilon|x|_{V}$. Let $x \in V$ be given. Want: $|T x|_{W} \geqslant \varepsilon|x|_{V}$.

By Fact 42.5 p. 306, choose $a \geqslant 0$ and $u \in S_{V}$ s.t. $x=a u$. Since $a \geqslant 0$, we get $|a|=a$. Since $u \in S_{V}$, it follows that $|u|_{V}=1$. Then $|x|_{V}=|a u|_{V}=|a| \cdot|u|_{V}=a \cdot 1=a$. Want: $|T x|_{W} \geqslant \varepsilon a$.

We have $u \in S_{V} \subseteq V=\operatorname{dom}[T]$. So, as $u \in S_{V}$, we get $T u \in T_{*}\left(S_{V}\right)$. So, since $T_{*}\left(S_{V}\right)=E \ell \ell_{T}$, we get $T u \in E \ell \ell_{T}$. Since T is ε-bounded below, we have $\check{T} \geqslant \varepsilon$. Then

$$
|T u|_{W} \in\left|E \ell \ell_{T}\right|_{W} \geqslant \inf \left|E \ell \ell_{T}\right|_{W}=\check{T} \geqslant \varepsilon,
$$

so, since $|a|=a$, we get $|a| \cdot|T u|_{W} \geqslant \varepsilon a$. Then

$$
|T x|_{W}=|T(a u)|_{W}=|a \cdot[T u]|_{W}=|a| \cdot|T u|_{W} \geqslant \varepsilon a,
$$

as desired. End of proof of \Rightarrow.
Proof of \Leftarrow : Assume that $\forall x \in V,|T x|_{W} \geqslant \varepsilon|x|_{V}$. We wish to show: T is ε-bounded below. Want: $\check{T} \geqslant \varepsilon$. So, since $\check{T}=\inf \left|E \ell \ell_{T}\right|_{W}$, it suffices to show: $\left|E \ell \ell_{T}\right|_{W} \geqslant \varepsilon$. We wish to show: $\forall s \in\left|E \ell \ell_{T}\right|_{W}, s \geqslant \varepsilon$. Let $s \in\left|E \ell \ell_{T}\right|_{W}$ be given. We wish to show: $s \geqslant \varepsilon$.

Since $s \in\left|E \ell \ell_{T}\right|_{W}$, choose $y \in E \ell \ell_{T}$ such that $s=|y|_{W}$. Since $y \in E \ell \ell_{T}=T_{*}\left(S_{V}\right)$, choose $u \in S_{V}$ such that $y=T u$. By assumption, $|T u|_{W} \geqslant \varepsilon|u|_{V}$. Since $u \in S_{V}$, we conclude that $|u|_{V}=1$. Then $s=|y|_{W}=|T u|_{W} \geqslant \varepsilon|u|_{V}=\varepsilon \cdot 1=\varepsilon$. End of proof of \Leftarrow. QED

10-2. Let $m \in \mathbb{N}$. Show: $|\bullet|_{m, \infty} \leqslant|\bullet|_{m, 2} \leqslant|\bullet|_{m, 1} \leqslant m \cdot|\bullet|_{m, \infty}$.
Proof: We wish to show:
(1) $|\bullet|_{m, \infty} \leqslant|\bullet|_{m, 2}$,
(2) $|\bullet|_{m, 2} \leqslant|\bullet|_{m, 1}, \quad$ and

$$
\begin{equation*}
|\bullet|_{m, 1} \leqslant m \cdot|\bullet|_{m, \infty} . \tag{3}
\end{equation*}
$$

Proof of (1): Want: $\forall x \in \mathbb{R}^{m},|x|_{m, \infty} \leqslant|x|_{m, 2}$. Let $x \in \mathbb{R}^{m}$ be given. We wish to prove: $|x|_{m, \infty} \leqslant|x|_{m, 2}$.

Let $a:=|x|_{m, 2}$. Want: $|x|_{m, \infty} \leqslant a$. As $|x|_{m, \infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{m}\right|\right\}$, it suffices to show $\left\{\left|x_{1}\right|, \ldots,\left|x_{m}\right|\right\} \leqslant a$. Want: $\forall t \in\left\{\left|x_{1}\right|, \ldots,\left|x_{m}\right|\right\}$, $t \leqslant a$. Let $t \in\left\{\left|x_{1}\right|, \ldots,\left|x_{m}\right|\right\}$ be given. Want: $t \leqslant a$.

Since $t \in\left\{\left|x_{1}\right|, \ldots,\left|x_{m}\right|\right\}$, choose $j \in[1 . . m]$ such that $t=\left|x_{j}\right|$. We have $0 \leqslant x_{j}^{2} \leqslant x_{1}^{2}+\cdot+x_{m}^{2}$. Then $\sqrt{x_{j}^{2}} \leqslant \sqrt{x_{1}^{2}+\cdot+x_{m}^{2}}$. Then

$$
t=\left|x_{j}\right|=\sqrt{x_{j}^{2}} \leqslant \sqrt{x_{1}^{2}+\cdot+x_{m}^{2}}=|x|_{2}=a,
$$

as desired. End of proof of (1).

Proof of (2): Want: $\forall x \in \mathbb{R}^{m},|x|_{m, 2} \leqslant|x|_{m, 1}$. Let $x \in \mathbb{R}^{m}$ be given. We wish to prove: $|x|_{m, 2} \leqslant|x|_{m, 1}$.

Let $I:=[1 . . m]$. For all $j \in I$, let $a_{j}:=\left|x_{j}\right|$. For all $j \in I$, we have $a_{j}^{2}=\left|x_{j}\right|^{2}=x_{j}^{2}$. Then $|x|_{m, 2}=\sqrt{x_{1}^{2}+\cdots+x_{m}^{2}}=\sqrt{a_{1}^{2}+\cdots+a_{m}^{2}}$. Also, we have $|x|_{m, 1}=\left|x_{1}\right|+\cdots+\left|x_{m}\right|=a_{1}+\cdots+a_{m}$.

Let $K:=\left\{r \in I^{2} \mid r_{1} \neq r_{2}\right\}$. For all $j \in I$, we have $a_{j}=\left|x_{j}\right| \geqslant 0$. Then, for all $r \in K$, we have $a_{r_{1}} a_{r_{2}} \geqslant 0$. It follows that $\sum_{r \in K} a_{r_{1}} a_{r_{2}} \geqslant 0$. Let $S:=\sum_{r \in K} a_{r_{1}} a_{r_{2}}$. Then $S \geqslant 0$. We have

$$
\left(a_{1}+\cdots+a_{m}\right)^{2}=\left(a_{1}^{2}+\cdots+a_{m}^{2}\right)+S
$$

So, since $S \geqslant 0$, we get $\left(a_{1}+\cdots+a_{m}\right)^{2} \geqslant a_{1}^{2}+\cdots+a_{m}^{2}$. Since $0 \leqslant a_{1}^{2}+\cdots+a_{m}^{2} \leqslant\left(a_{1}+\cdots+a_{m}\right)^{2}$, we see that

$$
\sqrt{a_{1}^{2}+\cdots+a_{m}^{2}} \leqslant \sqrt{\left(a_{1}+\cdots+a_{m}\right)^{2}}
$$

Recall: $\forall j \in I, a_{j} \geqslant 0$. It follows that $a_{1}+\cdots+a_{m} \geqslant 0$. Then we have $\left|a_{1}+\cdots+a_{m}\right|=a_{1}+\cdots+a_{m}$. Then

$$
\begin{aligned}
|x|_{m, 2} & =\sqrt{a_{1}^{2}+\cdots+a_{m}^{2}} \\
& \leqslant \sqrt{\left(a_{1}+\cdots+a_{m}\right)^{2}} \\
& \leqslant\left|a_{1}+\cdots+a_{m}\right| \\
& =a_{1}+\cdots+a_{m}=|x|_{m, 1}
\end{aligned}
$$

as desired. End of proof of (2).
Proof of (3): Want: $\forall x \in \mathbb{R}^{m},|x|_{m, 1} \leqslant m \cdot|x|_{m, \infty}$. Let $x \in \mathbb{R}^{m}$ be given. Want: $|x|_{m, 1} \leqslant m \cdot|x|_{m, \infty}$. Let $a:=|x|_{m, \infty}$. Want: $|x|_{m, 1} \leqslant m a$.

For all $j \in[1 . . m]$, we have $\left|x_{j}\right| \leqslant \max \left\{\left|x_{1}\right|, \ldots,\left|x_{m}\right|\right\}=|x|_{m, \infty}=a$. Then $|x|_{m, 1}=\left|x_{1}\right|+\cdots+\left|x_{m}\right| \leqslant m a$. End of proof of (3). QED

10-3. Let V be a normed vector space, let Z be a topological space, let $\mu: V \rightarrow Z$ and let $p \in V$. Let $\lambda:=\mu(p+\bullet)$. Show: $\lim _{0_{V}} \lambda=\lim _{p} \mu$.
Proof: It suffices to show: $\operatorname{LIMS}_{0_{V}} \lambda=\operatorname{LIMS}_{p} \mu$.
Proof of $\subseteq:$ Want: $\forall y \in \underset{0_{V}}{\operatorname{LIM}_{V}} \lambda, y \underset{p}{p} \underset{\operatorname{LIMS}^{2}}{\operatorname{LIM}} \mu$. Given $y \in \underset{0_{V}}{\operatorname{LIMS}} \lambda$. Want: $y \in \underset{p}{\operatorname{LIMS}} \mu$. Know: $\lambda \xrightarrow{0_{V}} y$ near 0_{V}. Want: $\mu \rightarrow y$ near p. We wish to show: $\forall U \in \mathcal{N}_{Z}(y), \exists \delta>0$ s.t., $\forall x \in \operatorname{dom}[\mu]$,

$$
\left[0<|x-p|_{V}<\delta\right] \quad \Rightarrow \quad[\mu(x) \in U] .
$$

Let $U \in \mathcal{N}_{Z}(y)$ be given. We wish to show: $\exists \delta>0$ s.t., $\forall x \in \operatorname{dom}[\mu]$,

$$
\left[0<|x-p|_{V}<\delta\right] \quad \Rightarrow \quad[\mu(x) \in U]
$$

Since $\lambda \rightarrow y$ near 0_{V}, choose $\delta>0$ s.t., $\forall h \in \operatorname{dom}[\lambda]$,

$$
\left[0<|h|_{V}<\delta\right] \quad \Rightarrow \quad[\lambda(h) \in U] .
$$

We wish to show: $\forall x \in \operatorname{dom}[\mu]$,

$$
\left[0<|x-p|_{V}<\delta\right] \quad \Rightarrow \quad[\mu(x) \in U]
$$

Let $x \in \operatorname{dom}[\mu]$ be given. We wish to show:

$$
\left[0<|x-p|_{V}<\delta\right] \quad \Rightarrow \quad[\mu(x) \in U]
$$

Assume that $0<|x-p|_{V}<\delta$. We wish to show: $\mu(x) \in V$.
Let $h:=x-p$. Then $h \in(\operatorname{dom}[\mu])-p=\operatorname{dom}[\lambda]$. Also, $0<|h|_{V}<\delta$, so, by choice of δ, we have $\lambda(h) \in U$. By definition of λ, we have $\lambda(h)=\mu(p+h)$. So, since $p+h=x$, we get $\lambda(h)=\mu(x)$. Then $\mu(x)=\lambda(h) \in U$. End of proof of \subseteq.

Proof of \supseteq : Want: $\forall y \in \operatorname{LIMS} \mu, y \in \operatorname{LIMS} \lambda$. Given $y \in \operatorname{LIMS} \mu$. Want: $y \in \underset{\mathrm{LIM}_{V}}{\operatorname{LIM}} \lambda$. Know: $\mu \xrightarrow{p} y$ near p. Want: $\lambda \rightarrow y$ near 0_{V}^{p}. We wish to show: $\forall U \in \mathcal{N}_{Z}(y), \exists \delta>0$ s.t., $\forall h \in \operatorname{dom}[\lambda]$,

$$
\left[0<|h|_{V}<\delta\right] \quad \Rightarrow \quad[\lambda(h) \in U] .
$$

Let $U \in \mathcal{N}_{Z}(y)$ be given. We wish to show: $\exists \delta>0$ s.t., $\forall h \in \operatorname{dom}[\lambda]$,

$$
\left[0<|h|_{V}<\delta\right] \quad \Rightarrow \quad[\lambda(h) \in U]
$$

Since $\mu \rightarrow y$ near p, choose $\delta>0$ s.t., $\forall x \in \operatorname{dom}[\mu]$,

$$
\left[0<|x-p|_{V}<\delta\right] \quad \Rightarrow \quad[\mu(x) \in U]
$$

We wish to show: $\forall h \in \operatorname{dom}[\lambda]$,

$$
\left[0<|h|_{V}<\delta\right] \quad \Rightarrow \quad[\lambda(h) \in U]
$$

Let $h \in \operatorname{dom}[\lambda]$ be given. We wish to show:

$$
\left[0<|h|_{V}<\delta\right] \quad \Rightarrow \quad[\lambda(h) \in U] .
$$

Assume that $0<|h|_{V}<\delta$. We wish to show: $\lambda(h) \in U$.
Let $x:=p+h$. Then $x \in(\operatorname{dom}[\lambda])+p=\operatorname{dom}[\mu]$. Also, $h=x-p$ Then $0<|x-p|_{V}<\delta$, so, by choice of δ, we have $\mu(x) \in U$. By definition of λ, we have $\lambda(h)=\mu(p+h)$. So, since $p+h=x$, we get $\lambda(h)=\mu(x)$. Then $\lambda(h)=\mu(x) \in U$. End of proof of \supseteq. QED

10-4. Let X be a metric space, let $D \subseteq X$ and let $p \in \operatorname{Int}_{X} D$. Show that there exists $B \in \mathcal{B}_{X}(p)$ such that $B \subseteq D$.

Proof: Since $p \in \operatorname{Int}_{X} D$, choose an open subset U of X such that $p \in U \subseteq D$. Since U is open in X, we have $U \in \mathcal{T}_{X}$. We have $\mathcal{T}_{X}=\left\langle\mathcal{B}_{X}\right\rangle_{\cup}$. Then $p \in U \in\left\langle\mathcal{B}_{X}\right\rangle_{\cup}$. Choose $C \in \mathcal{B}_{X}$ such that $p \in C \subseteq U$. By the Recentering Down Lemma (Lemma 14.2 p. 104), choose $B \in \mathcal{B}_{X}(p)$ such that $B \subseteq C$. We wish to show: $B \subseteq D$.

We have $B \subseteq C \subseteq U \subseteq D$, as desired. QED
$10-5$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$. Let $p, q \in \mathbb{R}$. Assume g has a local unique min at p in \mathbb{R}. Show: $g+C_{\mathbb{R}}^{q}$ has a local unique min at p in \mathbb{R}.

Proof: Let $h:=g+C_{\mathbb{R}}^{q}$. We wish to show: $\exists V \in \mathcal{N}_{X}(p)$ s.t.

$$
(V \subseteq \operatorname{dom}[h]) \quad \text { and } \quad\left(h(p)<h_{*}\left(V_{p}^{\times}\right)\right)
$$

Since g has a local unique min at p in \mathbb{R}, choose $V \in \mathcal{N}_{X}(p)$ s.t.

$$
(V \subseteq \operatorname{dom}[g]) \quad \text { and } \quad\left(g(p)<g_{*}\left(V_{p}^{\times}\right)\right)
$$

We wish to show:

$$
(V \subseteq \operatorname{dom}[h]) \quad \text { and } \quad\left(h(p)<h_{*}\left(V_{p}^{\times}\right)\right)
$$

We have $\operatorname{dom}[h]=\operatorname{dom}\left[g+C_{\mathbb{R}}^{q}\right]=(\operatorname{dom}[g]) \cap\left(\operatorname{dom}\left[C_{\mathbb{R}}^{q}\right]\right)$. So, since $\operatorname{dom}[g] \subseteq \mathbb{R}=\operatorname{dom}\left[C_{\mathbb{R}}^{q}\right]$, we get $\operatorname{dom}[h]=\operatorname{dom}[g]$. Then we have $V \subseteq \operatorname{dom}[g]=\operatorname{dom}[h]$. It remains to show: $h(p)<h_{*}\left(V_{p}^{\times}\right)$. We wish to show: $\forall y \in h_{*}\left(V_{p}^{\times}\right), h(p)<y$. Let $y \in h_{*}\left(V_{p}^{\times}\right)$be given. We wish to show: $h(p)<y$. Since $y \in h_{*}\left(V_{p}^{\times}\right)$, choose $x \in \operatorname{dom}[h]$ such that: both $x \in V_{p}^{\times}$and $y=h(x)$. We wish to show $h(p)<h(x)$.

Since $x \in \operatorname{dom}[h]=\operatorname{dom}[g]$ and since $x \in V_{p}^{\times}$, it follows that $g(x) \in g_{*}\left(V_{p}^{\times}\right)$. So, since $g(p)<g_{*}\left(V_{p}^{\times}\right)$, we get $g(p)<g(x)$. Then $[g(p)]+q<[g(x)]+q$. So since

$$
\begin{aligned}
& \left.h(p)=\left(g+C_{\mathbb{R}}^{q}\right)(p)=[g(p)]+\left(C_{\mathbb{R}}^{q}\right)(p)\right]=[g(p)]+q \\
& \text { and } \left.h(x)=\left(g+C_{\mathbb{R}}^{q}\right)(x)=[g(x)]+\left(C_{\mathbb{R}}^{q}\right)(x)\right]=[g(x)]+x \text {, }
\end{aligned}
$$

we conclude that $h(p)<h(x)$, as desired. QED

Homework 9: Due on Tuesday 27 March
9-1. Let V and W be normed vector spaces, $T \in L(V, W)$ and $K \geqslant 0$. Show: $\quad[T$ is K-bounded $] \Leftrightarrow\left[\forall x \in V,|T x|_{W} \leqslant K \cdot|x|_{V}\right]$.

Proof: Proof of \Rightarrow : Assume that T is K-bounded. We wish to show: $\forall x \in V,|T(x)|_{W} \leqslant K \cdot|x|_{V}$. Given $x \in V$. Want: $|T(x)|_{W} \leqslant K \cdot|x|_{V}$.

Since T is K-bounded, we have $\widehat{T} \leqslant K$. By definition of \widehat{T}, we have $\left|E \ell \ell_{T}\right|_{W} \leqslant \widehat{T}$. By the polar decomposition (Fact 42.5), choose $a \geqslant 0$ and $u \in S_{V}$ s.t. $x=a u$. Since $u \in S_{V}$, we get $|u|_{V}=1$. Then $K \cdot|x|_{V}=K \cdot|a u|_{V}=K \cdot|a| \cdot|u|_{V}=K \cdot|a| \cdot 1=|a| \cdot K$.

We have $|T(u)|_{W} \in\left|T_{*}\left(S_{V}\right)\right|_{W}=\left|E \ell \ell_{T}\right|_{W} \leqslant \widehat{T} \leqslant K$. Then

$$
\begin{aligned}
|T(x)|_{W} & =|T(a u)|_{W}=|a \cdot[T(u)]|_{W} \\
& =|a| \cdot|T(u)|_{W} \leqslant|a| \cdot K=K \cdot|x|_{V}
\end{aligned}
$$

as desired. End of proof of \Rightarrow.
Proof of \Leftarrow : Assume: $\forall x \in V,|T(x)|_{W} \leqslant K \cdot|x|_{V}$. We wish to show that T is K-bounded. Want: $\widehat{T} \leqslant K$. Want: $\sup \left|E \ell \ell_{T}\right|_{W} \leqslant K$. We wish to show: $\left|E \ell \ell_{T}\right|_{W} \leqslant K$. Want: $\forall r \in\left|E \ell \ell_{T}\right|_{W}, r \leqslant K$. Let $r \in\left|E \ell \ell_{T}\right|_{W}$ be given. We want: $r \leqslant K$.

Choose $y \in E \ell \ell_{T}$ s.t. $r=|y|_{W}$. Since $y \in E \ell \ell_{T}=T_{*}\left(S_{V}\right)$, choose $u \in S_{V}$ s.t. $y=T(u)$. We have $|T(u)|_{W} \leqslant K \cdot|u|_{V}$. Since $u \in S_{V}$, we have $|u|_{V}=1$. Then $r=|y|_{W}=|T(u)|_{W} \leqslant K \cdot|u|_{V}=K \cdot 1=K$, as desired. End of proof of \Leftarrow. QED
$9-2$. Let V and W be normed vector spaces and let $K \geqslant 0$. Let $T \in L(V, W)$ be K-bounded. Show: T is K-Lipschitz. That is, show:

$$
\forall x, y \in V, \quad|[T(x)]-[T(y)]|_{W} \leqslant K \cdot|x-y|_{V}
$$

Proof: Let $x, y \in V$ be given. Want: $|[T(x)]-[T(y)]|_{W} \leqslant K \cdot|x-y|_{V}$.
By HW\#9-1, we know: $\forall z \in V,|T(z)|_{W} \leqslant K \cdot|z|_{V}$. It follows that $|T(x-y)|_{W} \leqslant K \cdot|x-y|_{V}$. By linearity, $T(x-y)=[T(x)]-[T(y)]$. Then $|[T(x)]-[T(y)]|_{W}=|T(x-y)|_{W} \leqslant K \cdot|x-y|_{V}$. QED

9-3. Let Y and Z be metric spaces and let $K>0$. Let $f: Y \rightarrow Z$ be a K-Lipschitz function. Let $x \in \operatorname{dom}[f]$ and let $r>0$. Show that: $f_{*}\left(B_{Y}(x, r)\right) \subseteq B_{Z}(f(x), K r)$.

Proof: We want to show: $\forall p \in \operatorname{dom}[f]$,

$$
\left[p \in B_{Y}(x, r)\right] \quad \Rightarrow \quad\left[f(p) \in B_{Z}(f(x), K r)\right]
$$

Let $p \in \operatorname{dom}[f]$ be given. We want to show:

$$
\left[p \in B_{Y}(x, r)\right] \quad \Rightarrow \quad\left[f(p) \in B_{Z}(f(x), K r)\right]
$$

Assume $p \in B_{Y}(x, r)$. We want to show: $f(p) \in B_{Z}(f(x), K r)$.
Since $p \in B_{Y}(x, r)$, we have $d_{Y}(p, x)<r$. So, since f is K-Lipschitz, $d_{Z}(f(p), f(x))<K r$. Then $f(p) \in B_{Z}(f(x), K r)$, as desired. QED

9-4. Let V and W be normed vector spaces and let $T \in L(V, W)$. Assume that T is continuous at 0_{V}. Show that T is bounded.

Proof: Since T is linear, $T\left(0_{V}\right)=0_{W}$. So, since T is continuous at 0_{V}, choose $\delta>0$ s.t., for all $x \in V$,

$$
\left[|x|_{V}<\delta\right] \quad \Rightarrow \quad\left[|T x|_{W}<1\right]
$$

Let $K:=2 / \delta$. We want: T is K-bounded. By \Leftarrow of Remark 43.1 p. 311, it suffices to show: $\forall u \in S_{V},|T u|_{W} \leqslant K$. Let $u \in V$ be given: We want to prove: $|T u|_{W} \leqslant K$. It suffices to show: $|T u|_{W}<K$.

Since $K=2 / \delta>0$, we get $|K|=K$. Also, $|1 / K|=|\delta / 2|=\delta / 2$. Since $u \in S_{V}$, we have $|u|_{V}=1$. Let $x:=(1 / K) u$. Then we have $|x|_{V}=|1 / K| \cdot|u|_{V}=(\delta / 2) \cdot 1=\delta / 2<\delta$. So, by choice of δ, we see that $|T x|_{W}<1$. Then $K \cdot|T x|_{W}<K \cdot 1=K$. Since $x=(1 / K) u$, we get $u=K x$, and so, by linearity of T, we have $T u=K \cdot(T x)$.

Then $|T u|_{W}=|K \cdot(T x)|_{W}=|K| \cdot|T x|_{W}=K \cdot|T x|_{W}<K$. QED
9-5. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$. Assume: $\exists M \in \mathbb{R}$ s.t. $(M, \infty) \subseteq \operatorname{dom}\left[g^{\prime} / f^{\prime}\right]$.
Assume: $\lim _{\infty} f=0=\lim _{\infty} g$. Show: $\lim _{\infty}(g / f)={ }^{*} \lim _{\infty}\left(g^{\prime} / f^{\prime}\right)$.
Proof: Define $\phi, \psi:(0, \infty) \rightarrow \mathbb{R}$ by $\phi(t)=f(1 / t)$ and $\psi(t)=g(1 / t)$. Then, for all $t \in(0, \infty)$, we have $(\psi / \phi)(t)=(g / f)(1 / t)$. It follows, by (1) of Fact 42.19, that $\lim _{\infty}(g / f)=\lim _{0^{+}}(\psi / \phi)$.

Claim 1: $\forall t \in(0, \infty),\left(\psi^{\prime} / \phi^{\prime}\right)(t)=\left(g^{\prime} / f^{\prime}\right)(1 / t)$. Proof of Claim 1: Let $t \in(0, \infty)$ be given. We wish to show: $\left(\psi^{\prime} / \phi^{\prime}\right)(t)=\left(g^{\prime} / f^{\prime}\right)(1 / t)$.

By (2) of Fact 42.19, we have both

$$
\phi^{\prime}(t)=-\frac{f^{\prime}(1 / t)}{t^{2}} \quad \text { and } \quad \psi^{\prime}(t)=-\frac{g^{\prime}(1 / t)}{t^{2}} .
$$

Then $\left[\psi^{\prime}(t)\right] /\left[\phi^{\prime}(t)\right]=\left[g^{\prime}(t)\right] /\left[f^{\prime}(t)\right]$, i.e., $\left(\psi^{\prime} / \phi^{\prime}\right)(t)=\left(g^{\prime} / f^{\prime}\right)(1 / t)$, as desired. End of proof of Claim 1.

By Claim 1, for all $t \in(0, \infty)$, we have $\left(\psi^{\prime} / \phi^{\prime}\right)(t)=\left(g^{\prime} / f^{\prime}\right)(1 / t)$. It follows, by (1) of Fact 42.19, that $\lim _{\infty}\left(g^{\prime} / f^{\prime}\right)=\lim _{0^{+}}\left(\psi^{\prime} / \phi^{\prime}\right)$.

By assumption, choose $M \in \mathbb{R}$ such that $(M, \infty) \subseteq \operatorname{dom}\left[g^{\prime} / f^{\prime}\right]$.

Claim 2: $(0,1 / M) \in \operatorname{dom}\left[\psi^{\prime} / \phi^{\prime}\right]$. Proof of Claim 2: We wish to show: $\forall t \in(0,1 / M), t \in \operatorname{dom}\left[\psi^{\prime} / \phi^{\prime}\right]$. Let $t \in(0,1 / M)$ be given. We wish to show: $t \in \operatorname{dom}\left[\psi^{\prime} / \phi^{\prime}\right]$.

Since $t \in(0,1 / M), 1 / t \in(M, \infty)$. Then $1 / t \in(M, \infty) \subseteq \operatorname{dom}\left[g^{\prime} / f^{\prime}\right]$, so $\left(g^{\prime} / f^{\prime}\right)(1 / t) \neq(3$. Since $t \in(0,1 / M) \subseteq(0, \infty)$, by Claim 1, we get $\left(\psi^{\prime} / \phi^{\prime}\right)(t)=\left(g^{\prime} / f^{\prime}\right)(1 / t)$. Then $\left(\psi^{\prime} / \phi^{\prime}\right)(t)=\left(g^{\prime} / f^{\prime}\right)(1 / t) \neq \theta^{2}$, and so $t \in \operatorname{dom}\left[\psi^{\prime} / \phi^{\prime}\right]$, as desired. End of proof of Claim 2.

Since $\lim _{\infty} f=0=\lim _{\infty} g$, it follows, from (1) of Fact 42.19, that $\lim _{0^{+}} \phi=0=\lim _{0^{+}} \psi$. By Claim 2, we have $(0,1 / M) \in \operatorname{dom}\left[\psi^{\prime} / \phi^{\prime}\right]$. Therefore, by Theorem 42.18 (with p replaced by $0, f$ by ϕ and g by ψ), we conclude that $\lim _{0^{+}}(\phi / \psi)={ }^{*} \lim _{0^{+}}\left(\phi^{\prime} / \psi^{\prime}\right)$.

Then $\lim _{\infty}(g / f)=\lim _{0^{+}}(\phi / \psi)={ }^{*} \lim _{0^{+}}\left(\phi^{\prime} / \psi^{\prime}\right)=\lim _{\infty}\left(g^{\prime} / f^{\prime}\right)$. QED

Homework 8: Due on Tuesday 20 March
8-1. Let W be a vector space and let $u, v, v^{\prime} \in W$. Assume that $\mathbb{R} v=\mathbb{R} v^{\prime}$ and that $u \| v$. Show that $u \| v^{\prime}$.
Proof: We wish to show: $u \in \mathbb{R} v^{\prime}$ or $v^{\prime} \in \mathbb{R} u$. Since $u \| v$, at least one of the following must be true:
(1) $u \in \mathbb{R} v \quad$ or
(2) $v \in \mathbb{R} u$.

Case (1): We wish to show: $u \in \mathbb{R} v^{\prime}$. Since $u \in \mathbb{R} v, \mathbb{R} u \subseteq \mathbb{R} v$. So, as $\mathbb{R} v=\mathbb{R} v^{\prime}, \mathbb{R} u \subseteq \mathbb{R} v^{\prime}$. Then $u \in \mathbb{R} u \subseteq \mathbb{R} v^{\prime}$. End of Case (1).

Case (2): We wish to show: $v^{\prime} \in \mathbb{R} u$. Since $v \in \mathbb{R} u, \mathbb{R} v \subseteq \mathbb{R} u$. So, as $\mathbb{R} v=\mathbb{R} v^{\prime}, \mathbb{R} v^{\prime} \subseteq \mathbb{R} u$. Then $v^{\prime} \in \mathbb{R} v^{\prime} \subseteq \mathbb{R} u$. End of Case (2). QED

8-2. Let $u, v \in \mathbb{R}^{2}$. Show:

$$
[u \| v] \quad \Leftrightarrow \quad\left[\left(u=0_{2}\right) \text { or }\left(v=0_{2}\right) \text { or }(\mathrm{sl} u=\operatorname{sl} v)\right] .
$$

Proof: Proof of \Rightarrow : Assume that $u \| v$. We wish to prove:

$$
\left(u=0_{2}\right) \quad \text { or } \quad\left(v=0_{2}\right) \quad \text { or } \quad(\operatorname{sl} u=\operatorname{sl} v) .
$$

Equivalently, we want: $\quad\left[\left(u \neq 0_{2}\right)\right.$ and $\left.\left(v \neq 0_{2}\right)\right] \Rightarrow[\operatorname{sl} u=\operatorname{sl} v]$.
Assume $\left(u \neq 0_{2}\right)$ and $\left(v \neq 0_{2}\right)$. We wish to prove: $\mathrm{sl} u=\operatorname{sl} v$.
Since $u \| v$, at least one of the following is true:
(1) $u \in \mathbb{R} v \quad$ or
(2) $v \in \mathbb{R} u$.

Case (1): Choose $a \in \mathbb{R}$ such that $u=a v$. Since $a v=u \neq 0_{2}=0 \cdot v$, we conclude that $a \neq 0$. Since $\left(u_{1}, u_{2}\right)=u=a v=\left(a v_{1}, a v_{2}\right)$, we see that $u_{1}=a v_{1}$ and that $u_{2}=a v_{2}$. Then

$$
\operatorname{sl} u=\frac{u_{2}}{u_{1}}=\frac{a v_{2}}{a v_{1}}=\frac{v_{2}}{v_{1}}=\operatorname{sl} v
$$

as desired. End of Case (1).
Case (2): Choose $a \in \mathbb{R}$ such that $v=a u$. Since $a u=v \neq 0_{2}=0 \cdot u$, we conclude that $a \neq 0$. Since $\left(v_{1}, v_{2}\right)=v=a u=\left(a u_{1}, a u_{2}\right)$, we see that $v_{1}=a u_{1}$ and that $v_{2}=a u_{2}$. Then

$$
\operatorname{sl} u=\frac{u_{2}}{u_{1}}=\frac{a u_{2}}{a u_{1}}=\frac{v_{2}}{v_{1}}=\operatorname{sl} v
$$

as desired. End of Case (2). End of proof of \Rightarrow.
Proof of \Leftarrow : Assume

$$
\begin{equation*}
\left(u=0_{2}\right) \quad \text { or } \quad\left(v=0_{2}\right) \quad \text { or } \quad(\operatorname{sl} u=\operatorname{sl} v) . \tag{*}
\end{equation*}
$$

We wish to prove: $u \| v$. We want: $u \in \mathbb{R} v$ or $v \in \mathbb{R} u$.
At least one of the following must be true:
(1) $u_{1}=0=v_{1} \quad$ or
(2) $u_{1} \neq 0=v_{1} \quad$ or
(3) $u_{1}=0 \neq v_{1} \quad$ or
(4) $u_{1} \neq 0 \neq v_{1}$.

Case (1): We wish to prove that: $[u \notin \mathbb{R} v] \Rightarrow[v \in \mathbb{R} u]$. Assume that: $u \notin \mathbb{R} v$. We wish to prove that: $v \in \mathbb{R} u$.

Since $u \notin \mathbb{R} v$ and $0_{2}=0 \cdot v \in \mathbb{R} v$, we get: $u \neq 0_{2}$. Then we have: $\left(0, u_{2}\right)=\left(u_{1}, u_{2}\right)=u \neq 0_{2}=(0,0)$, so $u_{2} \neq 0$. Let $a:=v_{2} / u_{2}$. Then $a u_{2}=v_{2}$. Then $a u=\left(a u_{1}, a u_{2}\right)=\left(a \cdot 0, v_{2}\right)=\left(0, v_{2}\right)=\left(v_{1}, v_{2}\right)=v$. Then $v=a u \in \mathbb{R} u$, as desired. End of Case (1).

Case (2): We wish to show: $v \in \mathbb{R} u$.
Since $u_{1} \neq 0$, we have $\left(u_{1}, u_{2}\right) \neq(0,0)$, i.e., $u \neq 0_{2}$. Since $u_{1} \neq 0$, we get $\left.u_{2} / u_{1} \neq\right)^{\circ}$. Since $v_{1}=0$, we get $v_{2} / v_{1}=\oplus$. Then

$$
\operatorname{sl} u=u_{2} / u_{1} \neq \odot=v_{2} / v_{1}=\operatorname{sl} v
$$

Since $u \neq 0_{2}$ and $\operatorname{sl} u \neq \operatorname{sl} v$, we see, by (*), that $v=0_{2}$. Then $v=0_{2}=0 \cdot u \in \mathbb{R} u$, as desired. End of Case (2).

Case (3): We wish to show: $u \in \mathbb{R} v$.

Since $v_{1} \neq 0$, we have $\left(v_{1}, v_{2}\right) \neq(0,0)$, i.e., $v \neq 0_{2}$. Since $v_{1} \neq 0$, we get $\left.v_{2} / v_{1} \neq\right)^{*}$. Since $u_{1}=0$, we get $\left.u_{2} / u_{1}=\right)^{*}$. Then

$$
\operatorname{sl} u=u_{2} / u_{1}=\operatorname{co}^{2} \neq v_{2} / v_{1}=\operatorname{sl} v
$$

Since $v \neq 0_{2}$ and sl $u \neq \operatorname{sl} v$, we see, by (*), that $u=0_{2}$. Then $u=0_{2}=0 \cdot v \in \mathbb{R} v$, as desired. End of Case (3).

Case (4): We wish to show: $v \in \mathbb{R} u$.
Since $u_{1} \neq 0$, we have $\left(u_{1}, u_{2}\right) \neq(0,0)$, i.e., $u \neq 0_{2}$. Since $v_{1} \neq 0$, we have $\left(v_{1}, v_{2}\right) \neq(0,0)$, i.e., $v \neq 0_{2}$. Since $u \neq 0_{2}$ and $v \neq 0_{2}$, we see, by $(*)$, that $\operatorname{sl} u=\operatorname{sl} v$. That is, $u_{2} / u_{1}=v_{2} / v_{1}$. Let $a:=v_{1} / u_{1}$. Then $a u_{1}=v_{1}$ and $a u_{2}=\left(v_{1} / u_{1}\right) u_{2}=\left(u_{2} / u_{1}\right) v_{1}=\left(v_{2} / v_{1}\right) v_{1}=v_{2}$. Then $a u=\left(a u_{1}, a u_{2}\right)=\left(v_{1}, v_{2}\right)=v$. Then $v=a u \in \mathbb{R} u$, as desired. End of Case (4). End of proof of \Leftarrow. QED

8-3. Let $u, v \in \mathbb{R}^{2}$. Show:

$$
(u \| v) \Leftrightarrow\left(\operatorname{Det}\left[\begin{array}{l}
u \\
v
\end{array}\right]=0\right) .
$$

Proof: Proof of \Rightarrow : Assume: $u \| v$. Want: Det $\left[\begin{array}{l}u \\ v\end{array}\right]=0$.
Since $u \| v$, at least one of the following is true:
(1) $u \in \mathbb{R} v \quad$ or (2) $v \in \mathbb{R} u$.

Case (1): Choose $a \in \mathbb{R}$ such that $u=a v$. Then

$$
\begin{aligned}
\operatorname{Det}\left[\begin{array}{l}
u \\
v
\end{array}\right] & =\operatorname{Det}\left[\begin{array}{c}
a v \\
v
\end{array}\right] \\
& =\operatorname{Det}\left[\begin{array}{c}
\left(a v_{1}, a v_{2}\right) \\
\left(v_{1}, v_{2}\right)
\end{array}\right] \\
& =\left(a v_{1}\right) \cdot v_{2}-\left(a v_{2}\right) \cdot v_{1}=0 .
\end{aligned}
$$

End of Case (1).
Case (2): Choose $a \in \mathbb{R}$ such that $v=a u$. Then

$$
\begin{aligned}
\operatorname{Det}\left[\begin{array}{l}
u \\
v
\end{array}\right] & =\operatorname{Det}\left[\begin{array}{c}
u \\
a u
\end{array}\right] \\
& =\operatorname{Det}\left[\begin{array}{c}
\left(u_{1}, u_{2}\right) \\
\left(a u_{1}, a u_{2}\right)
\end{array}\right] \\
& =u_{1} \cdot\left(a u_{2}\right)-u_{2} \cdot\left(a u_{1}\right)=0 .
\end{aligned}
$$

End of Case (2). End of proof of \Rightarrow.
Proof of \Leftarrow : Assume: Det $\left[\begin{array}{l}u \\ v\end{array}\right]=0$. We wish to prove: $u \| v$. We want to show: $u \in \mathbb{R} v$ or $v \in \mathbb{R} u$.

Since $0=\operatorname{Det}\left[\begin{array}{l}u \\ v\end{array}\right]=u_{1} v_{2}-u_{2} v_{1}$, we see that $u_{1} v_{2}=u_{2} v_{1}$. At least one of the following is true:
(1) $u_{1} \neq 0 \quad$ or
(2) $u_{2} \neq 0 \quad$ or
(3) $u_{1}=0=u_{2}$.

Case (1): Want: $v \in \mathbb{R} u$. Let $a:=v_{1} / u_{1}$. Want: $v=a u$.
We have both $a u_{1}=v$ and $a u_{2}=u_{2} v_{1} / u_{1}=u_{1} v_{2} / u_{1}=v_{2}$. Then $v=\left(v_{1}, v_{2}\right)=\left(a u_{1}, a u_{2}\right)=a u$, as desired. End of Case (1).

Case (2): Want: $v \in \mathbb{R} u$. Let $a:=v_{2} / u_{2}$. Want: $v=a u$.
We have both $a u_{1}=u_{1} v_{2} / u_{2}=u_{2} v_{1} / u_{2}=v_{1}$ and $a u_{2}=v_{2}$. Then $v=\left(v_{1}, v_{2}\right)=\left(a u_{1}, a u_{2}\right)=a u$, as desired. End of Case (2).

Case (3): Want: $u \in \mathbb{R} v$. Let $a:=0$. Want $u=a v$.
Since $u_{1}=0=u_{2}$, we get $u=0_{2}$. Since $a=0$, we get $a v=0_{2}$. Then $u=0_{2}=a v$, as desired. End of Case (3). End of proof of \Leftarrow. QED

8-4. Let V and W be normed vector spaces. Let $x: \mathbb{R} \rightarrow V$ and $y: \mathbb{R} \rightarrow W$. Let $p \in \mathbb{R}$. Assume that x and y are both continuous at p. Show that (x, y) is continuous at p.

Proof: Let $z:=(x, y)$ and let $U:=V \times W$. Then $z: \mathbb{R} \rightarrow U$ and $\operatorname{dom}[z] \subseteq \operatorname{dom}[x]$ and $\operatorname{dom}[z] \subseteq \operatorname{dom}[y]$.

We want: z is continuous at p. We wish to show: $\forall U_{0} \in \mathcal{N}_{U}(z(p))$, $\exists A \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $z_{*}(A) \subseteq U_{0}$. Let $U_{0} \in \mathcal{N}_{U}(z(p))$ be given. We wish to prove: $\exists A \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $z_{*}(A) \subseteq U_{0}$.

Choose $V_{0} \in \mathcal{N}_{V}(x)$ and $W_{0} \in \mathcal{N}_{W}(y)$ s.t. $V_{0} \times W_{0} \subseteq U_{0}$. Since x is continuous at p, choose $B \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $x_{*}(B) \subseteq V_{0}$. Since y is continuous at p, choose $C \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $y_{*}(C) \subseteq W_{0}$. As $B, C \in \mathcal{N}_{\mathbb{R}}(p)$, we get $B \cap C \in \mathcal{N}_{\mathbb{R}}(p)$. Let $A:=B \cap C$. We wish to show: $z_{*}(A) \subseteq U_{0}$. We wish to show: $\forall q \in \operatorname{dom}[z]$,

$$
[q \in A] \quad \Rightarrow \quad\left[z(q) \in U_{0}\right] .
$$

Let $q \in \operatorname{dom}[z]$ be given. We wish to show:

$$
[q \in A] \quad \Rightarrow \quad\left[z(q) \in U_{0}\right]
$$

Assume: $q \in A$. We wish to show: $z(q) \in U_{0}$.
Since $q \in \operatorname{dom}[z] \subseteq \operatorname{dom}[x]$ and since $q \in A=B \cap C \subseteq B$, we have $x(q) \in x_{*}(B)$. So, by choice of B, we have $x(q) \in V_{0}$. Since $q \in \operatorname{dom}[z] \subseteq \operatorname{dom}[y]$ and since $q \in A=B \cap C \subseteq C$, we have $y(q) \in y_{*}(C)$. So, by choice of C, we have $y(q) \in W_{0}$.

Then $z(q)=(x(q), y(q)) \in V_{0} \times W_{0}$. Then, by choice of V_{0} and W_{0}, we conclude that $z(q) \in U_{0}$, as desired. QED

8-5. Let V and W be normed vector spaces. Let $x: \mathbb{R} \rightarrow V$ and $y: \mathbb{R} \rightarrow W$. Let $p \in \operatorname{LPD}_{\mathbb{R}}(x, y)$. Show: $(x, y)^{\prime}(p)=^{*}\left(x^{\prime}(p), y^{\prime}(p)\right)$.

Proof: Let $\phi:=S S_{x}^{p}, \psi:=S S_{y}^{p}$. Then $x^{\prime}(p)=\lim _{0} \phi$ and $y^{\prime}(p)=\lim _{0} \psi$. Also, $(x, y)^{\prime}(p)=\lim _{0} S S_{(x, y)}^{p}$. For all $h \in \mathbb{R}$, we have

$$
\begin{aligned}
S S_{(x, y)}^{p}(h) & =\frac{[(x, y)(p+h)]-[(x, y)(p)]}{h} \\
& =\frac{(x(p+h), y(p+h))-(x(p), y(p))}{h} \\
& =\frac{([x(p+h)]-[x(p)],[y(p+h)]-[y(p)])}{h} \\
& =\left(\frac{[x(p+h)]-[x(p)]}{h}, \frac{[y(p+h)]-[y(p)]}{h}\right) \\
& =\left(S S_{x}^{p}(h), S S_{y}^{p}(h)\right) \\
& =\left(S S_{x}^{p}, S S_{y}^{p}\right)(h)=(\phi, \psi)(h) .
\end{aligned}
$$

Then $S S_{(x, y)}^{p}=(\phi, \psi)$. Since $p \in \operatorname{LPD}_{\mathbb{R}}(x, y)$, by (3) of Remark 26.7 p. 197, we get $0 \in \operatorname{LPD}_{\mathbb{R}}\left(S S_{(x, y)}^{p}\right)$. So, since $S S_{(x, y)}^{p}=(\phi, \psi)$, we conclude that $0 \in \operatorname{LPD}_{\mathbb{R}}(\phi, \psi)$. Then, by Remark 40.4 p . 295, we have $\lim _{0}(\phi, \psi)={ }^{*}\left(\lim _{0} \phi, \lim _{0} \psi\right)$. Then

$$
\begin{aligned}
(x, y)^{\prime}(p) & =\lim _{0} S S_{(x, y)}^{p}=\lim _{0}(\phi, \psi) \\
& =*\left(\lim _{0} \phi, \lim _{0} \psi\right)=\left(x^{\prime}(p), y^{\prime}(p)\right)
\end{aligned}
$$

as desired. QED

Homework 7: Due on Tuesday 6 March
7-1. Let $f: \mathbb{R} \rightarrow \mathbb{R}, p \in \mathbb{R}$ and $\delta>0$. Assume
(1) $(p-\delta, p+\delta) \subseteq \operatorname{dom}[f]$,
(2) f is strictly decreasing on $(p-\delta, p]$ and
(3) f is strictly increasing on $[p, p+\delta)$.

Show that f has a local unique minimum at p in \mathbb{R}.
Proof: We want: $\exists V \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $V \subseteq \operatorname{dom}[f]$ and $f_{*}\left(V_{p}^{\times}\right)>f(p)$.
Since $(p-\delta, p+\delta)$ is open in \mathbb{R} and since $p \in(p-\delta, p+\delta)$, it follows that $(p-\delta, p+\delta) \in \mathcal{N}_{\mathbb{R}}(p)$. Let $V:=(p-\delta, p+\delta)$. We wish to show: $V \subseteq \operatorname{dom}[f]$ and $f_{*}\left(V_{p}^{\times}\right)>f(p)$.

Since $V=(p-\delta, p+\delta)$, by (1), we have $V \subseteq \operatorname{dom}[f]$. It remains to show: $f_{*}\left(V_{p}^{\times}\right)>f(p)$. We wish to show: $\forall y \in f_{*}\left(V_{p}^{\times}\right), y>f(p)$. Let $y \in f_{*}\left(V_{p}^{\times}\right)$be given. We wish to show: $y>f(p)$.

Since $y \in f_{*}\left(V_{p}^{\times}\right)$, choose $t \in V_{p}^{\times}$such that $y=f(t)$. We have $t \in V_{p}^{\times}=(p-\delta, p) \cup(p, p+\delta)$, so one of the following must be true:
(A) $t \in(p-\delta, p) \quad$ or
(B) $t \in(p, p+\delta)$.

Case (A): We have $t, p \in(p-\delta, p]$ and $t<p$. So, by $(2), f(t)>f(p)$. So, as $y=f(t)$, we get $y>f(p)$. End of Case (A).

Case (B): We have $t, p \in[p, p+\delta)$ and $t>p$. So, by $(3), f(t)>f(p)$. So, as $y=f(t)$, we get $y>f(p)$. End of Case (B). QED

7-2. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ and $p \in \operatorname{IntD}_{\mathbb{R}} g$. Assume both that $g(p)=0$ and that $g^{\prime}(p)>0$. Show: $\exists \delta>0$ such that all three of the following hold:
(A) $(p-\delta, p+\delta) \subseteq \operatorname{dom}[g]$,
(B) $g<0$ on $(p-\delta, p) \quad$ and
(C) $g>0$ on $(p, p+\delta)$.

Proof: By Lemma 32.1 p. 240, choose $U \in \mathcal{N}_{\mathbb{R}}(0)$ s.t. $\left(S S_{g}^{p}\right)_{*}(U)>0$. Then $U+p \in \mathcal{N}_{\mathbb{R}}(p)$. Let $D:=\operatorname{dom}[g]$. Since $p \in \operatorname{IntD}_{\mathbb{R}} g=\operatorname{Int}_{\mathbb{R}} D$, $D \in \mathcal{N}_{\mathbb{R}}(p)$. As $U+p, D \in \mathcal{N}_{\mathbb{R}}(p)$, we get $(U+p) \cap D \in \mathcal{N}_{\mathbb{R}}(p)$. So, since $\mathcal{B}_{\mathbb{R}}(p)$ is a neighborhood base at p in \mathbb{R}, choose $\delta>0$ such that $B_{\mathbb{R}}(p, \delta) \subseteq(U+p) \cap D$. We wish to show: (A) and (B) and (C).

Proof of (A): We have

$$
(p-\delta, p+\delta)=B_{\mathbb{R}}(p, \delta) \subseteq(U+p) \cap D \subseteq D=\operatorname{dom}[g]
$$

as desired. End of proof of (A).
Proof of (B): We wish to show: $\forall t \in(p-\delta, p), g(t)<0$. Let $t \in(p-\delta, p)$ be given. We wish to show: $g(t)<0$.

We have $t \in(p-\delta, p) \subseteq B_{\mathbb{R}}(p, \delta) \subseteq(U+p) \cap D$, so $t \in U+p$ and $t \in D$. Since $t \in U+p$, we get $t-p \in U$. Let $h:=t-p$. Then $h \in U$ and $p+h=t$. Also, since $t<p$, we get $h<0$. In particular, $h \neq 0$. We have dom $\left[S S_{g}^{p}\right]=[(\operatorname{dom}[g])-p]_{0}^{\times}=[D-p]_{0}^{\times}$. So, since $h=t-p \in D-p$ and since $h \neq 0$, we get $h \in \operatorname{dom}\left[S S_{g}^{p}\right]$. So, since $h \in U$, we get $\left(S S_{g}^{p}\right)(h) \in\left(S S_{g}^{p}\right)_{*}(U)$. So, since $\left(S S_{g}^{p}\right)_{*}(U)>0$, we get $\left(S S_{g}^{p}\right)(h)>0$. So, since $h<0$, we get $h \cdot\left[\left(S S_{g}^{p}\right)(h)\right]<0$. So, since $h \cdot\left[\left(S S_{g}^{p}\right)(h)\right]=[g(p+h)]-[g(p)]$, we get $g(p+h)<g(p)$. So, since $p+h=t$, we get $g(t)<g(p)$. By assumption, $g(p)=0$. Then $g(t)<0$, as desired. End of proof of (B).

Proof of (C) : We wish to show: $\forall t \in(p, p+\delta), g(t)>0$. Let $t \in(p, p+\delta)$ be given. We wish to show: $g(t)>0$.

We have $t \in(p, p+\delta) \subseteq B_{\mathbb{R}}(p, \delta) \subseteq(U+p) \cap D$, so $t \in U+p$ and $t \in D$. Since $t \in U+p$, we get $t-p \in U$. Let $h:=t-p$. Then $h \in U$ and $p+h=t$. Also, since $t>p$, we get $h>0$. In particular, $h \neq 0$. We have dom $\left[S S_{g}^{p}\right]=[(\operatorname{dom}[g])-p]_{0}^{\times}=[D-p]_{0}^{\times}$. So, since $h=t-p \in D-p$ and since $h \neq 0$, we get $h \in \operatorname{dom}\left[S S_{g}^{p}\right]$. So, since $h \in U$, we get $\left(S S_{g}^{p}\right)(h) \in\left(S S_{g}^{p}\right)_{*}(U)$. So, since $\left(S S_{g}^{p}\right)_{*}(U)>0$, we get $\left(S S_{g}^{p}\right)(h)>0$. So, since $h>0$, we get $h \cdot\left[\left(S S_{g}^{p}\right)(h)\right]>0$. So, since $h \cdot\left[\left(S S_{g}^{p}\right)(h)\right]=[g(p+h)]-[g(p)]$, we get $g(p+h)>g(p)$. So, since $p+h=t$, we get $g(t)>g(p)$. By assumption, $g(p)=0$. Then $g(t)>0$, as desired. End of proof of (C). QED

7-3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $p \in \operatorname{IntD} \mathbb{R}_{\mathbb{R}}\left(f^{\prime}\right)$. Assume both that $f^{\prime}(p)=0$ and that $f^{\prime \prime}(p)>0$. Show: f has a local unique minimum at p in \mathbb{R}.

Proof: Let $g:=f^{\prime}$. Then $p \in \operatorname{IntD}_{\mathbb{R}} g$ and $g(p)=0$ and $g^{\prime}(p)>0$. So, by HW\#7-2, choose $\delta>0$ such that all three of the following hold:
(A) $(p-\delta, p+\delta) \subseteq \operatorname{dom}[g]$,
(B) $g<0$ on $(p-\delta, p) \quad$ and
(C) $g>0$ on $(p, p+\delta)$.

By HW\#7-1, it suffices to show:
(1) $(p-\delta, p+\delta) \subseteq \operatorname{dom}[f]$,
(2) f is strictly decreasing on $(p-\delta, p]$ and
(3) f is strictly increasing on $[p, p+\delta)$.

Proof of (1): Since dom $[g]=\operatorname{dom}\left[f^{\prime}\right] \subseteq \operatorname{dom}[f]$, by (A), we see that $(p-\delta, p+\delta) \subseteq \operatorname{dom}[f]$, as desired. End of proof of (1).

Proof of (2): Let $I:=(p-\delta, p]$. We want: $f \mid I$ is strictly decreasing.

Since $g=f^{\prime}$, by (A), we see that f is differentiable on $(p-\delta, p+\delta)$. So, as $I \subseteq(p-\delta, p+\delta), f$ is differentiable on I. Then f is c/d on I. Since $g=f^{\prime}$ and $\operatorname{Int}_{\mathbb{R}} I=(p-\delta, p)$, by (B), we get: $f^{\prime}<0$ on $\operatorname{Int}_{\mathbb{R}} I$. Then, by (5) of Corollary 34.9 p. 259, we see that $f \mid I$ is strictly decreasing, as desired. End of proof of (2).

Proof of (3): Let $I:=[p, p+\delta)$. We want: $f \mid I$ is strictly increasing.
Since $g=f^{\prime}$, by (A), we see that f is differentiable on $(p-\delta, p+\delta)$. So, as $I \subseteq(p-\delta, p+\delta), f$ is differentiable on I. Then f is c/d on I. Since $g=f^{\prime}$ and $\operatorname{Int}_{\mathbb{R}} I=(p, p+\delta)$, by (B), we get: $f^{\prime}>0$ on $\operatorname{Int}_{\mathbb{R}} I$. Then, by (3) of Corollary 34.9 p. 259, we see that $f \mid I$ is strictly increasing, as desired. End of proof of (3). QED
$7-4$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $p \in \operatorname{IntD}_{\mathbb{R}}\left(f^{\prime}\right)$. Assume both that $f^{\prime}(p)=0$ and that $f^{\prime \prime}(p)<0$. Show: f has a local unique maximum at p in \mathbb{R}.

Proof: We wish to show $\exists V \in \mathcal{N}_{\mathbb{R}}(p)$ such that $V \subseteq \operatorname{dom}[f]$ and $f_{*}\left(V_{p}^{\times}\right)<f(p)$.

Let $f_{0}:=-f$. Then $\operatorname{dom}\left[f_{0}\right]=\operatorname{dom}[f]$. Also, $f_{0}^{\prime}=-f^{\prime}$. Then $\operatorname{dom}\left[f_{0}^{\prime}\right]=\operatorname{dom}\left[f^{\prime}\right]$, so $\operatorname{IntD}_{\mathbb{R}}\left(f_{0}^{\prime}\right)=\operatorname{Int} D_{\mathbb{R}}\left(f^{\prime}\right)$. Also, $f_{0}^{\prime \prime}=-f^{\prime \prime}$. Then

- $f_{0}: \mathbb{R} \rightarrow \mathbb{R}$,
- $p \in \operatorname{IntD}_{\mathbb{R}}\left(f^{\prime}\right)=\operatorname{Int} \mathrm{D}_{\mathbb{R}}\left(f_{0}^{\prime}\right)$,
- $f_{0}^{\prime}(p)=\left(-f^{\prime}\right)(p)=-0=0$ and
- $f_{0}^{\prime \prime}(p)=\left(-f^{\prime \prime}\right)(p)=-\left(f^{\prime \prime}(p)\right)>0$.

Then, by HW\#7-3, f_{0} has a local unique minimum at p in \mathbb{R}. So choose $V \in \mathcal{N}_{\mathbb{R}}(p)$ such that $V \subseteq \operatorname{dom}\left[f_{0}\right]$ and such that $\left(f_{0}\right)_{*}\left(V_{p}^{\times}\right)>f_{0}(p)$. As $V \subseteq \operatorname{dom}\left[f_{0}\right]=\operatorname{dom}[f]$, it remains only to show: $f_{*}\left(V_{p}^{\times}\right)<f(p)$. We wish to show: $\forall t \in \operatorname{dom}[f]$,

$$
\left[t \in V_{p}^{\times}\right] \quad \Rightarrow \quad[f(t)<f(p)] .
$$

Let $t \in \operatorname{dom}[f]$ be given. We wish to show:

$$
\left[t \in V_{p}^{\times}\right] \quad \Rightarrow \quad[f(t)<f(p)]
$$

Assume: $t \in V_{p}^{\times}$. We wish to prove: $f(t)<f(p)$.
Since $t \in \operatorname{dom}[f]=\operatorname{dom}\left[f_{0}\right]$, and $t \in V_{p}^{\times}$, we get $f_{0}(t) \in\left(f_{0}\right)_{*}\left(V_{p}^{\times}\right)$. So, since $\left(f_{0}\right)_{*}\left(V_{p}^{\times}\right)>f_{0}(p)$, we get $f_{0}(t)>f_{0}(p)$. Then

$$
-(f(t))=(-f)(t)=f_{0}(t)>f_{0}(p)=(-f)(p)=-(f(p))
$$

Multiplying by -1 , we get $f(t)<f(p)$, as desired. QED

7-5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Asume both that $0 \in \operatorname{IntD}_{\mathbb{R}} f$ and that $f(0)=0$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=x^{4}$. Assume that $f / g \rightarrow 1$ near 0 . Show that f has a local unique minimum at 0 in \mathbb{R}.

Proof: Want: $\exists V \in \mathcal{N}_{\mathbb{R}}(0)$ s.t. $V \subseteq \operatorname{dom}[f]$ and $f(0)<f_{*}\left(V_{0}^{\times}\right)$.
Let $D:=\operatorname{dom}[f]$. Then $0 \in \operatorname{IntD}_{\mathbb{R}} f=\operatorname{Int}_{\mathbb{R}} D$. Then $D \in \mathcal{N}_{\mathbb{R}}(0)$. So, since $\mathcal{B}_{\mathbb{R}}(0)$ is a neighborhood base at 0 in \mathbb{R}, choose $\alpha>0$ s.t. $B_{\mathbb{R}}(0, \alpha) \subseteq D$. Since $f / g \rightarrow 1$ near 0 , choose $\beta>0$ s.t., $\forall t \in \operatorname{dom}[f / g]$,

$$
[0<|t|<\beta] \quad \Rightarrow \quad[|[(f / g)(t)]-1|<1 / 2]
$$

Let $\delta:=\min \{\alpha, \beta\}$. Then $\delta \leqslant \alpha$, so $B(0, \delta) \subseteq B(0, \alpha)$. Also, $\delta \leqslant \beta$, so $B(0, \delta) \subseteq B(0, \beta)$. Since $B_{\mathbb{R}}(0, \delta)$ is open in \mathbb{R} and since $0 \in B_{\mathbb{R}}(0, \delta)$, it follows that $B_{\mathbb{R}}(0, \delta) \in \mathcal{N}_{\mathbb{R}}(0)$. Let $V:=B_{\mathbb{R}}(0, \delta)$. We wish to show: $V \subseteq \operatorname{dom}[f]$ and $f(0)<f_{*}\left(V_{0}{ }^{\times}\right)$.

We have $V=B_{\mathbb{R}}(0, \delta) \subseteq B_{\mathbb{R}}(0, \alpha) \subseteq D=\operatorname{dom}[f]$. It remains to show: $f(0)<f_{*}\left(V_{0}^{\times}\right)$. We wish to show: $\forall y \in f_{*}\left(V_{0}^{\times}\right), f(0)<y$. Let $y \in f_{*}\left(V_{0}^{\times}\right)$be given. We wish to show: $f(0)<y$. By assumption, $f(0)=0$. We wish to show: $0<y$. Since $y \in f_{*}\left(V_{0}^{\times}\right)$, choose $t \in V_{0}^{\times}$ such that $y=f(t)$. We wish to show: $0<f(t)$.

Since $t \in V_{0}^{\times}=V \backslash\{0\}$, we see that $t \neq 0$. Then $t^{4}>0$ and $0<|t|$. We have $t \in V_{0}^{\times} \subseteq V \subseteq \operatorname{dom}[f]$. Also, $t \in \mathbb{R}=\operatorname{dom}[g]$. Also, $g(t)=t^{4}>0$, so, in particular, $g(t) \neq 0$. Then $t \in \operatorname{dom}[f / g]$. Also, we have $t \in V_{0}{ }^{\times} \subseteq V=B_{\mathbb{R}}(0, \delta) \subseteq B_{\mathbb{R}}(0, \beta)$, so $|t|<\beta$. Since $t \in \operatorname{dom}[f / g]$ and since $0<|t|<\beta$, by the choice of $\beta,|[(f / g)(t)]-1|<1 / 2$. Then $1-(1 / 2)<(f / g)(t)<1+(1 / 2)$. Then $1 / 2<(f / g)(t)$. Multiplying this inequality by $g(t)$, since $g(t)>0$, we get $[1 / 2] \cdot[g(t)]<[(f / g)(t)] \cdot[g(t)]$. Since $g(t)>0$, we conclude that $0<[1 / 2] \cdot[g(t)]$. By definition of f / g, since $t \in \operatorname{dom}[f / g]$, we see that $[(f / g)(t)] \cdot[g(t)]=f(t)$. Then we have $0<[1 / 2] \cdot[g(t)]<[(f / g)(t)] \cdot[g(t)]=f(t)$, as desired. QED

Homework 6: Due on Tuesday 27 February

6 -1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, and let $I \subseteq \operatorname{dom}[f]$. Assume that I is an interval. Show: $f_{*}(I)$ is an interval.

Proof: Since I is an interval, $I \neq \varnothing$. So, since $I \subseteq \operatorname{dom}[f]$, we get $f_{*}(I) \neq \varnothing$. So, by \Leftarrow of Fact 37.1 p. 276, we need only show: $\forall a, b \in f_{*}(I),[a \mid b] \subseteq f_{*}(I)$. Given $a, b \in f_{*}(I)$. Want: $[a \mid b] \subseteq f_{*}(I)$.

Since $a, b \in f_{*}(I)$, choose $s, t \in I$ such that $a=f(s)$ and $b=f(t)$. Since $s, t \in I$ and I is an interval, we conclude, by \Rightarrow of Fact 37.1 p. 276, that $[s \mid t] \subseteq I$. Then $f_{*}([s \mid t]) \subseteq f_{*}(I)$. Also, $[s \mid t] \subseteq I \subseteq \operatorname{dom}[f]$, so, as f is continuous, f is continuous on $[s \mid t]$. Then, by the Intermediate Value Theorem (Theorem 29.7 p. 218), $[f(s) \mid f(t)] \subseteq f_{*}([s \mid t])$. Then $[a \mid b]=[f(s) \mid f(t)] \subseteq f_{*}([s \mid t]) \subseteq f_{*}(I)$, as desired. QED

6 -2. Let $X, Y \subseteq \mathbb{R}$. Let $f: X \hookrightarrow>Y$ be continuous. Let $X_{0}:=\operatorname{Int}_{\mathbb{R}} X$. Show that f^{-1} is continuous on $f_{*}\left(X_{0}\right)$.

Proof: We wish to show: $\forall q \in f_{*}\left(X_{0}\right), f^{-1}$ is continuous at q. Let $q \in f_{*}\left(X_{0}\right)$ be given. We wish to show: f^{-1} is continuous at q. Let $g:=f^{-1}$. We wish to show: g is continuous at q. We wish to show: $\forall U \in \mathcal{N}_{\mathbb{R}}(g(q)), \exists V \in \mathcal{N}_{\mathbb{R}}(q)$ s.t. $g_{*}(V) \subseteq U$. Let $U \in \mathcal{N}_{\mathbb{R}}(g(q))$ be given. We wish to show: $\exists V \in \mathcal{N}_{\mathbb{R}}(q)$ s.t. $g_{*}(V) \subseteq U$.

Since $q \in f_{*}\left(X_{0}\right)$, choose $p \in X_{0}$ s.t. $q=f(p)$. Then $g(q)=p$. Then $U \in \mathcal{N}_{\mathbb{R}}(g(q))=\mathcal{N}_{\mathbb{R}}(p)$. That is, U is a neighborhood of p in X. Choose an open U_{0} in \mathbb{R} s.t. $p \in U_{0} \subseteq U$. Let $V:=f_{*}\left(U_{0} \cap X_{0}\right)$. We wish to show: both $V \in \mathcal{N}_{\mathbb{R}}(q)$ and $g_{*}(V) \subseteq U$.

Since $g=f^{-1}$ and since $U_{0} \cap X_{0} \subseteq X_{0} \subseteq X=\operatorname{dom}[f]$, it follows that $g_{*}\left(f_{*}\left(U_{0} \cap X_{0}\right)\right)=U_{0} \cap X_{0}$. Then

$$
g_{*}(V)=g_{*}\left(f_{*}\left(U_{0} \cap X_{0}\right)\right)=U_{0} \cap X_{0} \subseteq U_{0} \subseteq U
$$

It remains to show: $V \in \mathcal{N}_{\mathbb{R}}(q)$.
Since $X_{0}=\operatorname{Int}_{\mathbb{R}} X$, we get: X_{0} is open in \mathbb{R}. So, since U_{0} is open in \mathbb{R}, we see that $U_{0} \cap X_{0}$ is open in \mathbb{R}. Also, $U_{0} \cap X_{0} \subseteq X_{0} \subseteq X=\operatorname{dom}[f]$. Also, $f: \mathbb{R} \rightarrow \mathbb{R}$ is $1-1$ and continuous. Therefore, by Invariance of Domain (Theorem 30.3 p. 227), $f_{*}\left(U_{0} \cap X_{0}\right)$ is open in \mathbb{R}. That is, V is open in \mathbb{R}. Since $p \in U_{0}$ and $p \in X_{0}$, we get $p \in U_{0} \cap X_{0}$. So, since $p \in X_{0} \subseteq X=\operatorname{dom}[f]$, we get $f(p) \in f_{*}\left(U_{0} \cap X_{0}\right)$. Then $q=f(p) \in f_{*}\left(U_{0} \cap X_{0}\right)=V$. By Remark 16.4 p. 117, any open set is a neighborhood of each of its points. So, since $q \in V$ and since V is open in \mathbb{R}, it follows that $V \in \mathcal{N}_{\mathbb{R}}(q)$, as desired. QED

6 -3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be str. increasing. Show: f^{-1} is str. increasing.
Proof: Let $g:=f^{-1}$. We wish to show: g is str. increasing. We wish to show: $\forall s, t \in \operatorname{dom}[g],([s<t] \Rightarrow[g(s)<g(t)])$. Let $s, t \in \operatorname{dom}[g]$ be given. We wish to show: $([s<t] \Rightarrow[g(s)<g(t)])$. Assume that
$s<t$. We want: $g(s)<g(t)$. Let $a:=g(s), b:=g(t)$. We want: $a<b$. Assume that $a \geqslant b$. We aim for a contradiction.

Since f is strictly increasing, it follows that f is semiincreasing. So, since $a \geqslant b$, we get $f(a) \geqslant f(b)$. Since $a=g(s)$, we get $f(a)=s$. Since $b=g(t)$, we get $f(b)=t$. Then $s=f(a) \geqslant f(b)=t$, so $t \leqslant s$. Then $t \leqslant s<t$, so $t<t$. Contradiction. QED

6-4. Let $X, Y \subseteq \mathbb{R}$. Let $f: X \hookrightarrow>Y$ be strictly increasing. Let $a \in \mathbb{R}$. Assume: $X=[a, \infty)$. Show: f^{-1} is continuous at $f(a)$.

Proof: Let $g:=f^{-1}$ and let $q=f(a)$. We wish to show: g is continuous at q. We wish to show: $\forall \varepsilon>0, \exists \delta>0$ s.t., $\forall t \in \operatorname{dom}[g]$,

$$
[|t-q|<\delta] \quad \Rightarrow \quad[|[g(t)]-[g(q)]|<\varepsilon]
$$

Let $\varepsilon>0$ be given. We wish to show: $\exists \delta>0$ s.t., $\forall t \in \operatorname{dom}[g]$,

$$
[|t-q|<\delta] \quad \Rightarrow \quad[|[g(t)]-[g(q)]|<\varepsilon]
$$

We have $a, a+\varepsilon \in[a, \infty)=X=\operatorname{dom}[f]$. So, since f is strictly increasing and $a<a+\varepsilon$, we get $f(a)<f(a+\varepsilon)$. We conclude that $0<[f(a+\varepsilon)]-[f(a)]$. Let $\delta:=[f(a+\varepsilon)]-[f(a)]$. Want: $\forall t \in \operatorname{dom}[g]$,

$$
[|t-q|<\delta] \quad \Rightarrow \quad[|[g(t)]-[g(q)]|<\varepsilon]
$$

Let $t \in \operatorname{dom}[g]$ be given. We wish to show:

$$
[|t-q|<\delta] \quad \Rightarrow \quad[|[g(t)]-[g(q)]|<\varepsilon]
$$

Assume that $|t-q|<\delta$. We wish to show: $|[g(t)]-[g(q)]|<\varepsilon$.
Let $s:=g(t)$. Since $q=f(a)$, we get $g(q)=a$. We want: $|s-a|<\varepsilon$. Equivalently, we wish to show: $a-\varepsilon<s<a+\varepsilon$.

Since $t \in \operatorname{dom}[g]$, we get $g(t) \in \operatorname{im}[g]$. Since $g=f^{-1}$, we get $\operatorname{im}[g]=\operatorname{dom}[f]$. Then $s=g(t) \in \operatorname{im}[g]=\operatorname{dom}[f]=X=[a, \infty)$, so $s \geqslant a$. Then $a-\varepsilon<a \leqslant s$. It remains to show: $s<a+\varepsilon$.

Since $|t-q|<\delta$, we see that $q-\delta<t<q+\delta$. Then

$$
t<q+\delta=[f(a)]+[f(a+\varepsilon)]-[f(a)]=f(a+\varepsilon)
$$

Since $a+\varepsilon \in \operatorname{dom}[f]$, we get $f(a+\varepsilon) \in \operatorname{im}[f]$. Since $g=f^{-1}$, we get $\operatorname{dom}[g]=\operatorname{im}[f]$. Then $f(a+\varepsilon) \in \operatorname{im}[f]=\operatorname{dom}[g]$. By HW\#6-3, we see that f^{-1} is strictly increasing. That is, g is strictly increasing. So, since $t<f(a+\varepsilon)$, since $t \in \operatorname{dom}[g]$ and since $f(a+\varepsilon) \in \operatorname{dom}[g]$, we get $g(t)<g(f(a+\varepsilon))$. Since $a+\varepsilon \in \operatorname{dom}[f]$ and $g=f^{-1}$, we get $g(f(a+\varepsilon))=a+\varepsilon$. Then $s=g(t)<g(f(a+\varepsilon))=a+\varepsilon$. QED

6-5. Let $X, Y \subseteq \mathbb{R}$. Let $f: X \hookrightarrow>Y$ be strictly increasing. Let $a \in \mathbb{R}$. Assume: $\exists b \in(a, \infty)$ s.t. $X=[a, b)$. Show: f^{-1} is continuous at $f(a)$.

Proof: Let $g:=f^{-1}$ and let $q=f(a)$. We wish to show: g is continuous at q. We wish to show: $\forall \varepsilon>0, \exists \delta>0$ s.t., $\forall t \in \operatorname{dom}[g]$,

$$
[|t-q|<\delta] \quad \Rightarrow \quad[|[g(t)]-[g(q)]|<\varepsilon] .
$$

Let $\varepsilon>0$ be given. We wish to show: $\exists \delta>0$ s.t., $\forall t \in \operatorname{dom}[g]$,

$$
[|t-q|<\delta] \quad \Rightarrow \quad[|[g(t)]-[g(q)]|<\varepsilon] .
$$

Choose $b \in(a, \infty)$ s.t. $X=[a, b)$. Let $c:=(a+b) / 2$. Since $b \in(a, \infty)$, it follows that $a<c<b$. Then $c-a>0$. Let $\varepsilon_{0}:=\min \{\varepsilon, c-a\}$. Then $\varepsilon_{0}>0$, so $a<a+\varepsilon_{0}$. Also, $\varepsilon_{0} \leqslant c-a$. Then $a+\varepsilon_{0} \leqslant a+c-a=c<b$. Then $a<a+\varepsilon_{0}<b$. Then $a+\varepsilon_{0} \in(a, b) \subseteq[a, b)$.

We have $a, a+\varepsilon_{0} \in[a, b)=X=\operatorname{dom}[f]$. So, since f is strictly increasing and since $a<a+\varepsilon_{0}$, it follows that $f(a)<f\left(a+\varepsilon_{0}\right)$. Therefore, we have $0<\left[f\left(a+\varepsilon_{0}\right)\right]-[f(a)]$. Let $\delta:=\left[f\left(a+\varepsilon_{0}\right)\right]-[f(a)]$. We wish to show: $\forall t \in \operatorname{dom}[g]$,

$$
[|t-q|<\delta] \quad \Rightarrow \quad[|[g(t)]-[g(q)]|<\varepsilon] .
$$

Let $t \in \operatorname{dom}[g]$ be given. We wish to show:

$$
[|t-q|<\delta] \quad \Rightarrow \quad[|[g(t)]-[g(q)]|<\varepsilon]
$$

Assume that $|t-q|<\delta$. We wish to show: $|[g(t)]-[g(q)]|<\varepsilon$.
Let $s:=g(t)$. Since $q=f(a)$, we get $g(q)=a$. We want: $|s-a|<\varepsilon$. Equivalently, we wish to show: $a-\varepsilon<s<a+\varepsilon$.

Since $t \in \operatorname{dom}[g]$, we get $g(t) \in \operatorname{im}[g]$. Since $g=f^{-1}$, we get $\operatorname{im}[g]=\operatorname{dom}[f]$. Then $s=g(t) \in \operatorname{im}[g]=\operatorname{dom}[f]=X=[a, b)$, so $s \geqslant a$. Then $a-\varepsilon<a \leqslant s$. It remains to show: $s<a+\varepsilon$.

Since $|t-q|<\delta$, we see that $q-\delta<t<q+\delta$. Then

$$
t<q+\delta=[f(a)]+\left[f\left(a+\varepsilon_{0}\right)\right]-[f(a)]=f\left(a+\varepsilon_{0}\right) .
$$

Since $a+\varepsilon_{0} \in \operatorname{dom}[f]$, we get $f\left(a+\varepsilon_{0}\right) \in \operatorname{im}[f]$. Since $g=f^{-1}$, we get $\operatorname{dom}[g]=\operatorname{im}[f]$. Then $f\left(a+\varepsilon_{0}\right) \in \operatorname{im}[f]=\operatorname{dom}[g]$. By HW\#6-3, we see that f^{-1} is strictly increasing. That is, g is strictly increasing. So, since $t<f\left(a+\varepsilon_{0}\right)$, since $t \in \operatorname{dom}[g]$ and since $f\left(a+\varepsilon_{0}\right) \in \operatorname{dom}[g]$, we get $g(t)<g\left(f\left(a+\varepsilon_{0}\right)\right)$. Since $a+\varepsilon_{0} \in \operatorname{dom}[f]$ and $g=f^{-1}$, we get $g\left(f\left(a+\varepsilon_{0}\right)\right)=a+\varepsilon_{0}$. Then $s=g(t)<g\left(f\left(a+\varepsilon_{0}\right)\right)=a+\varepsilon_{0}$. Since $a+\varepsilon_{0} \in \operatorname{dom}[f]$ and $g=f^{-1}$, we get $g\left(f\left(a+\varepsilon_{0}\right)\right)=a+\varepsilon_{0}$. Then
$s=g(t)<g\left(f\left(a+\varepsilon_{0}\right)\right)=a+\varepsilon_{0}$. We have $\varepsilon_{0}=\min \{\varepsilon, c-a\} \leqslant \varepsilon$. Then $a+\varepsilon_{0} \leqslant a+\varepsilon$. Then $s<a+\varepsilon_{0} \leqslant a+\varepsilon$, as desired. QED

Homework 5: Due on Tuesday 20 February

5-1. Show: $\forall w, x \in \mathbb{R}, \quad \cos (w+x)=(\cos w) \cdot(\cos x)-(\sin w) \cdot(\sin x)$.
Proof: Let $w \in \mathbb{R}$ be given. We wish to show: $\forall x \in \mathbb{R}$,

$$
\cos (w+x)=(\cos w) \cdot(\cos x)-(\sin w) \cdot(\sin x)
$$

Define $\tau: \mathbb{R} \rightarrow \mathbb{R}$ by $\tau(x)=w+x$.
Claim 1: $\forall x \in \mathbb{R}, \tau^{\prime}(x)=1$. Proof of Claim 1: Let $x \in \mathbb{R}$ be given. We wish to show: $\tau^{\prime}(x)=1$. We wish to show: $\lim _{0} S S_{\tau}^{x}=1$.

For all $h \in \mathbb{R}_{0}^{\times}$, we have

$$
\begin{aligned}
\left(S S_{\tau}^{x}\right)(h) & =\frac{[\tau(x+h)]-[\tau(x)]}{h} \\
& =\frac{[w+x+h]-[w+x]}{h} \\
& =\frac{h}{h}=1=C_{\mathbb{R}}^{1}(h) .
\end{aligned}
$$

Then $S S_{\tau}^{x}=C_{\mathbb{R}}^{1}$ on \mathbb{R}_{0}^{\times}, so $\lim _{0} S S_{\tau}^{x}=\lim _{0} C_{\mathbb{R}}^{1}$. So, since $\lim _{0} C_{\mathbb{R}}^{1}=1$, we get $\lim _{0} S S_{\tau}^{x}=1$, as desired. End of proof of Claim 1.

Let $f:=\cos \circ \tau$. Then, for all $x \in \mathbb{R}$, we have

$$
f(x)=(\cos \circ \tau)(x)=\cos (\tau(x))=\cos (w+x)
$$

We therefore wish to show: $\forall x \in \mathbb{R}$,

$$
f(x)=(\cos w) \cdot(\cos x)-(\sin w) \cdot(\sin x)
$$

Claim 2: $\forall x \in \mathbb{R}, f^{\prime}(x)=(-\sin)(w+x)$. Proof of Claim 2: Let $x \in \mathbb{R}$ be given. We wish to show: $f^{\prime}(x)=-[\sin (w+x)]$.

We have $\operatorname{dom}[\cos \circ \tau]=\mathbb{R}$. Then

$$
x \in \mathbb{R}=\mathrm{LP}_{\mathbb{R}} \mathbb{R}=\mathrm{LP}_{\mathbb{R}}(\operatorname{dom}[\exp \circ \tau])=\mathrm{LPD}_{\mathbb{R}}(\cos \circ \tau)
$$

So, since $f=\cos \circ \tau$, by the Chain Rule, $f^{\prime}(x)={ }^{*}\left[\cos ^{\prime}(\tau(x))\right]\left[\tau^{\prime}(x)\right]$. By Claim $1, \tau^{\prime}(x)=1$. Then $f^{\prime}(x)={ }^{*} \cos ^{\prime}(\tau(x))$.

We have $\cos ^{\prime}=-\sin$ and $\tau(x)=w+x$. Then

$$
f^{\prime}(x)={ }^{*}(-\sin)(w+x) \neq \Theta^{\circ} .
$$

Then $f^{\prime}(x)=(-\sin)(w+x)$, as desired. End of proof of Claim 2.
Claim 3: $\forall x \in \mathbb{R}, f^{\prime \prime}(x)=(-\cos)(w+x)$. Proof of Claim 3: By Claim 2, $f^{\prime}=(-\sin) \circ \tau$. Let $x \in \mathbb{R}$ be given. We wish to show: $f^{\prime \prime}(x)=-[\cos (w+x)]$.

We have $\operatorname{dom}[(-\sin) \circ \tau]=\mathbb{R}$. Then

$$
x \in \mathbb{R}=\operatorname{LP}_{\mathbb{R}} \mathbb{R}=\operatorname{LPD}_{\mathbb{R}}((-\sin) \circ \tau)
$$

So, since $f^{\prime}=(-\sin) \circ \tau$, by the Chain Rule, we conclude that $f^{\prime \prime}(x)={ }^{*}\left[(-\sin)^{\prime}(\tau(x))\right]\left[\tau^{\prime}(x)\right]$. By Claim 1, $\tau^{\prime}(x)=1$. Then $f^{\prime \prime}(x)={ }^{*}(-\sin)^{\prime}(\tau(x))$.

We have $(-\sin)^{\prime}=-\cos$ and $\tau(x)=w+x$. Then

$$
f^{\prime}(x)={ }^{*}(-\cos)(w+x) \neq \operatorname{co}^{2}
$$

Then $f^{\prime}(x)=(-\cos)(w+x)$, as desired. End of proof of Claim 3.
Claim 4: $f^{\prime \prime}=-f$. Proof of Claim 4: We wish to show: $\forall x \in \mathbb{R}$, $f^{\prime \prime}(x)=(-f)(x)$. Let $x \in \mathbb{R}$ be given. Want: $f^{\prime \prime}(x)=(-f)(x)$.

By Claim 3, $f^{\prime \prime}(x)=(-\cos)(w+x)$. Then $f^{\prime \prime}(x)=-[\cos (w+x)]$. By definition of f, we have $f(x)=(\cos \circ \tau)(x)$. Then

$$
f(x)=\cos (\tau(x))=\cos (w+x)
$$

We conclude that $f^{\prime \prime}(x)=-[\cos (w+x)]=-[f(x)]=(-f)(x)$, as desired. End of proof of Claim 4.

Let $a:=f(0)$ and let $b:=f^{\prime}(0)$. By Claim 4 and Theorem 35.2, $f=a \cdot \cos +b \cdot \sin$. By definition of $f, f(0)=\cos (w+0)$. Then $a=f(0)=\cos (w+0)=\cos w$. By Claim 2, $f^{\prime}(0)=(-\sin)(w+0)$. Then $b=f^{\prime}(0)=(-\sin)(w+0)=-(\sin w)$. Then: $\forall x \in \mathbb{R}$,

$$
\begin{aligned}
f(x) & =(a \cdot \cos +b \cdot \sin)(x) \\
& =a \cdot(\cos x)+b \cdot(\sin x) \\
& =(\cos w) \cdot(\cos x)-(\sin w) \cdot(\sin x),
\end{aligned}
$$

as desired. QED
5-2. Show: $\forall x \in \mathbb{R}$,

$$
\begin{aligned}
\sin (2 x) & =2 \cdot(\sin x) \cdot(\cos x) \\
\cos (2 x) & =\left(\cos ^{2} x\right)-\left(\sin ^{2} x\right)
\end{aligned}
$$

Proof: Let $x \in \mathbb{R}$ be given. We wish to show:

$$
\begin{array}{ll}
\sin (2 x) & =2 \cdot(\sin x) \cdot(\cos x) \\
\cos (2 x) & =\left(\cos ^{2} x\right)-\left(\sin ^{2} x\right)
\end{array}
$$

Let $w:=x$. Then $\sin w=\sin x$ and $\cos w=\cos x$. By Theorem 35.3, we have $\sin (w+x)=(\sin w) \cdot(\cos x)+(\cos w) \cdot(\sin x)$. Then

$$
\begin{aligned}
\sin (2 x) & =\sin (x+x)=\sin (w+x) \\
& =(\sin w) \cdot(\cos x)+(\cos w) \cdot(\sin x) \\
& =(\sin x) \cdot(\cos x)+(\cos x) \cdot(\sin x) \\
& =2 \cdot(\sin x) \cdot(\cos x) .
\end{aligned}
$$

It remains to show: $\cos (2 x)=\left(\cos ^{2} x\right)-\left(\sin ^{2} x\right)$.
By HW\#5-1, $\cos (w+x)=(\cos w) \cdot(\cos x)-(\sin w) \cdot(\sin x)$. Then

$$
\begin{aligned}
\cos (2 x) & =\cos (x+x)=\cos (w+x) \\
& =(\cos w) \cdot(\cos x)-(\sin w) \cdot(\sin x) \\
& =(\cos x) \cdot(\cos x)-(\sin x) \cdot(\sin x) \\
& =\left(\cos ^{2} x\right)-\left(\sin ^{2} x\right),
\end{aligned}
$$

as desired. QED
5-3. Let $f: \mathbb{R} \rightarrow \mathbb{R}, a:=f(0)$. Assume $f^{\prime}=f$. Show: $f=a \cdot \exp$.
Proof: Let $\phi:=f-(a \cdot \exp)$. We wish to show: $\phi=C_{\mathbb{R}}^{0}$. We have

$$
\phi(0)=[f(0)]-a \cdot[\exp (0)]=[a]-a \cdot[1]=0
$$

So, by Theorem 35.14, it suffices to show: $\phi^{\prime}=\phi$. We wish to show: $\forall x \in \mathbb{R}, \phi^{\prime}(x)=\phi(x)$. Let $x \in \mathbb{R}$ be given. Want: $\phi^{\prime}(x)=\phi(x)$.

We have $\operatorname{dom}[f]=\mathbb{R}$ and $\operatorname{dom}[\exp]=\mathbb{R}$, so $\operatorname{dom}[\phi]=\mathbb{R}$. Then $x \in \mathbb{R}=\operatorname{dom}[\phi]=\operatorname{dom}[f-(a \cdot \exp)$. So, by linearity of differentiation

$$
(f-(a \cdot \exp))^{\prime}(x)=^{*}\left[f^{\prime}(x)\right]-a \cdot\left[\exp ^{\prime}(x)\right]
$$

So, since $f-(a \cdot \exp)=\phi$, we get $\phi^{\prime}(x)=^{*}\left[f^{\prime}(x)\right]-a \cdot\left[\exp ^{\prime}(x)\right]$. By assumption, we have $f^{\prime}=f$. Then, since $\exp ^{\prime}=\exp$, we see that $\phi^{\prime}(x)={ }^{*}[f(x)]-a \cdot[\exp (x)]$. So, since $\phi(x)=[f(x)]-a \cdot[\exp (x)]$, we get $\phi^{\prime}(x)={ }^{*} \phi(x)$. Since $x \in \mathbb{R}=\operatorname{dom}[\phi]$, we get $\phi(x) \neq \odot$. Then $\phi^{\prime}(x)={ }^{*} \phi(x) \neq \Theta$, and so $\phi^{\prime}(x)=\phi(x)$, as desired. QED

5-4. Show: $\forall w, x \in \mathbb{R}, \quad \exp (w+x)=(\exp w) \cdot(\exp x)$.

Proof: Let $w \in \mathbb{R}$ be given. We wish to show: $\forall x \in \mathbb{R}$,

$$
\exp (w+x)=(\exp w) \cdot(\exp x)
$$

Define $\tau: \mathbb{R} \rightarrow \mathbb{R}$ by $\tau(x)=w+x$.
Claim 1: $\forall x \in \mathbb{R}, \tau^{\prime}(x)=1$. Proof of Claim 1: Let $x \in \mathbb{R}$ be given. We wish to show: $\tau^{\prime}(x)=1$. We wish to show: $\lim _{0} S S_{\tau}^{x}=1$.

For all $h \in \mathbb{R}_{0}^{\times}$, we have

$$
\begin{aligned}
\left(S S_{\tau}^{x}\right)(h) & =\frac{[\tau(x+h)]-[\tau(x)]}{h} \\
& =\frac{[w+x+h]-[w+x]}{h} \\
& =\frac{h}{h}=1=C_{\mathbb{R}}^{1}(h) .
\end{aligned}
$$

Then $S S_{\tau}^{x}=C_{\mathbb{R}}^{1}$ on \mathbb{R}_{0}^{\times}, so $\lim _{0} S S_{\tau}^{x}=\lim _{0} C_{\mathbb{R}}^{1}$. So, since $\lim _{0} C_{\mathbb{R}}^{1}=1$, we get $\lim _{0} S S_{\tau}^{x}=1$, as desired. End of proof of Claim 1.

Let $f:=\exp \circ \tau$. Then, for all $x \in \mathbb{R}$, we have

$$
f(x)=(\exp \circ \tau)(x)=\exp (\tau(x))=\exp (w+x)
$$

We therefore wish to show: $\forall x \in \mathbb{R}$,

$$
f(x)=(\exp w) \cdot(\exp x)
$$

Claim 2: $\forall x \in \mathbb{R}, f^{\prime}(x)=\exp (w+x)$. Proof of Claim 2: Let $x \in \mathbb{R}$ be given. We wish to show: $f^{\prime}(x)=\exp (w+x)$.

We have $\operatorname{dom}[\exp \circ \tau]=\mathbb{R}$. Then

$$
x \in \mathbb{R}=\operatorname{LP}_{\mathbb{R}} \mathbb{R}=\mathrm{LP}_{\mathbb{R}}(\operatorname{dom}[\exp \circ \tau])=\operatorname{LPD}_{\mathbb{R}}(\exp \circ \tau)
$$

So, since $f=\exp \circ \tau$, by the Chain Rule, $f^{\prime}(x)={ }^{*}\left[\exp ^{\prime}(\tau(x))\right]\left[\tau^{\prime}(x)\right]$.
By Claim 1, $\tau^{\prime}(x)=1$. Then $f^{\prime}(x)={ }^{*} \exp ^{\prime}(\tau(x))$.
We have $\exp ^{\prime}=\exp$ and $\tau(x)=w+x$. Then

$$
f^{\prime}(x)={ }^{*} \exp (w+x) \neq \oplus .
$$

Then $f^{\prime}(x)=\exp (w+x)$, as desired. End of proof of Claim 2.
Claim 3: $f^{\prime}=f$. Proof of Claim 3: We wish to show: $\forall x \in \mathbb{R}$, $f^{\prime}(x)=f(x)$. Let $x \in \mathbb{R}$ be given. Want: $f^{\prime}(x)=f(x)$.

By Claim 2, we have $f^{\prime}(x)=\exp (w+x)$. By definition of f, we have $f(x)=(\exp \circ \tau)(x)$. Then $f(x)=\exp (\tau(x))=\exp (w+x)$. We conclude: $f^{\prime}(x)=\exp (w+x)=f(x)$. End of proof of Claim 3.

Let $a:=f(0)$. By Claim 3 and HW\#5-3, $f=a \cdot \exp$. By definition of $f, f(0)=\exp (w+0)$. Then $a=f(0)=\exp (w+0)=\exp w$. Then: $\forall x \in \mathbb{R}, f(x)=(a \cdot \exp)(x)=a \cdot(\exp x)=(\exp w) \cdot(\exp x)$. QED

5-5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Assume that $f^{\prime}=f$. Let $g:=f^{2}$. Show: $g^{\prime}=2 g$.
Proof: Define $P: \mathbb{R} \rightarrow \mathbb{R}$ by $P(x)=x^{2}$. By Theorem 16.3, for all $x \in \mathbb{R}$, we have $P^{\prime}(x)=2 x$. Also, for all $x \in \mathbb{R}$, we have

$$
(P \circ f)(x)=P(f(x))=[f(x)]^{2}=f^{2}(x)=g(x) .
$$

Then $g=P \circ f$. We wish to show: $\forall x \in \mathbb{R}, g^{\prime}(x)=(2 g)(x)$. Let $x \in \mathbb{R}$ be given. We wish to show: $g^{\prime}(x)=(2 g)(x)$.

We have dom $[P \circ f]=\mathbb{R}$. so $\operatorname{LPD}_{\mathbb{R}}(P \circ f)=\mathrm{LP}_{\mathbb{R}} \mathbb{R}$. Then we have $x \in \mathbb{R}=\mathrm{LP}_{\mathbb{R}} \mathbb{R}=\mathrm{LPD}_{\mathbb{R}}(P \circ f)$. So, by the Chain Rule, we see that $(P \circ f)^{\prime}(x)=*\left[P^{\prime}(f(x))\right] \cdot\left[f^{\prime}(x)\right]$. Then $g^{\prime}(x)={ }^{*}\left[P^{\prime}(f(x))\right] \cdot\left[f^{\prime}(x)\right]$. We have $P^{\prime}(f(x))=2 \cdot[f(x)]$. By assumption, $f^{\prime}=f$, so $f^{\prime}(x)=f(x)$. Then $g^{\prime}(x)=* 2 \cdot[f(x)]^{2} \neq \odot$, so $g^{\prime}(x)=2 \cdot[f(x)]^{2}$. We have $g(x)=f^{2}(x)=[f(x)]^{2}$. Then $g^{\prime}(x)=2 \cdot[g(x)]=(2 g)(x)$. QED

Homework 4: Due on Tuesday 13 February

4-1. Let $m \in \mathbb{R}$. Define $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ by $\lambda(x)=m x$. Show: $\lambda^{\prime}=C_{\mathbb{R}}^{m}$.
Proof: We want: $\forall x \in \mathbb{R}, \lambda^{\prime}(x)=C_{\mathbb{R}}^{m}(x)$. Let $x \in \mathbb{R}$ be given. We want: $\lambda^{\prime}(x)=C_{\mathbb{R}}^{m}(x)$. We have $\mathbb{C}_{\mathbb{R}}^{m}(x)=m$. We want: $\lambda^{\prime}(x)=m$.

Let $\phi:=C_{\mathbb{R}_{0}^{\times}}^{m}$. Since $\phi=C_{\mathbb{R}}^{m}$ on \mathbb{R}_{0}^{\times}, it follows that $\lim _{0} \phi=\lim _{0} C_{\mathbb{R}}^{m}$. So, since $\lim _{0} C_{\mathbb{R}}^{m}=m$, we get $\lim _{0} \phi=m$. We want: $\lim _{0} S S_{\lambda}^{x}=m$. It therefore suffices to show: $S S_{\lambda}^{x}=\phi$.

As \mathbb{R}_{0}^{\times}is a common superdomain of $S S_{\lambda}^{x}$ and ϕ, it suffices to show: $\forall h \in \mathbb{R}_{0}^{\times}, S S_{\lambda}^{x}(h)=\phi(h)$. Let $h \in \mathbb{R}_{0}^{\times}$be given. Want: $S S_{\lambda}^{x}(h)=\phi(h)$.

We have $\phi(h)=C_{\mathbb{R}_{0}^{\times}}^{m}(h)=m$. Then

$$
\begin{aligned}
S S_{\lambda}^{x}(h) & =\frac{[\lambda(x+h)]-[\lambda(x)]}{h}=\frac{[m(x+h)]-[m x]}{h} \\
& =\frac{m x+m h-m x}{h}=\frac{m h}{h}=m=\phi(h),
\end{aligned}
$$

as desired. QED
4-2. Let $S \subseteq \mathbb{R}$. Show: $-\left(\operatorname{LP}_{\mathbb{R}} S\right)=\mathrm{LP}_{\mathbb{R}}(-S)$.

Proof: Define $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ by $\lambda(x)=-x$. Then $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and one-to-one. Also, $\lambda^{-1}=\lambda$. Then $\lambda^{-1}: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Then $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ is a homeomorphism. Then $\lambda_{*}\left(\operatorname{LP}_{\mathbb{R}} S\right)=\operatorname{LP}_{\mathbb{R}}\left(\lambda_{*}(S)\right)$. That is, $-\left(\mathrm{LP}_{\mathbb{R}} S\right)=\mathrm{LP}_{\mathbb{R}}(-S)$, as desried. QED

4-3. Let $f: \mathbb{R} \rightarrow \mathbb{R}, p \in \mathbb{R}$. Define $f_{0}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{0}(x)=f(-x)$. Let $p_{0}:=-p$. Assume that f has a local maximum at p in \mathbb{R}. Show that f_{0} has a local maximum at p_{0} in \mathbb{R}.

Proof: Choose $V \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $V \subseteq \operatorname{dom}[f]$ and $f(p) \geqslant f_{*}(V)$. We wish to show: $\exists U_{0} \in \mathcal{N}_{\mathbb{R}}\left(p_{0}\right)$ s.t. $U_{0} \subseteq \operatorname{dom}\left[f_{0}\right]$ and $f_{0}\left(p_{0}\right) \geqslant\left(f_{0}\right)_{*}\left(U_{0}\right)$.

Since $\mathcal{B}_{\mathbb{R}}(p)$ is a neighborhood base at p in \mathbb{R}, choose $\delta>0$ such that $B_{\mathbb{R}}(p, \delta) \subseteq V$. Let $U:=B_{\mathbb{R}}(p, \delta)$. Then $U \subseteq V$. Let $U_{0}:=B_{\mathbb{R}}\left(p_{0}, \delta\right)$. Since $\mathcal{B}_{\mathbb{R}}\left(p_{0}\right)$ is a neighborhood base at p_{0} in \mathbb{R}, we get $U_{0} \in \mathcal{N}_{\mathbb{R}}\left(p_{0}\right)$. Want: $U_{0} \subseteq \operatorname{dom}\left[f_{0}\right]$ and $f_{0}\left(p_{0}\right) \geqslant\left(f_{0}\right)_{*}\left(U_{0}\right)$. Since $U \subseteq V \subseteq \operatorname{dom}[f]$, it follows that $-U \subseteq-(\operatorname{dom}[f])$. We have

$$
U_{0}=B_{\mathbb{R}}\left(p_{0}, \delta\right)=B_{\mathbb{R}}(-p, \delta)=-\left[B_{\mathbb{R}}(p, \delta)\right]=-U .
$$

Then $U_{0}=-U \subseteq-(\operatorname{dom}[f])=\operatorname{dom}\left[f_{0}\right]$. Want: $f_{0}\left(p_{0}\right) \geqslant\left(f_{0}\right)_{*}\left(U_{0}\right)$. Want: $\forall y_{0} \in\left(f_{0}\right)_{*}\left(U_{0}\right), f_{0}\left(p_{0}\right) \geqslant y_{0}$. Let $y_{0} \in\left(f_{0}\right)_{*}\left(U_{0}\right)$ be given. We wish to show: $f_{0}\left(p_{0}\right) \geqslant y_{0}$.

Since $y_{0} \in\left(f_{0}\right)_{*}\left(U_{0}\right)$, choose $x_{0} \in U_{0}$ s.t. $y_{0}=f_{0}\left(x_{0}\right)$. Let $x:=-x_{0}$. We have $f_{0}\left(p_{0}\right)=f\left(-p_{0}\right)=f(p)$ and $y_{0}=f_{0}\left(x_{0}\right)=f\left(-x_{0}\right)=f(x)$. We wish to show that $f(p) \geqslant f(x)$, or, equivalently, that $f(x) \leqslant f(p)$.

We have $x=-x_{0} \in-U_{0}=-(-U)=U \subseteq V \subseteq \operatorname{dom}[f]$. Then $x \in U$ and $x \in \operatorname{dom}[f]$, and so $f(x) \in f_{*}(U)$. Since $U \subseteq V$, it follows that $f_{*}(U) \subseteq f_{*}(V)$. By choice of V, we have $f_{*}(V) \leqslant f(p)$. We conclude that $f(x) \in f_{*}(U) \subseteq f_{*}(V) \leqslant f(p)$, as desired. QED
$4-4$. Let $f: \mathbb{R} \rightarrow \mathbb{R}, p \in \mathbb{R}$. Define $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{1}(x)=-[f(x)]$. Assume that f has a local minimum at p in \mathbb{R}. Show that f_{1} has a local maximum at p in \mathbb{R}.

Proof: Want: $\exists V \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $V \subseteq \operatorname{dom}\left[f_{1}\right]$ and $f(p) \leqslant\left(f_{1}\right)_{*}(V)$. Choose $V \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $V \subseteq \operatorname{dom}[f]$ and $f(p) \leqslant f_{*}(V)$. We want: $V \subseteq \operatorname{dom}\left[f_{1}\right]$ and $f_{1}(p) \geqslant\left(f_{1}\right)_{*}(V)$. As $V \subseteq \operatorname{dom}[f]=\operatorname{dom}\left[f_{1}\right]$, it remains to show: $f_{1}(p) \geqslant\left(f_{1}\right)_{*}(V)$. We wish to show: $\forall y_{1} \in\left(f_{1}\right)_{*}(V)$, $f_{1}(p) \geqslant y_{1}$. Let $y_{1} \in\left(f_{1}\right)_{*}(V)$ be given. We wish to show: $f_{1}(p) \geqslant y_{1}$.

Since $y_{1} \in\left(f_{1}\right)_{*}(V)$, choose $x \in V$ such that $y_{1}=f_{1}(x)$. Since $x \in V \subseteq \operatorname{dom}[f]$, we get $f(x) \in f_{*}(V)$. Then, by the choice of V, $f(p) \leqslant f(x)$. Then $f_{1}(p)=-[f(p)] \geqslant-[f(x)]=f_{1}(x)=y$. QED

4-5. Let $f: \mathbb{R} \rightarrow \mathbb{R}, p \in \operatorname{dom}\left[f^{\prime}\right]$. Assume that f has a local extremum at p. Show that $f^{\prime}(p)=0$.

Proof: At least one of the following must be true:
(1) f has a local maximum at p in \mathbb{R} or
(2) f has a local minimum at p in \mathbb{R}.

Case (1): By Lemma 33.16, $f^{\prime}(p)=0$, as desired. End of Case (1).
Case (2): Define $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{1}(x)=-[f(x)]$. By HW\#4-4, we see that f_{1} has a local maximum at p in \mathbb{R}. Define $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ by $\lambda(x)=-x$. Then $f_{1}=\lambda \circ f$. Since f_{1} has a local maximum at p in \mathbb{R}, by (3) of Remark 33.9 , we get $p \in \operatorname{LPD}_{\mathbb{R}} f_{1}$. Then $p \in \operatorname{LPD}_{\mathbb{R}}(\lambda \circ f)$, so, by the Chain Rule, we get $(\lambda \circ f)^{\prime}(p)={ }^{*}\left[\lambda^{\prime}(f(p))\right]\left[f^{\prime}(p)\right]$. Since $p \in \operatorname{dom}\left[f^{\prime}\right] \subseteq \operatorname{dom}[f]$, we get $f(p) \in \operatorname{im}[f]$. So, since im $[f] \subseteq \mathbb{R}$, we get $f(p) \in \mathbb{R}$. By HW\#4-2, $\lambda^{\prime}(f(p))=-1$. Then

$$
f_{1}^{\prime}(p)=(\lambda \circ f)^{\prime}(p)=^{*}\left[\lambda^{\prime}(f(p))\right]\left[f^{\prime}(p)\right]=-\left[f^{\prime}(p)\right]
$$

so $f_{1}^{\prime}(p)={ }^{*}-\left[f^{\prime}(p)\right]$. Since $p \in \operatorname{dom}\left[f^{\prime}\right]$, we get $f^{\prime}(p) \in \operatorname{im}[f]$. So, since $\operatorname{im}[f] \subseteq \mathbb{R}$, we get $f^{\prime}(p) \in \mathbb{R}$. Then $-\left[f^{\prime}(p)\right] \neq \operatorname{Bi}^{2}$.

Since $f_{1}^{\prime}(p)=^{*}-\left[f^{\prime}(p)\right] \neq \Theta$, we conclude that $f_{1}^{\prime}(p)=-\left[f^{\prime}(p)\right]$. Then $f_{1}^{\prime}(p) \neq \odot$, so $p \in \operatorname{dom}\left[f_{1}^{\prime}\right]$. So, since f_{1} has a local maximum at p in \mathbb{R}, it follows, from Lemma 33.16, that $f_{1}^{\prime}(p)=0$.

Then $0=f_{1}^{\prime}(p)=-\left[f^{\prime}(p)\right]$. Then $f^{\prime}(p)=0$. End of Case (2). QED

Homework 3: Due on Tuesday 6 February

3-1. Let X be a topological space, let $S \subseteq X$ and let $p \in X$. Show:

$$
\left[p \in \operatorname{Int}_{X} S\right] \quad \Leftrightarrow \quad\left[S \in \mathcal{N}_{X}(p)\right] .
$$

Proof: Proof of \Rightarrow : Assume: $p \in \operatorname{Int}_{X} S$. We wish to show: $S \in \mathcal{N}_{X}(p)$. We wish to show: \exists open U in X s.t. $p \in U \subseteq S$.

Let $U:=\operatorname{Int}_{X} S$. Then U is open in X, and we wish to show: $p \in U \subseteq S$. We have $p \in \operatorname{Int}_{X} S=U$, and it remains to show: $U \subseteq S$.

We have $U=\operatorname{Int}_{X} S \subseteq S$, as desired. End of proof of \Rightarrow.
Proof of $\Leftarrow:$ Assume: $S \in \mathcal{N}_{X}(p)$. We wish to show: $p \in \operatorname{Int}_{X} S$.

Since $S \in \mathcal{N}_{X}(p)$, choose an open U in X s.t. $p \in U \subseteq S$. Since U is open in X, we get $\operatorname{Int}_{X} U=U$. Since $U \subseteq S$, $\operatorname{Int}_{X} U \subseteq \operatorname{Int}_{X} S$. Then $p \in U=\operatorname{Int}_{X} U \subseteq \operatorname{Int}_{X} S$, as desired. End of proof of \Leftarrow. QED

3-2. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$, let $p \in \mathbb{R}$ and let $q>0$. Assume: $\phi \rightarrow q$ near p. Show: $\exists U \in \mathcal{N}_{\mathbb{R}}^{\times}(p)$ s.t. $\phi_{*}(U)>0$.
Proof: Let $V:=(0, \infty)$. Then V is open in \mathbb{R} and $q \in V$. Therefore, by Remark 16.4, we conclude that $V \in \mathcal{N}_{\mathbb{R}}(q)$. So, since $\phi \rightarrow q$ near p, choose $U \in \mathcal{N}_{\mathbb{R}}^{\times}(p)$ s.t. $\phi_{*}(U) \subseteq V$. We wish to show: $\phi_{*}(U)>0$.

We have $\phi_{*}(U) \subseteq V=(0, \infty)>0$, as desired. QED
3-3. Let $\alpha, \beta, \gamma: \mathbb{R} \rightarrow \mathbb{R}$. Let $S \subseteq \operatorname{dom}[(\alpha, \beta, \gamma)]$. Let $p \in \operatorname{Int}_{\mathbb{R}} S$ and let $q \in \mathbb{R}$. Assume that $\alpha \leqslant \beta \leqslant \gamma$ on S. Assume that $\alpha(p)=\gamma(p)$. Assume that $\alpha^{\prime}(p)=q=\gamma^{\prime}(p)$. Show: $\beta^{\prime}(p)=q$.

Proof: We wish to show: $\lim _{0} S S_{\beta}^{p}=q$.
Claim: $\forall h \in(S-p)_{0}^{\times},\left(S S_{\beta}^{p}\right)(h) \in\left[\left(S S_{\alpha}^{p}\right)(h) \mid\left(S S_{\gamma}^{p}\right)(h)\right]$. Proof of Claim: Given $h \in(S-p)_{0}^{\times}$. Want: $\left(S S_{\beta}^{p}\right)(h) \in\left[\left(S S_{\alpha}^{p}\right)(h) \mid\left(S S_{\gamma}^{p}\right)(h)\right]$.

We have $h \in(S-p)_{0}^{\times} \subseteq S-p$. Then $p+h \in S$. Then

$$
\alpha(p+h) \leqslant \beta(p+h) \leqslant \gamma(p+h)
$$

We have $p \in \operatorname{Int}_{R} S \subseteq S$. It follows that $\alpha(p) \leqslant \beta(p) \leqslant \gamma(p)$. So, since $\alpha(p)=\gamma(p)$, we conclude that $\alpha(p)=\beta(p)=\gamma(p)$. So, since $\alpha(p+h) \leqslant \beta(p+h) \leqslant \gamma(p+h)$, we get:

$$
[\alpha(p+h)]-[\alpha(p)] \leqslant[\beta(p+h)]-[\beta(p)] \leqslant[\gamma(p+h)]-[\gamma(p)]
$$

Dividing this by h, we get:

$$
\begin{aligned}
& (h>0) \Rightarrow\left(\left(S S_{\alpha}^{p}\right)(h) \leqslant\left(S S_{\beta}^{p}\right)(h) \leqslant S S_{\gamma}^{p}(h)\right) \quad \text { and } \\
& (h<0) \Rightarrow\left(\left(S S_{\alpha}^{p}\right)(h) \geqslant\left(S S_{\beta}^{p}\right)(h) \geqslant S S_{\gamma}^{p}(h)\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& (h>0) \Rightarrow\left(\left(S S_{\beta}^{p}\right)(h) \in\left[\left(S S_{\alpha}^{p}\right)(h) \mid\left(S S_{\gamma}^{p}\right)(h)\right]\right) \quad \text { and } \\
& (h<0) \Rightarrow\left(\left(S S_{\beta}^{p}\right)(h) \in\left[\left(S S_{\alpha}^{p}\right)(h) \mid\left(S S_{\gamma}^{p}\right)(h)\right]\right) .
\end{aligned}
$$

Since $h \in(S-p)_{0}^{\times}$, we get $h \neq 0$, so: either $h>0$ or $h<0$. Then $\left(S S_{\beta}^{p}\right)(h) \in\left[\left(S S_{\alpha}^{p}\right)(h) \mid\left(S S_{\gamma}^{p}\right)(h)\right]$, as desired. End of proof of Claim.

Let $D:=\operatorname{dom}[\beta]$. Then $\operatorname{Int}_{\mathbb{R}} D \subseteq \operatorname{LP}_{\mathbb{R}} D=\operatorname{LPD}_{\mathbb{R}} \beta$. We have $S \subseteq \operatorname{dom}[(\alpha, \beta, \gamma)] \subseteq D$. Then $p \in \operatorname{Int}_{\mathbb{R}} S \subseteq \operatorname{Int}_{\mathbb{R}} D \subseteq \operatorname{LPD}_{\mathbb{R}} \beta$. It
therefore suffices to show: $S S_{\beta}^{p} \rightarrow q$ near 0 . We wish to show: $\forall \varepsilon>0$, $\exists \delta>0$ s.t., $\forall h \in \operatorname{dom}\left[S S_{\beta}^{p}\right]$,

$$
[0<|h|<\delta] \quad \Rightarrow \quad\left[\left|\left[\left(S S_{\beta}^{p}\right)(h)\right]-q\right|<\varepsilon\right]
$$

Let $\varepsilon>0$ be given. We wish to show: $\exists \delta>0$ s.t., $\forall h \in \operatorname{dom}\left[S S_{\beta}^{p}\right]$,

$$
[0<|h|<\delta] \quad \Rightarrow \quad\left[\left|\left[\left(S S_{\beta}^{p}\right)(h)\right]-q\right|<\varepsilon\right]
$$

Since $p \in \operatorname{Int}_{\mathbb{R}} S$, by HW\#3-1, we get $S \in \mathcal{N}_{\mathbb{R}}(p)$. So, since $\mathcal{B}_{\mathbb{R}}(p)$ is a neighborhood base at p in \mathbb{R}, choose $\eta>0$ s.t. $B_{\mathbb{R}}(p, \eta) \subseteq S$. Since $\alpha^{\prime}(p)=q$, it follows that $S S_{\alpha}^{p} \rightarrow q$ near p. Choose $\lambda>0$ s.t., $\forall h \in \operatorname{dom}\left[S S_{\alpha}^{p}\right]$,

$$
[0<|h|<\lambda] \quad \Rightarrow \quad\left[\left|\left[\left(S S_{\alpha}^{p}\right)(h)\right]-q\right|<\varepsilon\right]
$$

Since $\gamma^{\prime}(p)=q$, it follows that $S S_{\gamma}^{p} \rightarrow q$ near p. Choose $\mu>0$ s.t., $\forall h \in \operatorname{dom}\left[S S_{\gamma}^{p}\right]$,

$$
[0<|h|<\mu] \quad \Rightarrow \quad\left[\left|\left[\left(S S_{\gamma}^{p}\right)(h)\right]-q\right|<\varepsilon\right]
$$

Let $\delta:=\min \{\eta, \lambda, \mu\}$. We wish to show: $\forall h \in \operatorname{dom}\left[S S_{\beta}^{p}\right]$,

$$
[0<|h|<\delta] \quad \Rightarrow \quad\left[\left|\left[\left(S S_{\beta}^{p}\right)(h)\right]-q\right|<\varepsilon\right] .
$$

Let $h \in \operatorname{dom}\left[S S_{\beta}^{p}\right]$ be given. We wish to show:

$$
[0<|h|<\delta] \quad \Rightarrow \quad\left[\left|\left[\left(S S_{\beta}^{p}\right)(h)\right]-q\right|<\varepsilon\right] .
$$

Assume: $0<|h|<\delta$. We wish to prove: $\left|\left[\left(S S_{\beta}^{p}\right)(h)\right]-q\right|<\varepsilon$. Let $I:=(q-\varepsilon, q+\varepsilon)$. We wish to prove $\left(S S_{\beta}^{q}\right)(h) \in I$

Since $0<|h|$, it follows that $h \neq 0$. Since $|(p+h)-p|=|h|<\delta \leqslant \eta$, we see that $p+h \in B_{\mathbb{R}}(p, \eta)$. By the choice of η, we have $B_{\mathbb{R}}(p, \eta) \subseteq S$. Since $p+h \in B_{\mathbb{R}}(p, \eta) \subseteq S$, we get $h \in S-p$. So, since $h \neq 0$, we have $h \in(S-p)_{0}^{\times}$. Then, by the Claim, $\left(S S_{\beta}^{p}\right)(h) \in\left[\left(S S_{\alpha}^{p}\right)(h) \mid\left(S S_{\gamma}^{p}\right)(h)\right]$.

Since $0<|h|<\delta \leqslant \lambda$, by choice of λ, we get: $\left|\left[\left(S S_{\alpha}^{p}\right)(h)\right]-q\right|<\varepsilon$. Then $\left(S S_{\alpha}^{p}\right)(h) \in I$. Since $0<|h|<\delta \leqslant \mu$, by choice of μ, we get: $\left|\left[\left(S S_{\gamma}^{p}\right)(h)\right]-q\right|<\varepsilon$. Then $\left(S S_{\gamma}^{p}\right)(h) \in I$. Since I is an interval and $\left(S S_{\alpha}^{p}\right)(h) \in I$ and $\left(S S_{\gamma}^{p}\right)(h) \in I$, we get $\left[\left(S S_{\alpha}^{p}\right)(h) \mid\left(S S_{\gamma}^{p}\right)(h)\right] \subseteq I$.

Then $\left(S S_{\beta}^{p}\right)(h) \in\left[\left(S S_{\alpha}^{p}\right)(h) \mid\left(S S_{\gamma}^{p}\right)(h)\right] \subseteq I$, as desired. QED
$3-4$. Let W be a normed vector space. Let $f, g: \mathbb{R} \rightarrow W$. Let U be an open subset of \mathbb{R}. Assume: $U \subseteq \operatorname{dom}[(f, g)]$. Assume: $f=g$ on U. Show: $f^{\prime}=g^{\prime}$ on U.

Proof: We wish to show: $\forall p \in U, f^{\prime}(p)=g^{\prime}(p)$. Let $p \in U$ be given. We wish to show: $f^{\prime}(p)=g^{\prime}(p)$. We wish to show: $\lim _{0} S S_{f}^{p}=\lim _{0} S S_{g}^{p}$.

Since U is open in \mathbb{R}, it follows that $U-p$ is open in \mathbb{R}. So, since $0 \in U-p$, we get $U-p \in \mathcal{N}_{\mathbb{R}}(0)$. Let $V:=(U-p)_{0}^{\times}$. Then $V \in \mathcal{N}_{\mathbb{R}}^{\times}(0)$.

Claim: $S S_{f}^{p}=S S_{g}^{p}$ on V. Proof of Claim: We want: $\forall h \in V$, $\left(S S_{f}^{p}\right)(h)=\left(S S_{g}^{p}\right)(h)$. Given $h \in V$. We want: $\left(S S_{f}^{p}\right)(h)=\left(S S_{g}^{p}\right)(h)$.

Since $h \in(U-p)_{0}^{\times} \subseteq U-p$, we get $p+h \in U$. Since $p, p+h \in U$ and since $f=g$ on U, we get $f(p)=g(p)$ and $f(p+h)=g(p+h)$. Then

$$
\left(S S_{f}^{p}\right)(h)=\frac{[f(p+h)]-[f(p)]}{h}=\frac{[g(p+h)]-[g(p)]}{h}=\left(S S_{g}^{p}\right)(h),
$$

as desired. End of proof of Claim:
Since $V \in \mathcal{N}_{\mathbb{R}}^{\times}(0)$, by the Claim and by Theorem 20.8, we have both $\operatorname{LIMS}_{0}\left(S S_{f}^{p}\right) \subseteq \underset{0}{\operatorname{LIMS}}\left(S S_{g}^{p}\right)$ and $\operatorname{LIMS}\left(S S_{g}^{p}\right) \subseteq \underset{0}{\operatorname{LIMS}}\left(S S_{f}^{p}\right)$. Then $\underset{0}{\operatorname{LIMS}}\left(\stackrel{0}{S} S_{g}^{p}\right)=\underset{0}{\operatorname{LIMS}}\left(\stackrel{0}{S} S_{f}^{p}\right)$. Then

$$
\lim _{0} S S_{f}^{p}=\operatorname{ELT}\left(\operatorname{LIMS}\left(S S_{f}^{p}\right)\right)=\operatorname{ELT}\left(\operatorname{LIMS}\left(S S_{g}^{p}\right)\right)=\lim _{0} S S_{g}^{p},
$$

as desired. QED
3-5. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\left[x^{2}\right]\left[\sin \left(x^{-3}\right)\right]$. Let $\beta:=\operatorname{adj}_{0}^{0} f$. Show: $\beta^{\prime}(0)=0$.

Proof: Define $\alpha, \gamma: \mathbb{R} \rightarrow \mathbb{R}$ by $\alpha(x)=-x^{2}$ and $\gamma(x)=x^{2}$. For all $x \in \mathbb{R}_{0}^{\times}$, we have both $-1 \leqslant \sin \left(x^{-3}\right) \leqslant 1$ and $x^{2} \geqslant 0$, and so $\left[x^{2}\right][-1] \leqslant\left[x^{2}\right]\left[\sin \left(x^{-3}\right)\right] \leqslant\left[x^{2}\right][1]$, and so $\alpha(x) \leqslant f(x) \leqslant \gamma(x)$. Then $\alpha \leqslant f \leqslant \gamma$ on \mathbb{R}_{0}^{\times}. So, since $f=\beta$ on \mathbb{R}_{0}^{\times}, we get: $\alpha \leqslant \beta \leqslant \gamma$ on \mathbb{R}_{0}^{\times}. So, since $\alpha(0)=\beta(0)=\gamma(0)=0$, we get $\alpha \leqslant \beta \leqslant \gamma$ on \mathbb{R}.

We have $\alpha(0)=0=\gamma(0)$. By the Power Rule, for all $x \in \mathbb{R}$, we have $\gamma^{\prime}(x)=2 x$. Then $\gamma^{\prime}(0)=0$. So, since $\alpha=-\gamma$, by linearity of differentiation, we have $\alpha^{\prime}(0)={ }^{*}-\left[\gamma^{\prime}(0)\right]$. Then

$$
\alpha^{\prime}(0)={ }^{*}-\left[\gamma^{\prime}(0)\right]=-0=0 \neq \oplus^{\circ} .
$$

Then $\alpha^{\prime}(0)=0$. Then $\alpha^{\prime}(0)=0=\gamma^{\prime}(0)$. Let $p:=0$ and $q:=0$. Then $\alpha(p)=\gamma(p)$ and $\alpha^{\prime}(p)=q=\gamma^{\prime}(p)$. Then, by HW\#3-3, we get $\beta^{\prime}(p)=q$. That is, $\beta^{\prime}(0)=0$. QED

Homework 2: Due on Tuesday 30 January

2-1. Let X and Y be topological spaces. Let $X_{0} \subseteq X$ and let $Y_{0} \subseteq Y$. Let $f: X_{0} \rightarrow Y_{0}$. Show:

$$
[f \text { is }(X, Y) \text {-continuous }] \Rightarrow\left[f \text { is }\left(X_{0}, Y_{0}\right) \text {-continuous }\right] .
$$

Proof: Assume: f is (X, Y)-continuous. Want: f is $\left(X_{0}, Y_{0}\right)$-continuous. Want: $\forall p \in \operatorname{dom}[f], f$ is $\left(X_{0}, Y_{0}\right)$-continuous at p. Given $p \in \operatorname{dom}[f]$. Want: f is $\left(X_{0}, Y_{0}\right)$-continuous at p. Since f is (X, Y)-continuous and $p \in \operatorname{dom}[f]$, it follows that f is (X, Y)-continuous at p. Want: $\forall V_{0} \in \mathcal{N}_{Y_{0}}(f(p)), \exists U_{0} \in \mathcal{N}_{X_{0}}(p)$ s.t. $f_{*}\left(U_{0}\right) \subseteq V_{0}$. Let $V_{0} \in \mathcal{N}_{Y_{0}}(f(p))$ be given. We wish to show: $\exists U_{0} \in \mathcal{N}_{X_{0}}(p)$ s.t. $f_{*}\left(U_{0}\right) \subseteq V_{0}$.

By extension, choose $V \in \mathcal{N}_{Y}(f(p))$ s.t. $V \cap Y_{0}=V_{0}$. Since f is (X, Y)-continuous at p, choose $U \in \mathcal{N}_{X}(p)$ s.t. $f_{*}(U) \subseteq V$. We define $U_{0}:=U \cap X_{0}$. By restriction, $U_{0} \in \mathcal{N}_{X_{0}}(p)$. We wish to show: $f_{*}\left(U_{0}\right) \subseteq V_{0}$. We wish to show: $\forall x \in \operatorname{dom}[f]$,

$$
\left[x \in U_{0}\right] \quad \Rightarrow \quad\left[f(x) \in V_{0}\right] .
$$

Let $x \in \operatorname{dom}[f]$ be given. We wish to show:

$$
\left[x \in U_{0}\right] \quad \Rightarrow \quad\left[f(x) \in V_{0}\right] .
$$

Assume: $x \in U_{0}$. We wish to show: $f(x) \in V_{0}$.
We have $x \in U_{0}=U \cap X_{0} \subseteq U$. So, since $x \in \operatorname{dom}[f]$, we get $f(x) \in f_{*}(U)$. Then $f(x) \in f_{*}(U) \subseteq V$. Since $f: X_{0} \rightarrow Y_{0}$, it follows that $\operatorname{im}[f] \subseteq Y_{0}$. Then $f(x) \in \operatorname{im}[f] \subseteq Y_{0}$. So, since $f(x) \in V$, we get $f(x) \in V \cap Y_{0}$. Then $f(x) \in V \cap Y_{0}=V_{0}$, as desired. QED

2-2. Let X, Y and Z be topological spaces. Let $f: X \rightarrow Y$ and let $g: X \rightarrow Z$. Let $a \in X, b \in Y$ and $c \in Z$. Assume:
(1) $f \rightarrow b$ in Y near a in $X \quad$ and
(2) $g \rightarrow c$ in Z near a in X.

Show: $(f, g) \rightarrow(b, c)$ in $Y \times Z$ near a in X.
Proof: Want: $\forall W \in \mathcal{N}_{Y \times Z}((b, c)), \exists R \in \mathcal{N}_{X}^{\times}(a)$ s.t. $(f, g)_{*}(R) \subseteq W$. Let $W \in \mathcal{N}_{Y \times Z}((b, c))$ be given. Want: $\exists R \in \mathcal{N}_{X}^{\times}(a)$ s.t. $(f, g)_{*}(R) \subseteq W$.

Choose $U \in \mathcal{N}_{Y}(b)$ and $V \in \mathcal{N}_{Z}(c)$ s.t. $U \times V \subseteq W$. Since $f \rightarrow b$ in Y near a in X and since $U \in \mathcal{N}_{Y}(b)$, choose $P \in \mathcal{N}_{X}^{\times}(a)$ s.t. $f_{*}(P) \subseteq U$. Since $g \rightarrow c$ in Z near a in X and since $V \in \mathcal{N}_{Z}(c)$, choose $Q \in \mathcal{N}_{X}^{\times}(a)$ s.t. $f_{*}(Q) \subseteq V$. As $P, Q \in \mathcal{N}_{X}^{\times}(a), P \cap Q \in \mathcal{N}_{X}^{\times}(a)$. Let $R:=P \cap Q$.

Then $R \in \mathcal{N}_{x}^{\times}(a)$. Want: $(f, g)_{*}(R) \subseteq W$. Want: $\forall x \in \operatorname{dom}[(f, g)]$,

$$
[x \in R] \quad \Rightarrow \quad[(f, g)(x) \in W] .
$$

Let $x \in \operatorname{dom}[(f, g)]$ be given. We wish to show:

$$
[x \in R] \quad \Rightarrow \quad[(f, g)(x) \in W] .
$$

Assume: $x \in R$. We wish to show: $(f, g)(x) \in W$.
We have $x \in \operatorname{dom}[(f, g)]=(\operatorname{dom}[f]) \cap(\operatorname{dom}[g])$, so $x \in \operatorname{dom}[f]$ and $x \in \operatorname{dom}[g]$. Since $x \in \operatorname{dom}[f]$ and since $x \in R=P \cap Q \subseteq P$, we get $f(x) \in f_{*}(P)$. Since $x \in \operatorname{dom}[f]$ and since $x \in R=P \cap Q \subseteq Q$, we get $g(x) \in g_{*}(P)$. Then $f(x) \in f_{*}(P) \subseteq U$ and $g(x) \in g_{*}(P) \subseteq V$. Then $(f, g)(x)=(f(x), g(x)) \in U \times V \subseteq W$, as desired. QED

2-3. Show: $\forall z \in \mathbb{R}, \exists!x \in \mathbb{R}$ s.t. $x^{5}+x^{3}=z$.
Proof: Let $z \in \mathbb{R}$ be given. We wish to show: $\exists!x \in \mathbb{R}$ s.t. $x^{5}+x^{3}=z$.
Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{5}+x^{3}$. Then f is continuous. We wish to show: $\exists!x \in \mathbb{R}$ s.t. $f(x)=z$. We wish to show:
(1) $\exists x \in \mathbb{R}$ s.t. $f(x)=z$.
(2) $\forall w, x \in \mathbb{R},([f(w)=z=f(x)] \Rightarrow[w=x])$.

Proof of (1): As $z \in \mathbb{R},-|z| \leqslant z \leqslant|z|$. Let $b:=\max \{|z| / 2,1\}$. Since $b \geqslant 1$, we get $b^{5} \geqslant b$ and $b^{3} \geqslant b$. Then $b^{5} \geqslant b \geqslant|z| / 2$ and $b^{3} \geqslant b \geqslant|z| / 2$. Then $f(b)=b^{5}+b^{3} \geqslant(|z| / 2)+(|z| / 2)=|z|$. Then $-[f(b)] \leqslant-|z|$. We have $f(-b)=(-b)^{5}+(-b)^{3}=-\left(b^{5}+b^{3}\right)=-[f(b)] \leqslant-|z|$. Then $f(-b) \leqslant-|z| \leqslant z \leqslant|z| \leqslant f(b)$. Then $z \in[f(-b), f(b)]$. Also, since $b \geqslant 1$, we see that $-b \leqslant-1$. Then $-b \leqslant-1<1 \leqslant b$. It suffices to show: $\exists x \in[-b, b]$ s.t. $f(x)=z$.

By the Intermediate Value Theorem, $[f(-b), f(b)] \subseteq f_{*}([-b, b])$. Then $z \in[f(-b), f(b)] \subseteq f_{*}([-b, b])$, so $\exists x \in[-b, b]$ s.t. $f(x)=z$, as desired. End of proof of (1).

Proof of (2): Given $w, x \in \mathbb{R}$. Want: $[f(w)=z=f(x)] \Rightarrow[w=x]$. Assume: $f(w)=z=f(x)$. We wish to show: $w=x$. Assume: $w \neq x$. We aim for a contradiction.

Let $p:=\min \{w, x\}$ and let $q:=\max \{w, x\}$. Since $w \neq x$, it follows that $p<q$. Also, $f(p) \in\{f(w), f(x)\}=\{z\}$, so $f(p)=z$. Also, $f(q) \in\{f(w), f(x)\}=\{z\}$, so $f(q)=z$. Since $p<q$, we get $p^{5}<q^{5}$ and $p^{3}<q^{3}$. Then $p^{5}+p^{3}<q^{5}+q^{3}$. Then

$$
f(p)=p^{5}+p^{3}<q^{5}+q^{3}=f(q)=z=f(p),
$$

so $f(p)<f(p)$. Contradiction. End of proof of (2). QED
$2-4$. Let X and Y be topological spaces. Let $f: X \rightarrow Y$. Let $X_{0} \subseteq \operatorname{dom}[f]$. Assume that f is (X, Y)-continuous on X_{0}. Show that $f \mid X_{0}$ is $\left(X_{0}, Y\right)$-continuous.

Proof: Let $g:=f \mid X_{0}$. Then $\operatorname{dom}[g]=X_{0}$. We wish to show: g is $\left(X_{0}, Y\right)$-continuous. By HW\#2-1 (with Y_{0} replaced by Y), want: g is (X, Y)-continuous. Want: $\forall p \in X_{0}, g$ is (X, Y)-continuous at p. Let $p \in X_{0}$ be given. We wish to show: g is (X, Y)-continuous at p. Want: $\forall V \in \mathcal{N}_{Y}(g(p)), \exists U \in \mathcal{N}_{X}(p)$ s.t. $g_{*}(U) \subseteq V$. Let $V \in \mathcal{N}_{Y}(g(p))$ be given. Want: $\exists U \in \mathcal{N}_{X}(p)$ s.t. $g_{*}(U) \subseteq V$.

Since $p \in X_{0} \subseteq \operatorname{dom}[f]$, and since f is (X, Y)-continuous, it follows that f is (X, Y)-continuous at p. Since $p \in X_{0} \subseteq \operatorname{dom}[f]$, we have $\left(f \mid X_{0}\right)(p)=f(p)$. Then $g(p)=\left(f \mid X_{0}\right)(p)=f(p)$. Since $V \in \mathcal{N}_{Y}(g(p))=\mathcal{N}_{Y}(f(p))$ and since f is (X, Y)-continuous at p, choose $U \in \mathcal{N}_{X}(p)$ s.t. $f_{*}(U) \subseteq V$. We wish to show: $g_{*}(U) \subseteq V$.

Recall that dom $[g]=W_{0}$. We wish to show: $\forall w \in X_{0}$,

$$
[w \in U] \quad \Rightarrow \quad[g(w) \in V] .
$$

Let $w \in X_{0}$ be given. We wish to show:

$$
[w \in U] \quad \Rightarrow \quad[g(w) \in V]
$$

Assume: $w \in U$. We wish to show: $g(w) \in V$.
As $w \in X_{0} \subseteq \operatorname{dom}[f]$ and as $w \in U$, we get $f(w) \in f_{*}(U)$. By choice of U, we have $f_{*}(U) \subseteq V$. Since $w \in X_{0} \subseteq \operatorname{dom}[f],\left(f \mid X_{0}\right)(w)=f(w)$. Then $g(w)=\left(f \mid X_{0}\right)(w)=f(w) \in f_{*}(U) \subseteq V$. QED
$2-5$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Let $\alpha, \beta \in \operatorname{dom}[f]$. Assume that f is semimonotone on $[\alpha \mid \beta]$. Show: $f_{*}([\alpha \mid \beta]) \subseteq[f(\alpha) \mid f(\beta)]$.

Proof: Since $\alpha, \beta \in \operatorname{dom}[f]$, we conclude that $\{\alpha, \beta\} \subseteq \operatorname{dom}[f]$. Let $a:=\min \{\alpha, \beta\}$ and $b:=\max \{\alpha, \beta\}$. Then $a \leqslant b$. Also, $[\alpha \mid \beta]=[a, b]$. Then f is semimonotone on $[a, b]$. Also, $a, b \in\{\alpha, \beta\} \subseteq \operatorname{dom}[f]$.

Either $((a=\alpha)$ and $(b=\beta))$ or $((a=\beta)$ and $(b=\alpha))$. Then either $[f(\alpha) \mid f(\beta)]=[f(a) \mid f(b)]$ or $[f(\alpha) \mid f(\beta)]=[f(b) \mid f(a)]$. So, since $[f(b) \mid f(a)]=[f(a) \mid f(b)]$, we see that $[f(\alpha) \mid f(\beta)]=[f(a) \mid f(b)]$. We wish to show: $f_{*}([a, b]) \subseteq[f(a) \mid f(b)]$. We wish to show: $\forall x \in \operatorname{dom}[f]$,

$$
(x \in[a, b]) \quad \Rightarrow \quad(f(x) \in[f(a) \mid f(b)]) .
$$

Let $x \in \operatorname{dom}[f]$ be given. We wish to show:

$$
(x \in[a, b]) \quad \Rightarrow \quad(f(x) \in[f(a) \mid f(b)]) .
$$

Assume: $x \in[a, b]$. We wish to show: $f(x) \in[f(a) \mid f(b)]$.
Because $x \in[a, b]$, it follows that $a \leqslant x \leqslant b$. Since f is semimonotone on $[a, b]$, at least one of the following must be true:
(1) f is semiincreasing on $[a, b]$ or
(2) f is semidecreasing on $[a, b]$.

Case (1): Since $a, x, b \in \operatorname{dom}[f]$, since $a \leqslant x \leqslant b$ and since f is semiincreasing on $[a, b]$, it follows that $f(a) \leqslant f(x) \leqslant f(b)$. Then $f(x) \in[f(a), f(b)]=[f(a) \mid f(b)]$, as desired. End of Case (1).

Case (2): Since $a, x, b \in \operatorname{dom}[f]$, since $a \leqslant x \leqslant b$ and since f is semidecreasing on $[a, b]$, it follows that $f(a) \geqslant f(x) \geqslant f(b)$. Then $f(x) \in[f(b), f(a)]=[f(a) \mid f(b)]$, as desired. End of Case (2). QED

Homework 1: Due on Tuesday 23 January
1-1. Let X and Y be metric spaces, and let $f: X \rightarrow Y$. Assume that f is not uniformly continuous. Show: $\exists \varepsilon>0, \exists p, q \in X^{\mathbb{N}}$ s.t., $\forall j \in \mathbb{N}$,

$$
\left[d_{X}\left(p_{j}, q_{j}\right)<1 / j\right] \text { and }\left[d_{Y}\left(f\left(p_{j}\right), f\left(q_{j}\right)\right) \geqslant \varepsilon\right]
$$

Proof: As f is not u.c., choose $\varepsilon>0$ s.t. $\forall \delta>0, \exists p, q \in X$ s.t.

$$
\left[d_{X}(p, q)<\delta\right] \quad \text { and } \quad\left[d_{Y}(f(p), f(q)) \geqslant \varepsilon\right]
$$

We wish to show: $\exists p, q \in X^{\mathbb{N}}$ s.t., $\forall j \in \mathbb{N}$,

$$
\left[d_{X}\left(p_{j}, q_{j}\right)<1 / j\right] \text { and }\left[d_{Y}\left(f\left(p_{j}\right), f\left(q_{j}\right)\right) \geqslant \varepsilon\right] .
$$

Claim: $\forall j \in \mathbb{N}, \exists p, q \in X$ s.t.

$$
\left[d_{X}(p, q)<1 / j\right] \quad \text { and } \quad\left[d_{Y}(f(p), f(q)) \geqslant \varepsilon\right] .
$$

Proof of claim: Let $j \in \mathbb{N}$ be given. By the choice of $\varepsilon, \exists p, q \in X$ s.t.

$$
\left[d_{X}(p, q)<1 / j\right] \quad \text { and } \quad\left[d_{Y}(f(p), f(q)) \geqslant \varepsilon\right]
$$

as desired. End of proof of claim.
By the claim and the Axiom of Choice, $\exists p, q \in X^{\mathbb{N}}$ s.t. $\forall j \in \mathbb{N}$,

$$
\left[d_{X}\left(p_{j}, q_{j}\right)<1 / j\right] \quad \text { and } \quad\left[d_{Y}\left(f\left(p_{j}\right), f\left(q_{j}\right)\right) \geqslant \varepsilon\right],
$$

as desired. QED

1-2. Let K be a sequentially compact metric space, let Y be a metric space, and let $f: K \rightarrow Y$. Assume that f is not uniformly continuous. Show: $\exists \varepsilon>0, \exists s, t \in K^{\mathbb{N}}, \exists u \in K$ s.t.

$$
\begin{aligned}
& {\left[s_{\bullet} \rightarrow u \text { in } K\right] \text { and }\left[t_{\bullet} \rightarrow u \text { in } K\right] \text { and }} \\
& \left.\left[\forall j \in \mathbb{N}, \quad d_{Y}\left(f\left(s_{j}\right), f\left(t_{j}\right)\right) \geqslant \varepsilon\right] \quad\right) .
\end{aligned}
$$

Proof: By HW\#1-1, choose $\varepsilon>0$ and $p, q \in K^{\mathbb{N}}$ s.t., $\forall j \in \mathbb{N}$,

$$
\left[d_{K}\left(p_{j}, q_{j}\right)<1 / j\right] \text { and }\left[d_{Y}\left(f\left(p_{j}\right), f\left(q_{j}\right)\right) \geqslant \varepsilon\right] .
$$

Since K is sequentially compact, p_{\bullet} is subconvergent in K. Choose a subsequence s of p_{\bullet} s.t. s_{\bullet} is convergent in K. Choose $u \in K$ s.t. $s_{\bullet} \rightarrow u$ in K. Since s_{\bullet} is a subsequence of p_{\bullet}, choose a strictly increasing $\ell \in \mathbb{N}^{\mathbb{N}}$ s.t. $s_{\bullet}=(p \circ \ell)$. Let $t:=(q \circ \ell)$. Then $s, t \in K^{N}$ and $u \in K$. Want:

$$
\left.\begin{array}{l}
{\left[s_{\bullet} \rightarrow u \text { in } K\right] \text { and } \quad\left[t_{\bullet} \rightarrow u \text { in } K\right] \text { and }} \\
{\left[\forall j \in \mathbb{N}, \quad d_{Y}\left(f\left(s_{j}\right), f\left(t_{j}\right)\right) \geqslant \varepsilon\right]}
\end{array}\right) .
$$

By choice of u, we have $s_{\bullet} \rightarrow u$ in K, so it remains to show:
(1) $t \rightarrow u$ in $K \quad$ and
(2) $\forall j \in \mathbb{N}, \quad d_{Y}\left(f\left(s_{j}\right), f\left(t_{j}\right)\right) \geqslant \varepsilon$.

Proof of (1): We wish to show: $\forall \eta>0, \exists I \in \mathbb{N}$ s.t., $\forall j \in \mathbb{N}$,

$$
[j \geqslant I] \quad \Rightarrow \quad\left[d_{K}\left(t_{j}, u\right)<\eta\right]
$$

Let $\eta>0$ be given. We wish to show: $\exists I \in \mathbb{N}$ s.t., $\forall j \in \mathbb{N}$,

$$
[j \geqslant I] \quad \Rightarrow \quad\left[d_{K}\left(t_{j}, u\right)<\eta\right]
$$

Since $s_{\bullet} \rightarrow u$ in K, choose $R \in \mathbb{N}$ s.t., $\forall j \in \mathbb{N}$,

$$
[j \geqslant R] \quad \Rightarrow \quad\left[d_{K}\left(s_{j}, u\right)<\eta / 2\right] .
$$

By the Archimidean Principle, choose $S \in \mathbb{N}$ such that $S>2 / \eta$. Let $I:=\max \{R, S\}$. We wish to show: $\forall j \in \mathbb{N}$,

$$
[j \geqslant I] \quad \Rightarrow \quad\left[d_{K}\left(t_{j}, u\right)<\eta\right] .
$$

Let $j \in \mathbb{N}$ be given. We wish to show:

$$
[j \geqslant I] \quad \Rightarrow \quad\left[d_{K}\left(t_{j}, u\right)<\eta\right] .
$$

Assume: $j \geqslant I$. We wish to show: $d_{K}\left(t_{j}, u\right)<\eta$.
Since $j \geqslant I \geqslant R$, by choice of R, we conclude that $d_{K}\left(s_{j}, u\right)<\eta / 2$. Since $\ell \in \mathbb{N}^{\mathbb{N}}$ and since ℓ_{\bullet} is strictly increasing, by Remark 23.12, we get $\ell_{j} \geqslant j$. It follows that $1 / \ell_{j} \leqslant 1 / j$. Since $j \geqslant I \geqslant S>2 / \eta$, we
get $1 / j<\eta / 2$. By the choice of p_{\bullet} and q_{\bullet}, we have $d_{K}\left(p_{\ell_{j}}, q_{\ell_{j}}\right)<1 / \ell_{j}$. Then $d_{K}\left(t_{j}, s_{j}\right)=d_{K}\left(s_{j}, t_{j}\right)=d_{K}\left(p_{\ell_{j}}, q_{\ell_{j}}\right)<1 / \ell_{j} \leqslant 1 / j<\eta / 2$. Then

$$
d_{K}\left(t_{j}, u\right) \leqslant\left[d_{K}\left(t_{j}, s_{j}\right)\right]+\left[d\left(s_{j}, u\right)\right]<(\eta / 2)+(\eta / 2)=\eta,
$$

as desired. End of proof of (1).
Proof of (2): Let $j \in \mathbb{N}$ be given. Want: $d_{Y}\left(f\left(s_{j}\right), f\left(t_{j}\right)\right) \geqslant \varepsilon$.
By the choice of p and q, we have $d_{Y}\left(f\left(p_{\ell_{j}}\right), f\left(q_{\ell_{j}}\right)\right) \geqslant \varepsilon$. Then $d_{Y}\left(f\left(s_{j}\right), f\left(t_{j}\right)\right)=d_{Y}\left(f\left(p_{\ell_{j}}\right), f\left(q_{\ell_{j}}\right)\right) \geqslant \varepsilon$. End of proof of (2). QED
$1-3$. Let X be a metric space, and let $s \in X^{\mathbb{N}}$. Assume that s_{\bullet} is convergent in X. Show that s_{\bullet} is Cauchy in X.

Proof: We wish to show: $\forall \varepsilon>0, \exists K \in \mathbb{N}$ s.t., $\forall i, j \in \mathbb{N}$,

$$
[i, j \geqslant K] \quad \Rightarrow \quad\left[d_{X}\left(s_{i}, s_{j}\right)<\varepsilon\right] .
$$

Let $\varepsilon>0$ be given. We wish to show: $\exists K \in \mathbb{N}$ s.t., $\forall i, j \in \mathbb{N}$,

$$
[i, j \geqslant K] \quad \Rightarrow \quad\left[d_{X}\left(s_{i}, s_{j}\right)<\varepsilon\right] .
$$

Since s_{\bullet} is convergent in X, choose $u \in X$ s.t. $s_{\bullet} \rightarrow u$ in X. Choose $K \in \mathbb{N}$ s.t., $\forall j \in \mathbb{N}$,

$$
[j \geqslant K] \quad \Rightarrow \quad\left[d_{X}\left(s_{j}, u\right)<\varepsilon / 2\right] .
$$

We wish to show: $\forall i, j \in \mathbb{N}$,

$$
[i, j \geqslant K] \quad \Rightarrow \quad\left[d_{X}\left(s_{i}, s_{j}\right)<\varepsilon\right] .
$$

Let $i, j \in \mathbb{N}$ be given. We wish to show:

$$
[i, j \geqslant K] \quad \Rightarrow \quad\left[d_{X}\left(s_{i}, s_{j}\right)<\varepsilon\right] .
$$

Assume $i, j \geqslant K$. We wish to show: $d_{X}\left(s_{i}, s_{j}\right)<\varepsilon$.
Since $i \geqslant K$, by choice of K, we have $d\left(s_{i}, u\right)<\varepsilon / 2$. Since $j \geqslant K$, by choice of K, we have $d\left(s_{j}, u\right)<\varepsilon / 2$.

Then $d_{X}\left(s_{i}, s_{j}\right) \leqslant\left[d_{X}\left(s_{i}, u\right)\right]+\left[d_{X}\left(u, s_{j}\right)\right]<(\varepsilon / 2)+(\varepsilon / 2)=\varepsilon$. QED
1-4. Let X be a metric space, and let $s \in X^{\mathbb{N}}$. Assume that s_{\bullet} is Cauchy and subconvergent in X. Show that s_{\bullet} is convergent in X.

Proof: Since s_{\bullet} is subconvergent in X, choose a subsequence t of s_{\bullet} such that t_{\bullet} is convergent in X. Choose $u \in X$ s.t. $t_{\bullet} \rightarrow u$ in X. We wish to show: $s \bullet \rightarrow u$ in X. Want: $\forall \varepsilon>0, \exists K \in \mathbb{N}$ s.t., $\forall j \in \mathbb{N}$,

$$
[j \geqslant K] \quad \Rightarrow \quad\left[d_{X}\left(s_{j}, u\right)<\varepsilon\right] .
$$

Let $\varepsilon>0$ be given. We wish to show: $\exists I \in \mathbb{N}$ s.t., $\forall j \in \mathbb{N}$,

$$
[j \geqslant I] \quad \Rightarrow \quad\left[d_{X}\left(s_{j}, u\right)<\varepsilon\right]
$$

Since $t_{\bullet} \rightarrow u$ in X, choose $L \in \mathbb{N}$ s.t., $\forall j \in \mathbb{N}$,

$$
[j \geqslant L] \quad \Rightarrow \quad\left[d_{X}\left(t_{j}, u\right)<\varepsilon / 2\right] .
$$

Since s_{\bullet} is Cauchy, choose $M \in \mathbb{N}$ s.t., $\forall j, k \in \mathbb{N}$,

$$
[j, k \geqslant M] \quad \Rightarrow \quad\left[d_{X}\left(s_{j}, s_{k}\right)<\varepsilon / 2\right] .
$$

Let $I:=\max \{L, M\}$. We wish to show: $\forall j \in \mathbb{N}$,

$$
[j \geqslant I] \quad \Rightarrow \quad\left[d_{X}\left(s_{j}, u\right)<\varepsilon\right] .
$$

Let $j \in \mathbb{N}$ be given. We wish to show:

$$
[j \geqslant I] \quad \Rightarrow \quad\left[d_{X}\left(s_{j}, u\right)<\varepsilon\right]
$$

Assume: $j \geqslant I$ We wish to show: $d_{X}\left(s_{j}, u\right)<\varepsilon$.
Since $j \geqslant I \geqslant L$, by choice of L, we conclude that $d_{X}\left(t_{j}, u\right)<\varepsilon / 2$. By Corollary 23.13, choose $k \in[j . \infty]$ such that $t_{j}=s_{k}$. Then we have $k \geqslant j \geqslant I \geqslant M$. Then $j, k \geqslant M$, so, by choice of M, we get: $d_{X}\left(s_{j}, s_{k}\right)<\varepsilon / 2$. Since $t_{j}=s_{k}$, we get $d\left(s_{j}, t_{j}\right)=d\left(s_{j}, s_{k}\right)$. Then

$$
\begin{aligned}
d\left(s_{j}, u\right) & \leqslant\left[d\left(s_{j}, t_{j}\right)\right]+\left[d\left(t_{j}, u\right)\right] \\
& =\left[d\left(s_{j}, s_{k}\right)\right]+\left[d\left(t_{j}, u\right)\right] \\
& <[\varepsilon / 2]+[\varepsilon / 2]=\varepsilon,
\end{aligned}
$$

as desired. QED
$1-5$. Let X be a metric space, and let $s \in X^{\mathbb{N}}$. Assume that s_{\bullet} is Cauchy in X. Show that s_{0} is bounded in X.

Proof: We wish to show: im [s s_{\bullet}] is bounded in X.
Since s_{0} is Cauchy in X, choose $K \in \mathbb{N}$ s.t., $\forall i, j \in \mathbb{N}$,

$$
[i, j \geqslant K] \quad \Rightarrow \quad\left[d_{X}\left(s_{i}, s_{j}\right)<1\right] .
$$

Let $p:=s_{K}$. Let $a:=\max \left\{d_{X}\left(p, s_{1}\right), \ldots, d_{X}\left(p, s_{K-1}\right)\right\}$. Let $R:=1+a$. We wish to show: im $\left[s_{\bullet}\right] \subseteq B_{X}(p, R)$. We wish to show: $\forall q \in \operatorname{im}\left[s_{\bullet}\right]$, $q \in B_{X}(p, R)$. Let $q \in \operatorname{im}\left[s_{\bullet}\right]$ be given. We wish to show: $q \in B_{X}(p, R)$. We wish to show $d_{X}(p, q)<R$. Since $q \in \operatorname{im}\left[s_{\bullet}\right]$, choose $j \in \mathbb{N}$ such that $q=s_{j}$. We wish to show: $d_{X}\left(p, s_{j}\right)<R$.

At least one of the follwing must be true:
(1) $j<K$
or
(2) $j \geqslant K$.

Case (1): As $j \in[1 . . K), d_{X}\left(p, s_{j}\right) \in\left\{d_{X}\left(p, s_{1}\right), \ldots, d_{X}\left(p, s_{K-1}\right)\right\}$. Then $d_{X}\left(p, s_{j}\right) \leqslant \max \left\{d_{X}\left(p, s_{1}\right), \ldots, d_{X}\left(p, s_{K-1}\right)\right\}=a<1+a=R$, as desired. End of Case (1).

Case (2): Since $p=s_{K}$, we conclude that $d_{X}\left(p, s_{j}\right)=d_{X}\left(s_{K}, s_{j}\right)$.
Also, since $K, j \geqslant K$, by choice of K, we see that $d_{X}\left(s_{K}, s_{j}\right)<1$. By definition of a, we have $a \geqslant 0$. It follows that $1 \leqslant 1+a$. Then $d_{X}\left(p, s_{j}\right)=d_{X}\left(s_{K}, s_{j}\right)<1 \leqslant 1+a=R$. End of Case (2). QED

