Solutions for MATH 4604 (Advanced Calculus II) Spring 2018

14-1. Let W be a normed vector space, let $f : \mathbb{R} \dashrightarrow W$ and let $p \in \mathbb{R}$. Show: $(f_p^T)'(0) = f'(p)$.

Proof: Let $g := f_p^T$. Want: g'(0) = f'(p). As $g'(0) = \lim_0 SS_g^0$ and $f'(p) = \lim_0 SS_f^p$, it suffices to show: $SS_g^0 = SS_f^p$. Want: $\forall h \in \mathbb{R}$, $(SS_g^0)(h) = (SS_f^p)(h)$. Given $h \in \mathbb{R}$. Want: $(SS_g^0)(h) = (SS_f^p)(h)$. We have

$$[g(0+h)] - [g(0)] = [g(h)] - [g(0)] = [(f_p^T)(h)] - [(f_p^T)(0)] = [[f(p+h)] - [f(p)]] - [[f(p+0)] - [f(p)]] = [f(p+h)] - [f(p)].$$

Then

$$(SS_g^0)(h) = \frac{[g(0+h)] - [g(0)]}{h} \\ = \frac{[f(p+h)] - [f(p)]}{h} = (SS_f^p)(h),$$

as desired. QED

14-2. Let V, W be finite dimensional vector spaces, $\alpha, \beta : V \dashrightarrow W$, $p \ge 0$. Assume: $\alpha = \beta$ near 0_V and $\alpha \in \check{\mathcal{O}}_p(V, W)$. Show: $\beta \in \check{\mathcal{O}}_p(V, W)$.

Proof: By assumption, choose $U \in \mathcal{N}_V(0_V)$ s.t. $\alpha = \beta$ on U. Also,

- (A) dom $[\alpha] \in \mathcal{N}_V(0_V),$
- (B) $\alpha(0_V) = 0_W$ and
- (C) α is continuous at 0_V .

Let $D := \text{dom} [\alpha]$. By (A), we have $D \in \mathcal{N}_V(0_V)$. As $D, U \in \mathcal{N}_V(0_V)$, we get $D \cap U \in \mathcal{N}_V(0_V)$. We wish to show:

- (1) dom $[\beta] \in \mathcal{N}_V(0_V),$
- (2) $\beta(0_V) = 0_W$ and
- (3) β is continuous at 0_V .

Proof of (1): Since we have $D \cap U \in \mathcal{N}_V(0_V)$, it suffices to show: $D \cap U \subseteq \text{dom} [\beta]$. We want: $\forall x \in D \cap U, x \in \text{dom} [\beta]$. Let $x \in D \cap U$ be given. We want to show: $x \in \text{dom} [\beta]$.

We have: $x \in D$ and $x \in U$. Since $x \in D$, we get $\alpha(x) \neq \odot$. Since $x \in U$, we get $\alpha(x) = \beta(x)$. Since $\beta(x) = \alpha(x) \neq \odot$, we get $x \in \text{dom}[\beta]$, as desired. End of proof of (1).

Proof of (2): Since $U \in \mathcal{N}_V(0_V)$, $0_V \in U$. So, since $\alpha = \beta$ on U, we get $\alpha(0_V) = \beta(0_V)$. By (B), we have $\alpha(0_V) = 0_W$.

Then $\beta(0_V) = \alpha(0_V) = 0_W$, as desired. End of proof of (2).

Proof of (3): Choose $|\bullet|_V \in \mathcal{N}(V)$ and $|\bullet|_W \in \mathcal{N}(W)$. We wish to show: $\forall \varepsilon > 0, \exists \delta > 0$ such that, $\forall x \in \text{dom} [\beta]$,

$$\begin{bmatrix} 0 < |x - 0_V|_V < \delta \end{bmatrix} \implies \begin{bmatrix} |[\beta(x)] - [\beta(0_V)]|_W < \varepsilon \end{bmatrix}.$$

Let $\varepsilon > 0$ be given. We wish to show: $\exists \delta > 0$ such that, $\forall x \in \text{dom}[\beta]$,

 $\begin{bmatrix} 0 < |x - 0_V|_V < \delta \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} |[\beta(x)] - [\beta(0_V)]|_W < \varepsilon \end{bmatrix}.$

Since $D \cap U \in \mathcal{N}_V(0_V)$ and since $\mathcal{B}_V(0_V)$ is a neighborhood base at 0_V in V, choose $\rho > 0$ such that $B_V(0_V, \rho) \subseteq D \cap U$. By (C), choose $\tau > 0$ such that, $\forall x \in D$,

$$\begin{bmatrix} 0 < |x - 0_V|_V < \tau \end{bmatrix} \implies \begin{bmatrix} |[\alpha(x)] - [\alpha(0_V)]|_W < \varepsilon \end{bmatrix}.$$

Let $\delta := \min\{\rho, \tau\}$. Then $\delta > 0, \delta \leq \rho$ and $\delta \leq \tau$. Want: $\forall x \in \operatorname{dom}[\beta]$,

 $\begin{bmatrix} 0 < |x - 0_V|_V < \delta \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} |[\beta(x)] - [\beta(0_V)]|_W < \varepsilon \end{bmatrix}.$

Let $x \in \text{dom}[\beta]$ be given. We wish to show:

 $\begin{bmatrix} 0 < |x - 0_V|_V < \delta \end{bmatrix} \implies \begin{bmatrix} |[\beta(x)] - [\beta(0_V)]|_W < \varepsilon \end{bmatrix}.$

Assume $0 < |x - 0_V|_V < \delta$. Want: $|[\beta(x)] - [\beta(0_V)]|_W$.

We have $0 < |x - 0_V| < \rho$ and $0 < |x - 0_V| < \tau$. Since $|x - 0_V|_V < \rho$, we get $x \in B_V(0_V, \rho)$. So, since $B_V(0_V, \rho) \subseteq D \cap U$, we see that $x \in D \cap U$. Then $x \in D$ and $x \in U$. Since $x \in U$, by choice of U, we have $\alpha(x) = \beta(x)$. By (2), we have $\beta(0_V) = 0_W$. So, by (B), we have $\beta(0_V) = \alpha(0_V)$. Since $x \in D$ and since $0 < |x - 0_V|_V < \tau$, by choice of τ , we conclude that $|[\alpha(x)] - [\alpha(0_V)]|_W < \varepsilon$. Then

 $|[\beta(x)] - [\beta(0_V)]|_W = |[\alpha(x)] - [\alpha(0_V)]|_W < \varepsilon,$

as desired. End of proof of (3). QED

14-3. Let $\delta > 0$, let $I := (-\delta, \delta)$ and let $\alpha : \mathbb{R} \dashrightarrow \mathbb{R}$. Assume: $\forall x \in I$, $\alpha(x) \in [0|x]$. Show that $\alpha \in \widehat{\mathcal{O}}_1(\mathbb{R}, \mathbb{R})$.

Proof: Let $|\bullet| \in \mathcal{N}(\mathbb{R})$ denote absolute value. We wish to show: $\alpha \in [|\bullet|] \cdot [\widehat{\mathcal{O}}(\mathbb{R},\mathbb{R})]$. Let $\beta := \mathrm{adj}_0^0(\alpha/|\bullet|)$. It suffices to show:

- (1) $\beta \in \widehat{\mathcal{O}}(\mathbb{R}, \mathbb{R})$ and
- (2) $\alpha = [|\bullet|] \cdot \beta.$

Proof of (1): We wish to show: $\exists U \in \mathcal{N}_{\mathbb{R}}(0)$ such that

$$\left[U \subseteq \operatorname{dom} \left[\beta \right] \right] \quad \text{and} \quad \left[\sup \left| \beta_*(U) \right| < \infty \right].$$

Since $I = (-\delta, \delta)$, we see that I is open in \mathbb{R} . So since $0 \in I$, we get $I \in \mathcal{N}_{\mathbb{R}}(0)$. Let U := I. We wish to show:

- (A) $U \subseteq \operatorname{dom}[\beta]$ and
- (B) $\sup |\beta_*(U)| < \infty$.

Proof of (A): Since U = I, we wish to show $I \subseteq \text{dom}[\beta]$. Since $\beta(0) = 0 \neq \odot$, we get $0 \in \text{dom}[\beta]$. It remains to show: $I_0^{\times} \subseteq \text{dom}[\beta]$.

We wish to show: $\forall x \in I_0^{\times}, x \in \text{dom}[\beta]$. Let $x \in I_0^{\times}$ be given. We wish to show: $x \in \text{dom}[\beta]$.

Since $x \in I_0^{\times}$, we get $x \in I$ and $x \neq 0$. Since $x \neq 0$, we get $|x| \neq 0$ and $\beta(x) = [|\alpha(x)|]/[|x|]$. Since $x \in I$, we get $\alpha(x) \in [0|x] \subseteq \mathbb{R}$. So, since $|x| \neq 0$, we get $[\alpha(x)]/[|x|] \in \mathbb{R}$. Then $\beta(x) = [|\alpha(x)|]/[|x|] \in \mathbb{R}$, so $\beta(x) \neq \mathfrak{S}$, and so $x \in \text{dom} [\beta]$, as desired. End of proof of (A).

Proof of (B): It suffices to show $\sup |\beta_*(U)| \leq 1$. We wish to show: $|\beta_*(U)| \leq 1$. As U = I, we wish to show: $|\beta_*(I)| \leq 1$. Since

$$|\beta(0)| = |0| = 0 \le 1,$$

it remains to show: $|\beta_*(I_0^{\times})| \leq 1$.

We wish to show: $\forall x \in \text{dom}[\beta]$,

$$\left[\begin{array}{c} x \in I_0^{\times} \end{array}\right] \quad \Rightarrow \quad \left[\begin{array}{c} |\beta(x)| \leqslant 1 \end{array} \right].$$

Let $x \in \text{dom}[\beta]$ be given. We wish to show:

$$\left[x \in I_0^{\times} \right] \quad \Rightarrow \quad \left[|\beta(x)| \leqslant 1 \right].$$

Assume: $x \in I_0^{\times}$. Want: $|\beta(x)| \leq 1$.

Since $x \in I_0^{\times}$, we get $x \in I$ and $x \neq 0$. Let y := |x|. As $x \neq 0, y > 0$. Since $x \neq 0, \beta(x) = [\alpha(x)]/[|x|]$. That is, $\beta(x) = [\alpha(x)]/y$. Since y > 0, we get |y| = y. Then $|\beta(x)| = [|\alpha(x)|]/[|y|] = [|\alpha(x)|]/y$. Since $x \in I$, we get $\alpha(x) = [0|x]$. We have $-|x| \leq x \leq |x|$, *i.e.*, $-y \leq x \leq y$. Since $-y \leq 0$ and $-y \leq x$ we get $-y \leq \min\{0, x\}$. Since $0 \leq y$ and $x \leq y$, we get $\max\{0, x\} \leq y$. Then

$$[0|x] = [\min\{0, x\}, \max\{0, x\}] \subseteq [-y, y].$$

Then $\alpha(x) \in [0|x] = [-y, y]$, so $-y \leq \alpha(x) \leq y$, so $|\alpha(x)| \leq y$. Then $|\alpha(x)|/y \leq 1$. Then $|\beta(x)| = |\alpha(x)|/y \leq 1$, as desired. End of proof of (B). End of proof of (1).

Proof of (2): We have $0 \in (-\delta, \delta) = I$, so $\alpha(0) \in [0|0] = \{0\}$, so $\alpha(0) = 0$. Also $\beta(0) = 0$. Then

$$\alpha(0) = 0 = 0 \cdot 0 = [|0|] \cdot [\beta(0)|].$$

It remains to show: $\alpha = [| \bullet |] \cdot \beta$ on \mathbb{R}_0^{\times} . We wish to show: $\forall x \in \mathbb{R}_0^{\times}$, $\alpha(x) = [|x|] \cdot [\beta(x)]$. Let $x \in \mathbb{R}_0^{\times}$ be given. Want: $\alpha(x) = [|x|] \cdot [\beta(x)]$. Since $x \neq 0$, it follows that $\beta(x) = [\alpha(x)]/[|x|]$. We conclude that $\alpha(x) = [|x|] \cdot [\beta(x)]$, as desired. End of proof of (2). QED

14-4. Let $k \in \mathbb{N}_0$ and let $f \in \check{\mathcal{O}}_k(\mathbb{R}, \mathbb{R})$. Let $g : \mathbb{R} \dashrightarrow \mathbb{R}$. Assume that g' = f near 0. Assume that g(0) = 0. Show that $g \in \check{\mathcal{O}}_{k+1}(\mathbb{R}, \mathbb{R})$.

Proof: Let $|\bullet| \in \mathcal{N}(\mathbb{R})$ denote absolute value. Let $\psi := \operatorname{adj}_0^0(g/[|\bullet|^{k+1}])$. So, since $\psi = g/[|\bullet|^{k+1}]$ on \mathbb{R}_0^{\times} , we get $g = |\bullet|^{k+1} \cdot \psi$ on \mathbb{R}_0^{\times} . So, since $g(0) = 0 = [|0|^{k+1}] \cdot [\psi(0)]$, we see that $g = |\bullet|^{k+1} \cdot \psi$ on \mathbb{R} . Then $g = |\bullet|^{k+1} \cdot \psi$. We wish to show: $g \in [|\bullet|^{k+1}] \cdot [\check{o}(\mathbb{R},\mathbb{R})]$. It therefore suffices to show: $\psi \in \check{o}(\mathbb{R},\mathbb{R})$. Since $\psi(0) = 0$, we need to show:

 $[\operatorname{dom}[\psi] \in \mathcal{N}_{\mathbb{R}}(0)] \quad \text{and} \quad [\psi \text{ is continuous at } 0].$

We have $\check{o}_k(\mathbb{R}, \mathbb{R}) = [|\bullet|] \cdot [\check{o}(\mathbb{R}, \mathbb{R})]$, so, since $f \in \check{o}_k(\mathbb{R}, \mathbb{R})$, choose $\phi \in \check{o}(\mathbb{R}, \mathbb{R})$ s.t. $f = |\bullet| \cdot \phi$. Then dom $[f] = (\text{dom} [|\bullet|]) \cap (\text{dom} [\phi])$, so, since dom $[\phi] \subseteq \mathbb{R} = \text{dom} [|\bullet|]$, we get dom $[f] = \text{dom} [\phi]$. Since $g = |\bullet|^{k+1} \cdot \psi$, we get dom $[g] = (\text{dom} [|\bullet|]) \cap (\text{dom} [\psi])$, so, since dom $[\psi] \subseteq \mathbb{R} = \text{dom} [|\bullet|]$, we get dom $[g] = \text{dom} [\psi]$.

Since g' = f near 0, choose $U \in \mathcal{N}_{\mathbb{R}}(0)$ s.t. f = g' on U. Let $D := \operatorname{dom}[\phi]$. Since $\phi \in \check{\sigma}(\mathbb{R}, \mathbb{R})$, we have $D \in \mathcal{N}_{\mathbb{R}}(0)$. So, since $U \in \mathcal{N}_{\mathbb{R}}(0)$, we get $D \cap U \in \mathcal{N}_{\mathbb{R}}(0)$. So, since $\mathcal{B}_{\mathbb{R}}(0)$ is a neighborhood base at 0 in \mathbb{R} , choose $\rho > 0$ s.t. $B_{\mathbb{R}}(0, \rho) \subseteq D \cap U$. Let $I := (-\rho, \rho)$. Then $I \in \mathcal{N}_{\mathbb{R}}(0)$. Also, $I = B_{\mathbb{R}}(0, \rho) \subseteq D \cap U$, so $I \subseteq D$ and $I \subseteq U$.

We have $I \subseteq D = \operatorname{dom}[\phi] = \operatorname{dom}[f]$. Since f = g on U and since $I \subseteq U$, it follows that f = g' on I. So, since $I \subseteq \operatorname{dom}[f]$, we get $I \subseteq \operatorname{dom}[g']$. Then $I \subseteq \operatorname{dom}[g'] \subseteq \operatorname{dom}[g] = \operatorname{dom}[\psi]$. So, since $I \in \mathcal{N}_{\mathbb{R}}(0)$, it follows that $\operatorname{dom}[\psi] \in \mathcal{N}_{\mathbb{R}}(0)$. It only remains to show that ψ is continuous at 0. We want: $\forall \varepsilon > 0, \exists \delta > 0$ s.t., $\forall x \in \operatorname{dom}[\psi]$,

$$[|x-0| < \delta] \implies [|[\psi(x)] - [\psi(0)]| < \varepsilon].$$

Let $\varepsilon > 0$ be given. We wish to show: $\exists \delta > 0$ s.t., $\forall x \in \text{dom}[\psi]$,

$$0 < |x - 0| < \delta] \quad \Rightarrow \quad \left[\left| \left[\psi(x) \right] - \left[\psi(0) \right] \right| < \varepsilon \right].$$

As $\phi \in \check{\mathcal{O}}(\mathbb{R}, \mathbb{R})$, ϕ is continuous at 0. Choose $\tau > 0$ s.t., $\forall \alpha \in D$,

$$\begin{bmatrix} 0 < |\alpha - 0| < \tau \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} |[\phi(\alpha)] - [\phi(0)]| < \varepsilon \end{bmatrix}$$

Let $\delta := \min\{\rho, \tau\}$. Then $\delta \leq \rho$ and $\delta \leq \tau$. We want: $\forall x \in \operatorname{dom}[\psi]$,

 $[0 < |x - 0| < \delta] \quad \Rightarrow \quad [|[\psi(x)] - [\psi(0)]| < \varepsilon].$

Let $x \in \operatorname{dom}[\psi]$ be given. We wish to show:

$$\left[\begin{array}{c} 0 < |x - 0| < \delta \end{array} \right] \quad \Rightarrow \quad \left[\begin{array}{c} |[\psi(x)] - [\psi(0)]| < \varepsilon \end{array} \right].$$

Assume: $0 < |x - 0| < \delta$. We wish to show: $|[\psi(x)] - [\psi(0)]| < \varepsilon$. Since $\psi(0) = 0$, we wish to prove: $|\psi(x)| < \varepsilon$.

Since *I* is an interval and $0 \in (-\delta, \delta) = I$, we know: $[0|x] \subseteq I$. Then $[0|x] \subseteq I \subseteq \text{dom}[g']$, so *g* is c/d on [0|x]. So, by the Mean Value Theorem, choose $\alpha \in (0|x)$ s.t. $g'(\alpha) = DQ_g(0, x)$. Since g(0) = 0, we get $DQ_g(0, x) = [g(x)]/x$. We have $\alpha \in (0|x) \subseteq [0|x] \subseteq I$. So, since g' = f on *I*, we get $g'(\alpha) = f(\alpha)$. Recall that $f = |\bullet|^k \cdot \phi$ and that $g = |\bullet|^{k+1} \cdot \psi$. Then

$$|\alpha|^{k} \cdot [\phi(\alpha)] = f(\alpha) = g'(\alpha) = DQ_{g}(0, x)$$

= $[g(x)] / x = |x|^{k+1} \cdot [\psi(x)] / x.$

Let y := |x|. Taking absolute values gives $|\alpha|^k \cdot |\phi(\alpha)| = y^{k+1} \cdot |\psi(x)|/y$. Then $|\psi(x)| = [|\alpha|/y]^k \cdot |\phi(\alpha)|$. Want: $[|\alpha|/y]^k \cdot |\phi(\alpha)| < \varepsilon$.

We have $-|x| \leq x \leq |x|$, *i.e.*, $-y \leq x \leq y$. Since $-y \leq 0$ and $-y \leq x$, we see that $-y \leq \min\{0, x\}$. Since $0 \leq y$ and $x \leq y$, see that $\max\{0, x\} \leq y$. Then $[0|x] = [\min\{0, x\}, \max\{0, x\}] \subseteq [-y, y]$. Then $\alpha \in (0|x) \subseteq [0|x] = [-y, y]$, so $-y \leq \alpha \leq y$, so $|\alpha| \leq y$. Then $[|\alpha|/y]^k \leq 1$. It therefore suffices to show: $|\phi(\alpha)| < \varepsilon$.

Since $\alpha \in I = (-\delta, \delta)$, we see that $|\alpha| < \delta$. Since $\alpha \in (0|x)$, we see that $\alpha \neq 0$, so $|\alpha| > 0$. Then $0 < |\alpha| < \delta \leq \tau$. Then $0 < |\alpha - 0| < \tau$. So, since $\alpha \in I \subseteq D$, by choice of τ , we get $|[\phi(\alpha)] - [\phi(0)]| < \varepsilon$. Since $\phi \in \check{o}(\mathbb{R}, \mathbb{R})$, we have $\phi(0) = 0$. Then $|\phi(\alpha)| < \varepsilon$, as desired. QED

14-5. Let V, W be finite dimensional vector spaces. Let $f, g: V \dashrightarrow W$. Let $p \in V$. Assume: f = g near p. Show: $\text{LINS}_p f \subseteq \text{LINS}_p g$.

Proof: We wish to show: $\forall L \in \text{LINS}_p f$, $L \in \text{LINS}_p g$. Let $L \in \text{LINS}_p f$ be given. We wish to show: $L \in \text{LINS}_p g$.

As $L \in \text{LINS}_p f$, we get $f_p^T - L \in \check{\mathcal{O}}_1(V, W)$. Want: $g_p^T - L \in \check{\mathcal{O}}_1(V, W)$. By HW#14-2, it suffices to show: $f_p^T - L = g_p^T - L$ near 0_V .

Since f = g near p, choose $U \in \mathcal{N}_V(p)$ s.t. f = g on U. Choose $|\bullet| \in \mathcal{N}(V)$. Since $\mathcal{B}_V(p)$ is a neighborhood base at p in V, choose $\delta > 0$ s.t. $B_V(p, \delta) \subseteq U$. Let $A := B_V(0_V, \delta)$. Then $A \in \mathcal{N}_V(0_V)$, so it suffices to show: $f_p^T - L = g_p^T - L$ on A. We wish to show: $\forall h \in A$, $(f_p^T - L)(h) = (g_p^T - L)(h)$. Let $h \in A$ be given. We wish to show: $(f_p^T - L)(h) = (g_p^T - L)(h)$. Want: $[f_p^T(h)] - [L(h)] = [g_p^T(h)] - [L(h)]$. It suffices to prove: $f_p^T(h) = g_p^T(h)$.

Since $h \in A = B_V(0_V, \delta)$, we get $|h - 0_V| < \delta$. Let x := p + h. Then $|x - p| = |h| = |h - 0_V| < \delta$, so $x \in B_V(p, \delta)$. So, since $B_V(p, \delta) \subseteq U$, we get $x \in U$. So, since f = g on U, we get f(x) = g(x). As $U \in \mathcal{N}_V(p)$, we get $p \in U$. So, since f = g on U, we get f(p) = g(p). Then

$$\begin{aligned} (f_p^T)(h) &= [f(p+h)] - [f(p)] \\ &= [f(x)] - [f(p)] \\ &= [g(x)] - [g(p)] \\ &= [g(p+h)] - [g(p)] = (g_p^T)(h) \end{aligned}$$

as desired. QED

Homework 13: Due on Tuesday 24 April

13-1. Let V, W be finite dimensional VSs. Show: $L(V, W) \subseteq \widehat{\mathcal{O}}_1(V, W)$. *Proof:* Want: $\forall T \in L(V, W), T \in \widehat{\mathcal{O}}_1(V, W)$. Let $T \in L(V, W)$ be given. Want: $T \in \widehat{\mathcal{O}}_1(V, W)$.

Since $T \in L(V, W)$, it follows that $T(0_V) = 0_W$. Let $|\bullet|_V \in \mathcal{N}(V)$, $|\bullet|_W \in \mathcal{N}(W)$. Let $\alpha := \operatorname{adj}_{0_V}^{0_W}(T/|\bullet|_V)$. Then $T = |\bullet|_V \cdot \alpha$ on $V_{0_V}^{\times}$. So, since $T(0_V) = 0_W = 0 \cdot 0_W = |0_V|_V \cdot [\alpha(0_V)]$, we conclude that $T = |\bullet|_V \cdot \alpha$. It suffices to show: $\alpha \in \widehat{\mathcal{O}}(V, W)$. We wish to show: $\exists U \in \mathcal{N}_V(0_V)$ such that: $[U \subseteq \operatorname{dom}[\alpha]]$ and $[\sup|\alpha_*(U)|_W < \infty]$.

We have $V \in \mathcal{N}_V(0_V)$. Let U := V. We wish to show:

 $[U \subseteq \operatorname{dom}[\alpha]]$ and $[\sup |\alpha_*(U)|_W < \infty].$

Since $U = V \subseteq V = \text{dom}[\alpha]$, it remains to show: $\sup |\alpha_*(U)|_W < \infty$.

By (1) of Theorem 46.2 p. 331, $T: V \to W$ is bounded. We define $M := \hat{T}_{VW}$. Then $0 \leq M < \infty$. Also, $T: V \to W$ is *M*-bounded. It suffices to show: $\sup |\alpha_*(U)|_W \leq M$. We wish to show: $|\alpha_*(U)|_W \leq M$.

We wish to show: $\forall x \in \text{dom} [\alpha], [x \in U] \Rightarrow [|\alpha(x)|_W \leq M]$. Let $x \in \text{dom} [\alpha]$ be given. We want: $[x \in U] \Rightarrow [|\alpha(x)|_W \leq M]$. Assume: $x \in U$. We wish to show: $|\alpha(x)|_W \leq M$.

One of the following must be true:

(1)
$$x = 0_V$$
 or
(2) $x \neq 0_V$.

Case (1): As $\alpha(x) = \alpha(0_V) = 0_W$, $|\alpha(x)|_W = |0_W|_W = 0 \leq M$, as desired. End of case (1).

Case (2): We have $\alpha(x) = [T(x)]/[|x|_V]$. Since T is M-bounded, we have $|T(x)|_W \leq M \cdot |x|_V$. Then

$$|\alpha(x)|_W = \left|\frac{T(x)}{|x|_V}\right|_W = \frac{|T(x)|_W}{|x|_V} \leqslant M,$$

as desired. End of case (2). QED

13-2. Let $m, n \in \mathbb{N}$. Let $V := (\mathbb{R}^m, |\bullet|_{m,1})$ and let $W := (\mathbb{R}^n, |\bullet|_{n,1})$. Let Z be a normed vector space. Let $* \in B(V, W, Z)$. Show: $\exists K \ge 0$ such that, $\forall v \in V, \forall w \in W, |v * w|_Z \le K \cdot |v|_V \cdot |w|_W$.

Proof: Let $K := \max\{|e_i^m * e_j^n|_Z | i \in [1..m], j \in [1..n]\}$. We wish to show: $\forall v \in V, \forall w \in W, |v * w|_Z \leq K \cdot |v|_V \cdot |w|_W$. Let $v \in V, w \in W$ be given. We wish to show: $|v * w|_Z \leq K \cdot |v|_V \cdot |w|_W$.

Since $|\bullet|_V = |\bullet|_{m,1}$, we see that $|v|_V = \sum_{i=1}^m |v_i|$. Since $|\bullet|_W = |\bullet|_{n,1}$, we see that $|w|_W = \sum_{j=1}^n |w_j|$. Since $v = \sum_{i=1}^m v_i e_i^m$ and $w = \sum_{j=1}^n w_j e_j^n$, we get $v * w = \sum_{i=1}^m \sum_{j=1}^n v_i w_j (e_i^m * e_j^n)$. Then, by subadditivity of $|\bullet|_Z$, we have $|v * w|_Z \leq \sum_{i=1}^m \sum_{j=1}^n |v_i w_j (e_i^m * e_j^n)|_Z$. We have: $\forall i \in [1..m], \forall j \in [1..n],$

$$|v_i w_j (e_i^m * e_j^n)|_Z = |v_i| \cdot |w_j| \cdot |e_i^m * e_j^n|_Z \leqslant |v_i| \cdot |w_j| \cdot K.$$

Then

$$|v * w|_Z \leqslant \sum_{i=1}^m \sum_{j=1}^n \left(|v_i| \cdot |w_j| \cdot K \right)$$

= $K \cdot \sum_{i=1}^m \sum_{j=1}^n \left(|v_i| \cdot |w_j| \right)$
= $K \cdot \left[\sum_{i=1}^m |v_i| \right] \cdot \left[\sum_{j=1}^n |w_j| \right]$
= $K \cdot |v|_V \cdot |w|_W$,

as desired. QED

13-3. Let $\ell, m, n \in \mathbb{N}$. Let $U := (\mathbb{R}^{\ell}, |\bullet|_{\ell,1})$, let $V := (\mathbb{R}^{m}, |\bullet|_{m,1})$ and let $W := (\mathbb{R}^{n}, |\bullet|_{n,1})$. Let Z be a normed vector space. Let $F \in T(U, V, W, Z)$. Show: $\exists K \ge 0$ such that, $\forall u \in U, \forall v \in V, \forall w \in W$,

$$|F(u,v,w)|_Z \leqslant K \cdot |u|_U \cdot |v|_V \cdot |w|_W.$$

 $\begin{array}{l} \textit{Proof: Let } K := \max\{|F(e_h^\ell, e_i^m, e_j^n)|_Z \,|\, h \in [1..\ell], i \in [1..m], j \in [1..n]\}.\\ \textit{We wish to show: } \forall u \in U, \, \forall v \in V, \, \forall w \in W, \end{array}$

$$|F(u,v,w)|_Z \leqslant K \cdot |u|_U \cdot |v|_V \cdot |w|_W.$$

Given $u \in U, v \in V, w \in W$. Want: $|F(u, v, w)|_Z \leq K \cdot |u|_U \cdot |v|_V \cdot |w|_W$.

Since
$$|\bullet|_U = |\bullet|_{\ell,1}$$
, we see that $|u|_U = \sum_{h=1}^{n} |u_h|$. Since $|\bullet|_V = |\bullet|_{m,1}$, we
see that $|v|_V = \sum_{i=1}^{m} |v_i|$. Since $|\bullet|_W = |\bullet|_{n,1}$, we see that $|w|_W = \sum_{j=1}^{n} |w_j|$.
Since $u = \sum_{h=1}^{m} u_h e_h^\ell$ and $v = \sum_{i=1}^{m} v_i e_i^m$ and $w = \sum_{j=1}^{n} w_j e_j^n$, we get
 $F(u, v, w) = \sum_{h=1}^{\ell} \sum_{i=1}^{m} \sum_{j=1}^{n} u_h v_i w_j (F(e_h^\ell, e_i^m, e_j^n)).$

Then, by subadditivity of $|\bullet|_Z$, we have

$$|F(u,v,w)|_Z \leqslant \sum_{h=1}^{\ell} \sum_{i=1}^{m} \sum_{j=1}^{n} |u_h v_i w_j (F(e_h^{\ell}, e_i^m, e_j^n))|_Z.$$

We have: $\forall h \in [1..\ell], \forall i \in [1..m], \forall j \in [1..n],$

$$|u_h v_i w_j (F(e_h^{\ell}, e_i^m, e_j^n))|_Z = |u_h| \cdot |v_i| \cdot |w_j| \cdot |F(e_h^{\ell}, e_i^m, e_j^n)|_Z \\ \leqslant |u_h| \cdot |v_i| \cdot |w_j| \cdot K.$$

Then

$$F(u, v, w)|_{Z} \leq \sum_{h=1}^{\ell} \sum_{i=1}^{m} \sum_{j=1}^{n} (|u_{h}| \cdot |v_{i}| \cdot |w_{j}| \cdot K)$$

$$= K \cdot \sum_{h=1}^{\ell} \sum_{i=1}^{m} \sum_{j=1}^{n} (|u_{h}| \cdot |v_{i}| \cdot |w_{j}|)$$

$$= K \cdot \left[\sum_{h=1}^{\ell} |u_{h}|\right] \cdot \left[\sum_{i=1}^{m} |v_{i}|\right] \cdot \left[\sum_{j=1}^{n} |w_{j}|\right]$$

$$= K \cdot |u|_{U} \cdot |v|_{V} \cdot |w|_{W},$$

as desired. QED

13-4. Let U, V and W be finite dimensional normed vector spaces. Let Z be a normed vector space. Let $F \in T(U, V, W, Z)$. Show: $\exists K \ge 0$ such that, $\forall u \in U, \forall v \in V, \forall w \in W$,

$$|F(u,v,w)|_Z \leqslant K \cdot |u|_U \cdot |v|_V \cdot |w|_W.$$

Proof: Let $\ell := \dim U$, $m := \dim V$ and $n := \dim W$. Choose

 $A \in OB(U), \quad B \in OB(V) \quad \text{and} \quad C \in OB(W).$

Let $U' := (\mathbb{R}^{\ell}, |\bullet|_{\ell,1})$, let $V' := (\mathbb{R}^m, |\bullet|_{m,1})$ and let $W' := (\mathbb{R}^n, |\bullet|_{n,1})$. Define $F' \in T(U', V', W', Z)$ by

$$F'(u, v, w) = F(L_A(u), L_B(v), L_C(w)).$$

By HW#13-3, choose $K' \ge 0$ s.t., $\forall u' \in U', \forall v' \in V', \forall w' \in W'$,

$$|F'(u',v',w')|_Z \leqslant K' \cdot |u'|_{U'} \cdot |v'|_{V'} \cdot |w'|_{W'}.$$

By (1) of Theorem 46.2 p. 331, the maps

 $L_A^{-1}: U \to U', \qquad L_B^{-1}: V \to V' \qquad \text{and} \qquad L_C^{-1}: W \to W'$

are all bounded. Let

$$Q := (L_A^{-1})_{U,U'}^{-1}, \quad R := (L_B^{-1})_{V,V'}^{-1} \text{ and } S := (L_C^{-1})_{W,W'}^{-1}.$$

Then $L_A^{-1}: U \to U'$ is *Q*-bounded, $L_B^{-1}: V \to V'$ is *R*-bounded and $L_C^{-1}: W \to W'$ is *S*-bounded. Let $K := K' \cdot Q \cdot R \cdot S$. We wish to show: $\forall u \in U, \forall v \in V, \forall w \in W$,

$$|F(u,v,w)|_Z \quad \leqslant \quad K \cdot |u|_U \cdot |v|_V \cdot |w|_W.$$

Let $u \in U$, $v \in V$ and $w \in W$ be given. We wish to show:

$$|F(u,v,w)|_Z \leqslant K \cdot |u|_U \cdot |v|_V \cdot |w|_W.$$

Since $L_A^{-1}: U \to U'$ is Q-bounded, since $L_B^{-1}: V \to V'$ is R-bounded and since $L_C^{-1}: W \to W'$ is S-bounded, we get

$$|L_A^{-1}(u)|_{U'} \leqslant Q \cdot |u|_U, |L_B^{-1}(v)|_{V'} \leqslant R \cdot |v|_V \text{ and } |L_C^{-1}(w)|_{W'} \leqslant S \cdot |w|_W.$$

Let $u' := (L_A^{-1})(u), v' := (L_B^{-1})(v)$ and $w' := (L_C^{-1})(w)$. Then

 $|u'|_{U'} \leq Q \cdot |u|_U, \quad |v'|_{V'} \leq R \cdot |v|_V, \text{ and } |w'|_{W'} \leq S \cdot |w|_W.$

By choice of K', we have

$$|F'(u',v',w')|_Z \leqslant K' \cdot |u'|_{U'} \cdot |v'|_{V'} \cdot |w'|_{W'}.$$

Since $L_A(u') = u$, $L_B(v') = v$ and $L_C(w') = w$, by definition of F', we get F'(u', v', w') = F(u, v, w). Then

$$\begin{aligned} |F(u,v,w)|_Z &\leq |F'(u',v',w')|_Z \\ &\leq K' \cdot |u'|_{U'} \cdot |v'|_{V'} \cdot |w'|_{W'} \\ &\leq K' \cdot Q \cdot |u|_U \cdot R \cdot |v|_V \cdot S \cdot |w|_W \\ &= K' \cdot Q \cdot R \cdot S \cdot |u|_U \cdot |v|_V \cdot |w|_W \\ &= K \cdot |u|_U \cdot |v|_V \cdot |w|_W, \end{aligned}$$

as desired. QED

13-5. Let S V, W and Z all be finite dimensional vector spaces, and let $* \in B(V, W, Z)$. Show: $[\widehat{\mathcal{O}}(S, V)] * [\widehat{\mathcal{O}}(S, W)] \subseteq \widehat{\mathcal{O}}(S, Z)$.

Proof: We wish to show: $\forall \alpha \in \widehat{\mathcal{O}}(S, V), \forall \beta \in \widehat{\mathcal{O}}(S, W)$, we have: $\alpha *_{S} \beta \in \widehat{\mathcal{O}}(S, Z)$. Let $\alpha \in \widehat{\mathcal{O}}(S, V)$ and $\beta \in \widehat{\mathcal{O}}(S, W)$ be given. We wish to show: $\alpha *_{S} \beta \in \widehat{\mathcal{O}}(S, Z)$. Choose $|\bullet|_S \in \mathcal{N}(S)$ and $|\bullet|_V \in \mathcal{N}(V)$ and $|\bullet|_W \in \mathcal{N}(W)$ and $|\bullet|_Z \in \mathcal{N}(Z)$. By Theorem 49.1 p. 359, choose $C \ge 0$ such that, $\forall v \in V, \forall w \in W, |v * w|_Z \le C \cdot |v|_V \cdot |w|_W$.

Since $\alpha \in \widehat{\mathcal{O}}(S, V)$, choose $P \in \mathcal{N}_S(0_S)$ such that

 $P \subseteq \operatorname{dom} [\alpha]$ and $\sup |\alpha_*(P)|_V < \infty$.

Let $K := \sup |\alpha_*(P)|_V$. Then $0 \leq K < \infty$ and $|\alpha_*(P)|_V \leq K$.

Since $\beta \in \mathcal{O}(S, W)$, choose $Q \in \mathcal{N}_S(0_S)$ such that

 $Q \subseteq \operatorname{dom}[\beta]$ and $\sup |\beta_*(Q)|_W < \infty$.

Let $L := \sup |\beta_*(Q)|_W$. Then $0 \le L < \infty$ and $|\beta_*(Q)|_W \le L$.

Let $\gamma := \alpha *_{S} \beta$. We wish to show: $\gamma \in \widehat{\mathcal{O}}(S, Z)$. We wish to show: $\exists R \in \mathcal{N}_{S}(0_{S})$ such that

 $R \subseteq \operatorname{dom}[\gamma]$ and $\sup |\gamma_*(R)|_Z < \infty$.

Since $P \in \mathcal{N}_S(0_S)$ and $Q \in \mathcal{N}_S(0_S)$, it follows that $P \cap Q \in \mathcal{N}_S(0_S)$. Let $R := P \cap Q$. We wish to show:

 $R \subseteq \operatorname{dom}[\gamma] \quad \text{and} \quad \sup |\gamma_*(R)|_Z < \infty.$ Since $\gamma = \alpha \underset{S}{*} \beta$, it follows that $\operatorname{dom}[\gamma] = (\operatorname{dom}[\alpha]) \cap (\operatorname{dom}[\beta]).$ Since $P \subseteq \operatorname{dom}[\alpha]$ and $Q \subseteq \operatorname{dom}[\beta]$, it follows that

 $P \cap Q \qquad \subseteq \qquad (\operatorname{dom} [\alpha]) \ \cap \ (\operatorname{dom} [\beta]).$

Then $R = P \cap Q \subseteq (\operatorname{dom} [\alpha]) \cap (\operatorname{dom} [\beta]) = \operatorname{dom} [\gamma]$. It remains to show that $\sup |\gamma_*(R)|_Z < \infty$.

Let M := CKL. Then $0 \leq M < \infty$. It suffices to show that $\sup |\gamma_*(R)|_Z \leq M$. We wish to show: $\forall x \in \operatorname{dom}[\gamma]$,

 $[x \in R] \implies [|\gamma(x)|_Z \leq M].$

Let $x \in \text{dom}[\gamma]$ be given. We wish to show:

$$[x \in R] \quad \Rightarrow \quad [|\gamma(x)|_Z \leq M].$$

Assume: $x \in R$. Want: $|\gamma(x)|_Z \leq M$.

We have $x \in \text{dom}[\gamma] \subseteq \text{dom}[\alpha]$ and $x \in R \subseteq P$, so $\alpha(x) \in \alpha_*(P)$. Then $|\alpha(x)|_V \in |\alpha_*(P)|_V \leq K$. Let $v := \alpha(x)$. Then $|v|_V \leq K$. We have $x \in \text{dom}[\gamma] \subseteq \text{dom}[\beta]$ and $x \in R \subseteq Q$, so $\beta(x) \in \beta_*(Q)$. Then $|\beta(x)|_W \in |\beta_*(Q)|_W \leq L$. Let $w := \beta(x)$. Then $|w|_W \leq L$.

We have $\gamma(x) = (\alpha * \beta)(x) = [\alpha(x)] * [\beta(x)] = v * w$. By the choice of C, we have $|v * w|_Z \leq C \cdot |v|_V \cdot |w|_W$.

Then $|\gamma(x)|_Z = |v * w|_Z \leq C \cdot |v|_V \cdot |w|_W \leq CKL = M$. QED

12-1. Let V and W both be finite dimensional vector spaces, and let $|\bullet|, ||\bullet|| \in \mathcal{N}(W)$. Show: $\widehat{\mathcal{O}}(V, W, ||\bullet|) \subseteq \widehat{\mathcal{O}}(V, W, ||\bullet|)$.

Proof: Want: $\forall \alpha \in \widehat{\mathcal{O}}(V, W, |\bullet|), \alpha \in \widehat{\mathcal{O}}(V, W, \|\bullet\|)$. Let $\alpha \in \widehat{\mathcal{O}}(V, W, |\bullet|)$ be given. Want: $\alpha \in \widehat{\mathcal{O}}(V, W, \|\bullet\|)$. Want: $\exists U \in \mathcal{N}_V(0_V)$ such that

 $\left[U \subseteq \operatorname{dom} \left[\alpha \right] \right] \quad \text{and} \quad \left[\sup \left\| \alpha_*(U) \right\| < \infty \right].$

Since $\alpha \in \widehat{\mathcal{O}}(V, W, |\bullet|)$, choose $U \in \mathcal{N}_V(0_V)$ such that

$$[U \subseteq \operatorname{dom}[\alpha]]$$
 and $[\sup |\alpha_*(U)| < \infty].$

Want: $\sup \|\alpha_*(U)\| < \infty$.

Let $M := \sup |\alpha_*(U)|$. Then $|\alpha_*(U)| \leq M$. By Theorem 46.3 p. 332, $|\bullet| \approx ||\bullet||$, so $||\bullet|| <<< |\bullet|$, so choose K > 0 s.t. $||\bullet|| \leq K \cdot |\bullet|$. It suffices to show: $||\alpha_*(U)|| \leq KM$. We want: $\forall x \in \operatorname{dom} [\alpha]$,

$$\left[\begin{array}{cc} x\in U\end{array}\right] \quad \Rightarrow \quad \left[\begin{array}{cc} \|\alpha(x)\|\leqslant KM\end{array}\right].$$

Let $x \in \text{dom}[\alpha]$ be given. We wish to prove:

$$[x \in U] \quad \Rightarrow \quad [\|\alpha(x)\| \leqslant KM].$$

Assume that $x \in U$. We wish to show: $\|\alpha(x)\| \leq KM$.

Since $x \in \text{dom}[\alpha]$ and $x \in U$, we get $|\alpha(x)| \in |\alpha_*(U)|$. So, since $|\alpha_*(U)| \leq M$, we get $|\alpha(x)| \leq M$. Since $||\bullet|| \leq K \cdot |\bullet|$, we get $||\alpha(x)|| \leq K \cdot |\alpha(x)|$. Then $||\alpha(x)|| \leq K \cdot |\alpha(x)| \leq KM$, as desired. QED

12-2. Let V and W both be finite dimensional vector spaces, and let $\alpha : V \dashrightarrow W$. Assume that dom $[\alpha] \in \mathcal{N}_V(0_V)$. Assume that α is continuous at 0_V . Show: $\alpha \in \widehat{\mathcal{O}}(V, W)$.

Proof: Choose $|\bullet|_V \in \mathcal{N}(V)$ and $|\bullet|_W \in \mathcal{N}(W)$. We wish to show: $\exists U \in \mathcal{N}_V(0_V)$ such that

$$[U \subseteq \operatorname{dom}[\alpha]]$$
 and $[\sup |\alpha_*(U)|_W < \infty].$

Let $z := \alpha(0_V)$. Since α is continuous at 0_V , choose $\delta > 0$ such that, $\forall x \in \text{dom}[\alpha]$, we have: $[|x|_V < \delta] \Rightarrow [|[\alpha(x)] - z|_W < 1]$. We define $U := (\text{dom}[\alpha]) \cap (B_V(0_V, \delta))$. Since $\text{dom}[\alpha] \in \mathcal{N}_V(0_V)$ and since $B_V(0_V, \delta) \in \mathcal{N}_V(0_V)$, it follows that $U \in \mathcal{N}_V(0_V)$. Moreover, we have both $U \subseteq \text{dom}[\alpha]$ and $U \subseteq B_V(0_V, \delta)$. It remains to show: $\sup |\alpha_*(U)|_W < \infty$. Let $M := 1 + [|z|_W]$. It suffices to show: $|\alpha_*(U)|_W \leq M$. We wish to prove: $\forall x \in \operatorname{dom} [\alpha]$,

 $[x \in U] \quad \Rightarrow \quad [|\alpha(x)|_W \leq M].$

Let $x \in \text{dom}[\alpha]$ be given. We wish to prove:

$$[x \in U] \quad \Rightarrow \quad [|\alpha(x)|_W \leqslant M].$$

Assume that $x \in U$. We wish to prove: $|\alpha(x)|_W \leq M$.

Since $x \in U \subseteq B_V(0_V, \delta)$, we conclude that $|x|_V < \delta$. So, since $x \in \text{dom} [\alpha]$, by choice of δ , we conclude that: $|[\alpha(x)] - z|_W < 1$. Let $y := \alpha(x)$. Then $|y - z|_W < 1$, and we wish to prove: $|y|_W \leq M$.

Since y = (y - z) + z, we get $|y|_W \leq [|y - z|_W] + [|z|_W]$. Then $|y|_W < 1 + [|z|_W] = M$, as desired. QED

12-3. Let V and W both be finite dimensional vector spaces, and let $|\bullet|, ||\bullet|| \in \mathcal{N}(V)$, and let p > 0. Show:

(1) $\check{\mathcal{O}}_p(V, W, |\bullet|) \subseteq \check{\mathcal{O}}_p(V, W, \|\bullet\|)$ and (2) $\widehat{\mathcal{O}}_p(V, W, |\bullet|) \subseteq \widehat{\mathcal{O}}_p(V, W, \|\bullet\|).$

Proof: Let $\alpha := \operatorname{adj}_{0_V}^1([\|\bullet\|^p]/[|\bullet|^p]), \beta := \operatorname{adj}_{0_V}^1([|\bullet|^p]/[\|\bullet\|^p]).$ Then $\alpha, \beta : V \to \mathbb{R}$. Also, for all $x \in V \setminus \{0_V\}$, we have:

$$(\alpha\beta)(x) = \left[\frac{\|x\|^p}{|x|^p}\right] \cdot \left[\frac{|x|^p}{\|x\|^p}\right] = 1 = C_V^1(x).$$

So, since $(\alpha\beta)(0_V) = 1 \cdot 1 = 1 = C_V^1(0_V)$, we conclude that $\alpha\beta = C_V^1$.

By Theorem 46.3 p. 332, $|\bullet| \approx ||\bullet||$, so $|\bullet| << ||\bullet||$, so choose C > 0 such that $|\bullet| \leq C \cdot ||\bullet||$. Then, for all $x \in V \setminus \{0_V\}$,

$$\beta(x) = \frac{|x|^p}{\|x\|^p} = \left[\frac{|x|}{\|x\|}\right]^p \leq \left[\frac{C \cdot \|x\|}{\|x\|}\right]^p = C^p.$$

Let $K := \max\{C^p, 1\}$. Then $K \ge 1$, so K > 0. Also, for all $x \in V$, we have $0 \le \beta(x) \le K$, and so $|\beta(x)| = \beta(x) \le K$. Choose $||| \bullet ||| \in \mathcal{N}(W)$.

Claim A: $\check{o}(V, W) \subseteq \alpha \cdot [\check{o}(V, W)]$. Proof of Claim A: We wish to show: $\forall \gamma \in \check{o}(V, W), \gamma \in \alpha \cdot [\check{o}(V, W)]$. Let $\gamma \in \check{o}(V, W)$ be given. Want: $\gamma \in \alpha \cdot [\check{o}(V, W)]$. Since $\gamma = \gamma \cdot C_V^1 = \gamma \cdot [\alpha\beta] = \alpha \cdot [\beta\gamma]$, it suffices to show that $\beta\gamma \in \check{o}(V, W)$. We wish to show:

- dom $[\beta \gamma] \in \mathcal{N}_V(0_V),$
- $(\beta \gamma)(0_V) = 0_W$ and
- $\beta \gamma : V \dashrightarrow W$ is continuous at 0_V .

Since $\gamma \in \check{\mathcal{O}}(V, W)$, it follows that:

- dom $[\gamma] \in \mathcal{N}_V(0_V),$
- $\gamma(0_V) = 0_W$ and
- $\gamma: V \dashrightarrow W$ is continuous at 0_V .

Since dom $[\beta] = V$ and since dom $[\gamma] \subseteq V$, we get dom $[\beta\gamma] = \text{dom} [\gamma]$. Then dom $[\beta\gamma] = \text{dom} [\gamma] \in \mathcal{N}_V(0_V)$. Also, $(\beta\gamma)(0_V) = 1 \cdot 0_W = 0_W$. It remains to show: $\beta\gamma : V \dashrightarrow W$ is continuous at 0_V . We wish to show: $\forall \varepsilon > 0, \exists \delta > 0$ such that, for all $x \in \text{dom} [\beta\gamma]$,

$$[|x| < \delta] \implies [|||(\beta\gamma)(x)||| < \varepsilon].$$

Let $\varepsilon > 0$ be given. Want: $\exists \delta > 0$ such that, for all $x \in \text{dom}[\beta \gamma]$,

$$[|x| < \delta] \implies [|||(\beta\gamma)(x)||| < \varepsilon].$$

As $\gamma: V \dashrightarrow W$ is continuous at 0_V , choose $\delta > 0$ s.t., $\forall x \in \text{dom}[\gamma]$,

$$[|x| < \delta] \implies [|||\gamma(x)||| < \varepsilon/K].$$

We wish to show: $\forall x \in \text{dom} [\beta \gamma],$

$$\left[\begin{array}{c} |x| < \delta \end{array} \right] \quad \Rightarrow \quad \left[\begin{array}{c} |||(\beta\gamma)(x)||| < \varepsilon \end{array} \right].$$

Let $x \in \text{dom} [\beta \gamma]$ be given. We wish to show:

$$[|x| < \delta] \implies [|||(\beta\gamma)(x)||| < \varepsilon].$$

Assume that $|x| < \delta$. We wish to show: $|||(\beta \gamma)(x)||| < \varepsilon$.

We have $x \in \text{dom} [\beta \gamma] \subseteq \text{dom} [\gamma]$. So, since $|x| < \delta$, by choice of δ , we get: $|||\gamma(x)||| < \varepsilon/K$.

We have $x \in \text{dom} [\beta \gamma] \subseteq \text{dom} [\gamma]$, so, as $x \in U$, $\gamma(x) \in \gamma_*(U)$. Then

$$\begin{split} |||\gamma(x)||| &\in |||\gamma_*(U)||| &\leqslant \sup |||\gamma_*(U)||| &= M. \\ \text{Recall: } |\beta(x)| \leqslant K. \text{ Then} \end{split}$$

$$\begin{aligned} |||(\beta\gamma)(x)||| &= |||[\beta(x)] \cdot [\gamma(x)]||| \\ &= |\beta(x)| \cdot |||\gamma(x)||| \\ &< K \cdot (\varepsilon/K) = \varepsilon, \end{aligned}$$

as desired. End of proof of Claim A.

Claim B: $\widehat{\mathcal{O}}(V, W) \subseteq \alpha \cdot [\widehat{\mathcal{O}}(V, W)]$. Proof of Claim B: We wish to show: $\forall \gamma \in \widehat{\mathcal{O}}(V, W), \gamma \in \alpha \cdot [\widehat{\mathcal{O}}(V, W)]$. Let $\gamma \in \widehat{\mathcal{O}}(V, W)$ be given. Want: $\gamma \in \alpha \cdot [\widehat{\mathcal{O}}(V, W)]$. Since $\gamma = \gamma \cdot C_V^1 = \gamma \cdot [\alpha\beta] = \alpha \cdot [\beta\gamma]$, it suffices to show that $\beta\gamma \in \widehat{\mathcal{O}}(V, W)$. Want: $\exists U \in \mathcal{N}_V(0_V)$ such that

 $U \subseteq \operatorname{dom} [\beta \gamma] \quad \text{and} \quad \sup |||(\beta \gamma)_*(U)||| < \infty.$ Since $\gamma \in \widehat{\mathcal{O}}(V, W) = \widehat{\mathcal{O}}(V, W, |\bullet|)$, choose $U \in \mathcal{N}_V(0_V)$ such that $U \subseteq \operatorname{dom}[\gamma]$ and $\sup |||\gamma_*(U)||| < \infty$.

We wish to show:

 $U \subseteq \operatorname{dom} [\beta \gamma]$ and $\sup |||(\beta \gamma)_*(U)||| < \infty.$

As dom $[\beta] = V$ and dom $[\gamma] \subseteq V$, we get dom $[\beta\gamma] = \text{dom}[\gamma]$. Then $U \subseteq \text{dom}[\gamma] = \text{dom}[\beta\gamma]$. It remains to show: $\sup |||(\beta\gamma)_*(U)||| < \infty$.

Let $M := \sup |||\gamma_*(U)|||$. It suffices to show: $|||(\beta\gamma)_*(U)||| \leq KM$. We wish to show: $\forall x \in \operatorname{dom} [\beta\gamma]$,

$$\left[\begin{array}{c} x\in U\end{array}\right] \quad \Rightarrow \quad \left[\begin{array}{c} |||(\beta\gamma)(x)|||\leqslant KM\end{array}\right].$$

Let $x \in \text{dom}[\beta\gamma]$ be given. We wish to show:

$$[x \in U] \quad \Rightarrow \quad [|||(\beta\gamma)(x)|| \leq KM].$$

Assume that $x \in U$. Want: $|||(\beta \gamma)(x)||| \leq KM$

We have $x \in \text{dom} [\beta \gamma] \subseteq \text{dom} [\gamma]$, so, as $x \in U$, $\gamma(x) \in \gamma_*(U)$. Then

 $|||\gamma(x)||| \in |||\gamma_*(U)||| \leq \sup |||\gamma_*(U)||| = M.$

Recall: $|\beta(x)| \leq K$. Then

$$|||(\beta\gamma)(x)||| = |||[\beta(x)] \cdot [\gamma(x)]||| = |\beta(x)| \cdot |||\gamma(x)||| \leqslant KM,$$

as desired. End of proof of Claim B.

Claim C: $[|\bullet|^p] \cdot \alpha = ||\bullet||^p$. Proof of Claim C: On $V \setminus \{0_V\}$, we have $[|\bullet|^p] \cdot \alpha = [|\bullet|^p] \cdot [||\bullet||^p / |\bullet|^p] = ||\bullet||^p$, so it suffices to show that $([|\bullet|^p] \cdot \alpha)(0_V) = (||\bullet||^p)(0_V).$

We have $([|\bullet|^p] \cdot \alpha)(0_V) = 0^p \cdot 1 = 0^p = (||\bullet||^p)(0_V)$, as desired. End of proof of Claim C.

Proof of (1): By Claim A, $[|\bullet|^p] \cdot [\check{o}(V, W)] \subseteq [|\bullet|^p] \cdot \alpha \cdot [\check{o}(V, W)].$ By Claim C, $[|\bullet|^p] \cdot \alpha \cdot [\check{o}(V, W)] = ||\bullet||^p \cdot [\check{o}(V, W)].$ Then

$$\begin{split} \check{o}_p(V, W, |\bullet|) &= [|\bullet|^p] \cdot [\check{o}(V, W)] \\ &\subseteq [|\bullet|^p] \cdot \alpha \cdot [\check{o}(V, W)] \\ &= [\|\bullet\|^p] \cdot [\check{o}(V, W)] \\ &= \check{o}_p(V, W, \|\bullet\|), \end{split}$$

as desired. End of proof of (1).

Proof of (2): By Claim B, $[|\bullet|^p] \cdot [\widehat{\mathcal{O}}(V, W)] \subseteq [|\bullet|^p] \cdot \alpha \cdot [\widehat{\mathcal{O}}(V, W)].$ By Claim C, $[|\bullet|^p] \cdot \alpha \cdot [\widehat{\mathcal{O}}(V, W)] = ||\bullet||^p \cdot [\widehat{\mathcal{O}}(V, W)].$ Then

$$\begin{aligned} \widehat{\mathcal{O}}_p(V, W, |\bullet|) &= [|\bullet|^p] \cdot [\widehat{\mathcal{O}}(V, W)] \\ &\subseteq [|\bullet|^p] \cdot \alpha \cdot [\widehat{\mathcal{O}}(V, W)] \\ &= [\|\bullet\|^p] \cdot [\widehat{\mathcal{O}}(V, W)] \\ &= \widehat{\mathcal{O}}_p(V, W, \|\bullet\|), \end{aligned}$$

as desired. End of proof of (2). QED

12-4. Let V and W both be finite dimensional vector spaces, and let $p, q \ge 0$. Assume p < q. Show: $\check{o}_p(V, W) \supseteq \hat{O}_q(V, W)$.

Proof: We want: $\forall \gamma \in \widehat{\mathcal{O}}_q(V, W), \ \gamma \in \widecheck{\mathcal{O}}_p(V, W)$. Let $\gamma \in \widehat{\mathcal{O}}_q(V, W)$ be given. We wish to show: $\gamma \in \widecheck{\mathcal{O}}_p(V, W)$.

Chose $|\bullet| \in \mathcal{N}(V)$. Then $\widehat{\mathcal{O}}_q(V,W) = [|\bullet|^q] \cdot [\widehat{\mathcal{O}}(V,W)]$ and $\check{\mathcal{O}}_p(V,W) = [|\bullet|^p] \cdot [\check{\mathcal{O}}(V,W)]$. We have $\gamma \in [|\bullet|^q] \cdot [\widehat{\mathcal{O}}(V,W)]$. We wish to show: $\gamma \in [|\bullet|^p] \cdot \check{\mathcal{O}}(V,W)$.

Since $\gamma \in \widehat{\mathcal{O}}_q(V, W) = [|\bullet|^q] \cdot [\widehat{\mathcal{O}}(V, W)]$, choose $\alpha \in \widehat{\mathcal{O}}(V, W)$ such that $\gamma = [|\bullet|^q] \cdot \alpha$. Choose $||\bullet|| \in \mathcal{N}(W)$. Since $\alpha \in \widehat{\mathcal{O}}(V, W)$, choose $U \in \mathcal{N}_V(0_V)$ such that

$$U \subseteq \operatorname{dom} [\alpha]$$
 and $\sup \|\alpha_*(U)\| < \infty$.

Since dom $[\alpha] \supseteq U \in \mathcal{N}_V(0_V)$, we see that dom $[\alpha] \in \mathcal{N}_V(0_V)$. Let $\beta := [|\bullet|^{q-p}] \cdot \alpha$. Then $[|\bullet|^p] \cdot \beta = [|\bullet|^q] \cdot \alpha$. Then

 $\gamma \quad = \quad \left[\mid \bullet \mid^{q} \right] \cdot \alpha \quad = \quad \left[\mid \bullet \mid^{p} \right] \cdot \beta,$

and so it suffices to show: $\beta \in \check{\mathcal{O}}(V, W)$. We wish to show:

- dom $[\beta] \in \mathcal{N}_V(0_V),$
- $\beta(0_V) = 0_W$ and
- $\beta: V \dashrightarrow W$ is continuous at 0_V .

Because dom $[| \bullet |^{q-p}] = V$ and because dom $[\alpha] \subseteq V$, we conclude that dom $[[| \bullet |^{q-p}] \cdot \alpha] = \text{dom} [\alpha]$. Then

dom
$$[\beta]$$
 = dom $[[| \bullet |^{q-p}] \cdot \alpha]$ = dom $[\alpha]$.

Then dom $[\beta] = \text{dom} [\alpha] \in \mathcal{N}_v(0_V)$. Also,

$$\beta(0_V) = ([|\bullet|^{q-p}] \cdot \alpha)(0_V) = 0^{q-p} \cdot [\alpha(0_V)] = 0_W$$

It remains to show: $\beta : V \dashrightarrow W$ is continuous at 0_V . We wish to show: $\forall \varepsilon > 0, \exists \delta > 0$ such that, $\forall x \in \text{dom} [\beta]$,

$$[|x| < \delta] \quad \Rightarrow \quad [\|\beta(x)\| < \varepsilon].$$

Let $\varepsilon > 0$ be given. We wish to show: $\exists \delta > 0$ such that, $\forall x \in \text{dom}[\beta]$,

$$[|x| < \delta] \quad \Rightarrow \quad [\|\beta(x)\| < \varepsilon].$$

Since $U \in \mathcal{N}_V(0_V)$ and since $\mathcal{B}_V(0_V)$ is a neighborhood base at 0_V in V, choose $\rho > 0$ such that $B(0_V, \rho) \subseteq U$. Let $M := (\sup \|\alpha_*(U)\|) + 1$. Then M > 0 and $\|\alpha_*(U)\| < M$. Let $\tau := (\varepsilon/M)^{1/(q-p)}$. We define $\delta := \min\{\rho, \tau\}$. We wish to show: $\forall x \in \operatorname{dom}[\beta]$,

$$[|x| < \delta] \quad \Rightarrow \quad [\|\beta(x)\| < \varepsilon].$$

Let $x \in \text{dom}[\beta]$ be given. We wish to show:

$$[|x| < \delta] \quad \Rightarrow \quad [\|\beta(x)\| < \varepsilon].$$

Assume that $|x| < \delta$. We wish to show: $||\beta(x)|| < \varepsilon$.

Since $|x| < \delta \leq \rho$, we get $x \in B_V(0_V, \rho)$. So, since $B_V(0_V, \rho) \subseteq U$, $x \in U$. So, since $x \in \text{dom}[\beta] = \text{dom}[\alpha]$, we have $\alpha(x) \in \alpha_*(U)$. Then $\|\alpha(x)\| \in \|\alpha_*(U)\| < M$. Since $\beta = [|\bullet|^{q-p}] \cdot \alpha$, we conclude that $\beta(x) = [|x|^{q-p}] \cdot [\alpha(x)]$. Since $|x| < \delta \leq \tau$, we get $|x|^{q-p} < \tau^{q-p}$. Then $\|\beta(x)\| = [|x|^{q-p}] \cdot \|\alpha(x)\| < [\tau^{q-p}] \cdot M = [\varepsilon/M] \cdot M = \varepsilon$. QED

12-5. Let $p, q \ge 0$. Show:

$$\left(\begin{array}{c} \left[\left(\check{\mathcal{O}}_{p}(\mathbb{R},\mathbb{R}) \right) \cdot \left(\check{\mathcal{O}}_{q}(\mathbb{R},\mathbb{R}) \right) \subseteq \check{\mathcal{O}}_{p+q}(\mathbb{R},\mathbb{R}) \end{array} \right] \quad \text{and} \\ \left[\left(\check{\mathcal{O}}_{q}(\mathbb{R},\mathbb{R}) \right) \circ \left(\check{\mathcal{O}}_{p}(\mathbb{R},\mathbb{R}) \right) \subseteq \left. \check{\mathcal{O}}_{qp}(\mathbb{R},\mathbb{R}) \right] \right).$$

Proof: Let $\check{\sigma} := \check{\sigma}(\mathbb{R}, \mathbb{R})$. By (1) of Fact 47.10 p. 342, we have $\check{\sigma} \cdot \check{\sigma} \subseteq \check{\sigma}$. Then

$$(\check{o}_p(\mathbb{R},\mathbb{R})) \cdot (\check{o}_q(\mathbb{R},\mathbb{R})) = |\bullet|^p \cdot \check{o} \cdot |\bullet|^q \cdot \check{o}$$
$$= |\bullet|^p \cdot |\bullet|^q \cdot \check{o} \cdot \check{o}$$
$$\subseteq |\bullet|^{p+q} \cdot \check{o}$$
$$= \check{o}_{p+q}(\mathbb{R},\mathbb{R}).$$

It remains to show: $(\check{o}_q(\mathbb{R},\mathbb{R})) \circ (\check{o}_p(\mathbb{R},\mathbb{R})) \subseteq \check{o}_{qp}(\mathbb{R},\mathbb{R})$. We want: $\forall f \in \check{o}_p(\mathbb{R},\mathbb{R}), \forall g \in \check{o}_q(\mathbb{R},\mathbb{R}), g \circ f \in \check{o}_{qp}(\mathbb{R},\mathbb{R})$. Let $f \in \check{o}_p(\mathbb{R},\mathbb{R})$ and $g \in \check{o}_q(\mathbb{R},\mathbb{R})$ be given. We wish to prove: $g \circ f \in \check{o}_{qp}(\mathbb{R},\mathbb{R})$. Since $f \in \check{\mathcal{O}}_p(\mathbb{R}, \mathbb{R}) = |\bullet|^p \cdot \check{\mathcal{O}}$, choose $\delta \in \check{\mathcal{O}}$ s.t. $f = |\bullet|^p \cdot \delta$. Since $g \in \check{\mathcal{O}}_p(\mathbb{R}, \mathbb{R}) = |\bullet|^q \cdot \check{\mathcal{O}}$, choose $\varepsilon \in \check{\mathcal{O}}$ s.t. $g = |\bullet|^q \cdot \varepsilon$. For all $x \in \mathbb{R}$,

$$g(f(x)) = (|\bullet|^{q} \cdot \varepsilon)(f(x)) = |f(x)|^{q} \cdot [\varepsilon(f(x))]$$

$$= |(|\bullet|^{p} \cdot \delta)(x)|^{q} \cdot [\varepsilon(f(x))]$$

$$= |x|^{p} \cdot [\delta(x)]|^{q} \cdot [\varepsilon(f(x))]$$

$$= |x|^{qp} \cdot |\delta(x)|^{q} \cdot [\varepsilon(f(x))].$$

Then $g \circ f = |\bullet|^{qp} \cdot |\delta|^q \cdot [\varepsilon \circ f].$

By Fact 47.12 p. 342, (with V and W both replaced by \mathbb{R} , $\|\bullet\|$ by $|\bullet|$ and p by q), $|\check{o}|^q \subseteq \check{o}$. Then $|\delta|^q \in |\check{o}|^q \subseteq \check{o}$.

We have $f \in \check{o}_p(\mathbb{R}, \mathbb{R}) \subseteq \check{o}_0(\mathbb{R}, \mathbb{R}) = \check{o}$. By (1) of Fact 47.11 p. 342 (with V, W and X all replaced by \mathbb{R}), $\check{o} \circ \check{o} \subseteq \check{o}$. Then $\varepsilon \circ f \in \check{o} \circ \check{o} \subseteq \check{o}$.

Recall that $\check{\mathcal{O}} \cdot \check{\mathcal{O}} \subseteq \check{\mathcal{O}}$. Then $|\delta|^q \cdot [\varepsilon \circ f] \in \check{\mathcal{O}} \cdot \check{\mathcal{O}} \subseteq \check{\mathcal{O}}$. It follows that $g \circ f = |\bullet|^{qp} \cdot |\delta|^q \cdot [\varepsilon \circ f] \in |\bullet|^{qp} \cdot \check{\mathcal{O}} = \check{\mathcal{O}}_{qp}(\mathbb{R}, \mathbb{R})$, as desired. QED

Homework 11: Due on Tuesday 10 April

11-1. Let $S \subseteq \mathbb{R}$. Assume that S has a minimum. (That is, assume: $\exists a \in S \text{ s.t. } a \leq S$.) Show that $\inf S = \min S \in S$.

Proof: Choose $a \in S$ s.t. $a \leq S$. Since $a \leq S$, we get $a \in LB(S)$. Since $a \in S$ and $a \in LB(S)$, we get $a \in S \cap [LB(S)]$.

Claim: $S \cap [LB(S)] = \{a\}$. Proof of Claim: Since $a \in S \cap [LB(S)]$, we have $\{a\} \subseteq S \cap [LB(S)]$. We wish to show: $S \cap [LB(S)] \subseteq \{a\}$. We wish to show: $\forall z \in S \cap [LB(S)], z \in \{a\}$. Let $z \in S \cap [LB(S)]$ be given. We wish to show: $z \in \{a\}$. We wish to show: z = a.

We have both $z \in S$ and $z \in LB(S)$. Also, since $a \leq S$, it follows that $S \ge a$. Since $z \in S \ge a$, we get $z \ge a$. It remains to show: $z \le a$.

Since $z \in LB(S)$, it follows that $z \leq S$. So, since $a \in S$, we conclude that $z \leq a$, as desired. End of proof of Claim.

By the Claim, $ELT(S \cap [LB(S)]) = ELT\{a\}$. Then

 $\min S = \operatorname{ELT} (S \cap [\operatorname{LB}(S)]) = \operatorname{ELT} \{a\} = a.$

Since $a \in S$, we get $a \neq \odot$. By Fact 8.13 p. 69, inf $S =^* \min S$. Then inf $S =^* \min S = a \neq \odot$, so inf S = a. Then inf $S = a = \min S$. It remains to show: $\min S \in S$.

We have $\min S = a \in S$, as desired. QED

11-2. Let U be a vector space, let $|\bullet|, ||\bullet|| \in \mathcal{N}(V)$ and let $S \subseteq U$. Let $V := (U, |\bullet|)$ and let $W := (U, ||\bullet||)$. Assume both that $|\bullet| << ||\bullet||$, and that S is bounded in W. Show that S is bounded in V.

Proof: Since S is bounded in W, choose $A \in \mathcal{B}_W$ s.t. $S \subseteq A$. Since $A \in \mathcal{B}_W$, choose $p \in W$ and r > 0 s.t. $A = B_W(p, r)$. Since $|\bullet| << ||\bullet||$, choose K > 0 s.t. $|\bullet| \leq K \cdot ||\bullet||$. It suffices to show: $S \subseteq B_V(p, Kr)$. We wish to show: $\forall q \in S, q \in B_V(p, Kr)$. Let $q \in S$ be given. We wish to show: $q \in B_V(p, Kr)$. That is, we wish to show: $|q - p|_V < Kr$.

Since $q \in S \subseteq A = B_W(p, r)$, it follows that $|q - p|_W < r$. So, since K > 0, we get $K \cdot |q - p|_W < Kr$. We have $|\bullet|_V = |\bullet|$ and $|\bullet|_W = ||\bullet||$. Then $|q - p|_V = |q - p|$ and $|q - p|_W = ||q - p||$.

Since $|\bullet| \leq K \cdot ||\bullet||$, we get $|q-p| \leq K \cdot ||q-p||$. Then

$$|q-p|_V = |q-p| \leq K \cdot ||q-p|| = K \cdot |q-p|_W < Kr$$

as desired. QED

11-3. Let V and W be normed vector spaces, and let $T \in L(V, W)$. Assume that $T: V \to W$ is bounded below. Show that T is 1-1.

Proof: By (3) of Fact 44.3 p. 319, it suffices to show: $\ker[T] = \{0_V\}$. By (1) of Fact 44.3 p. 319, $\ker[T]$ is a vector subspace of V, and so $\{0_V\} \subseteq \ker[T]$. We wish to show: $\ker[T] \subseteq \{0_V\}$. We wish to show: $\forall x \in \ker[T], x \in \{0_V\}$. Given $x \in \ker[T]$. Want: $x \in \{0_V\}$.

Since $x \in \ker[T] = T^*(\{0_W\})$, we get $Tx \in \{0_W\}$. Then $Tx = 0_W$.

Since T is bounded below, we see that $\check{T} > 0$. Let $\varepsilon := \check{T}$. Then $\varepsilon > 0$ and T is ε -bounded below. Then, by HW#10-1, $|Tx|_W \ge \varepsilon |x|_V$. Then $\varepsilon |x|_V \le |Tx|_W = |0_W|_W = 0$. Since $\varepsilon > 0$ and $\varepsilon |x|_V \le 0$, we see that $|x|_V \le 0$. So, since $|x|_V \ge 0$, we get $|x|_V = 0$. It follows that $x = 0_V$, so $x \in \{0_V\}$, as desired. QED

11-4. Let $T \in L(\mathbb{R}^4, \mathbb{R}^4)$ be defined by $Tx = (6x_1, 5x_2, 8x_3, 7x_4)$, and define $V := (\mathbb{R}^4, |\bullet|_{4,2})$. Show that $\check{T}_{VV} = 5$ and that $\widehat{T}_{VV} = 8$.

Proof: We wish to show:

(1) $\check{T}_{VV} \leq 5$, (2) $\check{T}_{VV} \geq 5$, (3) $\hat{T}_{VV} \leq 8$ and (4) $\hat{T}_{VV} \geq 8$. Let e_{\bullet} be the standard basis of \mathbb{R}^4 . Then

$$e_1 = (1, 0, 0, 0), e_2 = (0, 1, 0, 0), e_3 = (0, 0, 1, 0), e_4 = (0, 0, 0, 1).$$

So, since $|\bullet|_V = |\bullet|_{4,2}$, we get

$$|e_1|_V = |e_2|_V = |e_3|_V = |e_4|_V = 1,$$

so $e_1, e_2, e_3, e_4 \in S_V$. So, since $e_1, e_2, e_3, e_4 \in V = \text{dom}[T]$, we conclude that $T(e_1), T(e_2), T(e_3), T(e_4) \in T_*(S_V)$. Let $E := E\ell\ell_T$. Then

$$E = T_*(S_V), \qquad \check{T}_{VV} = \inf |E|_V, \qquad \widehat{T}_{VV} = \sup |E|_V$$

We have $T(e_1), T(e_2), T(e_3), T(e_4) \in T_*(S_V) = E$.

Proof of (1): We have $T(e_2) = 5e_2$. Also, $|5e_2|_V = 5 \cdot |e_2|_V = 5 \cdot 1 = 5$. Then $5e_2 = T(e_2) \in E$. Then $5 = |5e_2|_V \in |E|_V \ge \inf |E_V| = \check{T}_{VV}$. Then $\check{T}_{VV} \le 5$, as desired. End of proof of (1).

Proof of (2): We want: $T: V \to V$ is 5-bounded below. We want: $\forall x \in V, |Tx|_V \ge 5 \cdot |x|_V$. Given $x \in V$. Want: $|Tx|_V \ge 5 \cdot |x|_V$. We have

$$\begin{aligned} |Tx|_V^2 &= |(6x_1, 5x_2, 8x_3, 7x_4)|_V^2 &= |(6x_1, 5x_2, 8x_3, 7x_4)|_{4,2}^2 \\ &= (6x_1)^2 + (5x_2)^2 + (8x_3)^2 + (7x_4)^2 \\ &= 36x_1^2 + 25x_2^2 + 64x_3^2 + 49x_4^2 \\ &\geqslant 25x_1^2 + 25x_2^2 + 25x_3^2 + 25x_4^2 \\ &= 25(x_1^2 + x_2^2 + x_3^2 + x_4^2) \\ &= 25 \cdot |x|_{4,2}^2 &= 25 \cdot |x|_V^2. \end{aligned}$$

So, since $25 \cdot |x|_V^2 \ge 0$, we get $\sqrt{|Tx|_V^2} \ge \sqrt{25 \cdot |x|_V^2}$. Then

$$|Tx|_{V} = \sqrt{|Tx|_{V}^{2}} \ge \sqrt{25 \cdot |x|_{V}^{2}} = \sqrt{25} \cdot \sqrt{|x|_{V}^{2}} = 5 \cdot |x|_{V},$$

as desired. End of proof of (2).

Proof of (3): We wish to show: $T: V \to V$ is 8-bounded. We want: $\forall x \in V, |Tx|_V \leq 8 \cdot |x|_V$. Given $x \in V$. Want: $|Tx|_V \leq 8 \cdot |x|_V$. We have

$$\begin{aligned} |Tx|_V^2 &= |(6x_1, 5x_2, 8x_3, 7x_4)|_V^2 &= |(6x_1, 5x_2, 8x_3, 7x_4)|_{4,2}^2 \\ &= (6x_1)^2 + (5x_2)^2 + (8x_3)^2 + (7x_4)^2 \\ &= 36x_1^2 + 25x_2^2 + 64x_3^2 + 49x_4^2 \\ &\leqslant 64x_1^2 + 64x_2^2 + 64x_3^2 + 64x_4^2 \\ &= 64(x_1^2 + x_2^2 + x_3^2 + x_4^2) \\ &= 64 \cdot |x|_{4,2}^2 &= 64 \cdot |x|_V^2. \end{aligned}$$

So, since $0 \leq |Tx|_V^2$, we get $\sqrt{|Tx|_V^2} \leq \sqrt{64 \cdot |x|_V^2}$. Then

$$|Tx|_V = \sqrt{|Tx|_V^2} \leqslant \sqrt{64 \cdot |x|_V^2} = \sqrt{64} \cdot \sqrt{|x|_V^2} = 8 \cdot |x|_V,$$

as desired. End of proof of (3).

Proof of (4): We have $T(e_3) = 8e_3$. Also, $|8e_3|_V = 8 \cdot |e_3|_V = 8 \cdot 1 = 8$. Then $8e_3 = T(e_3) \in E$. Then $8 = |8e_3|_V \in |E|_V \leq \sup |E_V| = \hat{T}_{VV}$. Then $\check{T}_{VV} \geq 8$, as desired. End of proof of (4). QED

11-5. Let V and W be normed vector spaces and let $T: V \hookrightarrow W$ be a vector space isomorphism. Assume $T: V \to W$ is bounded below. Show that $T^{-1}: W \to V$ is bounded.

Proof: As $T: V \to W$ is bounded below, $\check{T}_{VW} > 0$. Let $\varepsilon := \check{T}_{VW}$. Then $\varepsilon > 0$ and $T: V \to W$ is ε -bounded below. Let $K := 1/\varepsilon$. Then K > 0, $K\varepsilon = 1$, and it suffices to show: $T^{-1}: W \to V$ is K-bounded. We wish to show: $\forall y \in W$, $|T^{-1}(y)|_V \leq K \cdot |y|_W$. Let $y \in W$ be given. We wish to show: $|T^{-1}(y)|_V \leq K \cdot |y|_W$.

Let $x := T^{-1}(y)$. Then Tx = y. Since $T : V \to W$ is ε -bounded below, we get $|Tx|_W \ge \varepsilon \cdot |x|_V$. So, since K > 0, $K \cdot |Tx|_W \ge (K\varepsilon) \cdot |x|_V$. So, since $K\varepsilon = 1$, we get $K \cdot |Tx|_W \ge |x|_V$. That is, $|x|_V \le K \cdot |Tx|_W$. Then $|T^{-1}(y)|_V = |x|_V \le K \cdot |Tx|_W = K \cdot |y|_W$, as desired. QED

Homework 10: Due on Tuesday 3 April

10-1. Let V and W be normed vector spaces, $T \in L(V, W)$ and $\varepsilon > 0$. Show: $[T \text{ is } \varepsilon\text{-bounded below}] \Leftrightarrow [\forall x \in V, |Tx|_W \ge \varepsilon |x|_V].$

Proof: Proof of \Rightarrow : Assume that T is ε -bounded below. We want: $\forall x \in V, |Tx|_W \ge \varepsilon |x|_V$. Let $x \in V$ be given. Want: $|Tx|_W \ge \varepsilon |x|_V$. By Fact 42.5 p. 306, choose $a \ge 0$ and $u \in S_V$ s.t. x = au. Since $a \ge 0$, we get |a| = a. Since $u \in S_V$, it follows that $|u|_V = 1$. Then $|x|_V = |au|_V = |a| \cdot |u|_V = a \cdot 1 = a$. Want: $|Tx|_W \ge \varepsilon a$.

We have $u \in S_V \subseteq V = \text{dom}[T]$. So, as $u \in S_V$, we get $Tu \in T_*(S_V)$. So, since $T_*(S_V) = E\ell\ell_T$, we get $Tu \in E\ell\ell_T$. Since T is ε -bounded below, we have $\check{T} \ge \varepsilon$. Then

$$|Tu|_W \in |E\ell\ell_T|_W \ge \inf |E\ell\ell_T|_W = \check{T} \ge \varepsilon,$$

so, since |a| = a, we get $|a| \cdot |Tu|_W \ge \varepsilon a$. Then

$$|Tx|_W = |T(au)|_W = |a \cdot [Tu]|_W = |a| \cdot |Tu|_W \ge \varepsilon a,$$

as desired. End of proof of \Rightarrow .

Proof of \Leftarrow : Assume that $\forall x \in V, |Tx|_W \ge \varepsilon |x|_V$. We wish to show: T is ε -bounded below. Want: $\check{T} \ge \varepsilon$. So, since $\check{T} = \inf |E\ell\ell_T|_W$, it suffices to show: $|E\ell\ell_T|_W \ge \varepsilon$. We wish to show: $\forall s \in |E\ell\ell_T|_W$, $s \ge \varepsilon$. Let $s \in |E\ell\ell_T|_W$ be given. We wish to show: $s \ge \varepsilon$.

Since $s \in |E\ell\ell_T|_W$, choose $y \in E\ell\ell_T$ such that $s = |y|_W$. Since $y \in E\ell\ell_T = T_*(S_V)$, choose $u \in S_V$ such that y = Tu. By assumption, $|Tu|_W \ge \varepsilon |u|_V$. Since $u \in S_V$, we conclude that $|u|_V = 1$. Then $s = |y|_W = |Tu|_W \ge \varepsilon |u|_V = \varepsilon \cdot 1 = \varepsilon$. End of proof of \Leftarrow . QED

10-2. Let $m \in \mathbb{N}$. Show: $|\bullet|_{m,\infty} \leq |\bullet|_{m,2} \leq |\bullet|_{m,1} \leq m \cdot |\bullet|_{m,\infty}$.

Proof: We wish to show:

- (1) $|\bullet|_{m,\infty} \leq |\bullet|_{m,2}$,
- (2) $|\bullet|_{m,2} \leq |\bullet|_{m,1}$, and
- (3) $|\bullet|_{m,1} \leq m \cdot |\bullet|_{m,\infty}$.

Proof of (1): Want: $\forall x \in \mathbb{R}^m$, $|x|_{m,\infty} \leq |x|_{m,2}$. Let $x \in \mathbb{R}^m$ be given. We wish to prove: $|x|_{m,\infty} \leq |x|_{m,2}$.

Let $a := |x|_{m,2}$. Want: $|x|_{m,\infty} \leq a$. As $|x|_{m,\infty} = \max\{|x_1|, \ldots, |x_m|\}$, it suffices to show $\{|x_1|, \ldots, |x_m|\} \leq a$. Want: $\forall t \in \{|x_1|, \ldots, |x_m|\}$, $t \leq a$. Let $t \in \{|x_1|, \ldots, |x_m|\}$ be given. Want: $t \leq a$.

Since $t \in \{|x_1|, \ldots, |x_m|\}$, choose $j \in [1..m]$ such that $t = |x_j|$. We have $0 \leq x_j^2 \leq x_1^2 + \cdots + x_m^2$. Then $\sqrt{x_j^2} \leq \sqrt{x_1^2 + \cdots + x_m^2}$. Then

$$t = |x_j| = \sqrt{x_j^2} \leqslant \sqrt{x_1^2 + \dots + x_m^2} = |x|_2 = a,$$

as desired. End of proof of (1).

Proof of (2): Want: $\forall x \in \mathbb{R}^m, |x|_{m,2} \leq |x|_{m,1}$. Let $x \in \mathbb{R}^m$ be given. We wish to prove: $|x|_{m,2} \leq |x|_{m,1}$.

Let I := [1..m]. For all $j \in I$, let $a_j := |x_j|$. For all $j \in I$, we have $a_j^2 = |x_j|^2 = x_j^2$. Then $|x|_{m,2} = \sqrt{x_1^2 + \dots + x_m^2} = \sqrt{a_1^2 + \dots + a_m^2}$. Also, we have $|x|_{m,1} = |x_1| + \dots + |x_m| = a_1 + \dots + a_m$.

Let $K := \{r \in I^2 \mid r_1 \neq r_2\}$. For all $j \in I$, we have $a_j = |x_j| \ge 0$. Then, for all $r \in K$, we have $a_{r_1}a_{r_2} \ge 0$. It follows that $\sum_{r_1} a_{r_1}a_{r_2} \ge 0$.

Let $S := \sum_{r \in V} a_{r_1} a_{r_2}$. Then $S \ge 0$. We have

$$(a_1 + \dots + a_m)^2 = (a_1^2 + \dots + a_m^2) + S.$$

So, since $S \ge 0$, we get $(a_1 + \dots + a_m)^2 \ge a_1^2 + \dots + a_m^2$. $0 \le a_1^2 + \dots + a_m^2 \le (a_1 + \dots + a_m)^2$, we see that Since

$$\sqrt{a_1^2 + \dots + a_m^2} \leqslant \sqrt{(a_1 + \dots + a_m)^2}.$$

Recall: $\forall j \in I, a_j \ge 0$. It follows that $a_1 + \cdots + a_m \ge 0$. Then we have $|a_1 + \cdots + a_m| = a_1 + \cdots + a_m$. Then

$$|x|_{m,2} = \sqrt{a_1^2 + \dots + a_m^2}$$

$$\leq \sqrt{(a_1 + \dots + a_m)^2}$$

$$\leq |a_1 + \dots + a_m|$$

$$= a_1 + \dots + a_m = |x|_{m,1}$$

as desired. End of proof of (2).

Proof of (3): Want: $\forall x \in \mathbb{R}^m, |x|_{m,1} \leq m \cdot |x|_{m,\infty}$. Let $x \in \mathbb{R}^m$ be given. Want: $|x|_{m,1} \leq m \cdot |x|_{m,\infty}$. Let $a := |x|_{m,\infty}$. Want: $|x|_{m,1} \leq ma$. For all $j \in [1..m]$, we have $|x_j| \leq \max\{|x_1|, ..., |x_m|\} = |x|_{m,\infty} = a$. Then $|x|_{m,1} = |x_1| + \cdots + |x_m| \leq ma$. End of proof of (3). QED

10-3. Let V be a normed vector space, let Z be a topological space, let $\mu: V \dashrightarrow Z$ and let $p \in V$. Let $\lambda := \mu(p + \bullet)$. Show: $\lim_{0 \to V} \lambda = \lim_{p \to V} \mu$.

Proof: It suffices to show: LIMS $\lambda = \operatorname{LIMS} \mu$. Proof of \subseteq : Want: $\forall y \in \operatorname{LIMS}_{0_V} \lambda, y \in \operatorname{LIMS}_p \mu$. Given $y \in \operatorname{LIMS}_{0_V} \lambda$. Want: $y \in \operatorname{LIMS}_p \mu$. Know: $\lambda \to y$ near 0_V . Want: $\mu \to y$ near p. We wish to show: $\forall U \in \mathcal{N}_Z(y), \exists \delta > 0 \text{ s.t.}, \forall x \in \text{dom}[\mu],$

$$\left[\begin{array}{cc} 0 < |x - p|_V < \delta \end{array}\right] \quad \Rightarrow \quad \left[\begin{array}{c} \mu(x) \in U \end{array}\right]$$

Let $U \in \mathcal{N}_Z(y)$ be given. We wish to show: $\exists \delta > 0 \text{ s.t.}, \forall x \in \text{dom}[\mu],$

$$\begin{bmatrix} 0 < |x - p|_V < \delta \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} \mu(x) \in U \end{bmatrix}.$$

Since $\lambda \to y$ near 0_V , choose $\delta > 0$ s.t., $\forall h \in \text{dom}[\lambda]$,

 $\begin{bmatrix} 0 < |h|_V < \delta \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} \lambda(h) \in U \end{bmatrix}.$

We wish to show: $\forall x \in \text{dom}[\mu]$,

$$\begin{bmatrix} 0 < |x - p|_V < \delta \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} \mu(x) \in U \end{bmatrix}.$$

Let $x \in \text{dom}[\mu]$ be given. We wish to show:

$$\begin{bmatrix} 0 < |x - p|_V < \delta \end{bmatrix} \implies \begin{bmatrix} \mu(x) \in U \end{bmatrix}.$$

Assume that $0 < |x - p|_V < \delta$. We wish to show: $\mu(x) \in V$.

Let h := x - p. Then $h \in (\text{dom} [\mu]) - p = \text{dom} [\lambda]$. Also, $0 < |h|_V < \delta$, so, by choice of δ , we have $\lambda(h) \in U$. By definition of λ , we have $\lambda(h) = \mu(p + h)$. So, since p + h = x, we get $\lambda(h) = \mu(x)$. Then $\mu(x) = \lambda(h) \in U$. End of proof of \subseteq .

Proof of \supseteq : Want: $\forall y \in \underset{p}{\text{LIMS}} \mu, \ y \in \underset{0_V}{\text{LIMS}} \lambda$. Given $y \in \underset{p}{\text{LIMS}} \mu$. Want: $y \in \underset{0_V}{\text{LIMS}} \lambda$. Know: $\mu \to y$ near p. Want: $\lambda \to y$ near 0_V . We wish to show: $\forall U \in \mathcal{N}_Z(y), \ \exists \delta > 0 \text{ s.t.}, \ \forall h \in \text{dom}[\lambda],$

 $[0 < |h|_V < \delta] \quad \Rightarrow \quad [\lambda(h) \in U].$

Let $U \in \mathcal{N}_Z(y)$ be given. We wish to show: $\exists \delta > 0 \text{ s.t.}, \forall h \in \text{dom} [\lambda],$

 $[0 < |h|_V < \delta] \quad \Rightarrow \quad [\lambda(h) \in U].$

Since $\mu \to y$ near p, choose $\delta > 0$ s.t., $\forall x \in \text{dom}[\mu]$,

$$\left[\begin{array}{cc} 0 < |x - p|_V < \delta \end{array}\right] \quad \Rightarrow \quad \left[\begin{array}{c} \mu(x) \in U \end{array}\right]$$

We wish to show: $\forall h \in \operatorname{dom}[\lambda]$,

 $[0 < |h|_V < \delta] \quad \Rightarrow \quad [\lambda(h) \in U].$

Let $h \in \text{dom}[\lambda]$ be given. We wish to show:

 $[\ 0 < |h|_V < \delta \] \quad \Rightarrow \quad [\ \lambda(h) \in U \].$

Assume that $0 < |h|_V < \delta$. We wish to show: $\lambda(h) \in U$.

Let x := p + h. Then $x \in (\text{dom} [\lambda]) + p = \text{dom} [\mu]$. Also, h = x - pThen $0 < |x - p|_V < \delta$, so, by choice of δ , we have $\mu(x) \in U$. By definition of λ , we have $\lambda(h) = \mu(p + h)$. So, since p + h = x, we get $\lambda(h) = \mu(x)$. Then $\lambda(h) = \mu(x) \in U$. End of proof of \supseteq . QED 10-4. Let X be a metric space, let $D \subseteq X$ and let $p \in \text{Int}_X D$. Show that there exists $B \in \mathcal{B}_X(p)$ such that $B \subseteq D$.

Proof: Since $p \in \operatorname{Int}_X D$, choose an open subset U of X such that $p \in U \subseteq D$. Since U is open in X, we have $U \in \mathcal{T}_X$. We have $\mathcal{T}_X = \langle \mathcal{B}_X \rangle_{\cup}$. Then $p \in U \in \langle \mathcal{B}_X \rangle_{\cup}$. Choose $C \in \mathcal{B}_X$ such that $p \in C \subseteq U$. By the Recentering Down Lemma (Lemma 14.2 p. 104), choose $B \in \mathcal{B}_X(p)$ such that $B \subseteq C$. We wish to show: $B \subseteq D$.

We have $B \subseteq C \subseteq U \subseteq D$, as desired. QED

10-5. Let $g : \mathbb{R} \dashrightarrow \mathbb{R}$. Let $p, q \in \mathbb{R}$. Assume g has a local unique min at p in \mathbb{R} . Show: $g + C_{\mathbb{R}}^q$ has a local unique min at p in \mathbb{R} .

Proof: Let $h := g + C^q_{\mathbb{R}}$. We wish to show: $\exists V \in \mathcal{N}_X(p)$ s.t.

 $(V \subseteq \operatorname{dom}[h])$ and $(h(p) < h_*(V_p^{\times})).$

Since g has a local unique min at p in \mathbb{R} , choose $V \in \mathcal{N}_X(p)$ s.t.

 $(V \subseteq \operatorname{dom}[g])$ and $(g(p) < g_*(V_p^{\times})).$

We wish to show:

$$(V \subseteq \operatorname{dom}[h])$$
 and $(h(p) < h_*(V_p^{\times})).$

We have dom $[h] = \text{dom} [g + C_{\mathbb{R}}^q] = (\text{dom} [g]) \cap (\text{dom} [C_{\mathbb{R}}^q])$. So, since dom $[g] \subseteq \mathbb{R} = \text{dom} [C_{\mathbb{R}}^q]$, we get dom [h] = dom [g]. Then we have $V \subseteq \text{dom} [g] = \text{dom} [h]$. It remains to show: $h(p) < h_*(V_p^{\times})$. We wish to show: $\forall y \in h_*(V_p^{\times}), h(p) < y$. Let $y \in h_*(V_p^{\times})$ be given. We wish to show: h(p) < y. Since $y \in h_*(V_p^{\times})$, choose $x \in \text{dom} [h]$ such that: both $x \in V_p^{\times}$ and y = h(x). We wish to show h(p) < h(x).

Since $x \in \text{dom}[h] = \text{dom}[g]$ and since $x \in V_p^{\times}$, it follows that $g(x) \in g_*(V_p^{\times})$. So, since $g(p) < g_*(V_p^{\times})$, we get g(p) < g(x). Then [g(p)] + q < [g(x)] + q. So since

$$h(p) = (g + C_{\mathbb{R}}^{q})(p) = [g(p)] + (C_{\mathbb{R}}^{q})(p)] = [g(p)] + q$$

and $h(x) = (g + C_{\mathbb{R}}^{q})(x) = [g(x)] + (C_{\mathbb{R}}^{q})(x)] = [g(x)] + x,$
we conclude that $h(p) < h(x)$, as desired. QED

Homework 9: Due on Tuesday 27 March

9-1. Let V and W be normed vector spaces, $T \in L(V, W)$ and $K \ge 0$. Show: $[T \text{ is } K\text{-bounded }] \iff [\forall x \in V, |Tx|_W \le K \cdot |x|_V].$ *Proof:* Proof of \Rightarrow : Assume that T is K-bounded. We wish to show: $\forall x \in V, |T(x)|_W \leq K \cdot |x|_V$. Given $x \in V$. Want: $|T(x)|_W \leq K \cdot |x|_V$.

Since T is K-bounded, we have $\hat{T} \leq K$. By definition of \hat{T} , we have $|E\ell\ell_T|_W \leq \hat{T}$. By the polar decomposition (Fact 42.5), choose $a \geq 0$ and $u \in S_V$ s.t. x = au. Since $u \in S_V$, we get $|u|_V = 1$. Then $K \cdot |x|_V = K \cdot |au|_V = K \cdot |a| \cdot |u|_V = K \cdot |a| \cdot 1 = |a| \cdot K$.

We have $|T(u)|_W \in |T_*(S_V)|_W = |E\ell\ell_T|_W \leq \widehat{T} \leq K$. Then

$$|T(x)|_{W} = |T(au)|_{W} = |a \cdot [T(u)]|_{W}$$

= $|a| \cdot |T(u)|_{W} \leq |a| \cdot K = K \cdot |x|_{V},$

as desired. End of proof of \Rightarrow .

Proof of \Leftarrow : Assume: $\forall x \in V, |T(x)|_W \leq K \cdot |x|_V$. We wish to show that T is K-bounded. Want: $\widehat{T} \leq K$. Want: $\sup |E\ell\ell_T|_W \leq K$. We wish to show: $|E\ell\ell_T|_W \leq K$. Want: $\forall r \in |E\ell\ell_T|_W, r \leq K$. Let $r \in |E\ell\ell_T|_W$ be given. We want: $r \leq K$.

Choose $y \in E\ell\ell_T$ s.t. $r = |y|_W$. Since $y \in E\ell\ell_T = T_*(S_V)$, choose $u \in S_V$ s.t. y = T(u). We have $|T(u)|_W \leq K \cdot |u|_V$. Since $u \in S_V$, we have $|u|_V = 1$. Then $r = |y|_W = |T(u)|_W \leq K \cdot |u|_V = K \cdot 1 = K$, as desired. End of proof of \Leftarrow . QED

9-2. Let V and W be normed vector spaces and let $K \ge 0$. Let $T \in L(V, W)$ be K-bounded. Show: T is K-Lipschitz. That is, show:

$$\forall x, y \in V,$$
 $| [T(x)] - [T(y)] |_W \leq K \cdot |x - y|_V.$

Proof: Let $x, y \in V$ be given. Want: $|[T(x)] - [T(y)]|_W \leq K \cdot |x - y|_V$.

By HW#9-1, we know: $\forall z \in V$, $|T(z)|_W \leq K \cdot |z|_V$. It follows that $|T(x-y)|_W \leq K \cdot |x-y|_V$. By linearity, T(x-y) = [T(x)] - [T(y)]. Then $|[T(x)] - [T(y)]|_W = |T(x-y)|_W \leq K \cdot |x-y|_V$. QED

9-3. Let Y and Z be metric spaces and let K > 0. Let $f : Y \dashrightarrow Z$ be a K-Lipschitz function. Let $x \in \text{dom}[f]$ and let r > 0. Show that: $f_*(B_Y(x,r)) \subseteq B_Z(f(x),Kr)$.

Proof: We want to show: $\forall p \in \text{dom}[f]$,

$$[p \in B_Y(x,r)] \Rightarrow [f(p) \in B_Z(f(x),Kr)].$$

Let $p \in \text{dom}[f]$ be given. We want to show:

$$[p \in B_Y(x,r)] \Rightarrow [f(p) \in B_Z(f(x),Kr)].$$

Assume $p \in B_Y(x, r)$. We want to show: $f(p) \in B_Z(f(x), Kr)$.

Since $p \in B_Y(x, r)$, we have $d_Y(p, x) < r$. So, since f is K-Lipschitz, $d_Z(f(p), f(x)) < Kr$. Then $f(p) \in B_Z(f(x), Kr)$, as desired. QED

9-4. Let V and W be normed vector spaces and let $T \in L(V, W)$. Assume that T is continuous at 0_V . Show that T is bounded.

Proof: Since T is linear, $T(0_V) = 0_W$. So, since T is continuous at 0_V , choose $\delta > 0$ s.t., for all $x \in V$,

$$[|x|_V < \delta] \quad \Rightarrow \quad [|Tx|_W < 1].$$

Let $K := 2/\delta$. We want: T is K-bounded. By \Leftarrow of Remark 43.1 p. 311, it suffices to show: $\forall u \in S_V$, $|Tu|_W \leq K$. Let $u \in V$ be given: We want to prove: $|Tu|_W \leq K$. It suffices to show: $|Tu|_W < K$.

Since $K = 2/\delta > 0$, we get |K| = K. Also, $|1/K| = |\delta/2| = \delta/2$. Since $u \in S_V$, we have $|u|_V = 1$. Let x := (1/K)u. Then we have $|x|_V = |1/K| \cdot |u|_V = (\delta/2) \cdot 1 = \delta/2 < \delta$. So, by choice of δ , we see that $|Tx|_W < 1$. Then $K \cdot |Tx|_W < K \cdot 1 = K$. Since x = (1/K)u, we get u = Kx, and so, by linearity of T, we have $Tu = K \cdot (Tx)$.

Then $|Tu|_W = |K \cdot (Tx)|_W = |K| \cdot |Tx|_W = K \cdot |Tx|_W < K$. QED

9-5. Let $f, g : \mathbb{R} \dashrightarrow \mathbb{R}$. Assume: $\exists M \in \mathbb{R}$ s.t. $(M, \infty) \subseteq \operatorname{dom} [g'/f']$. Assume: $\lim_{\infty} f = 0 = \lim_{\infty} g$. Show: $\lim_{\infty} (g/f) =^* \lim_{\infty} (g'/f')$.

Proof: Define $\phi, \psi : (0, \infty) \dashrightarrow \mathbb{R}$ by $\phi(t) = f(1/t)$ and $\psi(t) = g(1/t)$. Then, for all $t \in (0, \infty)$, we have $(\psi/\phi)(t) = (g/f)(1/t)$. It follows, by (1) of Fact 42.19, that $\lim_{\infty} (g/f) = \lim_{0^+} (\psi/\phi)$. Claim 1: $\forall t \in (0, \infty), \ (\psi'/\phi')(t) = (g'/f')(1/t)$. Proof of Claim 1:

Claim 1: $\forall t \in (0,\infty), (\psi'/\phi')(t) = (g'/f')(1/t)$. Proof of Claim 1: Let $t \in (0,\infty)$ be given. We wish to show: $(\psi'/\phi')(t) = (g'/f')(1/t)$. By (2) of Fact 42.10, we have both

By (2) of Fact 42.19, we have both

$$\phi'(t) = -\frac{f'(1/t)}{t^2}$$
 and $\psi'(t) = -\frac{g'(1/t)}{t^2}$

Then $[\psi'(t)]/[\phi'(t)] = [g'(t)]/[f'(t)]$, *i.e.*, $(\psi'/\phi')(t) = (g'/f')(1/t)$, as desired. End of proof of Claim 1.

By Claim 1, for all $t \in (0, \infty)$, we have $(\psi'/\phi')(t) = (g'/f')(1/t)$. It follows, by (1) of Fact 42.19, that $\lim_{\infty} (g'/f') = \lim_{0^+} (\psi'/\phi')$.

By assumption, choose $M \in \mathbb{R}$ such that $(M, \infty) \subseteq \text{dom} [g'/f']$.

Claim 2: $(0, 1/M) \in \text{dom} [\psi'/\phi']$. Proof of Claim 2: We wish to show: $\forall t \in (0, 1/M), t \in \text{dom} [\psi'/\phi']$. Let $t \in (0, 1/M)$ be given. We wish to show: $t \in \text{dom} [\psi'/\phi']$.

Since $t \in (0, 1/M)$, $1/t \in (M, \infty)$. Then $1/t \in (M, \infty) \subseteq \text{dom} [g'/f']$, so $(g'/f')(1/t) \neq \odot$. Since $t \in (0, 1/M) \subseteq (0, \infty)$, by Claim 1, we get $(\psi'/\phi')(t) = (g'/f')(1/t)$. Then $(\psi'/\phi')(t) = (g'/f')(1/t) \neq \odot$, and so $t \in \text{dom} [\psi'/\phi']$, as desired. End of proof of Claim 2.

Since $\lim_{\infty} f = 0 = \lim_{\infty} g$, it follows, from (1) of Fact 42.19, that $\lim_{0^+} \phi = 0 = \lim_{0^+} \psi$. By Claim 2, we have $(0, 1/M) \in \text{dom} [\psi'/\phi']$. Therefore, by Theorem 42.18 (with *p* replaced by 0, *f* by ϕ and *g* by ψ), we conclude that $\lim_{0^+} (\phi/\psi) =^* \lim_{0^+} (\phi'/\psi')$.

Then
$$\lim_{\infty} (g/f) = \lim_{0^+} (\phi/\psi) = \lim_{0^+} (\phi'/\psi') = \lim_{\infty} (g'/f')$$
. QED

Homework 8: Due on Tuesday 20 March

8-1. Let W be a vector space and let $u, v, v' \in W$. Assume that $\mathbb{R}v = \mathbb{R}v'$ and that $u \| v$. Show that $u \| v'$.

Proof: We wish to show: $u \in \mathbb{R}v'$ or $v' \in \mathbb{R}u$. Since u || v, at least one of the following must be true:

(1) $u \in \mathbb{R}v$ or (2) $v \in \mathbb{R}u$.

Case (1): We wish to show: $u \in \mathbb{R}v'$. Since $u \in \mathbb{R}v$, $\mathbb{R}u \subseteq \mathbb{R}v$. So, as $\mathbb{R}v = \mathbb{R}v'$, $\mathbb{R}u \subseteq \mathbb{R}v'$. Then $u \in \mathbb{R}u \subseteq \mathbb{R}v'$. End of Case (1).

Case (2): We wish to show: $v' \in \mathbb{R}u$. Since $v \in \mathbb{R}u$, $\mathbb{R}v \subseteq \mathbb{R}u$. So, as $\mathbb{R}v = \mathbb{R}v'$, $\mathbb{R}v' \subseteq \mathbb{R}u$. Then $v' \in \mathbb{R}v' \subseteq \mathbb{R}u$. End of Case (2). QED

8-2. Let $u, v \in \mathbb{R}^2$. Show:

$$\begin{bmatrix} u \| v \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} (u = 0_2) \text{ or } (v = 0_2) \text{ or } (\operatorname{sl} u = \operatorname{sl} v) \end{bmatrix}.$$

Proof: Proof of \Rightarrow : Assume that $u \| v$. We wish to prove:

 $(u = 0_2)$ or $(v = 0_2)$ or (sl u = sl v).

Equivalently, we want: $[(u \neq 0_2) \text{ and } (v \neq 0_2)] \Rightarrow [\operatorname{sl} u = \operatorname{sl} v].$ Assume $(u \neq 0_2)$ and $(v \neq 0_2)$. We wish to prove: $\operatorname{sl} u = \operatorname{sl} v$. Since u || v, at least one of the following is true:

(1) $u \in \mathbb{R}v$ or

(2) $v \in \mathbb{R}u$.

Case (1): Choose $a \in \mathbb{R}$ such that u = av. Since $av = u \neq 0_2 = 0 \cdot v$, we conclude that $a \neq 0$. Since $(u_1, u_2) = u = av = (av_1, av_2)$, we see that $u_1 = av_1$ and that $u_2 = av_2$. Then

$$\operatorname{sl} u = \frac{u_2}{u_1} = \frac{av_2}{av_1} = \frac{v_2}{v_1} = \operatorname{sl} v,$$

as desired. End of Case (1).

Case (2): Choose $a \in \mathbb{R}$ such that v = au. Since $au = v \neq 0_2 = 0 \cdot u$, we conclude that $a \neq 0$. Since $(v_1, v_2) = v = au = (au_1, au_2)$, we see that $v_1 = au_1$ and that $v_2 = au_2$. Then

$$sl u = \frac{u_2}{u_1} = \frac{au_2}{au_1} = \frac{v_2}{v_1} = sl v_1$$

as desired. End of Case (2). End of proof of \Rightarrow .

Proof of \Leftarrow : Assume

(*)
$$(u = 0_2)$$
 or $(v = 0_2)$ or $(sl u = sl v)$.

We wish to prove: $u \| v$. We want: $u \in \mathbb{R}v$ or $v \in \mathbb{R}u$.

At least one of the following must be true:

(1) $u_1 = 0 = v_1$ or (2) $u_1 \neq 0 = v_1$ or (3) $u_1 = 0 \neq v_1$ or (4) $u_1 \neq 0 \neq v_1$.

Case (1): We wish to prove that: $[u \notin \mathbb{R}v] \Rightarrow [v \in \mathbb{R}u]$. Assume that: $u \notin \mathbb{R}v$. We wish to prove that: $v \in \mathbb{R}u$.

Since $u \notin \mathbb{R}v$ and $0_2 = 0 \cdot v \in \mathbb{R}v$, we get: $u \neq 0_2$. Then we have: $(0, u_2) = (u_1, u_2) = u \neq 0_2 = (0, 0)$, so $u_2 \neq 0$. Let $a := v_2/u_2$. Then $au_2 = v_2$. Then $au = (au_1, au_2) = (a \cdot 0, v_2) = (0, v_2) = (v_1, v_2) = v$. Then $v = au \in \mathbb{R}u$, as desired. End of Case (1).

Case (2): We wish to show: $v \in \mathbb{R}u$.

Since $u_1 \neq 0$, we have $(u_1, u_2) \neq (0, 0)$, *i.e.*, $u \neq 0_2$. Since $u_1 \neq 0$, we get $u_2/u_1 \neq \odot$. Since $v_1 = 0$, we get $v_2/v_1 = \odot$. Then

$$\operatorname{sl} u = u_2/u_1 \neq \odot = v_2/v_1 = \operatorname{sl} v_2$$

Since $u \neq 0_2$ and $\operatorname{sl} u \neq \operatorname{sl} v$, we see, by (*), that $v = 0_2$. Then $v = 0_2 = 0 \cdot u \in \mathbb{R}u$, as desired. End of Case (2).

Case (3): We wish to show: $u \in \mathbb{R}v$.

Since $v_1 \neq 0$, we have $(v_1, v_2) \neq (0, 0)$, *i.e.*, $v \neq 0_2$. Since $v_1 \neq 0$, we get $v_2/v_1 \neq \odot$. Since $u_1 = 0$, we get $u_2/u_1 = \odot$. Then

$$\operatorname{sl} u = u_2/u_1 = \odot \neq v_2/v_1 = \operatorname{sl} v$$

Since $v \neq 0_2$ and $\operatorname{sl} u \neq \operatorname{sl} v$, we see, by (*), that $u = 0_2$. Then $u = 0_2 = 0 \cdot v \in \mathbb{R}v$, as desired. End of Case (3).

Case (4): We wish to show: $v \in \mathbb{R}u$.

Since $u_1 \neq 0$, we have $(u_1, u_2) \neq (0, 0)$, *i.e.*, $u \neq 0_2$. Since $v_1 \neq 0$, we have $(v_1, v_2) \neq (0, 0)$, *i.e.*, $v \neq 0_2$. Since $u \neq 0_2$ and $v \neq 0_2$, we see, by (*), that sl u = sl v. That is, $u_2/u_1 = v_2/v_1$. Let $a := v_1/u_1$. Then $au_1 = v_1$ and $au_2 = (v_1/u_1)u_2 = (u_2/u_1)v_1 = (v_2/v_1)v_1 = v_2$. Then $au = (au_1, au_2) = (v_1, v_2) = v$. Then $v = au \in \mathbb{R}u$, as desired. End of Case (4). End of proof of \Leftarrow . QED

8-3. Let $u, v \in \mathbb{R}^2$. Show:

$$(u \| v) \iff \left(\operatorname{Det} \left[\begin{array}{c} u \\ v \end{array} \right] = 0 \right).$$

Proof: Proof of \Rightarrow : Assume: $u \| v$. Want: Det $\begin{bmatrix} u \\ v \end{bmatrix} = 0$. Since $u \| v$, at least one of the following is true:

(1) $u \in \mathbb{R}v$ or (2) $v \in \mathbb{R}u$.

 $(2) \quad 0 \in \mathbb{I} \setminus \{0\}$

Case (1): Choose $a \in \mathbb{R}$ such that u = av. Then

$$\operatorname{Det} \begin{bmatrix} u \\ v \end{bmatrix} = \operatorname{Det} \begin{bmatrix} av \\ v \end{bmatrix}$$
$$= \operatorname{Det} \begin{bmatrix} (av_1, av_2) \\ (v_1, v_2) \end{bmatrix}$$
$$= (av_1) \cdot v_2 - (av_2) \cdot v_1 = 0.$$

End of Case (1).

Case (2): Choose $a \in \mathbb{R}$ such that v = au. Then

$$\operatorname{Det} \begin{bmatrix} u \\ v \end{bmatrix} = \operatorname{Det} \begin{bmatrix} u \\ au \end{bmatrix}$$
$$= \operatorname{Det} \begin{bmatrix} (u_1, u_2) \\ (au_1, au_2) \end{bmatrix}$$
$$= u_1 \cdot (au_2) - u_2 \cdot (au_1) = 0.$$

End of Case (2). End of proof of \Rightarrow .

Proof of \Leftarrow : Assume: Det $\begin{bmatrix} u \\ v \end{bmatrix} = 0$. We wish to prove: $u \| v$. We want to show: $u \in \mathbb{R}v$ or $v \in \mathbb{R}u$.

show: $u \in \mathbb{R}v$ or $v \in \mathbb{R}u$. Since $0 = \text{Det} \begin{bmatrix} u \\ v \end{bmatrix} = u_1v_2 - u_2v_1$, we see that $u_1v_2 = u_2v_1$. At least one of the following is true:

(1) $u_1 \neq 0$ or (2) $u_2 \neq 0$ or (3) $u_1 = 0 = u_2$. Case (1): Want: $v \in \mathbb{R}u$. Let $a := v_1/u_1$. Want: v = au. We have both $au_1 = v$ and $au_2 = u_2v_1/u_1 = u_1v_2/u_1 = v_2$. Then $v = (v_1, v_2) = (au_1, au_2) = au$, as desired. End of Case (1). Case (2): Want: $v \in \mathbb{R}u$. Let $a := v_2/u_2$. Want: v = au. We have both $au_1 = u_1v_2/u_2 = u_2v_1/u_2 = v_1$ and $au_2 = v_2$. Then $v = (v_1, v_2) = (au_1, au_2) = au$, as desired. End of Case (2). Case (3): Want: $u \in \mathbb{R}v$. Let a := 0. Want u = av. Since $u_1 = 0 = u_2$, we get $u = 0_2$. Since a = 0, we get $av = 0_2$. Then $u = 0_2 = av$, as desired. End of Case (3). End of proof of \leftarrow . QED

8-4. Let V and W be normed vector spaces. Let $x : \mathbb{R} \dashrightarrow V$ and $y: \mathbb{R} \dashrightarrow W$. Let $p \in \mathbb{R}$. Assume that x and y are both continuous at p. Show that (x, y) is continuous at p.

Proof: Let z := (x, y) and let $U := V \times W$. Then $z : \mathbb{R} \dashrightarrow U$ and dom $[z] \subseteq$ dom [x] and dom $[z] \subseteq$ dom [y].

We want: z is continuous at p. We wish to show: $\forall U_0 \in \mathcal{N}_U(z(p))$, $\exists A \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $z_*(A) \subseteq U_0$. Let $U_0 \in \mathcal{N}_U(z(p))$ be given. We wish to prove: $\exists A \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $z_*(A) \subseteq U_0$.

Choose $V_0 \in \mathcal{N}_V(x)$ and $W_0 \in \mathcal{N}_W(y)$ s.t. $V_0 \times W_0 \subseteq U_0$. Since x is continuous at p, choose $B \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $x_*(B) \subseteq V_0$. Since y is continuous at p, choose $C \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $y_*(C) \subseteq W_0$. As $B, C \in \mathcal{N}_{\mathbb{R}}(p)$, we get $B \cap C \in \mathcal{N}_{\mathbb{R}}(p)$. Let $A := B \cap C$. We wish to show: $z_*(A) \subseteq U_0$. We wish to show: $\forall q \in \text{dom}[z]$,

$$\left[q \in A \right] \quad \Rightarrow \quad \left[z(q) \in U_0 \right].$$

Let $q \in \text{dom}[z]$ be given. We wish to show:

$$[q \in A] \quad \Rightarrow \quad [z(q) \in U_0].$$

Assume: $q \in A$. We wish to show: $z(q) \in U_0$.

Since $q \in \text{dom}[z] \subseteq \text{dom}[x]$ and since $q \in A = B \cap C \subseteq B$, we have $x(q) \in x_*(B)$. So, by choice of B, we have $x(q) \in V_0$. Since $q \in \text{dom}[z] \subseteq \text{dom}[y]$ and since $q \in A = B \cap C \subseteq C$, we have $y(q) \in y_*(C)$. So, by choice of C, we have $y(q) \in W_0$.

Then $z(q) = (x(q), y(q)) \in V_0 \times W_0$. Then, by choice of V_0 and W_0 , we conclude that $z(q) \in U_0$, as desired. QED

8-5. Let V and W be normed vector spaces. Let $x : \mathbb{R} \dashrightarrow V$ and $y : \mathbb{R} \dashrightarrow W$. Let $p \in \text{LPD}_{\mathbb{R}}(x, y)$. Show: $(x, y)'(p) =^* (x'(p), y'(p))$. *Proof:* Let $\phi := SS_x^p, \psi := SS_y^p$. Then $x'(p) = \lim_0 \phi$ and $y'(p) = \lim_0 \psi$. Also, $(x, y)'(p) = \lim_0 SS_{(x,y)}^p$. For all $h \in \mathbb{R}$, we have

$$SS_{(x,y)}^{p}(h) = \frac{[(x,y)(p+h)] - [(x,y)(p)]}{h}$$

= $\frac{(x(p+h), y(p+h)) - (x(p), y(p))}{h}$
= $\frac{([x(p+h)] - [x(p)], [y(p+h)] - [y(p)])}{h}$
= $\left(\frac{[x(p+h)] - [x(p)]}{h}, \frac{[y(p+h)] - [y(p)]}{h}\right)$
= $(SS_{x}^{p}(h), SS_{y}^{p}(h))$
= $(SS_{x}^{p}, SS_{y}^{p})(h) = (\phi, \psi)(h).$

Then $SS_{(x,y)}^p = (\phi, \psi)$. Since $p \in LPD_{\mathbb{R}}(x, y)$, by (3) of Remark 26.7 p. 197, we get $0 \in LPD_{\mathbb{R}}(SS_{(x,y)}^p)$. So, since $SS_{(x,y)}^p = (\phi, \psi)$, we conclude that $0 \in LPD_{\mathbb{R}}(\phi, \psi)$. Then, by Remark 40.4 p. 295, we have $\lim_{t \to 0} (\phi, \psi) = (\lim_{t \to 0} \phi, \lim_{t \to 0} \psi)$. Then

$$(x,y)'(p) = \lim_{0} SS^{p}_{(x,y)} = \lim_{0} (\phi,\psi) =^{*} (\lim_{0} \phi, \lim_{0} \psi) = (x'(p), y'(p)),$$

as desired. QED

Homework 7: Due on Tuesday 6 March

7-1. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $p \in \mathbb{R}$ and $\delta > 0$. Assume

- (1) $(p \delta, p + \delta) \subseteq \operatorname{dom}[f],$
- (2) f is strictly decreasing on $(p \delta, p]$ and
- (3) f is strictly increasing on $[p, p + \delta)$.

Show that f has a local unique minimum at p in \mathbb{R} .

Proof: We want: $\exists V \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $V \subseteq \text{dom}[f]$ and $f_*(V_p^{\times}) > f(p)$.

Since $(p - \delta, p + \delta)$ is open in \mathbb{R} and since $p \in (p - \delta, p + \delta)$, it follows that $(p - \delta, p + \delta) \in \mathcal{N}_{\mathbb{R}}(p)$. Let $V := (p - \delta, p + \delta)$. We wish to show: $V \subseteq \text{dom}[f]$ and $f_*(V_p^{\times}) > f(p)$.

Since $V = (p - \delta, p + \delta)$, by (1), we have $V \subseteq \text{dom}[f]$. It remains to show: $f_*(V_p^{\times}) > f(p)$. We wish to show: $\forall y \in f_*(V_p^{\times}), y > f(p)$. Let $y \in f_*(V_p^{\times})$ be given. We wish to show: y > f(p).

Since $y \in f_*(V_p^{\times})$, choose $t \in V_p^{\times}$ such that y = f(t). We have $t \in V_p^{\times} = (p - \delta, p) \cup (p, p + \delta)$, so one of the following must be true:

- (A) $t \in (p \delta, p)$ or (B) $t \in (p - \delta, p)$
- (B) $t \in (p, p + \delta)$.

Case (A): We have $t, p \in (p - \delta, p]$ and t < p. So, by (2), f(t) > f(p). So, as y = f(t), we get y > f(p). End of Case (A).

Case (B): We have $t, p \in [p, p+\delta)$ and t > p. So, by (3), f(t) > f(p). So, as y = f(t), we get y > f(p). End of Case (B). QED

7-2. Let $g : \mathbb{R} \dashrightarrow \mathbb{R}$ and $p \in \text{IntD}_{\mathbb{R}}g$. Assume both that g(p) = 0 and that g'(p) > 0. Show: $\exists \delta > 0$ such that all three of the following hold:

(A) $(p - \delta, p + \delta) \subseteq \text{dom}[g],$ (B) g < 0 on $(p - \delta, p)$ and (C) g > 0 on $(p, p + \delta).$

Proof: By Lemma 32.1 p. 240, choose $U \in \mathcal{N}_{\mathbb{R}}(0)$ s.t. $(SS_g^p)_*(U) > 0$. Then $U + p \in \mathcal{N}_{\mathbb{R}}(p)$. Let D := dom[g]. Since $p \in \text{IntD}_{\mathbb{R}}g = \text{Int}_{\mathbb{R}}D$, $D \in \mathcal{N}_{\mathbb{R}}(p)$. As $U + p, D \in \mathcal{N}_{\mathbb{R}}(p)$, we get $(U + p) \cap D \in \mathcal{N}_{\mathbb{R}}(p)$. So, since $\mathcal{B}_{\mathbb{R}}(p)$ is a neighborhood base at p in \mathbb{R} , choose $\delta > 0$ such that $B_{\mathbb{R}}(p, \delta) \subseteq (U + p) \cap D$. We wish to show: (A) and (B) and (C). *Proof of (A):* We have

$$(p-\delta, p+\delta) = B_{\mathbb{R}}(p,\delta) \subseteq (U+p) \cap D \subseteq D = \operatorname{dom}[g],$$

as desired. End of proof of (A).

Proof of (B): We wish to show: $\forall t \in (p - \delta, p), g(t) < 0$. Let $t \in (p - \delta, p)$ be given. We wish to show: g(t) < 0.

We have $t \in (p - \delta, p) \subseteq B_{\mathbb{R}}(p, \delta) \subseteq (U + p) \cap D$, so $t \in U + p$ and $t \in D$. Since $t \in U + p$, we get $t - p \in U$. Let h := t - p. Then $h \in U$ and p + h = t. Also, since t < p, we get h < 0. In particular, $h \neq 0$. We have dom $[SS_g^p] = [(\text{dom}[g]) - p]_0^{\times} = [D - p]_0^{\times}$. So, since $h = t - p \in D - p$ and since $h \neq 0$, we get $h \in \text{dom}[SS_g^p]$. So, since $h \in U$, we get $(SS_g^p)(h) \in (SS_g^p)_*(U)$. So, since $(SS_g^p)_*(U) > 0$, we get $(SS_g^p)(h) > 0$. So, since h < 0, we get $h \cdot [(SS_g^p)(h)] < 0$. So, since h < 0, we get g(p + h) < g(p). So, since p + h = t, we get g(t) < g(p). By assumption, g(p) = 0. Then g(t) < 0, as desired. End of proof of (B).

Proof of (C): We wish to show: $\forall t \in (p, p + \delta), g(t) > 0$. Let $t \in (p, p + \delta)$ be given. We wish to show: g(t) > 0.

We have $t \in (p, p + \delta) \subseteq B_{\mathbb{R}}(p, \delta) \subseteq (U + p) \cap D$, so $t \in U + p$ and $t \in D$. Since $t \in U + p$, we get $t - p \in U$. Let h := t - p. Then $h \in U$ and p + h = t. Also, since t > p, we get h > 0. In particular, $h \neq 0$. We have dom $[SS_g^p] = [(\text{dom}[g]) - p]_0^{\times} = [D - p]_0^{\times}$. So, since $h = t - p \in D - p$ and since $h \neq 0$, we get $h \in \text{dom}[SS_g^p]$. So, since $h \in U$, we get $(SS_g^p)(h) \in (SS_g^p)_*(U)$. So, since $(SS_g^p)_*(U) > 0$, we get $(SS_g^p)(h) > 0$. So, since h > 0, we get $h \cdot [(SS_g^p)(h)] > 0$. So, since $h < [(SS_g^p)(h)] = [g(p + h)] - [g(p)]$, we get g(p + h) > g(p). So, since p + h = t, we get g(t) > g(p). By assumption, g(p) = 0. Then g(t) > 0, as desired. End of proof of (C). QED

7-3. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$ and let $p \in \text{IntD}_{\mathbb{R}}(f')$. Assume both that f'(p) = 0 and that f''(p) > 0. Show: f has a local unique minimum at p in \mathbb{R} .

Proof: Let g := f'. Then $p \in \text{IntD}_{\mathbb{R}}g$ and g(p) = 0 and g'(p) > 0. So, by HW#7-2, choose $\delta > 0$ such that all three of the following hold:

and

- (A) $(p \delta, p + \delta) \subseteq \text{dom}[g],$ (B) g < 0 on $(p - \delta, p)$
- (C) g > 0 on $(p, p + \delta)$.

By HW#7-1, it suffices to show:

- (1) $(p \delta, p + \delta) \subseteq \operatorname{dom}[f],$
- (2) f is strictly decreasing on $(p \delta, p]$ and
- (3) f is strictly increasing on $[p, p + \delta)$.

Proof of (1): Since dom $[g] = \text{dom} [f'] \subseteq \text{dom} [f]$, by (A), we see that $(p - \delta, p + \delta) \subseteq \text{dom} [f]$, as desired. End of proof of (1).

Proof of (2): Let $I := (p - \delta, p]$. We want: f|I is strictly decreasing.

Since g = f', by (A), we see that f is differentiable on $(p - \delta, p + \delta)$. So, as $I \subseteq (p-\delta, p+\delta)$, f is differentiable on I. Then f is c/d on I. Since g = f' and $\operatorname{Int}_{\mathbb{R}}I = (p - \delta, p)$, by (B), we get: f' < 0 on $\operatorname{Int}_{\mathbb{R}}I$. Then, by (5) of Corollary 34.9 p. 259, we see that f|I is strictly decreasing, as desired. End of proof of (2).

Proof of (3): Let $I := [p, p + \delta)$. We want: f | I is strictly increasing. Since g = f', by (A), we see that f is differentiable on $(p - \delta, p + \delta)$. So, as $I \subseteq (p - \delta, p + \delta)$, f is differentiable on I. Then f is c/d on I. Since g = f' and $\text{Int}_{\mathbb{R}}I = (p, p + \delta)$, by (B), we get: f' > 0 on $\text{Int}_{\mathbb{R}}I$. Then, by (3) of Corollary 34.9 p. 259, we see that f | I is strictly increasing, as desired. End of proof of (3). QED

7-4. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$ and let $p \in \text{IntD}_{\mathbb{R}}(f')$. Assume both that f'(p) = 0 and that f''(p) < 0. Show: f has a local unique maximum at p in \mathbb{R} .

Proof: We wish to show $\exists V \in \mathcal{N}_{\mathbb{R}}(p)$ such that $V \subseteq \operatorname{dom}[f]$ and $f_*(V_p^{\times}) < f(p)$.

Let $f_0 := -f$. Then dom $[f_0] = \text{dom} [f]$. Also, $f'_0 = -f'$. Then dom $[f'_0] = \text{dom} [f']$, so $\text{IntD}_{\mathbb{R}}(f'_0) = \text{IntD}_{\mathbb{R}}(f')$. Also, $f''_0 = -f''$. Then

- $f_0 : \mathbb{R} \dashrightarrow \mathbb{R}$,
- $p \in \operatorname{IntD}_{\mathbb{R}}(f') = \operatorname{IntD}_{\mathbb{R}}(f'_0),$

• $f'_0(p) = (-f')(p) = -0 = 0$ and

• $f_0''(p) = (-f'')(p) = -(f''(p)) > 0.$

Then, by HW#7-3, f_0 has a local unique minimum at p in \mathbb{R} . So choose $V \in \mathcal{N}_{\mathbb{R}}(p)$ such that $V \subseteq \text{dom}[f_0]$ and such that $(f_0)_*(V_p^{\times}) > f_0(p)$. As $V \subseteq \text{dom}[f_0] = \text{dom}[f]$, it remains only to show: $f_*(V_p^{\times}) < f(p)$. We wish to show: $\forall t \in \text{dom}[f]$,

$$\left[t \in V_p^{\times} \right] \quad \Rightarrow \quad \left[f(t) < f(p) \right].$$

Let $t \in \text{dom}[f]$ be given. We wish to show:

$$\left[\begin{array}{c} t \in V_p^{\times} \end{array} \right] \quad \Rightarrow \quad \left[\begin{array}{c} f(t) < f(p) \end{array} \right].$$

Assume: $t \in V_p^{\times}$. We wish to prove: f(t) < f(p).

Since $t \in \text{dom}[f] = \text{dom}[f_0]$, and $t \in V_p^{\times}$, we get $f_0(t) \in (f_0)_*(V_p^{\times})$. So, since $(f_0)_*(V_p^{\times}) > f_0(p)$, we get $f_0(t) > f_0(p)$. Then

$$-(f(t)) = (-f)(t) = f_0(t) > f_0(p) = (-f)(p) = -(f(p)).$$

Multiplying by -1, we get f(t) < f(p), as desired. QED

7-5. Let $f : \mathbb{R} \to \mathbb{R}$. Asume both that $0 \in \text{IntD}_{\mathbb{R}}f$ and that f(0) = 0. Define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = x^4$. Assume that $f/g \to 1$ near 0. Show that f has a local unique minimum at 0 in \mathbb{R} .

Proof: Want: $\exists V \in \mathcal{N}_{\mathbb{R}}(0)$ s.t. $V \subseteq \text{dom}[f]$ and $f(0) < f_*(V_0^{\times})$.

Let $D := \operatorname{dom}[f]$. Then $0 \in \operatorname{Int} \mathbb{D}_{\mathbb{R}} f = \operatorname{Int}_{\mathbb{R}} D$. Then $D \in \mathcal{N}_{\mathbb{R}}(0)$. So, since $\mathcal{B}_{\mathbb{R}}(0)$ is a neighborhood base at 0 in \mathbb{R} , choose $\alpha > 0$ s.t. $B_{\mathbb{R}}(0, \alpha) \subseteq D$. Since $f/g \to 1$ near 0, choose $\beta > 0$ s.t., $\forall t \in \operatorname{dom}[f/g]$,

$$\left[\begin{array}{cc} 0 < |t| < \beta \end{array}\right] \quad \Rightarrow \quad \left[\begin{array}{c} |\left[(f/g)(t)\right] - 1 \right| < 1/2 \end{array}\right].$$

Let $\delta := \min\{\alpha, \beta\}$. Then $\delta \leq \alpha$, so $B(0, \delta) \subseteq B(0, \alpha)$. Also, $\delta \leq \beta$, so $B(0, \delta) \subseteq B(0, \beta)$. Since $B_{\mathbb{R}}(0, \delta)$ is open in \mathbb{R} and since $0 \in B_{\mathbb{R}}(0, \delta)$, it follows that $B_{\mathbb{R}}(0, \delta) \in \mathcal{N}_{\mathbb{R}}(0)$. Let $V := B_{\mathbb{R}}(0, \delta)$. We wish to show: $V \subseteq \operatorname{dom}[f]$ and $f(0) < f_*(V_0^{\times})$.

We have $V = B_{\mathbb{R}}(0, \delta) \subseteq B_{\mathbb{R}}(0, \alpha) \subseteq D = \operatorname{dom}[f]$. It remains to show: $f(0) < f_*(V_0^{\times})$. We wish to show: $\forall y \in f_*(V_0^{\times}), f(0) < y$. Let $y \in f_*(V_0^{\times})$ be given. We wish to show: f(0) < y. By assumption, f(0) = 0. We wish to show: 0 < y. Since $y \in f_*(V_0^{\times})$, choose $t \in V_0^{\times}$ such that y = f(t). We wish to show: 0 < f(t).

Since $t \in V_0^{\times} = V \setminus \{0\}$, we see that $t \neq 0$. Then $t^4 > 0$ and 0 < |t|. We have $t \in V_0^{\times} \subseteq V \subseteq \text{dom}[f]$. Also, $t \in \mathbb{R} = \text{dom}[g]$. Also, $g(t) = t^4 > 0$, so, in particular, $g(t) \neq 0$. Then $t \in \text{dom}[f/g]$. Also, we have $t \in V_0^{\times} \subseteq V = B_{\mathbb{R}}(0, \delta) \subseteq B_{\mathbb{R}}(0, \beta)$, so $|t| < \beta$. Since $t \in \text{dom}[f/g]$ and since $0 < |t| < \beta$, by the choice of β , |[(f/g)(t)] - 1| < 1/2. Then 1 - (1/2) < (f/g)(t) < 1 + (1/2). Then 1/2 < (f/g)(t). Multiplying this inequality by g(t), since g(t) > 0, we get $[1/2] \cdot [g(t)] < [(f/g)(t)] \cdot [g(t)]$. Since $t \in \text{dom}[f/g]$, we see that $[(f/g)(t)] \cdot [g(t)] = f(t)$. Then we have $0 < [1/2] \cdot [g(t)] < [(f/g)(t)] \cdot [g(t)] = f(t)$, as desired. QED

Homework 6: Due on Tuesday 27 February

6-1. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$ be continuous, and let $I \subseteq \text{dom}[f]$. Assume that I is an interval. Show: $f_*(I)$ is an interval.

Proof: Since I is an interval, $I \neq \emptyset$. So, since $I \subseteq \text{dom}[f]$, we get $f_*(I) \neq \emptyset$. So, by \Leftarrow of Fact 37.1 p. 276, we need only show: $\forall a, b \in f_*(I), [a|b] \subseteq f_*(I)$. Given $a, b \in f_*(I)$. Want: $[a|b] \subseteq f_*(I)$.

Since $a, b \in f_*(I)$, choose $s, t \in I$ such that a = f(s) and b = f(t). Since $s, t \in I$ and I is an interval, we conclude, by \Rightarrow of Fact 37.1 p. 276, that $[s|t] \subseteq I$. Then $f_*([s|t]) \subseteq f_*(I)$. Also, $[s|t] \subseteq I \subseteq \text{dom}[f]$, so, as f is continuous, f is continuous on [s|t]. Then, by the Intermediate Value Theorem (Theorem 29.7 p. 218), $[f(s)|f(t)] \subseteq f_*([s|t])$. Then $[a|b] = [f(s)|f(t)] \subseteq f_*([s|t]) \subseteq f_*(I)$, as desired. QED

6-2. Let $X, Y \subseteq \mathbb{R}$. Let $f : X \hookrightarrow Y$ be continuous. Let $X_0 := \text{Int}_{\mathbb{R}} X$. Show that f^{-1} is continuous on $f_*(X_0)$.

Proof: We wish to show: $\forall q \in f_*(X_0), f^{-1}$ is continuous at q. Let $q \in f_*(X_0)$ be given. We wish to show: f^{-1} is continuous at q. Let $g := f^{-1}$. We wish to show: g is continuous at q. We wish to show: $\forall U \in \mathcal{N}_{\mathbb{R}}(g(q)), \exists V \in \mathcal{N}_{\mathbb{R}}(q)$ s.t. $g_*(V) \subseteq U$. Let $U \in \mathcal{N}_{\mathbb{R}}(g(q))$ be given. We wish to show: $\exists V \in \mathcal{N}_{\mathbb{R}}(q)$ s.t. $g_*(V) \subseteq U$.

Since $q \in f_*(X_0)$, choose $p \in X_0$ s.t. q = f(p). Then g(q) = p. Then $U \in \mathcal{N}_{\mathbb{R}}(g(q)) = \mathcal{N}_{\mathbb{R}}(p)$. That is, U is a neighborhood of p in X. Choose an open U_0 in \mathbb{R} s.t. $p \in U_0 \subseteq U$. Let $V := f_*(U_0 \cap X_0)$. We wish to show: both $V \in \mathcal{N}_{\mathbb{R}}(q)$ and $g_*(V) \subseteq U$.

Since $g = f^{-1}$ and since $U_0 \cap X_0 \subseteq X_0 \subseteq X = \text{dom}[f]$, it follows that $g_*(f_*(U_0 \cap X_0)) = U_0 \cap X_0$. Then

$$g_*(V) = g_*(f_*(U_0 \cap X_0)) = U_0 \cap X_0 \subseteq U_0 \subseteq U_0$$

It remains to show: $V \in \mathcal{N}_{\mathbb{R}}(q)$.

Since $X_0 = \operatorname{Int}_{\mathbb{R}} X$, we get: X_0 is open in \mathbb{R} . So, since U_0 is open in \mathbb{R} , we see that $U_0 \cap X_0$ is open in \mathbb{R} . Also, $U_0 \cap X_0 \subseteq X_0 \subseteq X = \operatorname{dom} [f]$. Also, $f : \mathbb{R} \dashrightarrow \mathbb{R}$ is 1-1 and continuous. Therefore, by Invariance of Domain (Theorem 30.3 p. 227), $f_*(U_0 \cap X_0)$ is open in \mathbb{R} . That is, V is open in \mathbb{R} . Since $p \in U_0$ and $p \in X_0$, we get $p \in U_0 \cap X_0$. So, since $p \in X_0 \subseteq X = \operatorname{dom} [f]$, we get $f(p) \in f_*(U_0 \cap X_0)$. Then $q = f(p) \in f_*(U_0 \cap X_0) = V$. By Remark 16.4 p. 117, any open set is a neighborhood of each of its points. So, since $q \in V$ and since V is open in \mathbb{R} , it follows that $V \in \mathcal{N}_{\mathbb{R}}(q)$, as desired. QED

6-3. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$ be str. increasing. Show: f^{-1} is str. increasing.

Proof: Let $g := f^{-1}$. We wish to show: g is str. increasing. We wish to show: $\forall s, t \in \text{dom}[g]$, $([s < t] \Rightarrow [g(s) < g(t)])$. Let $s, t \in \text{dom}[g]$ be given. We wish to show: $([s < t] \Rightarrow [g(s) < g(t)])$. Assume that

s < t. We want: g(s) < g(t). Let a := g(s), b := g(t). We want: a < b. Assume that $a \ge b$. We aim for a contradiction.

Since f is strictly increasing, it follows that f is semiincreasing. So, since $a \ge b$, we get $f(a) \ge f(b)$. Since a = g(s), we get f(a) = s. Since b = g(t), we get f(b) = t. Then $s = f(a) \ge f(b) = t$, so $t \le s$. Then $t \le s < t$, so t < t. Contradiction. QED

6-4. Let $X, Y \subseteq \mathbb{R}$. Let $f : X \hookrightarrow Y$ be strictly increasing. Let $a \in \mathbb{R}$. Assume: $X = [a, \infty)$. Show: f^{-1} is continuous at f(a).

Proof: Let $g := f^{-1}$ and let q = f(a). We wish to show: g is continuous at q. We wish to show: $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}, \forall t \in \text{dom}[g],$

$$[|t-q| < \delta] \implies [|[g(t)] - [g(q)]| < \varepsilon].$$

Let $\varepsilon > 0$ be given. We wish to show: $\exists \delta > 0 \text{ s.t.}, \forall t \in \text{dom}[g],$

$$\left[\begin{array}{c} |t-q| < \delta \end{array} \right] \quad \Rightarrow \quad \left[\begin{array}{c} |[g(t)] - [g(q)]| < \varepsilon \end{array} \right].$$

We have $a, a + \varepsilon \in [a, \infty) = X = \text{dom}[f]$. So, since f is strictly increasing and $a < a + \varepsilon$, we get $f(a) < f(a + \varepsilon)$. We conclude that $0 < [f(a+\varepsilon)] - [f(a)]$. Let $\delta := [f(a+\varepsilon)] - [f(a)]$. Want: $\forall t \in \text{dom}[g]$,

$$\left[|t - q| < \delta \right] \quad \Rightarrow \quad \left[|[g(t)] - [g(q)]| < \varepsilon \right].$$

Let $t \in \text{dom}[g]$ be given. We wish to show:

$$\left[\begin{array}{c} |t-q| < \delta \end{array} \right] \quad \Rightarrow \quad \left[\begin{array}{c} |[g(t)] - [g(q)]| < \varepsilon \end{array} \right].$$

Assume that $|t - q| < \delta$. We wish to show: $|[g(t)] - [g(q)]| < \varepsilon$.

Let s := g(t). Since q = f(a), we get g(q) = a. We want: $|s-a| < \varepsilon$. Equivalently, we wish to show: $a - \varepsilon < s < a + \varepsilon$.

Since $t \in \text{dom}[g]$, we get $g(t) \in \text{im}[g]$. Since $g = f^{-1}$, we get im[g] = dom[f]. Then $s = g(t) \in \text{im}[g] = \text{dom}[f] = X = [a, \infty)$, so $s \ge a$. Then $a - \varepsilon < a \le s$. It remains to show: $s < a + \varepsilon$.

Since $|t - q| < \delta$, we see that $q - \delta < t < q + \delta$. Then

$$t < q + \delta = [f(a)] + [f(a + \varepsilon)] - [f(a)] = f(a + \varepsilon).$$

Since $a + \varepsilon \in \text{dom}[f]$, we get $f(a + \varepsilon) \in \text{im}[f]$. Since $g = f^{-1}$, we get dom [g] = im[f]. Then $f(a + \varepsilon) \in \text{im}[f] = \text{dom}[g]$. By HW#6-3, we see that f^{-1} is strictly increasing. That is, g is strictly increasing. So, since $t < f(a + \varepsilon)$, since $t \in \text{dom}[g]$ and since $f(a + \varepsilon) \in \text{dom}[g]$, we get $g(t) < g(f(a + \varepsilon))$. Since $a + \varepsilon \in \text{dom}[f]$ and $g = f^{-1}$, we get $g(f(a + \varepsilon)) = a + \varepsilon$. Then $s = g(t) < g(f(a + \varepsilon)) = a + \varepsilon$. QED

6-5. Let $X, Y \subseteq \mathbb{R}$. Let $f : X \hookrightarrow Y$ be strictly increasing. Let $a \in \mathbb{R}$. Assume: $\exists b \in (a, \infty)$ s.t. X = [a, b]. Show: f^{-1} is continuous at f(a).

Proof: Let $g := f^{-1}$ and let q = f(a). We wish to show: g is continuous at q. We wish to show: $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}, \forall t \in \text{dom}[g],$

$$\left[|t-q| < \delta \right] \quad \Rightarrow \quad \left[|[g(t)] - [g(q)]| < \varepsilon \right].$$

Let $\varepsilon > 0$ be given. We wish to show: $\exists \delta > 0 \text{ s.t.}, \forall t \in \text{dom}[g],$

$$\left[|t-q| < \delta \right] \quad \Rightarrow \quad \left[|[g(t)] - [g(q)]| < \varepsilon \right].$$

Choose $b \in (a, \infty)$ s.t. X = [a, b). Let c := (a+b)/2. Since $b \in (a, \infty)$, it follows that a < c < b. Then c-a > 0. Let $\varepsilon_0 := \min\{\varepsilon, c-a\}$. Then $\varepsilon_0 > 0$, so $a < a + \varepsilon_0$. Also, $\varepsilon_0 \le c-a$. Then $a + \varepsilon_0 \le a + c - a = c < b$. Then $a < a + \varepsilon_0 < b$. Then $a + \varepsilon_0 \in (a, b) \subseteq [a, b)$.

We have $a, a + \varepsilon_0 \in [a, b) = X = \text{dom}[f]$. So, since f is strictly increasing and since $a < a + \varepsilon_0$, it follows that $f(a) < f(a + \varepsilon_0)$. Therefore, we have $0 < [f(a + \varepsilon_0)] - [f(a)]$. Let $\delta := [f(a + \varepsilon_0)] - [f(a)]$. We wish to show: $\forall t \in \text{dom}[g]$,

$$\left[\begin{array}{c} |t-q| < \delta \end{array} \right] \quad \Rightarrow \quad \left[\begin{array}{c} |[g(t)] - [g(q)]| < \varepsilon \end{array} \right].$$

Let $t \in \text{dom}[g]$ be given. We wish to show:

$$\left[|t-q| < \delta \right] \quad \Rightarrow \quad \left[|[g(t)] - [g(q)]| < \varepsilon \right].$$

Assume that $|t - q| < \delta$. We wish to show: $|[g(t)] - [g(q)]| < \varepsilon$.

Let s := g(t). Since q = f(a), we get g(q) = a. We want: $|s-a| < \varepsilon$. Equivalently, we wish to show: $a - \varepsilon < s < a + \varepsilon$.

Since $t \in \text{dom}[g]$, we get $g(t) \in \text{im}[g]$. Since $g = f^{-1}$, we get im[g] = dom[f]. Then $s = g(t) \in \text{im}[g] = \text{dom}[f] = X = [a, b)$, so $s \ge a$. Then $a - \varepsilon < a \le s$. It remains to show: $s < a + \varepsilon$.

Since $|t - q| < \delta$, we see that $q - \delta < t < q + \delta$. Then

$$t < q + \delta = [f(a)] + [f(a + \varepsilon_0)] - [f(a)] = f(a + \varepsilon_0).$$

Since $a + \varepsilon_0 \in \text{dom}[f]$, we get $f(a + \varepsilon_0) \in \text{im}[f]$. Since $g = f^{-1}$, we get dom [g] = im[f]. Then $f(a + \varepsilon_0) \in \text{im}[f] = \text{dom}[g]$. By HW#6-3, we see that f^{-1} is strictly increasing. That is, g is strictly increasing. So, since $t < f(a + \varepsilon_0)$, since $t \in \text{dom}[g]$ and since $f(a + \varepsilon_0) \in \text{dom}[g]$, we get $g(t) < g(f(a + \varepsilon_0))$. Since $a + \varepsilon_0 \in \text{dom}[f]$ and $g = f^{-1}$, we get $g(f(a + \varepsilon_0)) = a + \varepsilon_0$. Then $s = g(t) < g(f(a + \varepsilon_0)) = a + \varepsilon_0$. Since $a + \varepsilon_0 \in \text{dom}[f]$ and $g = f^{-1}$, we get $a + \varepsilon_0 \in \text{dom}[f]$ and $g = f^{-1}$, we get $g(f(a + \varepsilon_0)) = a + \varepsilon_0$. Then $s = g(f(a + \varepsilon_0)) = a + \varepsilon_0$. Then

 $s = g(t) < g(f(a + \varepsilon_0)) = a + \varepsilon_0$. We have $\varepsilon_0 = \min\{\varepsilon, c - a\} \leq \varepsilon$. Then $a + \varepsilon_0 \leq a + \varepsilon$. Then $s < a + \varepsilon_0 \leq a + \varepsilon$, as desired. QED

Homework 5: Due on Tuesday 20 February

5-1. Show: $\forall w, x \in \mathbb{R}$, $\cos(w+x) = (\cos w) \cdot (\cos x) - (\sin w) \cdot (\sin x)$.

Proof: Let $w \in \mathbb{R}$ be given. We wish to show: $\forall x \in \mathbb{R}$,

$$\cos(w+x) = (\cos w) \cdot (\cos x) - (\sin w) \cdot (\sin x).$$

Define $\tau : \mathbb{R} \to \mathbb{R}$ by $\tau(x) = w + x$.

Claim 1: $\forall x \in \mathbb{R}, \tau'(x) = 1$. Proof of Claim 1: Let $x \in \mathbb{R}$ be given. We wish to show: $\tau'(x) = 1$. We wish to show: $\lim_{0} SS_{\tau}^{x} = 1$.

For all $h \in \mathbb{R}_0^{\times}$, we have

$$(SS_{\tau}^{x})(h) = \frac{\left[\tau(x+h)\right] - \left[\tau(x)\right]}{h}$$
$$= \frac{\left[w+x+h\right] - \left[w+x\right]}{h}$$
$$= \frac{h}{h} = 1 = C_{\mathbb{R}}^{1}(h).$$

Then $SS_{\tau}^{x} = C_{\mathbb{R}}^{1}$ on \mathbb{R}_{0}^{\times} , so $\lim_{0} SS_{\tau}^{x} = \lim_{0} C_{\mathbb{R}}^{1}$. So, since $\lim_{0} C_{\mathbb{R}}^{1} = 1$, we get $\lim_{0} SS_{\tau}^{x} = 1$, as desired. End of proof of Claim 1.

Let $f := \cos \circ \tau$. Then, for all $x \in \mathbb{R}$, we have

$$f(x) = (\cos \circ \tau)(x) = \cos(\tau(x)) = \cos(w+x).$$

We therefore wish to show: $\forall x \in \mathbb{R}$,

$$f(x) = (\cos w) \cdot (\cos x) - (\sin w) \cdot (\sin x).$$

Claim 2: $\forall x \in \mathbb{R}, f'(x) = (-\sin)(w+x)$. Proof of Claim 2: Let $x \in \mathbb{R}$ be given. We wish to show: $f'(x) = -[\sin(w+x)]$.

We have dom $[\cos \circ \tau] = \mathbb{R}$. Then

$$x \in \mathbb{R} = LP_{\mathbb{R}}\mathbb{R} = LP_{\mathbb{R}}(\operatorname{dom}[\exp \circ \tau]) = LPD_{\mathbb{R}}(\cos \circ \tau).$$

So, since $f = \cos \circ \tau$, by the Chain Rule, $f'(x) = [\cos'(\tau(x))][\tau'(x)]$. By Claim 1, $\tau'(x) = 1$. Then $f'(x) = \cos'(\tau(x))$.

We have $\cos' = -\sin$ and $\tau(x) = w + x$. Then

$$f'(x) =^* (-\sin)(w+x) \neq \odot.$$

Then $f'(x) = (-\sin)(w+x)$, as desired. End of proof of Claim 2.

Claim 3: $\forall x \in \mathbb{R}, f''(x) = (-\cos)(w+x)$. Proof of Claim 3: By Claim 2, $f' = (-\sin) \circ \tau$. Let $x \in \mathbb{R}$ be given. We wish to show: $f''(x) = -[\cos(w+x)]$.

We have dom $[(-\sin) \circ \tau] = \mathbb{R}$. Then

$$x \in \mathbb{R} = LP_{\mathbb{R}}\mathbb{R} = LPD_{\mathbb{R}}((-\sin) \circ \tau).$$

So, since $f' = (-\sin) \circ \tau$, by the Chain Rule, we conclude that $f''(x) =^* [(-\sin)'(\tau(x))][\tau'(x)]$. By Claim 1, $\tau'(x) = 1$. Then $f''(x) =^* (-\sin)'(\tau(x))$.

We have $(-\sin)' = -\cos$ and $\tau(x) = w + x$. Then

$$f'(x) =^* (-\cos)(w+x) \neq \odot.$$

Then $f'(x) = (-\cos)(w+x)$, as desired. End of proof of Claim 3.

Claim 4: f'' = -f. Proof of Claim 4: We wish to show: $\forall x \in \mathbb{R}$, f''(x) = (-f)(x). Let $x \in \mathbb{R}$ be given. Want: f''(x) = (-f)(x).

By Claim 3, $f''(x) = (-\cos)(w+x)$. Then $f''(x) = -[\cos(w+x)]$. By definition of f, we have $f(x) = (\cos \circ \tau)(x)$. Then

$$f(x) = \cos(\tau(x)) = \cos(w+x).$$

We conclude that $f''(x) = -[\cos(w + x)] = -[f(x)] = (-f)(x)$, as desired. End of proof of Claim 4.

Let a := f(0) and let b := f'(0). By Claim 4 and Theorem 35.2, $f = a \cdot \cos + b \cdot \sin$. By definition of f, $f(0) = \cos(w + 0)$. Then $a = f(0) = \cos(w + 0) = \cos w$. By Claim 2, $f'(0) = (-\sin)(w + 0)$. Then $b = f'(0) = (-\sin)(w + 0) = -(\sin w)$. Then: $\forall x \in \mathbb{R}$,

$$f(x) = (a \cdot \cos + b \cdot \sin)(x)$$

= $a \cdot (\cos x) + b \cdot (\sin x)$
= $(\cos w) \cdot (\cos x) - (\sin w) \cdot (\sin x)$

as desired. QED

5-2. Show: $\forall x \in \mathbb{R}$,

$$\sin(2x) = 2 \cdot (\sin x) \cdot (\cos x) \quad \text{and} \\ \cos(2x) = (\cos^2 x) - (\sin^2 x).$$

Proof: Let $x \in \mathbb{R}$ be given. We wish to show:

$$\sin(2x) = 2 \cdot (\sin x) \cdot (\cos x) \quad \text{and} \\ \cos(2x) = (\cos^2 x) - (\sin^2 x).$$

Let w := x. Then $\sin w = \sin x$ and $\cos w = \cos x$. By Theorem 35.3, we have $\sin(w + x) = (\sin w) \cdot (\cos x) + (\cos w) \cdot (\sin x)$. Then

$$\sin(2x) = \sin(x+x) = \sin(w+x)$$
$$= (\sin w) \cdot (\cos x) + (\cos w) \cdot (\sin x)$$
$$= (\sin x) \cdot (\cos x) + (\cos x) \cdot (\sin x)$$
$$= 2 \cdot (\sin x) \cdot (\cos x).$$

It remains to show: $\cos(2x) = (\cos^2 x) - (\sin^2 x)$. By HW#5-1, $\cos(w+x) = (\cos w) \cdot (\cos x) - (\sin w) \cdot (\sin x)$. Then

$$\cos(2x) = \cos(x+x) = \cos(w+x)$$

= $(\cos w) \cdot (\cos x) - (\sin w) \cdot (\sin x)$
= $(\cos x) \cdot (\cos x) - (\sin x) \cdot (\sin x)$
= $(\cos^2 x) - (\sin^2 x),$

as desired. QED

5-3. Let $f : \mathbb{R} \to \mathbb{R}$, a := f(0). Assume f' = f. Show: $f = a \cdot \exp$. *Proof:* Let $\phi := f - (a \cdot \exp)$. We wish to show: $\phi = C^0_{\mathbb{R}}$. We have

$$\phi(0) = [f(0)] - a \cdot [\exp(0)] = [a] - a \cdot [1] = 0.$$

So, by Theorem 35.14, it suffices to show: $\phi' = \phi$. We wish to show: $\forall x \in \mathbb{R}, \phi'(x) = \phi(x)$. Let $x \in \mathbb{R}$ be given. Want: $\phi'(x) = \phi(x)$.

We have dom $[f] = \mathbb{R}$ and dom $[\exp] = \mathbb{R}$, so dom $[\phi] = \mathbb{R}$. Then $x \in \mathbb{R} = \operatorname{dom} [\phi] = \operatorname{dom} [f - (a \cdot \exp))$. So, by linearity of differentiation

$$(f - (a \cdot \exp))'(x) =^* [f'(x)] - a \cdot [\exp'(x)].$$

So, since $f - (a \cdot \exp) = \phi$, we get $\phi'(x) =^* [f'(x)] - a \cdot [\exp'(x)]$. By assumption, we have f' = f. Then, since $\exp' = \exp$, we see that $\phi'(x) =^* [f(x)] - a \cdot [\exp(x)]$. So, since $\phi(x) = [f(x)] - a \cdot [\exp(x)]$, we get $\phi'(x) =^* \phi(x)$. Since $x \in \mathbb{R} = \operatorname{dom} [\phi]$, we get $\phi(x) \neq \odot$. Then $\phi'(x) =^* \phi(x) \neq \odot$, and so $\phi'(x) = \phi(x)$, as desired. QED

5-4. Show: $\forall w, x \in \mathbb{R}$, $\exp(w + x) = (\exp w) \cdot (\exp x)$.

Proof: Let $w \in \mathbb{R}$ be given. We wish to show: $\forall x \in \mathbb{R}$,

$$\exp(w+x) = (\exp w) \cdot (\exp x).$$

Define $\tau : \mathbb{R} \to \mathbb{R}$ by $\tau(x) = w + x$.

Claim 1: $\forall x \in \mathbb{R}, \tau'(x) = 1$. Proof of Claim 1: Let $x \in \mathbb{R}$ be given. We wish to show: $\tau'(x) = 1$. We wish to show: $\lim_{x \to \infty} SS^x_{\tau} = 1$.

For all $h \in \mathbb{R}_0^{\times}$, we have

$$(SS_{\tau}^{x})(h) = \frac{[\tau(x+h)] - [\tau(x)]}{h} \\ = \frac{[w+x+h] - [w+x]}{h} \\ = \frac{h}{h} = 1 = C_{\mathbb{R}}^{1}(h).$$

Then $SS_{\tau}^{x} = C_{\mathbb{R}}^{1}$ on \mathbb{R}_{0}^{\times} , so $\lim_{0} SS_{\tau}^{x} = \lim_{0} C_{\mathbb{R}}^{1}$. So, since $\lim_{0} C_{\mathbb{R}}^{1} = 1$, we get $\lim_{0} SS_{\tau}^{x} = 1$, as desired. End of proof of Claim 1.

Let $f := \exp \circ \tau$. Then, for all $x \in \mathbb{R}$, we have

$$f(x) = (\exp \circ \tau)(x) = \exp(\tau(x)) = \exp(w + x).$$

We therefore wish to show: $\forall x \in \mathbb{R}$,

$$f(x) = (\exp w) \cdot (\exp x).$$

Claim 2: $\forall x \in \mathbb{R}, f'(x) = \exp(w + x)$. Proof of Claim 2: Let $x \in \mathbb{R}$ be given. We wish to show: $f'(x) = \exp(w + x)$.

We have dom $[\exp \circ \tau] = \mathbb{R}$. Then

$$x \in \mathbb{R} = LP_{\mathbb{R}}\mathbb{R} = LP_{\mathbb{R}}(\operatorname{dom}[\exp \circ \tau]) = LPD_{\mathbb{R}}(\exp \circ \tau).$$

So, since $f = \exp \circ \tau$, by the Chain Rule, $f'(x) = [\exp'(\tau(x))][\tau'(x)]$. By Claim 1, $\tau'(x) = 1$. Then $f'(x) = \exp'(\tau(x))$.

We have $\exp' = \exp$ and $\tau(x) = w + x$. Then

$$f'(x) =^* \exp(w+x) \neq \odot.$$

Then $f'(x) = \exp(w + x)$, as desired. End of proof of Claim 2.

Claim 3: f' = f. Proof of Claim 3: We wish to show: $\forall x \in \mathbb{R}$, f'(x) = f(x). Let $x \in \mathbb{R}$ be given. Want: f'(x) = f(x).

By Claim 2, we have $f'(x) = \exp(w + x)$. By definition of f, we have $f(x) = (\exp \circ \tau)(x)$. Then $f(x) = \exp(\tau(x)) = \exp(w + x)$. We conclude: $f'(x) = \exp(w + x) = f(x)$. End of proof of Claim 3.

Let a := f(0). By Claim 3 and HW#5-3, $f = a \cdot \exp$. By definition of $f, f(0) = \exp(w + 0)$. Then $a = f(0) = \exp(w + 0) = \exp w$. Then: $\forall x \in \mathbb{R}, f(x) = (a \cdot \exp)(x) = a \cdot (\exp x) = (\exp w) \cdot (\exp x)$. QED

5-5. Let $f : \mathbb{R} \to \mathbb{R}$. Assume that f' = f. Let $g := f^2$. Show: g' = 2g. *Proof:* Define $P : \mathbb{R} \to \mathbb{R}$ by $P(x) = x^2$. By Theorem 16.3, for all $x \in \mathbb{R}$, we have P'(x) = 2x. Also, for all $x \in \mathbb{R}$, we have

$$(P \circ f)(x) = P(f(x)) = [f(x)]^2 = f^2(x) = g(x).$$

Then $g = P \circ f$. We wish to show: $\forall x \in \mathbb{R}, g'(x) = (2g)(x)$. Let $x \in \mathbb{R}$ be given. We wish to show: g'(x) = (2g)(x).

We have dom $[P \circ f] = \mathbb{R}$. so $\operatorname{LPD}_{\mathbb{R}}(P \circ f) = \operatorname{LP}_{\mathbb{R}}\mathbb{R}$. Then we have $x \in \mathbb{R} = \operatorname{LP}_{\mathbb{R}}\mathbb{R} = \operatorname{LPD}_{\mathbb{R}}(P \circ f)$. So, by the Chain Rule, we see that $(P \circ f)'(x) =^* [P'(f(x))] \cdot [f'(x)]$. Then $g'(x) =^* [P'(f(x))] \cdot [f'(x)]$. We have $P'(f(x)) = 2 \cdot [f(x)]$. By assumption, f' = f, so f'(x) = f(x). Then $g'(x) =^* 2 \cdot [f(x)]^2 \neq \odot$, so $g'(x) = 2 \cdot [f(x)]^2$. We have $g(x) = f^2(x) = [f(x)]^2$. Then $g'(x) = 2 \cdot [g(x)] = (2g)(x)$. QED

Homework 4: Due on Tuesday 13 February

4-1. Let $m \in \mathbb{R}$. Define $\lambda : \mathbb{R} \to \mathbb{R}$ by $\lambda(x) = mx$. Show: $\lambda' = C_{\mathbb{R}}^m$.

Proof: We want: $\forall x \in \mathbb{R}, \ \lambda'(x) = C^m_{\mathbb{R}}(x)$. Let $x \in \mathbb{R}$ be given. We want: $\lambda'(x) = C^m_{\mathbb{R}}(x)$. We have $\mathbb{C}^m_{\mathbb{R}}(x) = m$. We want: $\lambda'(x) = m$.

Let $\phi := C_{\mathbb{R}_0^{\star}}^m$. Since $\phi = C_{\mathbb{R}}^m$ on \mathbb{R}_0^{\star} , it follows that $\lim_{0} \phi = \lim_{0} C_{\mathbb{R}}^m$. So, since $\lim_{0} C_{\mathbb{R}}^m = m$, we get $\lim_{0} \phi = m$. We want: $\lim_{0} SS_{\lambda}^x = m$. It therefore suffices to show: $SS_{\lambda}^x = \phi$.

As \mathbb{R}_0^{\times} is a common superdomain of SS_{λ}^x and ϕ , it suffices to show: $\forall h \in \mathbb{R}_0^{\times}, SS_{\lambda}^x(h) = \phi(h)$. Let $h \in \mathbb{R}_0^{\times}$ be given. Want: $SS_{\lambda}^x(h) = \phi(h)$. We have $\phi(h) = C_{\mathbb{R}_0^{\times}}^m(h) = m$. Then

$$SS_{\lambda}^{x}(h) = \frac{[\lambda(x+h)] - [\lambda(x)]}{h} = \frac{[m(x+h)] - [mx]}{h}$$
$$= \frac{mx + mh - mx}{h} = \frac{mh}{h} = m = \phi(h),$$

as desired. QED

4-2. Let $S \subseteq \mathbb{R}$. Show: $-(LP_{\mathbb{R}}S) = LP_{\mathbb{R}}(-S)$.

Proof: Define $\lambda : \mathbb{R} \to \mathbb{R}$ by $\lambda(x) = -x$. Then $\lambda : \mathbb{R} \to \mathbb{R}$ is continuous and one-to-one. Also, $\lambda^{-1} = \lambda$. Then $\lambda^{-1} : \mathbb{R} \to \mathbb{R}$ is continuous. Then $\lambda : \mathbb{R} \to \mathbb{R}$ is a homeomorphism. Then $\lambda_*(\mathrm{LP}_{\mathbb{R}}S) = \mathrm{LP}_{\mathbb{R}}(\lambda_*(S))$. That is, $-(\mathrm{LP}_{\mathbb{R}}S) = \mathrm{LP}_{\mathbb{R}}(-S)$, as desried. QED

4-3. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $p \in \mathbb{R}$. Define $f_0 : \mathbb{R} \dashrightarrow \mathbb{R}$ by $f_0(x) = f(-x)$. Let $p_0 := -p$. Assume that f has a local maximum at p in \mathbb{R} . Show that f_0 has a local maximum at p_0 in \mathbb{R} .

Proof: Choose $V \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $V \subseteq \text{dom}[f]$ and $f(p) \ge f_*(V)$. We wish to show: $\exists U_0 \in \mathcal{N}_{\mathbb{R}}(p_0)$ s.t. $U_0 \subseteq \text{dom}[f_0]$ and $f_0(p_0) \ge (f_0)_*(U_0)$.

Since $\mathcal{B}_{\mathbb{R}}(p)$ is a neighborhood base at p in \mathbb{R} , choose $\delta > 0$ such that $B_{\mathbb{R}}(p,\delta) \subseteq V$. Let $U := B_{\mathbb{R}}(p,\delta)$. Then $U \subseteq V$. Let $U_0 := B_{\mathbb{R}}(p_0,\delta)$. Since $\mathcal{B}_{\mathbb{R}}(p_0)$ is a neighborhood base at p_0 in \mathbb{R} , we get $U_0 \in \mathcal{N}_{\mathbb{R}}(p_0)$. Want: $U_0 \subseteq \text{dom}[f_0]$ and $f_0(p_0) \ge (f_0)_*(U_0)$. Since $U \subseteq V \subseteq \text{dom}[f]$, it follows that $-U \subseteq -(\text{dom}[f])$. We have

$$U_0 = B_{\mathbb{R}}(p_0, \delta) = B_{\mathbb{R}}(-p, \delta) = -[B_{\mathbb{R}}(p, \delta)] = -U_0$$

Then $U_0 = -U \subseteq -(\text{dom}[f]) = \text{dom}[f_0]$. Want: $f_0(p_0) \ge (f_0)_*(U_0)$. Want: $\forall y_0 \in (f_0)_*(U_0), f_0(p_0) \ge y_0$. Let $y_0 \in (f_0)_*(U_0)$ be given. We wish to show: $f_0(p_0) \ge y_0$.

Since $y_0 \in (f_0)_*(U_0)$, choose $x_0 \in U_0$ s.t. $y_0 = f_0(x_0)$. Let $x := -x_0$. We have $f_0(p_0) = f(-p_0) = f(p)$ and $y_0 = f_0(x_0) = f(-x_0) = f(x)$. We wish to show that $f(p) \ge f(x)$, or, equivalently, that $f(x) \le f(p)$.

We have $x = -x_0 \in -U_0 = -(-U) = U \subseteq V \subseteq \text{dom}[f]$. Then $x \in U$ and $x \in \text{dom}[f]$, and so $f(x) \in f_*(U)$. Since $U \subseteq V$, it follows that $f_*(U) \subseteq f_*(V)$. By choice of V, we have $f_*(V) \leq f(p)$. We conclude that $f(x) \in f_*(U) \subseteq f_*(V) \leq f(p)$, as desired. QED

4-4. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $p \in \mathbb{R}$. Define $f_1 : \mathbb{R} \dashrightarrow \mathbb{R}$ by $f_1(x) = -[f(x)]$. Assume that f has a local minimum at p in \mathbb{R} . Show that f_1 has a local maximum at p in \mathbb{R} .

Proof: Want: $\exists V \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $V \subseteq \text{dom}[f_1]$ and $f(p) \leq (f_1)_*(V)$. Choose $V \in \mathcal{N}_{\mathbb{R}}(p)$ s.t. $V \subseteq \text{dom}[f]$ and $f(p) \leq f_*(V)$. We want: $V \subseteq \text{dom}[f_1]$ and $f_1(p) \geq (f_1)_*(V)$. As $V \subseteq \text{dom}[f] = \text{dom}[f_1]$, it remains to show: $f_1(p) \geq (f_1)_*(V)$. We wish to show: $\forall y_1 \in (f_1)_*(V)$, $f_1(p) \geq y_1$. Let $y_1 \in (f_1)_*(V)$ be given. We wish to show: $f_1(p) \geq y_1$. Since $y_1 \in (f_1)_*(V)$, choose $x \in V$ such that $y_1 = f_1(x)$. Since $x \in V \subseteq \text{dom}[f]$, we get $f(x) \in f_*(V)$. Then, by the choice of V, $f(p) \leq f(x)$. Then $f_1(p) = -[f(p)] \geq -[f(x)] = f_1(x) = y$. QED

4-5. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $p \in \text{dom}[f']$. Assume that f has a local extremum at p. Show that f'(p) = 0.

Proof: At least one of the following must be true:

- (1) f has a local maximum at p in \mathbb{R} or
- (2) f has a local minimum at p in \mathbb{R} .

Case (1): By Lemma 33.16, f'(p) = 0, as desired. End of Case (1). Case (2): Define $f_1 : \mathbb{R} \dashrightarrow \mathbb{R}$ by $f_1(x) = -[f(x)]$. By HW#4-4, we see that f_1 has a local maximum at p in \mathbb{R} . Define $\lambda : \mathbb{R} \to \mathbb{R}$ by $\lambda(x) = -x$. Then $f_1 = \lambda \circ f$. Since f_1 has a local maximum at pin \mathbb{R} , by (3) of Remark 33.9, we get $p \in \text{LPD}_{\mathbb{R}}f_1$. Then $p \in \text{LPD}_{\mathbb{R}}(\lambda \circ f)$, so, by the Chain Rule, we get $(\lambda \circ f)'(p) = * [\lambda'(f(p))][f'(p)]$. Since $p \in \text{dom}[f'] \subseteq \text{dom}[f]$, we get $f(p) \in \text{im}[f]$. So, since $\text{im}[f] \subseteq \mathbb{R}$, we get $f(p) \in \mathbb{R}$. By HW#4-2, $\lambda'(f(p)) = -1$. Then

$$f_1'(p) = (\lambda \circ f)'(p) =^* [\lambda'(f(p))][f'(p)] = -[f'(p)],$$

so $f'_1(p) =^* -[f'(p)]$. Since $p \in \text{dom}[f']$, we get $f'(p) \in \text{im}[f]$. So, since $\text{im}[f] \subseteq \mathbb{R}$, we get $f'(p) \in \mathbb{R}$. Then $-[f'(p)] \neq \mathfrak{S}$.

Since $f'_1(p) =^* -[f'(p)] \neq \odot$, we conclude that $f'_1(p) = -[f'(p)]$. Then $f'_1(p) \neq \odot$, so $p \in \text{dom}[f'_1]$. So, since f_1 has a local maximum at p in \mathbb{R} , it follows, from Lemma 33.16, that $f'_1(p) = 0$.

Then $0 = f'_1(p) = -[f'(p)]$. Then f'(p) = 0. End of Case (2). QED

Homework 3: Due on Tuesday 6 February

3-1. Let X be a topological space, let $S \subseteq X$ and let $p \in X$. Show:

$$[p \in \operatorname{Int}_X S] \quad \Leftrightarrow \quad [S \in \mathcal{N}_X(p)]$$

Proof: Proof of \Rightarrow : Assume: $p \in \text{Int}_X S$. We wish to show: $S \in \mathcal{N}_X(p)$. We wish to show: $\exists \text{open } U \text{ in } X \text{ s.t. } p \in U \subseteq S$.

Let $U := \operatorname{Int}_X S$. Then U is open in X, and we wish to show: $p \in U \subseteq S$. We have $p \in \operatorname{Int}_X S = U$, and it remains to show: $U \subseteq S$. We have $U = \operatorname{Int}_X S \subseteq S$, as desired. End of proof of \Rightarrow .

Proof of \leftarrow : Assume: $S \in \mathcal{N}_X(p)$. We wish to show: $p \in \text{Int}_X S$.

Since $S \in \mathcal{N}_X(p)$, choose an open U in X s.t. $p \in U \subseteq S$. Since U is open in X, we get $\operatorname{Int}_X U = U$. Since $U \subseteq S$, $\operatorname{Int}_X U \subseteq \operatorname{Int}_X S$. Then $p \in U = \operatorname{Int}_X U \subseteq \operatorname{Int}_X S$, as desired. End of proof of \Leftarrow . QED

3-2. Let $\phi : \mathbb{R} \dashrightarrow \mathbb{R}$, let $p \in \mathbb{R}$ and let q > 0. Assume: $\phi \to q$ near p. Show: $\exists U \in \mathcal{N}_{\mathbb{R}}^{\times}(p)$ s.t. $\phi_{*}(U) > 0$.

Proof: Let $V := (0, \infty)$. Then V is open in \mathbb{R} and $q \in V$. Therefore, by Remark 16.4, we conclude that $V \in \mathcal{N}_{\mathbb{R}}(q)$. So, since $\phi \to q$ near p, choose $U \in \mathcal{N}_{\mathbb{R}}^{\times}(p)$ s.t. $\phi_*(U) \subseteq V$. We wish to show: $\phi_*(U) > 0$. We have $\phi_*(U) \subseteq V = (0, \infty) > 0$, as desired. QED

3-3. Let $\alpha, \beta, \gamma : \mathbb{R} \dashrightarrow \mathbb{R}$. Let $S \subseteq \text{dom}[(\alpha, \beta, \gamma)]$. Let $p \in \text{Int}_{\mathbb{R}}S$ and let $q \in \mathbb{R}$. Assume that $\alpha \leq \beta \leq \gamma$ on S. Assume that $\alpha(p) = \gamma(p)$. Assume that $\alpha'(p) = q = \gamma'(p)$. Show: $\beta'(p) = q$.

Proof: We wish to show: $\lim_{\alpha} SS^p_{\beta} = q$.

Claim: $\forall h \in (S - p)_0^{\times}, (SS_\beta^p)(h) \in [(SS_\alpha^p)(h) | (SS_\gamma^p)(h)].$ Proof of Claim: Given $h \in (S - p)_0^{\times}$. Want: $(SS_\beta^p)(h) \in [(SS_\alpha^p)(h) | (SS_\gamma^p)(h)].$ We have $h \in (S - p)_0^{\times} \subseteq S - p$. Then $p + h \in S$. Then

$$\alpha(p+h) \leqslant \beta(p+h) \leqslant \gamma(p+h).$$

We have $p \in \operatorname{Int}_R S \subseteq S$. It follows that $\alpha(p) \leq \beta(p) \leq \gamma(p)$. So, since $\alpha(p) = \gamma(p)$, we conclude that $\alpha(p) = \beta(p) = \gamma(p)$. So, since $\alpha(p+h) \leq \beta(p+h) \leq \gamma(p+h)$, we get:

$$[\alpha(p+h)] - [\alpha(p)] \leqslant [\beta(p+h)] - [\beta(p)] \leqslant [\gamma(p+h)] - [\gamma(p)].$$

Dividing this by h, we get:

$$(h > 0) \Rightarrow ((SS^p_{\alpha})(h) \leq (SS^p_{\beta})(h) \leq SS^p_{\gamma}(h))$$
 and
 $(h < 0) \Rightarrow ((SS^p_{\alpha})(h) \geq (SS^p_{\beta})(h) \geq SS^p_{\gamma}(h)).$

Then

$$(h > 0) \Rightarrow ((SS^p_\beta)(h) \in [(SS^p_\alpha)(h) | (SS^p_\gamma)(h)])$$
 and
 $(h < 0) \Rightarrow ((SS^p_\beta)(h) \in [(SS^p_\alpha)(h) | (SS^p_\gamma)(h)]).$

Since $h \in (S - p)_0^{\times}$, we get $h \neq 0$, so: either h > 0 or h < 0. Then $(SS_{\beta}^p)(h) \in [(SS_{\alpha}^p)(h) | (SS_{\gamma}^p)(h)]$, as desired. End of proof of Claim.

Let $D := \operatorname{dom}[\beta]$. Then $\operatorname{Int}_{\mathbb{R}}D \subseteq \operatorname{LP}_{\mathbb{R}}D = \operatorname{LPD}_{\mathbb{R}}\beta$. We have $S \subseteq \operatorname{dom}[(\alpha, \beta, \gamma)] \subseteq D$. Then $p \in \operatorname{Int}_{\mathbb{R}}S \subseteq \operatorname{Int}_{\mathbb{R}}D \subseteq \operatorname{LPD}_{\mathbb{R}}\beta$. It

therefore suffices to show: $SS^p_{\beta} \to q$ near 0. We wish to show: $\forall \varepsilon > 0$, $\exists \delta > 0 \text{ s.t.}, \forall h \in \text{dom} [SS^p_{\beta}],$

$$\begin{bmatrix} 0 < |h| < \delta \end{bmatrix} \implies \begin{bmatrix} |[(SS^p_\beta)(h)] - q| < \varepsilon \end{bmatrix}.$$

Let $\varepsilon > 0$ be given. We wish to show: $\exists \delta > 0$ s.t., $\forall h \in \text{dom}[SS^p_\beta]$,

 $[0 < |h| < \delta] \implies [|[(SS^p_\beta)(h)] - q| < \varepsilon].$

Since $p \in \operatorname{Int}_{\mathbb{R}}S$, by HW#3-1, we get $S \in \mathcal{N}_{\mathbb{R}}(p)$. So, since $\mathcal{B}_{\mathbb{R}}(p)$ is a neighborhood base at p in \mathbb{R} , choose $\eta > 0$ s.t. $B_{\mathbb{R}}(p,\eta) \subseteq S$. Since $\alpha'(p) = q$, it follows that $SS^p_{\alpha} \to q$ near p. Choose $\lambda > 0$ s.t., $\forall h \in \operatorname{dom}[SS^p_{\alpha}]$,

$$\begin{bmatrix} 0 < |h| < \lambda \end{bmatrix} \implies \begin{bmatrix} |[(SS^p_{\alpha})(h)] - q| < \varepsilon \end{bmatrix}$$

Since $\gamma'(p) = q$, it follows that $SS^p_{\gamma} \to q$ near p. Choose $\mu > 0$ s.t., $\forall h \in \text{dom}[SS^p_{\gamma}],$

$$\begin{bmatrix} 0 < |h| < \mu \end{bmatrix} \implies \begin{bmatrix} |[(SS^p_{\gamma})(h)] - q| < \varepsilon \end{bmatrix}.$$

Let $\delta := \min\{\eta, \lambda, \mu\}$. We wish to show: $\forall h \in \operatorname{dom}[SS^p_\beta]$,

$$[0 < |h| < \delta] \implies [|[(SS^p_\beta)(h)] - q| < \varepsilon].$$

Let $h \in \text{dom}[SS^p_\beta]$ be given. We wish to show:

$$\begin{bmatrix} 0 < |h| < \delta \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} |[(SS^p_\beta)(h)] - q| < \varepsilon \end{bmatrix}.$$

Assume: $0 < |h| < \delta$. We wish to prove: $|[(SS^p_\beta)(h)] - q| < \varepsilon$. Let $I := (q - \varepsilon, q + \varepsilon)$. We wish to prove $(SS^q_\beta)(h) \in I$

Since 0 < |h|, it follows that $h \neq 0$. Since $|(p+h)-p| = |h| < \delta \leq \eta$, we see that $p+h \in B_{\mathbb{R}}(p,\eta)$. By the choice of η , we have $B_{\mathbb{R}}(p,\eta) \subseteq S$. Since $p+h \in B_{\mathbb{R}}(p,\eta) \subseteq S$, we get $h \in S-p$. So, since $h \neq 0$, we have $h \in (S-p)_0^{\times}$. Then, by the Claim, $(SS_{\beta}^p)(h) \in [(SS_{\alpha}^p)(h) | (SS_{\gamma}^p)(h)]$.

Since $0 < |h| < \delta \leq \lambda$, by choice of λ , we get: $|[(SS^p_{\alpha})(h)] - q| < \varepsilon$. Then $(SS^p_{\alpha})(h) \in I$. Since $0 < |h| < \delta \leq \mu$, by choice of μ , we get: $|[(SS^p_{\gamma})(h)] - q| < \varepsilon$. Then $(SS^p_{\gamma})(h) \in I$. Since I is an interval and $(SS^p_{\alpha})(h) \in I$ and $(SS^p_{\gamma})(h) \in I$, we get $[(SS^p_{\alpha})(h) | (SS^p_{\gamma})(h)] \subseteq I$. Then $(SS^p_{\beta})(h) \in [(SS^p_{\alpha})(h) | (SS^p_{\gamma})(h)] \subseteq I$, as desired. QED

3-4. Let W be a normed vector space. Let $f, g : \mathbb{R} \dashrightarrow W$. Let U be an open subset of \mathbb{R} . Assume: $U \subseteq \text{dom}[(f,g)]$. Assume: f = g on U. Show: f' = g' on U.

Proof: We wish to show: $\forall p \in U, f'(p) = g'(p)$. Let $p \in U$ be given. We wish to show: f'(p) = g'(p). We wish to show: $\lim_{0} SS_f^p = \lim_{0} SS_g^p$.

Since U is open in \mathbb{R} , it follows that U - p is open in \mathbb{R} . So, since $0 \in U - p$, we get $U - p \in \mathcal{N}_{\mathbb{R}}(0)$. Let $V := (U - p)_0^{\times}$. Then $V \in \mathcal{N}_{\mathbb{R}}^{\times}(0)$. *Claim:* $SS_f^p = SS_q^p$ on V. *Proof of Claim:* We want: $\forall h \in V$,

 $(SS_f^p)(h) = (SS_g^p)(h)$. Given $h \in V$. We want: $(SS_f^p)(h) = (SS_g^p)(h)$.

Since $h \in (U-p)_0^{\times} \subseteq U-p$, we get $p+h \in U$. Since $p, p+h \in U$ and since f = g on U, we get f(p) = g(p) and f(p+h) = g(p+h). Then

$$(SS_f^p)(h) = \frac{[f(p+h)] - [f(p)]}{h} = \frac{[g(p+h)] - [g(p)]}{h} = (SS_g^p)(h),$$

as desired. End of proof of Claim:

Since $V \in \mathcal{N}_{\mathbb{R}}^{\times}(0)$, by the Claim and by Theorem 20.8, we have both $\underset{0}{\text{LIMS}}(SS_{f}^{p}) \subseteq \underset{0}{\text{LIMS}}(SS_{g}^{p})$ and $\underset{0}{\text{LIMS}}(SS_{g}^{p}) \subseteq \underset{0}{\text{LIMS}}(SS_{f}^{p})$. Then $\underset{0}{\text{LIMS}}(SS_{g}^{p}) = \underset{0}{\text{LIMS}}(SS_{f}^{p})$. Then

$$\lim_{0} SS_{f}^{p} = \operatorname{ELT}(\operatorname{LIMS}(SS_{f}^{p})) = \operatorname{ELT}(\operatorname{LIMS}(SS_{g}^{p})) = \lim_{0} SS_{g}^{p},$$

as desired. QED

3-5. Define $f : \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x) = [x^2][\sin(x^{-3})]$. Let $\beta := \operatorname{adj}_0^0 f$. Show: $\beta'(0) = 0$.

Proof: Define $\alpha, \gamma : \mathbb{R} \to \mathbb{R}$ by $\alpha(x) = -x^2$ and $\gamma(x) = x^2$. For all $x \in \mathbb{R}^{\times}_0$, we have both $-1 \leq \sin(x^{-3}) \leq 1$ and $x^2 \geq 0$, and so $[x^2][-1] \leq [x^2][\sin(x^{-3})] \leq [x^2][1]$, and so $\alpha(x) \leq f(x) \leq \gamma(x)$. Then $\alpha \leq f \leq \gamma$ on \mathbb{R}^{\times}_0 . So, since $f = \beta$ on \mathbb{R}^{\times}_0 , we get: $\alpha \leq \beta \leq \gamma$ on \mathbb{R}^{\times}_0 . So, since $\alpha(0) = \beta(0) = \gamma(0) = 0$, we get $\alpha \leq \beta \leq \gamma$ on \mathbb{R} .

We have $\alpha(0) = 0 = \gamma(0)$. By the Power Rule, for all $x \in \mathbb{R}$, we have $\gamma'(x) = 2x$. Then $\gamma'(0) = 0$. So, since $\alpha = -\gamma$, by linearity of differentiation, we have $\alpha'(0) = -[\gamma'(0)]$. Then

$$\alpha'(0) =^* - [\gamma'(0)] = -0 = 0 \neq \odot.$$

Then $\alpha'(0) = 0$. Then $\alpha'(0) = 0 = \gamma'(0)$. Let p := 0 and q := 0. Then $\alpha(p) = \gamma(p)$ and $\alpha'(p) = q = \gamma'(p)$. Then, by HW#3-3, we get $\beta'(p) = q$. That is, $\beta'(0) = 0$. QED

Homework 2: Due on Tuesday 30 January

2-1. Let X and Y be topological spaces. Let $X_0 \subseteq X$ and let $Y_0 \subseteq Y$. Let $f: X_0 \dashrightarrow Y_0$. Show:

 $[f \text{ is } (X, Y)\text{-continuous }] \Rightarrow [f \text{ is } (X_0, Y_0)\text{-continuous }].$

Proof: Assume: f is (X, Y)-continuous. Want: f is (X_0, Y_0) -continuous. Want: $\forall p \in \text{dom} [f]$, f is (X_0, Y_0) -continuous at p. Given $p \in \text{dom} [f]$. Want: f is (X_0, Y_0) -continuous at p. Since f is (X, Y)-continuous and $p \in \text{dom} [f]$, it follows that f is (X, Y)-continuous at p. Want: $\forall V_0 \in \mathcal{N}_{Y_0}(f(p)), \exists U_0 \in \mathcal{N}_{X_0}(p) \text{ s.t. } f_*(U_0) \subseteq V_0$. Let $V_0 \in \mathcal{N}_{Y_0}(f(p))$ be given. We wish to show: $\exists U_0 \in \mathcal{N}_{X_0}(p) \text{ s.t. } f_*(U_0) \subseteq V_0$.

By extension, choose $V \in \mathcal{N}_Y(f(p))$ s.t. $V \cap Y_0 = V_0$. Since f is (X, Y)-continuous at p, choose $U \in \mathcal{N}_X(p)$ s.t. $f_*(U) \subseteq V$. We define $U_0 := U \cap X_0$. By restriction, $U_0 \in \mathcal{N}_{X_0}(p)$. We wish to show: $f_*(U_0) \subseteq V_0$. We wish to show: $\forall x \in \text{dom}[f]$,

$$[x \in U_0] \implies [f(x) \in V_0].$$

Let $x \in \text{dom}[f]$ be given. We wish to show:

$$[x \in U_0] \implies [f(x) \in V_0].$$

Assume: $x \in U_0$. We wish to show: $f(x) \in V_0$.

We have $x \in U_0 = U \cap X_0 \subseteq U$. So, since $x \in \text{dom}[f]$, we get $f(x) \in f_*(U)$. Then $f(x) \in f_*(U) \subseteq V$. Since $f: X_0 \dashrightarrow Y_0$, it follows that im $[f] \subseteq Y_0$. Then $f(x) \in \text{im}[f] \subseteq Y_0$. So, since $f(x) \in V$, we get $f(x) \in V \cap Y_0$. Then $f(x) \in V \cap Y_0 = V_0$, as desired. QED

2-2. Let X, Y and Z be topological spaces. Let $f : X \dashrightarrow Y$ and let $g : X \dashrightarrow Z$. Let $a \in X, b \in Y$ and $c \in Z$. Assume:

- (1) $f \to b$ in Y near a in X and
- (2) $g \to c$ in Z near a in X.

Show: $(f,g) \to (b,c)$ in $Y \times Z$ near a in X.

Proof: Want: $\forall W \in \mathcal{N}_{Y \times Z}((b, c)), \exists R \in \mathcal{N}_X^{\times}(a) \text{ s.t. } (f, g)_*(R) \subseteq W.$ Let $W \in \mathcal{N}_{Y \times Z}((b, c))$ be given. Want: $\exists R \in \mathcal{N}_X^{\times}(a) \text{ s.t. } (f, g)_*(R) \subseteq W.$

Choose $U \in \mathcal{N}_Y(b)$ and $V \in \mathcal{N}_Z(c)$ s.t. $U \times V \subseteq W$. Since $f \to b$ in Ynear a in X and since $U \in \mathcal{N}_Y(b)$, choose $P \in \mathcal{N}_X^{\times}(a)$ s.t. $f_*(P) \subseteq U$. Since $g \to c$ in Z near a in X and since $V \in \mathcal{N}_Z(c)$, choose $Q \in \mathcal{N}_X^{\times}(a)$ s.t. $f_*(Q) \subseteq V$. As $P, Q \in \mathcal{N}_X^{\times}(a), P \cap Q \in \mathcal{N}_X^{\times}(a)$. Let $R := P \cap Q$. Then $R \in \mathcal{N}_x^{\times}(a)$. Want: $(f,g)_*(R) \subseteq W$. Want: $\forall x \in \text{dom}[(f,g)],$

$$[x \in R] \quad \Rightarrow \quad [(f,g)(x) \in W].$$

Let $x \in \text{dom}[(f, g)]$ be given. We wish to show:

$$[x \in R] \implies [(f,g)(x) \in W].$$

Assume: $x \in R$. We wish to show: $(f, g)(x) \in W$.

We have $x \in \text{dom}[(f,g)] = (\text{dom}[f]) \cap (\text{dom}[g])$, so $x \in \text{dom}[f]$ and $x \in \text{dom}[g]$. Since $x \in \text{dom}[f]$ and since $x \in R = P \cap Q \subseteq P$, we get $f(x) \in f_*(P)$. Since $x \in \text{dom}[f]$ and since $x \in R = P \cap Q \subseteq Q$, we get $g(x) \in g_*(P)$. Then $f(x) \in f_*(P) \subseteq U$ and $g(x) \in g_*(P) \subseteq V$. Then $(f,g)(x) = (f(x),g(x)) \in U \times V \subseteq W$, as desired. QED

2-3. Show: $\forall z \in \mathbb{R}, \exists ! x \in \mathbb{R} \text{ s.t. } x^5 + x^3 = z.$

Proof: Let $z \in \mathbb{R}$ be given. We wish to show: $\exists ! x \in \mathbb{R}$ s.t. $x^5 + x^3 = z$.

Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^5 + x^3$. Then f is continuous. We wish to show: $\exists ! x \in \mathbb{R}$ s.t. f(x) = z. We wish to show:

- (1) $\exists x \in \mathbb{R} \text{ s.t. } f(x) = z.$
- (2) $\forall w, x \in \mathbb{R}$, $\left(\left[f(w) = z = f(x) \right] \Rightarrow \left[w = x \right] \right)$.

Proof of (1): As $z \in \mathbb{R}$, $-|z| \leq z \leq |z|$. Let $b := \max\{|z|/2, 1\}$. Since $b \geq 1$, we get $b^5 \geq b$ and $b^3 \geq b$. Then $b^5 \geq b \geq |z|/2$ and $b^3 \geq b \geq |z|/2$. Then $f(b) = b^5 + b^3 \geq (|z|/2) + (|z|/2) = |z|$. Then $-[f(b)] \leq -|z|$. We have $f(-b) = (-b)^5 + (-b)^3 = -(b^5 + b^3) = -[f(b)] \leq -|z|$. Then $f(-b) \leq -|z| \leq z \leq |z| \leq f(b)$. Then $z \in [f(-b), f(b)]$. Also, since $b \geq 1$, we see that $-b \leq -1$. Then $-b \leq -1 < 1 \leq b$. It suffices to show: $\exists x \in [-b, b]$ s.t. f(x) = z.

By the Intermediate Value Theorem, $[f(-b), f(b)] \subseteq f_*([-b, b])$. Then $z \in [f(-b), f(b)] \subseteq f_*([-b, b])$, so $\exists x \in [-b, b]$ s.t. f(x) = z, as desired. End of proof of (1).

Proof of (2): Given $w, x \in \mathbb{R}$. Want: $[f(w) = z = f(x)] \Rightarrow [w = x]$. Assume: f(w) = z = f(x). We wish to show: w = x. Assume: $w \neq x$. We aim for a contradiction.

Let $p := \min\{w, x\}$ and let $q := \max\{w, x\}$. Since $w \neq x$, it follows that p < q. Also, $f(p) \in \{f(w), f(x)\} = \{z\}$, so f(p) = z. Also, $f(q) \in \{f(w), f(x)\} = \{z\}$, so f(q) = z. Since p < q, we get $p^5 < q^5$ and $p^3 < q^3$. Then $p^5 + p^3 < q^5 + q^3$. Then

$$f(p) = p^5 + p^3 < q^5 + q^3 = f(q) = z = f(p),$$

2-4. Let X and Y be topological spaces. Let $f : X \dashrightarrow Y$. Let $X_0 \subseteq \text{dom}[f]$. Assume that f is (X, Y)-continuous on X_0 . Show that $f|_{X_0}$ is (X_0, Y) -continuous.

Proof: Let $g := f | X_0$. Then dom $[g] = X_0$. We wish to show: g is (X_0, Y) -continuous. By HW#2-1 (with Y_0 replaced by Y), want: g is (X, Y)-continuous. Want: $\forall p \in X_0$, g is (X, Y)-continuous at p. Let $p \in X_0$ be given. We wish to show: g is (X, Y)-continuous at p. Want: $\forall V \in \mathcal{N}_Y(g(p)), \exists U \in \mathcal{N}_X(p) \text{ s.t. } g_*(U) \subseteq V$. Let $V \in \mathcal{N}_Y(g(p))$ be given. Want: $\exists U \in \mathcal{N}_X(p) \text{ s.t. } g_*(U) \subseteq V$.

Since $p \in X_0 \subseteq \text{dom}[f]$, and since f is (X, Y)-continuous, it follows that f is (X, Y)-continuous at p. Since $p \in X_0 \subseteq \text{dom}[f]$, we have $(f|X_0)(p) = f(p)$. Then $g(p) = (f|X_0)(p) = f(p)$. Since $V \in \mathcal{N}_Y(g(p)) = \mathcal{N}_Y(f(p))$ and since f is (X, Y)-continuous at p, choose $U \in \mathcal{N}_X(p)$ s.t. $f_*(U) \subseteq V$. We wish to show: $g_*(U) \subseteq V$.

Recall that dom $[g] = W_0$. We wish to show: $\forall w \in X_0$,

$$\left[\begin{array}{c} w \in U \end{array} \right] \quad \Rightarrow \quad \left[\begin{array}{c} g(w) \in V \end{array} \right].$$

Let $w \in X_0$ be given. We wish to show:

$$\left[w \in U \right] \quad \Rightarrow \quad \left[g(w) \in V \right].$$

Assume: $w \in U$. We wish to show: $g(w) \in V$.

As $w \in X_0 \subseteq \text{dom}[f]$ and as $w \in U$, we get $f(w) \in f_*(U)$. By choice of U, we have $f_*(U) \subseteq V$. Since $w \in X_0 \subseteq \text{dom}[f]$, $(f|X_0)(w) = f(w)$. Then $g(w) = (f|X_0)(w) = f(w) \in f_*(U) \subseteq V$. QED

2-5. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$. Let $\alpha, \beta \in \text{dom}[f]$. Assume that f is semimonotone on $[\alpha|\beta]$. Show: $f_*([\alpha|\beta]) \subseteq [f(\alpha)|f(\beta)]$.

Proof: Since $\alpha, \beta \in \text{dom}[f]$, we conclude that $\{\alpha, \beta\} \subseteq \text{dom}[f]$. Let $a := \min\{\alpha, \beta\}$ and $b := \max\{\alpha, \beta\}$. Then $a \leq b$. Also, $[\alpha|\beta] = [a, b]$. Then f is semimonotone on [a, b]. Also, $a, b \in \{\alpha, \beta\} \subseteq \text{dom}[f]$.

Either $((a = \alpha) \text{ and } (b = \beta))$ or $((a = \beta) \text{ and } (b = \alpha))$. Then either $[f(\alpha)|f(\beta)] = [f(a)|f(b)]$ or $[f(\alpha)|f(\beta)] = [f(b)|f(a)]$. So, since [f(b)|f(a)] = [f(a)|f(b)], we see that $[f(\alpha)|f(\beta)] = [f(a)|f(b)]$. We wish to show: $f_*([a, b]) \subseteq [f(a)|f(b)]$. We wish to show: $\forall x \in \text{dom}[f]$,

$$(x \in [a, b]) \Rightarrow (f(x) \in [f(a)|f(b)]).$$

Let $x \in \text{dom}[f]$ be given. We wish to show:

 $(x \in [a, b]) \implies (f(x) \in [f(a)|f(b)]).$

Assume: $x \in [a, b]$. We wish to show: $f(x) \in [f(a)|f(b)]$.

Because $x \in [a, b]$, it follows that $a \leq x \leq b$. Since f is semimonotone on [a, b], at least one of the following must be true:

(1) f is semiincreasing on [a, b] or

(2) f is semidecreasing on [a, b].

Case (1): Since $a, x, b \in \text{dom}[f]$, since $a \leq x \leq b$ and since f is semiincreasing on [a, b], it follows that $f(a) \leq f(x) \leq f(b)$. Then $f(x) \in [f(a), f(b)] = [f(a)|f(b)]$, as desired. End of Case (1).

Case (2): Since $a, x, b \in \text{dom}[f]$, since $a \leq x \leq b$ and since f is semidecreasing on [a, b], it follows that $f(a) \geq f(x) \geq f(b)$. Then $f(x) \in [f(b), f(a)] = [f(a)|f(b)]$, as desired. End of Case (2). QED

Homework 1: Due on Tuesday 23 January

1-1. Let X and Y be metric spaces, and let $f: X \to Y$. Assume that f is not uniformly continuous. Show: $\exists \varepsilon > 0, \exists p, q \in X^{\mathbb{N}} \text{ s.t.}, \forall j \in \mathbb{N},$

 $\left[\begin{array}{cc} d_X\left(\,p_j\,,\,q_j\,\right) \;<\; 1/j\,\,\right] \quad \text{and} \quad \left[\begin{array}{cc} d_Y\left(\,f(p_j)\,,\,f(q_j)\,\right) \;\geqslant\; \varepsilon\,\,\right].$

Proof: As f is not u.c., choose $\varepsilon > 0$ s.t. $\forall \delta > 0, \exists p, q \in X$ s.t.

 $[d_X(p,q) < \delta]$ and $[d_Y(f(p), f(q)) \ge \varepsilon].$

We wish to show: $\exists p, q \in X^{\mathbb{N}}$ s.t., $\forall j \in \mathbb{N}$,

$$\begin{bmatrix} d_X(p_i, q_i) < 1/j \end{bmatrix}$$
 and $\begin{bmatrix} d_Y(f(p_i), f(q_i)) \geq \varepsilon \end{bmatrix}$.

Claim: $\forall j \in \mathbb{N}, \exists p, q \in X \text{ s.t.}$

$$\begin{bmatrix} d_X(p,q) < 1/j \end{bmatrix}$$
 and $\begin{bmatrix} d_Y(f(p), f(q)) \ge \varepsilon \end{bmatrix}$.

Proof of claim: Let $j \in \mathbb{N}$ be given. By the choice of ε , $\exists p, q \in X$ s.t.

 $[d_X(p,q) < 1/j]$ and $[d_Y(f(p), f(q)) \ge \varepsilon],$

as desired. End of proof of claim.

By the claim and the Axiom of Choice, $\exists p, q \in X^{\mathbb{N}}$ s.t. $\forall j \in \mathbb{N}$,

$$\begin{bmatrix} d_X(p_j, q_j) < 1/j \end{bmatrix}$$
 and $\begin{bmatrix} d_Y(f(p_j), f(q_j)) \ge \varepsilon \end{bmatrix}$,

as desired. QED

1-2. Let K be a sequentially compact metric space, let Y be a metric space, and let $f: K \to Y$. Assume that f is not uniformly continuous. Show: $\exists \varepsilon > 0, \exists s, t \in K^{\mathbb{N}}, \exists u \in K \text{ s.t.}$

$$([s_{\bullet} \to u \text{ in } K] \text{ and } [t_{\bullet} \to u \text{ in } K] \text{ and } [\forall j \in \mathbb{N}, \quad d_Y(f(s_j), f(t_j)) \ge \varepsilon]).$$

Proof: By HW#1-1, choose $\varepsilon > 0$ and $p, q \in K^{\mathbb{N}}$ s.t., $\forall j \in \mathbb{N}$,

$$\left[d_K(p_j, q_j) < 1/j \right]$$
 and $\left[d_Y(f(p_j), f(q_j)) \ge \varepsilon \right]$.

Since K is sequentially compact, p_{\bullet} is subconvergent in K. Choose a subsequence s of p_{\bullet} s.t. s_{\bullet} is convergent in K. Choose $u \in K$ s.t. $s_{\bullet} \to u$ in K. Since s_{\bullet} is a subsequence of p_{\bullet} , choose a strictly increasing $\ell \in \mathbb{N}^{\mathbb{N}}$ s.t. $s_{\bullet} = (p \circ \ell)_{\bullet}$. Let $t := (q \circ \ell)_{\bullet}$. Then $s, t \in K^{\mathbb{N}}$ and $u \in K$. Want:

$$([s_{\bullet} \to u \text{ in } K] \text{ and } [t_{\bullet} \to u \text{ in } K] \text{ and } [\forall j \in \mathbb{N}, \quad d_Y(f(s_j), f(t_j)) \ge \varepsilon]).$$

By choice of u, we have $s_{\bullet} \to u$ in K, so it remains to show:

(1) $t \to u$ in K and (2) $\forall j \in \mathbb{N}$, $d_Y(f(s_j), f(t_j)) \ge \varepsilon$. *Proof of (1):* We wish to show: $\forall \eta > 0, \exists I \in \mathbb{N} \text{ s.t.}, \forall j \in \mathbb{N}$,

 $[j \ge I] \implies [d_K(t_j, u) < \eta].$

Let $\eta > 0$ be given. We wish to show: $\exists I \in \mathbb{N} \text{ s.t.}, \forall j \in \mathbb{N}$,

 $[j \ge I] \implies [d_K(t_j, u) < \eta].$

Since $s_{\bullet} \to u$ in K, choose $R \in \mathbb{N}$ s.t., $\forall j \in \mathbb{N}$,

$$[j \ge R] \implies [d_K(s_j, u) < \eta/2].$$

By the Archimidean Principle, choose $S \in \mathbb{N}$ such that $S > 2/\eta$. Let $I := \max\{R, S\}$. We wish to show: $\forall j \in \mathbb{N}$,

$$[j \ge I] \implies [d_K(t_j, u) < \eta].$$

Let $j \in \mathbb{N}$ be given. We wish to show:

$$[j \ge I] \implies [d_K(t_j, u) < \eta].$$

Assume: $j \ge I$. We wish to show: $d_K(t_j, u) < \eta$.

Since $j \ge I \ge R$, by choice of R, we conclude that $d_K(s_j, u) < \eta/2$. Since $\ell \in \mathbb{N}^{\mathbb{N}}$ and since ℓ_{\bullet} is strictly increasing, by Remark 23.12, we get $\ell_j \ge j$. It follows that $1/\ell_j \le 1/j$. Since $j \ge I \ge S > 2/\eta$, we get $1/j < \eta/2$. By the choice of p_{\bullet} and q_{\bullet} , we have $d_K(p_{\ell_j}, q_{\ell_j}) < 1/\ell_j$. Then $d_K(t_j, s_j) = d_K(s_j, t_j) = d_K(p_{\ell_j}, q_{\ell_j}) < 1/\ell_j \leq 1/j < \eta/2$. Then

$$d_K(t_j, u) \leq [d_K(t_j, s_j)] + [d(s_j, u)] < (\eta/2) + (\eta/2) = \eta,$$

as desired. End of proof of (1).

Proof of (2): Let $j \in \mathbb{N}$ be given. Want: $d_Y(f(s_j), f(t_j)) \ge \varepsilon$.

By the choice of p and q, we have $d_Y(f(p_{\ell_j}), f(q_{\ell_j})) \ge \varepsilon$. Then $d_Y(f(s_j), f(t_j)) = d_Y(f(p_{\ell_j}), f(q_{\ell_j})) \ge \varepsilon$. End of proof of (2). QED

1-3. Let X be a metric space, and let $s \in X^{\mathbb{N}}$. Assume that s_{\bullet} is convergent in X. Show that s_{\bullet} is Cauchy in X.

Proof: We wish to show: $\forall \varepsilon > 0, \exists K \in \mathbb{N} \text{ s.t.}, \forall i, j \in \mathbb{N},$

$$[i, j \ge K] \implies [d_X(s_i, s_j) < \varepsilon].$$

Let $\varepsilon > 0$ be given. We wish to show: $\exists K \in \mathbb{N} \text{ s.t.}, \forall i, j \in \mathbb{N}$,

 $[i, j \ge K] \implies [d_X(s_i, s_j) < \varepsilon].$

Since s_{\bullet} is convergent in X, choose $u \in X$ s.t. $s_{\bullet} \to u$ in X. Choose $K \in \mathbb{N}$ s.t., $\forall j \in \mathbb{N}$,

$$[j \ge K] \implies [d_X(s_j, u) < \varepsilon/2].$$

We wish to show: $\forall i, j \in \mathbb{N}$,

$$[i, j \ge K] \implies [d_X(s_i, s_j) < \varepsilon].$$

Let $i, j \in \mathbb{N}$ be given. We wish to show:

 $[i, j \ge K] \implies [d_X(s_i, s_j) < \varepsilon].$

Assume $i, j \ge K$. We wish to show: $d_X(s_i, s_j) < \varepsilon$.

Since $i \ge K$, by choice of K, we have $d(s_i, u) < \varepsilon/2$. Since $j \ge K$, by choice of K, we have $d(s_j, u) < \varepsilon/2$.

Then
$$d_X(s_i, s_j) \leq [d_X(s_i, u)] + [d_X(u, s_j)] < (\varepsilon/2) + (\varepsilon/2) = \varepsilon$$
. QED

1-4. Let X be a metric space, and let $s \in X^{\mathbb{N}}$. Assume that s_{\bullet} is Cauchy and subconvergent in X. Show that s_{\bullet} is convergent in X.

Proof: Since s_{\bullet} is subconvergent in X, choose a subsequence t of s_{\bullet} such that t_{\bullet} is convergent in X. Choose $u \in X$ s.t. $t_{\bullet} \to u$ in X. We wish to show: $s_{\bullet} \to u$ in X. Want: $\forall \varepsilon > 0, \exists K \in \mathbb{N} \text{ s.t.}, \forall j \in \mathbb{N},$

$$[j \ge K] \implies [d_X(s_j, u) < \varepsilon].$$

Let $\varepsilon > 0$ be given. We wish to show: $\exists I \in \mathbb{N} \text{ s.t.}, \forall j \in \mathbb{N}$,

 $[j \ge I] \implies [d_X(s_j, u) < \varepsilon].$

Since $t_{\bullet} \to u$ in X, choose $L \in \mathbb{N}$ s.t., $\forall j \in \mathbb{N}$,

$$[j \ge L] \implies [d_X(t_j, u) < \varepsilon/2].$$

Since s_{\bullet} is Cauchy, choose $M \in \mathbb{N}$ s.t., $\forall j, k \in \mathbb{N}$,

$$[j,k \ge M] \implies [d_X(s_j,s_k) < \varepsilon/2].$$

Let $I := \max\{L, M\}$. We wish to show: $\forall j \in \mathbb{N}$,

$$[j \ge I] \implies [d_X(s_j, u) < \varepsilon].$$

Let $j \in \mathbb{N}$ be given. We wish to show:

$$[j \ge I] \implies [d_X(s_j, u) < \varepsilon].$$

Assume: $j \ge I$ We wish to show: $d_X(s_j, u) < \varepsilon$.

Since $j \ge I \ge L$, by choice of L, we conclude that $d_X(t_j, u) < \varepsilon/2$. By Corollary 23.13, choose $k \in [j..\infty]$ such that $t_j = s_k$. Then we have $k \ge j \ge I \ge M$. Then $j, k \ge M$, so, by choice of M, we get: $d_X(s_j, s_k) < \varepsilon/2$. Since $t_j = s_k$, we get $d(s_j, t_j) = d(s_j, s_k)$. Then

$$d(s_j, u) \leq [d(s_j, t_j)] + [d(t_j, u)]$$

= $[d(s_j, s_k)] + [d(t_j, u)]$
< $[\varepsilon/2] + [\varepsilon/2] = \varepsilon,$

as desired. QED

1-5. Let X be a metric space, and let $s \in X^{\mathbb{N}}$. Assume that s_{\bullet} is Cauchy in X. Show that s_{\bullet} is bounded in X.

Proof: We wish to show: $\operatorname{im}[s_{\bullet}]$ is bounded in X.

Since s_{\bullet} is Cauchy in X, choose $K \in \mathbb{N}$ s.t., $\forall i, j \in \mathbb{N}$,

 $[i, j \ge K] \implies [d_X(s_i, s_j) < 1].$

Let $p := s_K$. Let $a := \max\{d_X(p, s_1), \ldots, d_X(p, s_{K-1})\}$. Let R := 1 + a. We wish to show: $\inf[s_\bullet] \subseteq B_X(p, R)$. We wish to show: $\forall q \in \inf[s_\bullet]$, $q \in B_X(p, R)$. Let $q \in \inf[s_\bullet]$ be given. We wish to show: $q \in B_X(p, R)$. We wish to show $d_X(p, q) < R$. Since $q \in \inf[s_\bullet]$, choose $j \in \mathbb{N}$ such that $q = s_j$. We wish to show: $d_X(p, s_j) < R$.

At least one of the following must be true:

(1)
$$j < K$$
 or

(2) $j \ge K$.

Case (1): As $j \in [1..K)$, $d_X(p, s_j) \in \{d_X(p, s_1), \ldots, d_X(p, s_{K-1})\}$. Then $d_X(p, s_j) \leq \max\{d_X(p, s_1), \ldots, d_X(p, s_{K-1})\} = a < 1 + a = R$, as desired. End of Case (1).

Case (2): Since $p = s_K$, we conclude that $d_X(p, s_j) = d_X(s_K, s_j)$. Also, since $K, j \ge K$, by choice of K, we see that $d_X(s_K, s_j) < 1$. By definition of a, we have $a \ge 0$. It follows that $1 \le 1 + a$. Then $d_X(p, s_j) = d_X(s_K, s_j) < 1 \le 1 + a = R$. End of Case (2). QED