
Solutions for MATH 4604 (Advanced Calculus II)

Spring 2018

Homework 14: Due on Tuesday 1 May

14-1. Let W be a normed vector space, let f : R 99K W and let p P R.

Show: pfTp q
1p0q “ f 1ppq.

Proof: Let g :“ fTp . Want: g1p0q “ f 1ppq. As g1p0q “ lim
0
SS0

g and

f 1ppq “ lim
0
SSpf , it suffices to show: SS0

g “ SSpf . Want: @h P R,

pSS0
g qphq “ pSS

p
f qphq. Given h P R. Want: pSS0

g qphq “ pSS
p
f qphq.

We have

r gp0` hq s ´ r gp0q s “ r gphq s ´ r gp0q s

“ r pfTp qphq s ´ r pfTp qp0q s

“ r rfpp` hqs ´ rfppqs s

´ r rfpp` 0qs ´ rfppqs s

“ r fpp` hq s ´ r fppq s.

Then

pSS0
g qphq “

r gp0` hq s ´ r gp0q s

h

“
r fpp` hq s ´ r fppq s

h
“ pSSpf qphq,

as desired. QED

14-2. Let V , W be finite dimensional vector spaces, α, β : V 99K W ,

p ě 0. Assume: α “ β near 0V and α P qOppV,W q. Show: β P qOppV,W q.

Proof: By assumption, choose U P NV p0V q s.t. α “ β on U . Also,

(A) dom rαs P NV p0V q,

(B) αp0V q “ 0W and

(C) α is continuous at 0V .

Let D :“ dom rαs. By (A), we have D P NV p0V q. As D,U P NV p0V q,

we get D X U P NV p0V q. We wish to show:

(1) dom rβs P NV p0V q,

(2) βp0V q “ 0W and

(3) β is continuous at 0V .



Proof of (1): Since we have D X U P NV p0V q, it suffices to show:

D X U Ď dom rβs. We want: @x P D X U , x P dom rβs. Let x P D X U

be given. We want to show: x P dom rβs.

We have: x P D and x P U . Since x P D, we get αpxq ‰ /.

Since x P U , we get αpxq “ βpxq. Since βpxq “ αpxq ‰ /, we get

x P dom rβs, as desired. End of proof of (1).

Proof of (2): Since U P NV p0V q, 0V P U . So, since α “ β on U , we

get αp0V q “ βp0V q. By (B), we have αp0V q “ 0W .

Then βp0V q “ αp0V q “ 0W , as desired. End of proof of (2).

Proof of (3): Choose | ‚ |V P N pV q and | ‚ |W P N pW q. We wish

to show: @ε ą 0, Dδ ą 0 such that, @x P dom rβs,

r 0 ă |x´ 0V |V ă δ s ñ r |rβpxqs ´ rβp0V qs|W ă ε s.

Let ε ą 0 be given. We wish to show: Dδ ą 0 such that, @x P dom rβs,

r 0 ă |x´ 0V |V ă δ s ñ r |rβpxqs ´ rβp0V qs|W ă ε s.

Since D X U P NV p0V q and since BV p0V q is a neighborhood base

at 0V in V , choose ρ ą 0 such that BV p0V , ρq Ď DXU . By (C), choose

τ ą 0 such that, @x P D,

r 0 ă |x´ 0V |V ă τ s ñ r |rαpxqs ´ rαp0V qs|W ă ε s.

Let δ :“ mintρ, τu. Then δ ą 0, δ ď ρ and δ ď τ . Want: @x P dom rβs,

r 0 ă |x´ 0V |V ă δ s ñ r |rβpxqs ´ rβp0V qs|W ă ε s.

Let x P dom rβs be given. We wish to show:

r 0 ă |x´ 0V |V ă δ s ñ r |rβpxqs ´ rβp0V qs|W ă ε s.

Assume 0 ă |x´ 0V |V ă δ. Want: |rβpxqs ´ rβp0V qs|W .

We have 0 ă |x´0V | ă ρ and 0 ă |x´0V | ă τ . Since |x´0V |V ă ρ,

we get x P BV p0V , ρq. So, since BV p0V , ρq Ď D X U , we see that

x P D X U . Then x P D and x P U . Since x P U , by choice of U , we

have αpxq “ βpxq. By (2), we have βp0V q “ 0W . So, by (B), we have

βp0V q “ αp0V q. Since x P D and since 0 ă |x ´ 0V |V ă τ , by choice

of τ , we conclude that |rαpxqs ´ rαp0V qs|W ă ε. Then

| rβpxqs ´ rβp0V qs |W “ | rαpxqs ´ rαp0V qs |W ă ε,

as desired. End of proof of (3). QED

14-3. Let δ ą 0, let I :“ p´δ, δq and let α : R 99K R. Assume: @x P I,

αpxq P r0|xs. Show that α P pO1pR,Rq.



Proof: Let | ‚ | P N pRq denote absolute value. We wish to show:

α P r| ‚ |s ¨ r pOpR,Rqs. Let β :“ adj00pα{| ‚ |q. It suffices to show:

(1) β P pOpR,Rq and

(2) α “ r| ‚ |s ¨ β.

Proof of (1): We wish to show: DU P NRp0q such that

r U Ď dom rβs s and r sup |β˚pUq| ă 8 s.

Since I “ p´δ, δq, we see that I is open in R. So since 0 P I, we get

I P NRp0q. Let U :“ I. We wish to show:

(A) U Ď dom rβs and

(B) sup |β˚pUq| ă 8.

Proof of (A): Since U “ I, we wish to show I Ď dom rβs. Since

βp0q “ 0 ‰ /, we get 0 P dom rβs. It remains to show: Iˆ0 Ď dom rβs.

We wish to show: @x P Iˆ0 , x P dom rβs. Let x P Iˆ0 be given. We

wish to show: x P dom rβs.

Since x P Iˆ0 , we get x P I and x ‰ 0. Since x ‰ 0, we get |x| ‰ 0

and βpxq “ r|αpxq|s{r|x|s. Since x P I, we get αpxq P r0|xs Ď R. So,

since |x| ‰ 0, we get rαpxqs{r|x|s P R. Then βpxq “ r|αpxq|s{r|x|s P R,

so βpxq ‰ /, and so x P dom rβs, as desired. End of proof of (A).

Proof of (B): It suffices to show sup |β˚pUq| ď 1. We wish to show:

|β˚pUq| ď 1. As U “ I, we wish to show: |β˚pIq| ď 1. Since

|βp0q| “ |0| “ 0 ď 1,

it remains to show: |β˚pI
ˆ
0 q| ď 1.

We wish to show: @x P dom rβs,

r x P Iˆ0 s ñ r |βpxq| ď 1 s.

Let x P dom rβs be given. We wish to show:

r x P Iˆ0 s ñ r |βpxq| ď 1 s.

Assume: x P Iˆ0 . Want: |βpxq| ď 1.

Since x P Iˆ0 , we get x P I and x ‰ 0. Let y :“ |x|. As x ‰ 0, y ą 0.

Since x ‰ 0, βpxq “ rαpxqs{r|x|s. That is, βpxq “ rαpxqs{y. Since

y ą 0, we get |y| “ y. Then |βpxq| “ r|αpxq|s{r|y|s “ r|αpxq|s{y. Since

x P I, we get αpxq “ r0|xs. We have ´|x| ď x ď |x|, i.e., ´y ď x ď y.

Since ´y ď 0 and ´y ď x we get ´y ď mint0, xu. Since 0 ď y and

x ď y, we get maxt0, xu ď y. Then

r0|xs “ rmint0, xu , maxt0, xu s Ď r´y, ys.



Then αpxq P r0|xs “ r´y, ys, so ´y ď αpxq ď y, so |αpxq| ď y. Then

|αpxq|{y ď 1. Then |βpxq| “ |αpxq|{y ď 1, as desired. End of proof

of (B). End of proof of (1).

Proof of (2): We have 0 P p´δ, δq “ I, so αp0q P r0|0s “ t0u, so

αp0q “ 0. Also βp0q “ 0. Then

αp0q “ 0 “ 0 ¨ 0 “ r|0|s ¨ rβp0q|s.

It remains to show: α “ r| ‚ |s ¨ β on Rˆ0 . We wish to show: @x P Rˆ0 ,

αpxq “ r|x|s ¨ rβpxqs. Let x P Rˆ0 be given. Want: αpxq “ r|x|s ¨ rβpxqs.

Since x ‰ 0, it follows that βpxq “ rαpxqs{r|x|s. We conclude that

αpxq “ r|x|s ¨ rβpxqs, as desired. End of proof of (2). QED

14-4. Let k P N0 and let f P qOkpR,Rq. Let g : R 99K R. Assume that

g1 “ f near 0. Assume that gp0q “ 0. Show that g P qOk`1pR,Rq.

Proof: Let |‚| P N pRq denote absolute value. Let ψ :“ adj00pg{r|‚|
k`1sq.

So, since ψ “ g{r| ‚ |k`1s on Rˆ0 , we get g “ | ‚ |k`1 ¨ψ on Rˆ0 . So, since

gp0q “ 0 “ r|0|k`1s ¨ rψp0qs, we see that g “ | ‚ |k`1 ¨ ψ on R. Then

g “ | ‚ |k`1 ¨ ψ. We wish to show: g P r| ‚ |k`1s ¨ rqOpR,Rqs. It therefore

suffices to show: ψ P qOpR,Rq. Since ψp0q “ 0, we need to show:

r dom rψs P NRp0q s and r ψ is continuous at 0 s.

We have qOkpR,Rq “ r| ‚ |s ¨ rqOpR,Rqs, so, since f P qOkpR,Rq, choose

φ P qOpR,Rq s.t. f “ | ‚ | ¨ φ. Then dom rf s “ pdom r| ‚ |sq X pdom rφsq,

so, since dom rφs Ď R “ dom r| ‚ |s, we get dom rf s “ dom rφs. Since

g “ | ‚ |k`1 ¨ ψ, we get dom rgs “ pdom r| ‚ |sq X pdom rψsq, so, since

dom rψs Ď R “ dom r| ‚ |s, we get dom rgs “ dom rψs.

Since g1 “ f near 0, choose U P NRp0q s.t. f “ g1 on U . Let

D :“ dom rφs. Since φ P qOpR,Rq, we have D P NRp0q. So, since

U P NRp0q, we get D X U P NRp0q. So, since BRp0q is a neighborhood

base at 0 in R, choose ρ ą 0 s.t. BRp0, ρq Ď D X U . Let I :“ p´ρ, ρq.

Then I P NRp0q. Also, I “ BRp0, ρq Ď D X U , so I Ď D and I Ď U .

We have I Ď D “ dom rφs “ dom rf s. Since f “ g on U and since

I Ď U , it follows that f “ g1 on I. So, since I Ď dom rf s, we get

I Ď dom rg1s. Then I Ď dom rg1s Ď dom rgs “ dom rψs. So, since

I P NRp0q, it follows that dom rψs P NRp0q. It only remains to show

that ψ is continuous at 0. We want: @ε ą 0, Dδ ą 0 s.t., @x P dom rψs,

r |x´ 0| ă δ s ñ r |rψpxqs ´ rψp0qs| ă ε s.



Let ε ą 0 be given. We wish to show: Dδ ą 0 s.t., @x P dom rψs,

r 0 ă |x´ 0| ă δ s ñ r |rψpxqs ´ rψp0qs| ă ε s.

As φ P qOpR,Rq, φ is continuous at 0. Choose τ ą 0 s.t., @α P D,

r 0 ă |α ´ 0| ă τ s ñ r |rφpαqs ´ rφp0qs| ă ε s.

Let δ :“ mintρ, τu. Then δ ď ρ and δ ď τ . We want: @x P dom rψs,

r 0 ă |x´ 0| ă δ s ñ r |rψpxqs ´ rψp0qs| ă ε s.

Let x P dom rψs be given. We wish to show:

r 0 ă |x´ 0| ă δ s ñ r |rψpxqs ´ rψp0qs| ă ε s.

Assume: 0 ă |x ´ 0| ă δ. We wish to show: |rψpxqs ´ rψp0qs| ă ε.

Since ψp0q “ 0, we wish to prove: |ψpxq| ă ε.

Since I is an interval and 0 P p´δ, δq “ I, we know: r0|xs Ď I. Then

r0|xs Ď I Ď dom rg1s, so g is c/d on r0|xs. So, by the Mean Value

Theorem, choose α P p0|xq s.t. g1pαq “ DQgp0, xq. Since gp0q “ 0, we

get DQgp0, xq “ rgpxqs{x. We have α P p0|xq Ď r0|xs Ď I. So, since

g1 “ f on I, we get g1pαq “ fpαq. Recall that f “ | ‚ |k ¨ φ and that

g “ | ‚ |k`1 ¨ ψ. Then

|α|k ¨ rφpαqs “ fpαq “ g1pαq “ DQgp0, xq

“ rgpxqs {x “ |x|k`1 ¨ rψpxqs {x.

Let y :“ |x|. Taking absolute values gives |α|k ¨ |φpαq| “ yk`1 ¨ |ψpxq|{y.

Then |ψpxq| “ r|α|{ysk ¨ |φpαq|. Want: r|α|{ysk ¨ |φpαq| ă ε.

We have ´|x| ď x ď |x|, i.e., ´y ď x ď y. Since ´y ď 0 and

´y ď x, we see that ´y ď mint0, xu. Since 0 ď y and x ď y, see

that maxt0, xu ď y. Then r0|xs “ rmint0, xu,maxt0, xus Ď r´y, ys.

Then α P p0|xq Ď r0|xs “ r´y, ys, so ´y ď α ď y, so |α| ď y. Then

r|α|{ysk ď 1. It therefore suffices to show: |φpαq| ă ε.

Since α P I “ p´δ, δq, we see that |α| ă δ. Since α P p0|xq, we see

that α ‰ 0, so |α| ą 0. Then 0 ă |α| ă δ ď τ . Then 0 ă |α ´ 0| ă τ .

So, since α P I Ď D, by choice of τ , we get |rφpαqs ´ rφp0qs| ă ε. Since

φ P qOpR,Rq, we have φp0q “ 0. Then |φpαq| ă ε, as desired. QED

14-5. Let V , W be finite dimensional vector spaces. Let f, g : V 99K W .

Let p P V . Assume: f “ g near p. Show: LINSpf Ď LINSpg.

Proof: We wish to show: @L P LINSpf , L P LINSpg. Let L P LINSpf

be given. We wish to show: L P LINSpg.



As L P LINSpf , we get fTp ´L P qO1pV,W q. Want: gTp ´L P qO1pV,W q.

By HW#14-2, it suffices to show: fTp ´ L “ gTp ´ L near 0V .

Since f “ g near p, choose U P NV ppq s.t. f “ g on U . Choose

| ‚ | P N pV q. Since BV ppq is a neighborhood base at p in V , choose

δ ą 0 s.t. BV pp, δq Ď U . Let A :“ BV p0V , δq. Then A P NV p0V q, so it

suffices to show: fTp ´ L “ gTp ´ L on A. We wish to show: @h P A,

pfTp ´ Lqphq “ pgTp ´ Lqphq. Let h P A be given. We wish to show:

pfTp ´Lqphq “ pg
T
p ´Lqphq. Want: rfTp phqs´ rLphqs “ rg

T
p phqs´ rLphqs.

It suffices to prove: fTp phq “ gTp phq.

Since h P A “ BV p0V , δq, we get |h´ 0V | ă δ. Let x :“ p` h. Then

|x´p| “ |h| “ |h´0V | ă δ, so x P BV pp, δq. So, since BV pp, δq Ď U , we

get x P U . So, since f “ g on U , we get fpxq “ gpxq. As U P NV ppq,

we get p P U . So, since f “ g on U , we get fppq “ gppq. Then

pfTp qphq “ rfpp` hqs ´ rfppqs

“ rfpxqs ´ rfppqs

“ rgpxqs ´ rgppqs

“ rgpp` hqs ´ rgppqs “ pgTp qphq,

as desired. QED

Homework 13: Due on Tuesday 24 April

13-1. Let V , W be finite dimensional VSs. Show: LpV,W q Ď pO1pV,W q.

Proof: Want: @T P LpV,W q, T P pO1pV,W q. Let T P LpV,W q be given.

Want: T P pO1pV,W q.

Since T P LpV,W q, it follows that T p0V q “ 0W . Let | ‚ |V P N pV q,
| ‚ |W P N pW q. Let α :“ adj0W0V pT {| ‚ |V q. Then T “ | ‚ |V ¨ α on V ˆ0V .

So, since T p0V q “ 0W “ 0 ¨ 0W “ |0V |V ¨ rαp0V qs, we conclude that

T “ | ‚ |V ¨ α. It suffices to show: α P pOpV,W q. We wish to show:

DU P NV p0V q such that: r U Ď dom rαs s and r sup |α˚pUq|W ă 8 s.

We have V P NV p0V q. Let U :“ V . We wish to show:

r U Ď dom rαs s and r sup |α˚pUq|W ă 8 s.

Since U “ V Ď V “ dom rαs, it remains to show: sup |α˚pUq|W ă 8.

By (1) of Theorem 46.2 p. 331, T : V Ñ W is bounded. We define

M :“ pTVW . Then 0 ď M ă 8. Also, T : V Ñ W is M -bounded. It

suffices to show: sup |α˚pUq|W ďM . We wish to show: |α˚pUq|W ďM .



We wish to show: @x P dom rαs, r x P U s ñ r |αpxq|W ď M s. Let

x P dom rαs be given. We want: r x P U s ñ r |αpxq|W ď M s.

Assume: x P U . We wish to show: |αpxq|W ďM .

One of the following must be true:

(1) x “ 0V or

(2) x ‰ 0V .

Case (1): As αpxq “ αp0V q “ 0W , |αpxq|W “ |0W |W “ 0 ď M , as

desired. End of case (1).

Case (2): We have αpxq “ rT pxqs{r|x|V s. Since T is M -bounded, we

have |T pxq|W ďM ¨ |x|V . Then

|αpxq|W “

ˇ

ˇ

ˇ

ˇ

T pxq

|x|V

ˇ

ˇ

ˇ

ˇ

W

“
|T pxq|W
|x|V

ď M,

as desired. End of case (2). QED

13-2. Let m,n P N. Let V :“ pRm, | ‚ |m,1q and let W :“ pRn, | ‚ |n,1q.

Let Z be a normed vector space. Let ˚ P BpV,W,Zq. Show: DK ě 0

such that, @v P V , @w P W , |v ˚ w|Z ď K ¨ |v|V ¨ |w|W .

Proof: Let K :“ maxt|emi ˚ e
n
j |Z | i P r1..ms, j P r1..nsu. We wish to

show: @v P V , @w P W , |v ˚ w|Z ď K ¨ |v|V ¨ |w|W . Let v P V , w P W

be given. We wish to show: |v ˚ w|Z ď K ¨ |v|V ¨ |w|W .

Since |‚|V “ |‚|m,1, we see that |v|V “
m
ÿ

i“1

|vi|. Since |‚|W “ |‚|n,1, we

see that |w|W “

n
ÿ

j“1

|wj|. Since v “
m
ÿ

i“1

vie
m
i and w “

n
ÿ

j“1

wje
n
j , we get

v ˚ w “
m
ÿ

i“1

n
ÿ

j“1

viwjpe
m
i ˚ e

n
j q. Then, by subadditivity of | ‚ |Z , we have

|v ˚ w|Z ď
m
ÿ

i“1

n
ÿ

j“1

|viwjpe
m
i ˚ e

n
j q|Z . We have: @i P r1..ms, @j P r1..ns,

|viwjpe
m
i ˚ e

n
j q|Z “ |vi| ¨ |wj| ¨ |e

m
i ˚ e

n
j |Z ď |vi| ¨ |wj| ¨K.



Then

|v ˚ w|Z ď

m
ÿ

i“1

n
ÿ

j“1

p |vi| ¨ |wj| ¨K q

“ K ¨

m
ÿ

i“1

n
ÿ

j“1

p |vi| ¨ |wj| q

“ K ¨

«

m
ÿ

i“1

|vi|

ff

¨

«

n
ÿ

j“1

|wj|

ff

“ K ¨ |v|V ¨ |w|W ,

as desired. QED

13-3. Let `,m, n P N. Let U :“ pR`, | ‚ |`,1q, let V :“ pRm, | ‚ |m,1q

and let W :“ pRn, | ‚ |n,1q. Let Z be a normed vector space. Let

F P T pU, V,W,Zq. Show: DK ě 0 such that, @u P U , @v P V , @w P W ,

|F pu, v, wq|Z ď K ¨ |u|U ¨ |v|V ¨ |w|W .

Proof: Let K :“ maxt|F pe`h, e
m
i , e

n
j q|Z |h P r1..`s, i P r1..ms, j P r1..nsu.

We wish to show: @u P U , @v P V , @w P W ,

|F pu, v, wq|Z ď K ¨ |u|U ¨ |v|V ¨ |w|W .

Given u P U , v P V , w P W . Want: |F pu, v, wq|Z ď K ¨|u|U ¨|v|V ¨|w|W .

Since |‚|U “ |‚|`,1, we see that |u|U “
ÿ̀

h“1

|uh|. Since |‚|V “ |‚|m,1, we

see that |v|V “
m
ÿ

i“1

|vi|. Since |‚|W “ |‚|n,1, we see that |w|W “

n
ÿ

j“1

|wj|.

Since u “
m
ÿ

h“1

uhe
`
h and v “

m
ÿ

i“1

vie
m
i and w “

n
ÿ

j“1

wje
n
j , we get

F pu, v, wq “
ÿ̀

h“1

m
ÿ

i“1

n
ÿ

j“1

uhviwjpF pe
`
h, e

m
i , e

n
j qq.

Then, by subadditivity of | ‚ |Z , we have

|F pu, v, wq|Z ď
ÿ̀

h“1

m
ÿ

i“1

n
ÿ

j“1

|uhviwjpF pe
`
h, e

m
i , e

n
j qq|Z .



We have: @h P r1..`s, @i P r1..ms, @j P r1..ns,

|uhviwjpF pe
`
h, e

m
i , e

n
j qq|Z “ |uh| ¨ |vi| ¨ |wj| ¨ |F pe

`
h, e

m
i , e

n
j q|Z

ď |uh| ¨ |vi| ¨ |wj| ¨K.

Then

|F pu, v, wq|Z ď
ÿ̀

h“1

m
ÿ

i“1

n
ÿ

j“1

p |uh| ¨ |vi| ¨ |wj| ¨K q

“ K ¨
ÿ̀

h“1

m
ÿ

i“1

n
ÿ

j“1

p |uh| ¨ |vi| ¨ |wj| q

“ K ¨

«

ÿ̀

h“1

|uh|

ff

¨

«

m
ÿ

i“1

|vi|

ff

¨

«

n
ÿ

j“1

|wj|

ff

“ K ¨ |u|U ¨ |v|V ¨ |w|W ,

as desired. QED

13-4. Let U , V and W be finite dimensional normed vector spaces. Let

Z be a normed vector space. Let F P T pU, V,W,Zq. Show: DK ě 0

such that, @u P U , @v P V , @w P W ,

|F pu, v, wq|Z ď K ¨ |u|U ¨ |v|V ¨ |w|W .

Proof: Let ` :“ dimU , m :“ dimV and n :“ dimW . Choose

A P OBpUq, B P OBpV q and C P OBpW q.

Let U 1 :“ pR`, | ‚ |`,1q, let V 1 :“ pRm, | ‚ |m,1q and let W 1 :“ pRn, | ‚ |n,1q.

Define F 1 P T pU 1, V 1,W 1, Zq by

F 1 pu , v , w q “ F pLApuq , LBpvq , LCpwq q.

By HW#13-3, choose K 1 ě 0 s.t., @u1 P U 1, @v1 P V 1, @w1 P W 1,

|F 1pu1, v1, w1q|Z ď K 1
¨ |u1|U 1 ¨ |v

1
|V 1 ¨ |w

1
|W 1 .

By (1) of Theorem 46.2 p. 331, the maps

L´1A : U Ñ U 1, L´1B : V Ñ V 1 and L´1C : W Ñ W 1

are all bounded. Let

Q :“ pL´1A qU,U 1p , R :“ pL´1B qV,V 1p and S :“ pL´1C qW,W 1
p .



Then L´1A : U Ñ U 1 is Q-bounded, L´1B : V Ñ V 1 is R-bounded and

L´1C : W Ñ W 1 is S-bounded. Let K :“ K 1 ¨Q ¨R ¨S. We wish to show:

@u P U , @v P V , @w P W ,

|F pu, v, wq|Z ď K ¨ |u|U ¨ |v|V ¨ |w|W .

Let u P U , v P V and w P W be given. We wish to show:

|F pu, v, wq|Z ď K ¨ |u|U ¨ |v|V ¨ |w|W .

Since L´1A : U Ñ U 1 is Q-bounded, since L´1B : V Ñ V 1 is R-bounded

and since L´1C : W Ñ W 1 is S-bounded, we get

|L´1A puq|U 1 ď Q ¨ |u|U ,

|L´1B pvq|V 1 ď R ¨ |v|V and

|L´1C pwq|W 1 ď S ¨ |w|W .

Let u1 :“ pL´1A qpuq, v
1 :“ pL´1B qpvq and w1 :“ pL´1C qpwq. Then

|u1|U 1 ď Q ¨ |u|U , |v1|V 1 ď R ¨ |v|V , and |w1|W 1 ď S ¨ |w|W .

By choice of K 1, we have

|F 1pu1, v1, w1q|Z ď K 1
¨ |u1|U 1 ¨ |v

1
|V 1 ¨ |w

1
|W 1 .

Since LApu
1q “ u, LBpv

1q “ v and LCpw
1q “ w, by definition of F 1, we

get F 1pu1, v1, w1q “ F pu, v, wq. Then

|F pu, v, wq|Z ď |F 1pu1, v1, w1q|Z

ď K 1
¨ |u1|U 1 ¨ |v

1
|V 1 ¨ |w

1
|W 1

ď K 1
¨Q ¨ |u|U ¨R ¨ |v|V ¨ S ¨ |w|W

“ K 1
¨Q ¨R ¨ S ¨ |u|U ¨ |v|V ¨ |w|W

“ K ¨ |u|U ¨ |v|V ¨ |w|W ,

as desired. QED

13-5. Let S V , W and Z all be finite dimensional vector spaces, and

let ˚ P BpV,W,Zq. Show: r pOpS, V qs ˚
S
r pOpS,W qs Ď pOpS,Zq.

Proof: We wish to show: @α P pOpS, V q, @β P pOpS,W q, we have:

α ˚
S
β P pOpS,Zq. Let α P pOpS, V q and β P pOpS,W q be given. We wish

to show: α ˚
S
β P pOpS,Zq.



Choose | ‚ |S P N pSq and | ‚ |V P N pV q and | ‚ |W P N pW q and

| ‚ |Z P N pZq. By Theorem 49.1 p. 359, choose C ě 0 such that,

@v P V , @w P W , |v ˚ w|Z ď C ¨ |v|V ¨ |w|W .

Since α P pOpS, V q, choose P P NSp0Sq such that

P Ď dom rαs and sup |α˚pP q|V ă 8.

Let K :“ sup |α˚pP q|V . Then 0 ď K ă 8 and |α˚pP q|V ď K.

Since β P pOpS,W q, choose Q P NSp0Sq such that

Q Ď dom rβs and sup |β˚pQq|W ă 8.

Let L :“ sup |β˚pQq|W . Then 0 ď L ă 8 and |β˚pQq|W ď L.

Let γ :“ α ˚
S
β. We wish to show: γ P pOpS,Zq. We wish to show:

DR P NSp0Sq such that

R Ď dom rγs and sup |γ˚pRq|Z ă 8.

Since P P NSp0Sq and Q P NSp0Sq, it follows that P XQ P NSp0Sq.

Let R :“ P XQ. We wish to show:

R Ď dom rγs and sup |γ˚pRq|Z ă 8.

Since γ “ α ˚
S
β, it follows that dom rγs “ pdom rαsq X pdom rβsq.

Since P Ď dom rαs and Q Ď dom rβs, it follows that

P XQ Ď pdom rαsq X pdom rβsq.

Then R “ P X Q Ď pdom rαsq X pdom rβsq “ dom rγs. It remains

to show that sup |γ˚pRq|Z ă 8.

Let M :“ CKL. Then 0 ď M ă 8. It suffices to show that

sup |γ˚pRq|Z ďM . We wish to show: @x P dom rγs,

r x P R s ñ r |γpxq|Z ďM s.

Let x P dom rγs be given. We wish to show:

r x P R s ñ r |γpxq|Z ďM s.

Assume: x P R. Want: |γpxq|Z ďM .

We have x P dom rγs Ď dom rαs and x P R Ď P , so αpxq P α˚pP q.

Then |αpxq|V P |α˚pP q|V ď K. Let v :“ αpxq. Then |v|V ď K. We

have x P dom rγs Ď dom rβs and x P R Ď Q, so βpxq P β˚pQq. Then

|βpxq|W P |β˚pQq|W ď L. Let w :“ βpxq. Then |w|W ď L.

We have γpxq “ pα ˚
S
βqpxq “ rαpxqs ˚ rβpxqs “ v ˚ w. By the choice

of C, we have |v ˚ w|Z ď C ¨ |v|V ¨ |w|W .

Then |γpxq|Z “ |v ˚ w|Z ď C ¨ |v|V ¨ |w|W ď CKL “M . QED



Homework 12: Due on Tuesday 17 April

12-1. Let V and W both be finite dimensional vector spaces, and let

| ‚ |, } ‚ } P N pW q. Show: pOpV,W, | ‚ |q Ď pOpV,W, } ‚ }q.

Proof: Want: @α P pOpV,W, |‚|q, α P pOpV,W, }‚}q. Let α P pOpV,W, |‚|q
be given. Want: α P pOpV,W, } ‚ }q. Want: DU P NV p0V q such that

r U Ď dom rαs s and r sup }α˚pUq} ă 8 s.

Since α P pOpV,W, | ‚ |q, choose U P NV p0V q such that

r U Ď dom rαs s and r sup |α˚pUq| ă 8 s.

Want: sup }α˚pUq} ă 8.

Let M :“ sup |α˚pUq|. Then |α˚pUq| ďM . By Theorem 46.3 p. 332,

| ‚ | « } ‚ }, so } ‚ } ăă | ‚ |, so choose K ą 0 s.t. } ‚ } ď K ¨ | ‚ |. It

suffices to show: }α˚pUq} ď KM . We want: @x P dom rαs,

r x P U s ñ r }αpxq} ď KM s.

Let x P dom rαs be given. We wish to prove:

r x P U s ñ r }αpxq} ď KM s.

Assume that x P U . We wish to show: }αpxq} ď KM .

Since x P dom rαs and x P U , we get |αpxq| P |α˚pUq|. So, since

|α˚pUq| ď M , we get |αpxq| ď M . Since } ‚ } ď K ¨ | ‚ |, we get

}αpxq} ď K ¨ |αpxq|. Then }αpxq} ď K ¨ |αpxq| ď KM , as desired. QED

12-2. Let V and W both be finite dimensional vector spaces, and let

α : V 99K W . Assume that dom rαs P NV p0V q. Assume that α is

continuous at 0V . Show: α P pOpV,W q.

Proof: Choose | ‚ |V P N pV q and | ‚ |W P N pW q. We wish to show:

DU P NV p0V q such that

r U Ď dom rαs s and r sup |α˚pUq|W ă 8 s.

Let z :“ αp0V q. Since α is continuous at 0V , choose δ ą 0 such

that, @x P dom rαs, we have: r |x|V ă δ s ñ r |rαpxqs ´ z|W ă 1 s.

We define U :“ pdom rαsq X pBV p0V , δqq. Since dom rαs P NV p0V q

and since BV p0V , δq P NV p0V q, it follows that U P NV p0V q. More-

over, we have both U Ď dom rαs and U Ď BV p0V , δq. It remains



to show: sup |α˚pUq|W ă 8. Let M :“ 1 ` r |z|W s. It suffices to show:

|α˚pUq|W ďM . We wish to prove: @x P dom rαs,

r x P U s ñ r |αpxq|W ďM s.

Let x P dom rαs be given. We wish to prove:

r x P U s ñ r |αpxq|W ďM s.

Assume that x P U . We wish to prove: |αpxq|W ďM .

Since x P U Ď BV p0V , δq, we conclude that |x|V ă δ. So, since

x P dom rαs, by choice of δ, we conclude that: |rαpxqs ´ z|W ă 1. Let

y :“ αpxq. Then |y ´ z|W ă 1, and we wish to prove: |y|W ďM .

Since y “ py ´ zq ` z, we get |y|W ď r |y ´ z|W s ` r |z|W s. Then

|y|W ă 1 ` r |z|W s “M , as desired. QED

12-3. Let V and W both be finite dimensional vector spaces, and let

| ‚ |, } ‚ } P N pV q, and let p ą 0. Show:

(1) qOppV,W, | ‚ |q Ď qOppV,W, } ‚ }q and

(2) pOppV,W, | ‚ |q Ď pOppV,W, } ‚ }q.

Proof: Let α :“ adj10V p r }‚}
p s { r |‚|p s q, β :“ adj10V p r |‚|

p s { r }‚}p s q.

Then α, β : V Ñ R. Also, for all x P V zt0V u, we have:

pαβqpxq “

„

}x}p

|x|p



¨

„

|x|p

}x}p



“ 1 “ C1
V pxq.

So, since pαβqp0V q “ 1 ¨ 1 “ 1 “ C1
V p0V q, we conclude that αβ “ C1

V .

By Theorem 46.3 p. 332, | ‚ | « }‚ }, so | ‚ | ăă }‚}, so choose C ą 0

such that | ‚ | ď C ¨ } ‚ }. Then, for all x P V zt0V u,

βpxq “
|x|p

}x}p
“

„

|x|

}x}

p

ď

„

C ¨ }x}

}x}

p

“ Cp.

Let K :“ maxtCp, 1u. Then K ě 1, so K ą 0. Also, for all x P V , we

have 0 ď βpxq ď K, and so |βpxq| “ βpxq ď K. Choose |||‚||| P N pW q.
Claim A: qOpV,W q Ď α ¨ r qOpV,W q s. Proof of Claim A: We wish

to show: @γ P qOpV,W q, γ P α ¨ r qOpV,W q s. Let γ P qOpV,W q be given.

Want: γ P α ¨ r qOpV,W q s. Since γ “ γ ¨ C1
V “ γ ¨ rαβs “ α ¨ rβγs, it

suffices to show that βγ P qOpV,W q. We wish to show:

‚ dom rβγs P NV p0V q,

‚ pβγqp0V q “ 0W and

‚ βγ : V 99K W is continuous at 0V .

Since γ P qOpV,W q, it follows that:



‚ dom rγs P NV p0V q,

‚ γp0V q “ 0W and

‚ γ : V 99K W is continuous at 0V .

Since dom rβs “ V and since dom rγs Ď V , we get dom rβγs “ dom rγs.

Then dom rβγs “ dom rγs P NV p0V q. Also, pβγqp0V q “ 1 ¨ 0W “ 0W . It

remains to show: βγ : V 99K W is continuous at 0V . We wish to show:

@ε ą 0, Dδ ą 0 such that, for all x P dom rβγs,

r |x| ă δ s ñ r |||pβγqpxq||| ă ε s.

Let ε ą 0 be given. Want: Dδ ą 0 such that, for all x P dom rβγs,

r |x| ă δ s ñ r |||pβγqpxq||| ă ε s.

As γ : V 99K W is continuous at 0V , choose δ ą 0 s.t., @x P dom rγs,

r |x| ă δ s ñ r |||γpxq||| ă ε{K s.

We wish to show: @x P dom rβγs,

r |x| ă δ s ñ r |||pβγqpxq||| ă ε s.

Let x P dom rβγs be given. We wish to show:

r |x| ă δ s ñ r |||pβγqpxq||| ă ε s.

Assume that |x| ă δ. We wish to show: |||pβγqpxq||| ă ε.

We have x P dom rβγs Ď dom rγs. So, since |x| ă δ, by choice of δ,

we get: |||γpxq||| ă ε{K.

We have x P dom rβγs Ď dom rγs, so, as x P U , γpxq P γ˚pUq. Then

|||γpxq||| P |||γ˚pUq||| ď sup |||γ˚pUq||| “ M.

Recall: |βpxq| ď K. Then

|||pβγqpxq||| “ |||rβpxqs ¨ rγpxqs|||

“ |βpxq| ¨ |||γpxq|||

ă K ¨ pε{Kq “ ε,

as desired. End of proof of Claim A.

Claim B: pOpV,W q Ď α ¨ r pOpV,W q s. Proof of Claim B: We wish

to show: @γ P pOpV,W q, γ P α ¨ r pOpV,W q s. Let γ P pOpV,W q be given.

Want: γ P α ¨ r pOpV,W q s. Since γ “ γ ¨ C1
V “ γ ¨ rαβs “ α ¨ rβγs, it

suffices to show that βγ P pOpV,W q. Want: DU P NV p0V q such that

U Ď dom rβγs and sup |||pβγq˚pUq||| ă 8.

Since γ P pOpV,W q “ pOpV,W, | ‚ |q, choose U P NV p0V q such that



U Ď dom rγs and sup |||γ˚pUq||| ă 8.

We wish to show:

U Ď dom rβγs and sup |||pβγq˚pUq||| ă 8.

As dom rβs “ V and dom rγs Ď V , we get dom rβγs “ dom rγs. Then

U Ď dom rγs “ dom rβγs. It remains to show: sup |||pβγq˚pUq||| ă 8.

Let M :“ sup |||γ˚pUq|||. It suffices to show: |||pβγq˚pUq||| ď KM .

We wish to show: @x P dom rβγs,

r x P U s ñ r |||pβγqpxq||| ď KM s.

Let x P dom rβγs be given. We wish to show:

r x P U s ñ r |||pβγqpxq|| ď KM s.

Assume that x P U . Want: |||pβγqpxq||| ď KM

We have x P dom rβγs Ď dom rγs, so, as x P U , γpxq P γ˚pUq. Then

|||γpxq||| P |||γ˚pUq||| ď sup |||γ˚pUq||| “ M.

Recall: |βpxq| ď K. Then

|||pβγqpxq||| “ |||rβpxqs ¨ rγpxqs||| “ |βpxq| ¨ |||γpxq||| ď KM,

as desired. End of proof of Claim B.

Claim C: r | ‚ |p s ¨α “ } ‚ }p. Proof of Claim C: On V zt0V u, we have

r | ‚ |p s ¨ α “ r | ‚ |p s ¨ r } ‚ }p { | ‚ |p s “ } ‚ }p, so it suffices to show that

p r | ‚ |p s ¨ α qp0V q “ p } ‚ }
p qp0V q.

We have p r | ‚ |p s ¨ α qp0V q “ 0p ¨ 1 “ 0p “ p } ‚ }p qp0V q, as desired.

End of proof of Claim C.

Proof of (1): By Claim A, r |‚|p s ¨r qOpV,W q s Ď r |‚|p s ¨α ¨ r qOpV,W q s.

By Claim C, r | ‚ |p s ¨ α ¨ r qOpV,W q s “ } ‚ }p ¨ r qOpV,W q s. Then

qOppV,W, | ‚ |q “ r | ‚ |
p
s ¨ r qOpV,W q s

Ď r | ‚ |
p
s ¨ α ¨ r qOpV,W q s

“ r } ‚ }
p
s ¨ r qOpV,W q s

“ qOppV,W, } ‚ }q,

as desired. End of proof of (1).



Proof of (2): By Claim B, r |‚|p s¨r pOpV,W q s Ď r |‚|p s¨α¨r pOpV,W q s.
By Claim C, r | ‚ |p s ¨ α ¨ r pOpV,W q s “ } ‚ }p ¨ r pOpV,W q s. Then

pOppV,W, | ‚ |q “ r | ‚ |
p
s ¨ r pOpV,W q s

Ď r | ‚ |
p
s ¨ α ¨ r pOpV,W q s

“ r } ‚ }
p
s ¨ r pOpV,W q s

“ pOppV,W, } ‚ }q,

as desired. End of proof of (2). QED

12-4. Let V and W both be finite dimensional vector spaces, and let

p, q ě 0. Assume p ă q. Show: qOppV,W q Ě pOqpV,W q.

Proof: We want: @γ P pOqpV,W q, γ P qOppV,W q. Let γ P pOqpV,W q be

given. We wish to show: γ P qOppV,W q.

Chose | ‚ | P N pV q. Then pOqpV,W q “ r| ‚ |qs ¨ r pOpV,W qs and

qOppV,W q “ r| ‚ |
ps ¨ rqOpV,W qs. We have γ P r| ‚ |qs ¨ r pOpV,W qs. We wish

to show: γ P r| ‚ |ps ¨ qOpV,W q.

Since γ P pOqpV,W q “ r| ‚ |
qs ¨ r pOpV,W qs, choose α P pOpV,W q such

that γ “ r| ‚ |qs ¨ α. Choose } ‚ } P N pW q. Since α P pOpV,W q, choose

U P NV p0V q such that

U Ď dom rαs and sup }α˚pUq} ă 8.

Since dom rαs Ě U P NV p0V q, we see that dom rαs P NV p0V q.

Let β :“ r| ‚ |q´ps ¨ α. Then r| ‚ |ps ¨ β “ r| ‚ |qs ¨ α. Then

γ “ r | ‚ |
q
s ¨ α “ r | ‚ |

p
s ¨ β,

and so it suffices to show: β P qOpV,W q. We wish to show:

‚ dom rβs P NV p0V q,

‚ βp0V q “ 0W and

‚ β : V 99K W is continuous at 0V .

Because dom r| ‚ |q´ps “ V and because dom rαs Ď V , we conclude

that dom r r| ‚ |q´ps ¨ α s “ dom rαs. Then

dom rβs “ dom r r| ‚ |
q´p
s ¨ α s “ dom rαs.

Then dom rβs “ dom rαs P Nvp0V q. Also,

βp0V q “ pr| ‚ |
q´p
s ¨ αqp0V q “ 0q´p ¨ rαp0V qs “ 0W .



It remains to show: β : V 99K W is continuous at 0V . We wish to show:

@ε ą 0, Dδ ą 0 such that, @x P dom rβs,

r |x| ă δ s ñ r }βpxq} ă ε s.

Let ε ą 0 be given. We wish to show: Dδ ą 0 such that, @x P dom rβs,

r |x| ă δ s ñ r }βpxq} ă ε s.

Since U P NV p0V q and since BV p0V q is a neighborhood base at 0V
in V , choose ρ ą 0 such thatBp0V , ρq Ď U . LetM :“ psup }α˚pUq}q`1.

Then M ą 0 and }α˚pUq} ă M . Let τ :“ pε{Mq1{pq´pq. We define

δ :“ mintρ, τu. We wish to show: @x P dom rβs,

r |x| ă δ s ñ r }βpxq} ă ε s.

Let x P dom rβs be given. We wish to show:

r |x| ă δ s ñ r }βpxq} ă ε s.

Assume that |x| ă δ. We wish to show: }βpxq} ă ε.

Since |x| ă δ ď ρ, we get x P BV p0V , ρq. So, since BV p0V , ρq Ď U ,

x P U . So, since x P dom rβs “ dom rαs, we have αpxq P α˚pUq. Then

}αpxq} P }α˚pUq} ă M . Since β “ r| ‚ |q´ps ¨ α, we conclude that

βpxq “ r|x|q´ps ¨ rαpxqs. Since |x| ă δ ď τ , we get |x|q´p ă τ q´p. Then

}βpxq} “ r|x|q´ps ¨ }αpxq} ă rτ q´ps ¨M “ rε{M s ¨M “ ε. QED

12-5. Let p, q ě 0. Show:

( [ pqOppR,Rqq ¨ pqOqpR,Rqq Ď qOp`qpR,Rq ] and

[ pqOqpR,Rqq ˝ pqOppR,Rqq Ď qOqppR,Rq ] ).

Proof: Let qO :“ qOpR,Rq. By (1) of Fact 47.10 p. 342, we have qO ¨qO Ď qO.

Then

pqOppR,Rqq ¨ pqOqpR,Rqq “ | ‚ |
p
¨ qO ¨ | ‚ |q ¨ qO

“ | ‚ |
p
¨ | ‚ |

q
¨ qO ¨ qO

Ď | ‚ |
p`q
¨ qO

“ qOp`qpR,Rq.

It remains to show: pqOqpR,Rqq ˝ pqOppR,Rqq Ď qOqppR,Rq. We want:

@f P qOppR,Rq, @g P qOqpR,Rq, g ˝ f P qOqppR,Rq. Let f P qOppR,Rq and

g P qOqpR,Rq be given. We wish to prove: g ˝ f P qOqppR,Rq.



Since f P qOppR,Rq “ | ‚ |p ¨ qO, choose δ P qO s.t. f “ | ‚ |p ¨ δ. Since

g P qOppR,Rq “ | ‚ |q ¨ qO, choose ε P qO s.t. g “ | ‚ |q ¨ ε. For all x P R,

gpfpxqq “ p| ‚ |
q
¨ εqpfpxqq “

ˇ

ˇfpxq
ˇ

ˇ

q
¨ rεpfpxqqs

“
ˇ

ˇ p| ‚ |
p
¨ δqpxq

ˇ

ˇ

q
¨ rεpfpxqqs

“
ˇ

ˇ |x|p ¨ rδpxqs
ˇ

ˇ

q
¨ rεpfpxqqs

“ |x|qp ¨ |δpxq|q ¨ rεpfpxqqs.

Then g ˝ f “ | ‚ |qp ¨ |δ|q ¨ rε ˝ f s.

By Fact 47.12 p. 342, (with V and W both replaced by R, } ‚ } by

| ‚ | and p by q), |qO|q Ď qO. Then |δ|q P |qO|q Ď qO.

We have f P qOppR,Rq Ď qO0pR,Rq “ qO. By (1) of Fact 47.11 p. 342

(with V , W and X all replaced by R), qO˝qO Ď qO. Then ε˝f P qO˝qO Ď qO.

Recall that qO ¨ qO Ď qO. Then |δ|q ¨ rε ˝ f s P qO ¨ qO Ď qO. It follows that

g ˝ f “ | ‚ |qp ¨ |δ|q ¨ rε ˝ f s P | ‚ |qp ¨ qO “ qOqppR,Rq, as desired. QED

Homework 11: Due on Tuesday 10 April

11-1. Let S Ď R. Assume that S has a minimum. (That is, assume:

Da P S s.t. a ď S.) Show that inf S “ minS P S.

Proof: Choose a P S s.t. a ď S. Since a ď S, we get a P LBpSq. Since

a P S and a P LBpSq, we get a P S X rLBpSqs.

Claim: S X rLBpSqs “ tau. Proof of Claim: Since a P S X rLBpSqs,

we have tau Ď S X rLBpSqs. We wish to show: S X rLBpSqs Ď tau. We

wish to show: @z P SXrLBpSqs, z P tau. Let z P SXrLBpSqs be given.

We wish to show: z P tau. We wish to show: z “ a.

We have both z P S and z P LBpSq. Also, since a ď S, it follows

that S ě a. Since z P S ě a, we get z ě a. It remains to show: z ď a.

Since z P LBpSq, it follows that z ď S. So, since a P S, we conclude

that z ď a, as desired. End of proof of Claim.

By the Claim, ELTpS X rLBpSqsq “ ELTtau. Then

minS “ ELT pS X rLBpSqs q “ ELTtau “ a.

Since a P S, we get a ‰ /. By Fact 8.13 p. 69, inf S “˚ minS. Then

inf S “˚ minS “ a ‰ /, so inf S “ a. Then inf S “ a “ minS. It

remains to show: minS P S.

We have minS “ a P S, as desired. QED



11-2. Let U be a vector space, let | ‚ |, } ‚ } P N pV q and let S Ď U . Let

V :“ pU, | ‚ |q and let W :“ pU, } ‚ }q. Assume both that | ‚ | ăă } ‚ },

and that S is bounded in W . Show that S is bounded in V .

Proof: Since S is bounded in W , choose A P BW s.t. S Ď A. Since

A P BW , choose p P W and r ą 0 s.t. A “ BW pp, rq. Since | ‚ | ăă }‚},

choose K ą 0 s.t. | ‚ | ď K ¨ } ‚ }. It suffices to show: S Ď BV pp,Krq.

We wish to show: @q P S, q P BV pp,Krq. Let q P S be given. We wish

to show: q P BV pp,Krq. That is, we wish to show: |q ´ p|V ă Kr.

Since q P S Ď A “ BW pp, rq, it follows that |q ´ p|W ă r. So, since

K ą 0, we get K ¨ |q´p|W ă Kr. We have | ‚ |V “ |‚ | and | ‚ |W “ }‚}.

Then |q ´ p|V “ |q ´ p| and |q ´ p|W “ }q ´ p}.

Since | ‚ | ď K ¨ } ‚ }, we get |q ´ p| ď K ¨ }q ´ p}. Then

|q ´ p|V “ |q ´ p| ď K ¨ }q ´ p} “ K ¨ |q ´ p|W ă Kr,

as desired. QED

11-3. Let V and W be normed vector spaces, and let T P LpV,W q.

Assume that T : V Ñ W is bounded below. Show that T is 1-1.

Proof: By (3) of Fact 44.3 p. 319, it suffices to show: kerrT s “ t0V u.

By (1) of Fact 44.3 p. 319, kerrT s is a vector subspace of V , and so

t0V u Ď kerrT s. We wish to show: kerrT s Ď t0V u. We wish to show:

@x P kerrT s, x P t0V u. Given x P kerrT s. Want: x P t0V u.

Since x P kerrT s “ T ˚pt0W uq, we get Tx P t0W u. Then Tx “ 0W .

Since T is bounded below, we see that qT ą 0. Let ε :“ qT . Then

ε ą 0 and T is ε-bounded below. Then, by HW#10-1, |Tx|W ě ε|x|V .

Then ε|x|V ď |Tx|W “ |0W |W “ 0. Since ε ą 0 and ε|x|V ď 0, we

see that |x|V ď 0. So, since |x|V ě 0, we get |x|V “ 0. It follows that

x “ 0V , so x P t0V u, as desired. QED

11-4. Let T P LpR4,R4q be defined by Tx “ p6x1, 5x2, 8x3, 7x4q, and

define V :“ pR4, | ‚ |4,2q. Show that qTV V “ 5 and that pTV V “ 8.

Proof: We wish to show:

(1) qTV V ď 5,

(2) qTV V ě 5,

(3) pTV V ď 8 and

(4) pTV V ě 8.



Let e‚ be the standard basis of R4. Then

e1 “ p1, 0, 0, 0q, e2 “ p0, 1, 0, 0q, e3 “ p0, 0, 1, 0q, e4 “ p0, 0, 0, 1q.

So, since | ‚ |V “ | ‚ |4,2, we get

|e1|V “ |e2|V “ |e3|V “ |e4|V “ 1,

so e1, e2, e3, e4 P SV . So, since e1, e2, e3, e4 P V “ dom rT s, we conclude

that T pe1q, T pe2q, T pe3q, T pe4q P T˚pSV q. Let E :“ E``T . Then

E “ T˚pSV q, qTV V “ inf |E|V , pTV V “ sup |E|V .

We have T pe1q, T pe2q, T pe3q, T pe4q P T˚pSV q “ E.

Proof of (1): We have T pe2q “ 5e2. Also, |5e2|V “ 5¨|e2|V “ 5¨1 “ 5.

Then 5e2 “ T pe2q P E. Then 5 “ |5e2|V P |E|V ě inf |EV | “ qTV V .

Then qTV V ď 5, as desired. End of proof of (1).

Proof of (2): We want: T : V Ñ V is 5-bounded below. We want:

@x P V , |Tx|V ě 5 ¨ |x|V . Given x P V . Want: |Tx|V ě 5 ¨ |x|V .

We have

|Tx|2V “ |p6x1, 5x2, 8x3, 7x4q|
2
V “ |p6x1, 5x2, 8x3, 7x4q|

2
4,2

“ p6x1q
2
` p5x2q

2
` p8x3q

2
` p7x4q

2

“ 36x21 ` 25x22 ` 64x23 ` 49x24

ě 25x21 ` 25x22 ` 25x23 ` 25x24

“ 25px21 ` x
2
2 ` x

2
3 ` x

2
4q

“ 25 ¨ |x|24,2 “ 25 ¨ |x|2V .

So, since 25 ¨ |x|2V ě 0, we get
a

|Tx|2V ě
a

25 ¨ |x|2V . Then

|Tx|V “

b

|Tx|2V ě

b

25 ¨ |x|2V “
?

25 ¨
b

|x|2V “ 5 ¨ |x|V ,

as desired. End of proof of (2).

Proof of (3): We wish to show: T : V Ñ V is 8-bounded. We want:

@x P V , |Tx|V ď 8 ¨ |x|V . Given x P V . Want: |Tx|V ď 8 ¨ |x|V .



We have

|Tx|2V “ |p6x1, 5x2, 8x3, 7x4q|
2
V “ |p6x1, 5x2, 8x3, 7x4q|

2
4,2

“ p6x1q
2
` p5x2q

2
` p8x3q

2
` p7x4q

2

“ 36x21 ` 25x22 ` 64x23 ` 49x24

ď 64x21 ` 64x22 ` 64x23 ` 64x24

“ 64px21 ` x
2
2 ` x

2
3 ` x

2
4q

“ 64 ¨ |x|24,2 “ 64 ¨ |x|2V .

So, since 0 ď |Tx|2V , we get
a

|Tx|2V ď
a

64 ¨ |x|2V . Then

|Tx|V “

b

|Tx|2V ď

b

64 ¨ |x|2V “
?

64 ¨
b

|x|2V “ 8 ¨ |x|V ,

as desired. End of proof of (3).

Proof of (4): We have T pe3q “ 8e3. Also, |8e3|V “ 8¨|e3|V “ 8¨1 “ 8.

Then 8e3 “ T pe3q P E. Then 8 “ |8e3|V P |E|V ď sup |EV | “ pTV V .

Then qTV V ě 8, as desired. End of proof of (4). QED

11-5. Let V and W be normed vector spaces and let T : V ãÑą W be

a vector space isomorphism. Assume T : V Ñ W is bounded below.

Show that T´1 : W Ñ V is bounded.

Proof: As T : V Ñ W is bounded below, qTVW ą 0. Let ε :“ qTVW .

Then ε ą 0 and T : V Ñ W is ε-bounded below. Let K :“ 1{ε. Then

K ą 0, Kε “ 1, and it suffices to show: T´1 : W Ñ V is K-bounded.

We wish to show: @y P W , |T´1pyq|V ď K ¨ |y|W . Let y P W be given.

We wish to show: |T´1pyq|V ď K ¨ |y|W .

Let x :“ T´1pyq. Then Tx “ y. Since T : V Ñ W is ε-bounded

below, we get |Tx|W ě ε¨|x|V . So, since K ą 0, K ¨|Tx|W ě pKεq¨|x|V .

So, since Kε “ 1, we get K ¨ |Tx|W ě |x|V . That is, |x|V ď K ¨ |Tx|W .

Then |T´1pyq|V “ |x|V ď K ¨ |Tx|W “ K ¨ |y|W , as desired. QED

Homework 10: Due on Tuesday 3 April

10-1. Let V and W be normed vector spaces, T P LpV,W q and ε ą 0.

Show: rT is ε-bounded below s ô r @x P V, |Tx|W ě ε|x|V s.

Proof: Proof of ñ: Assume that T is ε-bounded below. We want:

@x P V, |Tx|W ě ε|x|V . Let x P V be given. Want: |Tx|W ě ε|x|V .



By Fact 42.5 p. 306, choose a ě 0 and u P SV s.t. x “ au. Since

a ě 0, we get |a| “ a. Since u P SV , it follows that |u|V “ 1. Then

|x|V “ |au|V “ |a| ¨ |u|V “ a ¨ 1 “ a. Want: |Tx|W ě εa.

We have u P SV Ď V “ dom rT s. So, as u P SV , we get Tu P T˚pSV q.

So, since T˚pSV q “ E``T , we get Tu P E``T . Since T is ε-bounded

below, we have qT ě ε. Then

|Tu|W P |E``T |W ě inf |E``T |W “ qT ě ε,

so, since |a| “ a, we get |a| ¨ |Tu|W ě εa. Then

|Tx|W “ |T pauq|W “ |a ¨ rTus|W “ |a| ¨ |Tu|W ě εa,

as desired. End of proof of ñ.

Proof of ð: Assume that @x P V, |Tx|W ě ε|x|V . We wish to show:

T is ε-bounded below. Want: qT ě ε. So, since qT “ inf |E``T |W , it

suffices to show: |E``T |W ě ε. We wish to show: @s P |E``T |W , s ě ε.

Let s P |E``T |W be given. We wish to show: s ě ε.

Since s P |E``T |W , choose y P E``T such that s “ |y|W . Since

y P E``T “ T˚pSV q, choose u P SV such that y “ Tu. By assumption,

|Tu|W ě ε|u|V . Since u P SV , we conclude that |u|V “ 1. Then

s “ |y|W “ |Tu|W ě ε|u|V “ ε ¨ 1 “ ε. End of proof of ð. QED

10-2. Let m P N. Show: | ‚ |m,8 ď | ‚ |m,2 ď | ‚ |m,1 ď m ¨ | ‚ |m,8.

Proof: We wish to show:

(1) | ‚ |m,8 ď | ‚ |m,2,

(2) | ‚ |m,2 ď | ‚ |m,1, and

(3) | ‚ |m,1 ď m ¨ | ‚ |m,8.

Proof of (1): Want: @x P Rm, |x|m,8 ď |x|m,2. Let x P Rm be given.

We wish to prove: |x|m,8 ď |x|m,2.

Let a :“ |x|m,2. Want: |x|m,8 ď a. As |x|m,8 “ maxt|x1|, . . . , |xm|u,

it suffices to show t|x1|, . . . , |xm|u ď a. Want: @t P t|x1|, . . . , |xm|u,

t ď a. Let t P t|x1|, . . . , |xm|u be given. Want: t ď a.

Since t P t|x1|, . . . , |xm|u, choose j P r1..ms such that t “ |xj|. We

have 0 ď x2j ď x21 ` ¨ ` x
2
m. Then

b

x2j ď
a

x21 ` ¨ ` x
2
m. Then

t “ |xj| “

b

x2j ď

b

x21 ` ¨ ` x
2
m “ |x|2 “ a,

as desired. End of proof of (1).



Proof of (2): Want: @x P Rm, |x|m,2 ď |x|m,1. Let x P Rm be given.

We wish to prove: |x|m,2 ď |x|m,1.

Let I :“ r1..ms. For all j P I, let aj :“ |xj|. For all j P I, we have

a2j “ |xj|
2 “ x2j . Then |x|m,2 “

a

x21 ` ¨ ¨ ¨ ` x
2
m “

a

a21 ` ¨ ¨ ¨ ` a
2
m.

Also, we have |x|m,1 “ |x1| ` ¨ ¨ ¨ ` |xm| “ a1 ` ¨ ¨ ¨ ` am.

Let K :“ tr P I2 | r1 ‰ r2u. For all j P I, we have aj “ |xj| ě 0.

Then, for all r P K, we have ar1ar2 ě 0. It follows that
ÿ

rPK

ar1ar2 ě 0.

Let S :“
ÿ

rPK

ar1ar2 . Then S ě 0. We have

pa1 ` ¨ ¨ ¨ ` amq
2

“ pa21 ` ¨ ¨ ¨ ` a2mq ` S.

So, since S ě 0, we get pa1 ` ¨ ¨ ¨ ` amq
2 ě a21 ` ¨ ¨ ¨ ` a2m. Since

0 ď a21 ` ¨ ¨ ¨ ` a
2
m ď pa1 ` ¨ ¨ ¨ ` amq

2, we see that
b

a21 ` ¨ ¨ ¨ ` a
2
m ď

a

pa1 ` ¨ ¨ ¨ ` amq2.

Recall: @j P I, aj ě 0. It follows that a1` ¨ ¨ ¨ ` am ě 0. Then we have

|a1 ` ¨ ¨ ¨ ` am| “ a1 ` ¨ ¨ ¨ ` am. Then

|x|m,2 “

b

a21 ` ¨ ¨ ¨ ` a
2
m

ď
a

pa1 ` ¨ ¨ ¨ ` amq2

ď |a1 ` ¨ ¨ ¨ ` am|

“ a1 ` ¨ ¨ ¨ ` am “ |x|m,1,

as desired. End of proof of (2).

Proof of (3): Want: @x P Rm, |x|m,1 ď m ¨ |x|m,8. Let x P Rm be

given. Want: |x|m,1 ď m ¨ |x|m,8. Let a :“ |x|m,8. Want: |x|m,1 ď ma.

For all j P r1..ms, we have |xj| ď maxt|x1|, . . . , |xm|u “ |x|m,8 “ a.

Then |x|m,1 “ |x1| ` ¨ ¨ ¨ ` |xm| ď ma. End of proof of (3). QED

10-3. Let V be a normed vector space, let Z be a topological space, let

µ : V 99K Z and let p P V . Let λ :“ µpp` ‚q. Show: lim
0V

λ “ lim
p
µ.

Proof: It suffices to show: LIMS
0V

λ “ LIMS
p

µ.

Proof of Ď: Want: @y P LIMS
0V

λ, y P LIMS
p

µ. Given y P LIMS
0V

λ.

Want: y P LIMS
p

µ. Know: λ Ñ y near 0V . Want: µ Ñ y near p. We

wish to show: @U P NZpyq, Dδ ą 0 s.t., @x P dom rµs,

r 0 ă |x´ p|V ă δ s ñ r µpxq P U s.



Let U P NZpyq be given. We wish to show: Dδ ą 0 s.t., @x P dom rµs,

r 0 ă |x´ p|V ă δ s ñ r µpxq P U s.

Since λÑ y near 0V , choose δ ą 0 s.t., @h P dom rλs,

r 0 ă |h|V ă δ s ñ r λphq P U s.

We wish to show: @x P dom rµs,

r 0 ă |x´ p|V ă δ s ñ r µpxq P U s.

Let x P dom rµs be given. We wish to show:

r 0 ă |x´ p|V ă δ s ñ r µpxq P U s.

Assume that 0 ă |x´ p|V ă δ. We wish to show: µpxq P V .

Let h :“ x´p. Then h P pdom rµsq´p “ dom rλs. Also, 0 ă |h|V ă δ,

so, by choice of δ, we have λphq P U . By definition of λ, we have

λphq “ µpp ` hq. So, since p ` h “ x, we get λphq “ µpxq. Then

µpxq “ λphq P U . End of proof of Ď.

Proof of Ě: Want: @y P LIMS
p

µ, y P LIMS
0V

λ. Given y P LIMS
p

µ.

Want: y P LIMS
0V

λ. Know: µ Ñ y near p. Want: λ Ñ y near 0V . We

wish to show: @U P NZpyq, Dδ ą 0 s.t., @h P dom rλs,

r 0 ă |h|V ă δ s ñ r λphq P U s.

Let U P NZpyq be given. We wish to show: Dδ ą 0 s.t., @h P dom rλs,

r 0 ă |h|V ă δ s ñ r λphq P U s.

Since µÑ y near p, choose δ ą 0 s.t., @x P dom rµs,

r 0 ă |x´ p|V ă δ s ñ r µpxq P U s.

We wish to show: @h P dom rλs,

r 0 ă |h|V ă δ s ñ r λphq P U s.

Let h P dom rλs be given. We wish to show:

r 0 ă |h|V ă δ s ñ r λphq P U s.

Assume that 0 ă |h|V ă δ. We wish to show: λphq P U .

Let x :“ p ` h. Then x P pdom rλsq ` p “ dom rµs. Also, h “ x ´ p

Then 0 ă |x ´ p|V ă δ, so, by choice of δ, we have µpxq P U . By

definition of λ, we have λphq “ µpp ` hq. So, since p ` h “ x, we get

λphq “ µpxq. Then λphq “ µpxq P U . End of proof of Ě. QED



10-4. Let X be a metric space, let D Ď X and let p P IntXD. Show

that there exists B P BXppq such that B Ď D.

Proof: Since p P IntXD, choose an open subset U of X such that

p P U Ď D. Since U is open in X, we have U P TX . We have

TX “ xBXyY. Then p P U P xBXyY. Choose C P BX such that

p P C Ď U . By the Recentering Down Lemma (Lemma 14.2 p. 104),

choose B P BXppq such that B Ď C. We wish to show: B Ď D.

We have B Ď C Ď U Ď D, as desired. QED

10-5. Let g : R 99K R. Let p, q P R. Assume g has a local unique min

at p in R. Show: g ` Cq
R has a local unique min at p in R.

Proof: Let h :“ g ` Cq
R. We wish to show: DV P NXppq s.t.

p V Ď dom rhs q and p hppq ă h˚pV
ˆ
p q q.

Since g has a local unique min at p in R, choose V P NXppq s.t.

p V Ď dom rgs q and p gppq ă g˚pV
ˆ
p q q.

We wish to show:

p V Ď dom rhs q and p hppq ă h˚pV
ˆ
p q q.

We have dom rhs “ dom rg ` Cq
Rs “ pdom rgsq X pdom rCq

Rsq. So, since

dom rgs Ď R “ dom rCq
Rs, we get dom rhs “ dom rgs. Then we have

V Ď dom rgs “ dom rhs. It remains to show: hppq ă h˚pV
ˆ
p q. We wish

to show: @y P h˚pV
ˆ
p q, hppq ă y. Let y P h˚pV

ˆ
p q be given. We wish

to show: hppq ă y. Since y P h˚pV
ˆ
p q, choose x P dom rhs such that:

both x P V ˆp and y “ hpxq. We wish to show hppq ă hpxq.

Since x P dom rhs “ dom rgs and since x P V ˆp , it follows that

gpxq P g˚pV
ˆ
p q. So, since gppq ă g˚pV

ˆ
p q, we get gppq ă gpxq. Then

rgppqs ` q ă rgpxqs ` q. So since

hppq “ pg ` Cq
Rqppq “ rgppqs ` pCq

Rqppqs “ rgppqs ` q

and hpxq “ pg ` Cq
Rqpxq “ rgpxqs ` pCq

Rqpxqs “ rgpxqs ` x,

we conclude that hppq ă hpxq, as desired. QED

Homework 9: Due on Tuesday 27 March

9-1. Let V and W be normed vector spaces, T P LpV,W q and K ě 0.

Show: r T is K-bounded s ô r @x P V, |Tx|W ď K ¨ |x|V s.



Proof: Proof of ñ: Assume that T is K-bounded. We wish to show:

@x P V, |T pxq|W ď K ¨ |x|V . Given x P V . Want: |T pxq|W ď K ¨ |x|V .

Since T is K-bounded, we have pT ď K. By definition of pT , we

have |E``T |W ď pT . By the polar decomposition (Fact 42.5), choose

a ě 0 and u P SV s.t. x “ au. Since u P SV , we get |u|V “ 1. Then

K ¨ |x|V “ K ¨ |au|V “ K ¨ |a| ¨ |u|V “ K ¨ |a| ¨ 1 “ |a| ¨K.

We have |T puq|W P |T˚pSV q|W “ |E``T |W ď pT ď K. Then

|T pxq|W “ |T pauq|W “ |a ¨ rT puqs|W

“ |a| ¨ |T puq|W ď |a| ¨K “ K ¨ |x|V ,

as desired. End of proof of ñ.

Proof of ð: Assume: @x P V, |T pxq|W ď K ¨ |x|V . We wish to show

that T is K-bounded. Want: pT ď K. Want: sup |E``T |W ď K. We

wish to show: |E``T |W ď K. Want: @r P |E``T |W , r ď K. Let

r P |E``T |W be given. We want: r ď K.

Choose y P E``T s.t. r “ |y|W . Since y P E``T “ T˚pSV q, choose

u P SV s.t. y “ T puq. We have |T puq|W ď K ¨ |u|V . Since u P SV , we

have |u|V “ 1. Then r “ |y|W “ |T puq|W ď K ¨ |u|V “ K ¨ 1 “ K, as

desired. End of proof of ð. QED

9-2. Let V and W be normed vector spaces and let K ě 0. Let

T P LpV,W q be K-bounded. Show: T is K-Lipschitz. That is, show:

@x, y P V, | rT pxqs ´ rT pyqs |W ď K ¨ | x ´ y |V .

Proof: Let x, y P V be given. Want: | rT pxqs ´ rT pyqs |W ď K ¨|x´y|V .

By HW#9-1, we know: @z P V , |T pzq|W ď K ¨ |z|V . It follows that

|T px ´ yq|W ď K ¨ |x ´ y|V . By linearity, T px ´ yq “ rT pxqs ´ rT pyqs.

Then | rT pxqs ´ rT pyqs |W “ |T px´ yq|W ď K ¨ |x´ y|V . QED

9-3. Let Y and Z be metric spaces and let K ą 0. Let f : Y 99K Z
be a K-Lipschitz function. Let x P dom rf s and let r ą 0. Show that:

f˚pBY px, rqq Ď BZpfpxq, Krq.

Proof: We want to show: @p P dom rf s,

r p P BY px, rq s ñ r fppq P BZpfpxq, Krq s.

Let p P dom rf s be given. We want to show:

r p P BY px, rq s ñ r fppq P BZpfpxq, Krq s.



Assume p P BY px, rq. We want to show: fppq P BZpfpxq, Krq.

Since p P BY px, rq, we have dY pp, xq ă r. So, since f is K-Lipschitz,

dZpfppq, fpxqq ă Kr. Then fppq P BZpfpxq, Krq, as desired. QED

9-4. Let V and W be normed vector spaces and let T P LpV,W q.

Assume that T is continuous at 0V . Show that T is bounded.

Proof: Since T is linear, T p0V q “ 0W . So, since T is continuous at 0V ,

choose δ ą 0 s.t., for all x P V ,

r |x|V ă δ s ñ r |Tx|W ă 1 s.

Let K :“ 2{δ. We want: T is K-bounded. By ð of Remark 43.1

p. 311, it suffices to show: @u P SV , |Tu|W ď K. Let u P V be given:

We want to prove: |Tu|W ď K. It suffices to show: |Tu|W ă K.

Since K “ 2{δ ą 0, we get |K| “ K. Also, |1{K| “ |δ{2| “ δ{2.

Since u P SV , we have |u|V “ 1. Let x :“ p1{Kqu. Then we have

|x|V “ |1{K| ¨ |u|V “ pδ{2q ¨ 1 “ δ{2 ă δ. So, by choice of δ, we see

that |Tx|W ă 1. Then K ¨ |Tx|W ă K ¨ 1 “ K. Since x “ p1{Kqu, we

get u “ Kx, and so, by linearity of T , we have Tu “ K ¨ pTxq.

Then |Tu|W “ |K ¨ pTxq|W “ |K| ¨ |Tx|W “ K ¨ |Tx|W ă K. QED

9-5. Let f, g : R 99K R. Assume: DM P R s.t. pM,8q Ď dom rg1{f 1 s.

Assume: lim
8

f “ 0 “ lim
8

g. Show: lim
8
pg{fq “˚ lim

8
pg1{f 1q.

Proof: Define φ, ψ : p0,8q 99K R by φptq “ fp1{tq and ψptq “ gp1{tq.

Then, for all t P p0,8q, we have pψ{φqptq “ pg{fqp1{tq. It follows,

by (1) of Fact 42.19, that lim
8
pg{fq “ lim

0`
pψ{φq.

Claim 1: @t P p0,8q, pψ1{φ1qptq “ pg1{f 1qp1{tq. Proof of Claim 1:

Let t P p0,8q be given. We wish to show: pψ1{φ1qptq “ pg1{f 1qp1{tq.

By (2) of Fact 42.19, we have both

φ1ptq “ ´
f 1p1{tq

t2
and ψ1ptq “ ´

g1p1{tq

t2
.

Then rψ1ptqs{rφ1ptqs “ rg1ptqs{rf 1ptqs, i.e., pψ1{φ1qptq “ pg1{f 1qp1{tq, as

desired. End of proof of Claim 1.

By Claim 1, for all t P p0,8q, we have pψ1{φ1qptq “ pg1{f 1qp1{tq. It

follows, by (1) of Fact 42.19, that lim
8
pg1{f 1q “ lim

0`
pψ1{φ1q.

By assumption, choose M P R such that pM,8q Ď dom rg1{f 1 s.



Claim 2: p0, 1{Mq P dom rψ1{φ1s. Proof of Claim 2: We wish to show:

@t P p0, 1{Mq, t P dom rψ1{φ1s. Let t P p0, 1{Mq be given. We wish

to show: t P dom rψ1{φ1s.

Since t P p0, 1{Mq, 1{t P pM,8q. Then 1{t P pM,8q Ď dom rg1{f 1s,

so pg1{f 1qp1{tq ‰ /. Since t P p0, 1{Mq Ď p0,8q, by Claim 1, we get

pψ1{φ1qptq “ pg1{f 1qp1{tq. Then pψ1{φ1qptq “ pg1{f 1qp1{tq ‰ /, and so

t P dom rψ1{φ1s, as desired. End of proof of Claim 2.

Since lim
8

f “ 0 “ lim
8

g, it follows, from (1) of Fact 42.19, that

lim
0`

φ “ 0 “ lim
0`

ψ. By Claim 2, we have p0, 1{Mq P dom rψ1{φ1s. There-

fore, by Theorem 42.18 (with p replaced by 0, f by φ and g by ψ), we

conclude that lim
0`
pφ{ψq “˚ lim

0`
pφ1{ψ1q.

Then lim
8
pg{fq “ lim

0`
pφ{ψq “˚ lim

0`
pφ1{ψ1q “ lim

8
pg1{f 1q. QED

Homework 8: Due on Tuesday 20 March

8-1. Let W be a vector space and let u, v, v1 P W . Assume that

Rv “ Rv1 and that u}v. Show that u}v1.

Proof: We wish to show: u P Rv1 or v1 P Ru. Since u}v, at least one of

the following must be true:

(1) u P Rv or

(2) v P Ru.

Case (1): We wish to show: u P Rv1. Since u P Rv, Ru Ď Rv. So,

as Rv “ Rv1, Ru Ď Rv1. Then u P Ru Ď Rv1. End of Case (1).

Case (2): We wish to show: v1 P Ru. Since v P Ru, Rv Ď Ru. So,

as Rv “ Rv1, Rv1 Ď Ru. Then v1 P Rv1 Ď Ru. End of Case (2). QED

8-2. Let u, v P R2. Show:

r u}v s ô r pu “ 02q or pv “ 02q or pslu “ sl vq s.

Proof: Proof of ñ: Assume that u}v. We wish to prove:

pu “ 02q or pv “ 02q or pslu “ sl vq.

Equivalently, we want: r pu ‰ 02q and pv ‰ 02q s ñ r slu “ sl v s.

Assume pu ‰ 02q and pv ‰ 02q. We wish to prove: slu “ sl v.

Since u}v, at least one of the following is true:

(1) u P Rv or



(2) v P Ru.

Case (1): Choose a P R such that u “ av. Since av “ u ‰ 02 “ 0 ¨ v,

we conclude that a ‰ 0. Since pu1, u2q “ u “ av “ pav1, av2q, we see

that u1 “ av1 and that u2 “ av2. Then

slu “
u2
u1

“
av2
av1

“
v2
v1

“ sl v,

as desired. End of Case (1).

Case (2): Choose a P R such that v “ au. Since au “ v ‰ 02 “ 0 ¨u,

we conclude that a ‰ 0. Since pv1, v2q “ v “ au “ pau1, au2q, we see

that v1 “ au1 and that v2 “ au2. Then

slu “
u2
u1

“
au2
au1

“
v2
v1

“ sl v,

as desired. End of Case (2). End of proof of ñ.

Proof of ð: Assume

p˚q pu “ 02q or pv “ 02q or pslu “ sl vq.

We wish to prove: u}v. We want: u P Rv or v P Ru.

At least one of the following must be true:

(1) u1 “ 0 “ v1 or

(2) u1 ‰ 0 “ v1 or

(3) u1 “ 0 ‰ v1 or

(4) u1 ‰ 0 ‰ v1.

Case (1): We wish to prove that: r u R Rv s ñ r v P Ru s.
Assume that: u R Rv. We wish to prove that: v P Ru.

Since u R Rv and 02 “ 0 ¨ v P Rv, we get: u ‰ 02. Then we have:

p0, u2q “ pu1, u2q “ u ‰ 02 “ p0, 0q, so u2 ‰ 0. Let a :“ v2{u2. Then

au2 “ v2. Then au “ pau1, au2q “ pa ¨ 0, v2q “ p0, v2q “ pv1, v2q “ v.

Then v “ au P Ru, as desired. End of Case (1).

Case (2): We wish to show: v P Ru.

Since u1 ‰ 0, we have pu1, u2q ‰ p0, 0q, i.e., u ‰ 02. Since u1 ‰ 0, we

get u2{u1 ‰ /. Since v1 “ 0, we get v2{v1 “ /. Then

slu “ u2{u1 ‰ / “ v2{v1 “ sl v.

Since u ‰ 02 and slu ‰ sl v, we see, by p˚q, that v “ 02. Then

v “ 02 “ 0 ¨ u P Ru, as desired. End of Case (2).

Case (3): We wish to show: u P Rv.



Since v1 ‰ 0, we have pv1, v2q ‰ p0, 0q, i.e., v ‰ 02. Since v1 ‰ 0, we

get v2{v1 ‰ /. Since u1 “ 0, we get u2{u1 “ /. Then

slu “ u2{u1 “ / ‰ v2{v1 “ sl v.

Since v ‰ 02 and slu ‰ sl v, we see, by p˚q, that u “ 02. Then

u “ 02 “ 0 ¨ v P Rv, as desired. End of Case (3).

Case (4): We wish to show: v P Ru.

Since u1 ‰ 0, we have pu1, u2q ‰ p0, 0q, i.e., u ‰ 02. Since v1 ‰ 0,

we have pv1, v2q ‰ p0, 0q, i.e., v ‰ 02. Since u ‰ 02 and v ‰ 02, we see,

by p˚q, that slu “ sl v. That is, u2{u1 “ v2{v1. Let a :“ v1{u1. Then

au1 “ v1 and au2 “ pv1{u1qu2 “ pu2{u1qv1 “ pv2{v1qv1 “ v2. Then

au “ pau1, au2q “ pv1, v2q “ v. Then v “ au P Ru, as desired. End

of Case (4). End of proof of ð. QED

8-3. Let u, v P R2. Show:

p u}v q ô

ˆ

Det

„

u

v



“ 0

˙

.

Proof: Proof of ñ: Assume: u}v. Want: Det

„

u

v



“ 0.

Since u}v, at least one of the following is true:

(1) u P Rv or

(2) v P Ru.

Case (1): Choose a P R such that u “ av. Then

Det

„

u

v



“ Det

„

av

v



“ Det

„

pav1, av2q

pv1, v2q



“ pav1q ¨ v2 ´ pav2q ¨ v1 “ 0.

End of Case (1).

Case (2): Choose a P R such that v “ au. Then

Det

„

u

v



“ Det

„

u

au



“ Det

„

pu1, u2q

pau1, au2q



“ u1 ¨ pau2q ´ u2 ¨ pau1q “ 0.



End of Case (2). End of proof of ñ.

Proof of ð: Assume: Det

„

u

v



“ 0. We wish to prove: u}v. We want

to show: u P Rv or v P Ru.

Since 0 “ Det

„

u

v



“ u1v2 ´ u2v1, we see that u1v2 “ u2v1. At

least one of the following is true:

(1) u1 ‰ 0 or

(2) u2 ‰ 0 or

(3) u1 “ 0 “ u2.

Case (1): Want: v P Ru. Let a :“ v1{u1. Want: v “ au.

We have both au1 “ v and au2 “ u2v1{u1 “ u1v2{u1 “ v2. Then

v “ pv1, v2q “ pau1, au2q “ au, as desired. End of Case (1).

Case (2): Want: v P Ru. Let a :“ v2{u2. Want: v “ au.

We have both au1 “ u1v2{u2 “ u2v1{u2 “ v1 and au2 “ v2. Then

v “ pv1, v2q “ pau1, au2q “ au, as desired. End of Case (2).

Case (3): Want: u P Rv. Let a :“ 0. Want u “ av.

Since u1 “ 0 “ u2, we get u “ 02. Since a “ 0, we get av “ 02. Then

u “ 02 “ av, as desired. End of Case (3). End of proof of ð. QED

8-4. Let V and W be normed vector spaces. Let x : R 99K V and

y : R 99K W . Let p P R. Assume that x and y are both continuous

at p. Show that px, yq is continuous at p.

Proof: Let z :“ px, yq and let U :“ V ˆW . Then z : R 99K U and

dom rzs Ď dom rxs and dom rzs Ď dom rys.

We want: z is continuous at p. We wish to show: @U0 P NUpzppqq,

DA P NRppq s.t. z˚pAq Ď U0. Let U0 P NUpzppqq be given. We wish

to prove: DA P NRppq s.t. z˚pAq Ď U0.

Choose V0 P NV pxq and W0 P NW pyq s.t. V0 ˆ W0 Ď U0. Since

x is continuous at p, choose B P NRppq s.t. x˚pBq Ď V0. Since y is

continuous at p, choose C P NRppq s.t. y˚pCq Ď W0. As B,C P NRppq,

we get BXC P NRppq. Let A :“ BXC. We wish to show: z˚pAq Ď U0.

We wish to show: @q P dom rzs,

r q P A s ñ r zpqq P U0 s.

Let q P dom rzs be given. We wish to show:

r q P A s ñ r zpqq P U0 s.



Assume: q P A. We wish to show: zpqq P U0.

Since q P dom rzs Ď dom rxs and since q P A “ B X C Ď B, we

have xpqq P x˚pBq. So, by choice of B, we have xpqq P V0. Since

q P dom rzs Ď dom rys and since q P A “ B X C Ď C, we have

ypqq P y˚pCq. So, by choice of C, we have ypqq P W0.

Then zpqq “ pxpqq, ypqqq P V0 ˆW0. Then, by choice of V0 and W0,

we conclude that zpqq P U0, as desired. QED

8-5. Let V and W be normed vector spaces. Let x : R 99K V and

y : R 99K W . Let p P LPDRpx, yq. Show: px, yq1ppq “˚ px1ppq , y1ppq q.

Proof: Let φ :“ SSpx, ψ :“ SSpy . Then x1ppq “ lim
0
φ and y1ppq “ lim

0
ψ.

Also, px, yq1ppq “ lim
0
SSp

px,yq. For all h P R, we have

SSp
px,yqphq “

rpx, yqpp` hqs ´ rpx, yqppqs

h

“
pxpp` hq , ypp` hq q ´ pxppq , yppq q

h

“
p rxpp` hqs ´ rxppqs , rypp` hqs ´ ryppqs q

h

“

ˆ

rxpp` hqs ´ rxppqs

h
,
rypp` hqs ´ ryppqs

h

˙

“ p SSpxphq , SS
p
yphq q

“ p SSpx , SS
p
y q phq “ pφ, ψqphq.

Then SSp
px,yq “ pφ, ψq. Since p P LPDRpx, yq, by (3) of Remark 26.7

p. 197, we get 0 P LPDRpSS
p
px,yqq. So, since SSp

px,yq “ pφ, ψq, we con-

clude that 0 P LPDRpφ, ψq. Then, by Remark 40.4 p. 295, we have

lim
0
pφ, ψq “˚ p lim

0
φ , lim

0
ψ q. Then

px, yq1ppq “ lim
0
SSp

px,yq “ lim
0
pφ, ψq

“˚ p lim
0
φ , lim

0
ψ q “ px1ppq , y1ppq q,

as desired. QED

Homework 7: Due on Tuesday 6 March

7-1. Let f : R 99K R, p P R and δ ą 0. Assume



(1) pp´ δ, p` δq Ď dom rf s,

(2) f is strictly decreasing on pp´ δ, ps and

(3) f is strictly increasing on rp, p` δq.

Show that f has a local unique minimum at p in R.

Proof: We want: DV P NRppq s.t. V Ď dom rf s and f˚pV
ˆ
p q ą fppq.

Since pp´ δ, p` δq is open in R and since p P pp´ δ, p` δq, it follows

that pp´ δ, p` δq P NRppq. Let V :“ pp´ δ, p` δq. We wish to show:

V Ď dom rf s and f˚pV
ˆ
p q ą fppq.

Since V “ pp´ δ, p` δq, by (1), we have V Ď dom rf s. It remains to

show: f˚pV
ˆ
p q ą fppq. We wish to show: @y P f˚pV

ˆ
p q, y ą fppq. Let

y P f˚pV
ˆ
p q be given. We wish to show: y ą fppq.

Since y P f˚pV
ˆ
p q, choose t P V ˆp such that y “ fptq. We have

t P V ˆp “ pp´ δ, pq Y pp, p` δq, so one of the following must be true:

(A) t P pp´ δ, pq or

(B) t P pp, p` δq.

Case (A): We have t, p P pp´δ, ps and t ă p. So, by (2), fptq ą fppq.

So, as y “ fptq, we get y ą fppq. End of Case (A).

Case (B): We have t, p P rp, p`δq and t ą p. So, by (3), fptq ą fppq.

So, as y “ fptq, we get y ą fppq. End of Case (B). QED

7-2. Let g : R 99K R and p P IntDRg. Assume both that gppq “ 0 and

that g1ppq ą 0. Show: Dδ ą 0 such that all three of the following hold:

(A) pp´ δ, p` δq Ď dom rgs,

(B) g ă 0 on pp´ δ, pq and

(C) g ą 0 on pp, p` δq.

Proof: By Lemma 32.1 p. 240, choose U P NRp0q s.t. pSSpg q˚pUq ą 0.

Then U ` p P NRppq. Let D :“ dom rgs. Since p P IntDRg “ IntRD,

D P NRppq. As U ` p,D P NRppq, we get pU ` pq X D P NRppq. So,

since BRppq is a neighborhood base at p in R, choose δ ą 0 such that

BRpp, δq Ď pU ` pq XD. We wish to show: (A) and (B) and (C).

Proof of (A): We have

pp´ δ, p` δq “ BRpp, δq Ď pU ` pq XD Ď D “ dom rgs,

as desired. End of proof of (A).

Proof of (B): We wish to show: @t P pp ´ δ, pq, gptq ă 0. Let

t P pp´ δ, pq be given. We wish to show: gptq ă 0.



We have t P pp ´ δ, pq Ď BRpp, δq Ď pU ` pq X D, so t P U ` p and

t P D. Since t P U ` p, we get t ´ p P U . Let h :“ t ´ p. Then

h P U and p ` h “ t. Also, since t ă p, we get h ă 0. In particular,

h ‰ 0. We have dom rSSpg s “ rpdom rgsq ´ psˆ0 “ rD ´ psˆ0 . So, since

h “ t ´ p P D ´ p and since h ‰ 0, we get h P dom rSSpg s. So, since

h P U , we get pSSpg qphq P pSS
p
g q˚pUq. So, since pSSpg q˚pUq ą 0, we get

pSSpg qphq ą 0. So, since h ă 0, we get h ¨ rpSSpg qphqs ă 0. So, since

h ¨ rpSSpg qphqs “ rgpp ` hqs ´ rgppqs, we get gpp ` hq ă gppq. So, since

p`h “ t, we get gptq ă gppq. By assumption, gppq “ 0. Then gptq ă 0,

as desired. End of proof of (B).

Proof of (C): We wish to show: @t P pp, p ` δq, gptq ą 0. Let

t P pp, p` δq be given. We wish to show: gptq ą 0.

We have t P pp, p ` δq Ď BRpp, δq Ď pU ` pq X D, so t P U ` p and

t P D. Since t P U ` p, we get t ´ p P U . Let h :“ t ´ p. Then

h P U and p ` h “ t. Also, since t ą p, we get h ą 0. In particular,

h ‰ 0. We have dom rSSpg s “ rpdom rgsq ´ psˆ0 “ rD ´ psˆ0 . So, since

h “ t ´ p P D ´ p and since h ‰ 0, we get h P dom rSSpg s. So, since

h P U , we get pSSpg qphq P pSS
p
g q˚pUq. So, since pSSpg q˚pUq ą 0, we get

pSSpg qphq ą 0. So, since h ą 0, we get h ¨ rpSSpg qphqs ą 0. So, since

h ¨ rpSSpg qphqs “ rgpp ` hqs ´ rgppqs, we get gpp ` hq ą gppq. So, since

p`h “ t, we get gptq ą gppq. By assumption, gppq “ 0. Then gptq ą 0,

as desired. End of proof of (C). QED

7-3. Let f : R 99K R and let p P IntDRpf
1q. Assume both that f 1ppq “ 0

and that f2ppq ą 0. Show: f has a local unique minimum at p in R.

Proof: Let g :“ f 1. Then p P IntDRg and gppq “ 0 and g1ppq ą 0. So,

by HW#7-2, choose δ ą 0 such that all three of the following hold:

(A) pp´ δ, p` δq Ď dom rgs,

(B) g ă 0 on pp´ δ, pq and

(C) g ą 0 on pp, p` δq.

By HW#7-1, it suffices to show:

(1) pp´ δ, p` δq Ď dom rf s,

(2) f is strictly decreasing on pp´ δ, ps and

(3) f is strictly increasing on rp, p` δq.

Proof of (1): Since dom rgs “ dom rf 1s Ď dom rf s, by (A), we see

that pp´ δ, p` δq Ď dom rf s, as desired. End of proof of (1).

Proof of (2): Let I :“ pp´ δ, ps. We want: f |I is strictly decreasing.



Since g “ f 1, by (A), we see that f is differentiable on pp´ δ, p` δq.

So, as I Ď pp´δ, p`δq, f is differentiable on I. Then f is c/d on I. Since

g “ f 1 and IntRI “ pp ´ δ, pq, by (B), we get: f 1 ă 0 on IntRI. Then,

by (5) of Corollary 34.9 p. 259, we see that f |I is strictly decreasing,

as desired. End of proof of (2).

Proof of (3): Let I :“ rp, p` δq. We want: f |I is strictly increasing.

Since g “ f 1, by (A), we see that f is differentiable on pp´ δ, p` δq.

So, as IĎpp´δ, p`δq, f is differentiable on I. Then f is c/d on I. Since

g “ f 1 and IntRI “ pp, p ` δq, by (B), we get: f 1 ą 0 on IntRI. Then,

by (3) of Corollary 34.9 p. 259, we see that f |I is strictly increasing,

as desired. End of proof of (3). QED

7-4. Let f : R 99K R and let p P IntDRpf
1q. Assume both that f 1ppq “ 0

and that f2ppq ă 0. Show: f has a local unique maximum at p in R.

Proof: We wish to show DV P NRppq such that V Ď dom rf s and

f˚pV
ˆ
p q ă fppq.

Let f0 :“ ´f . Then dom rf0s “ dom rf s. Also, f 10 “ ´f 1. Then

dom rf 10s “ dom rf 1s, so IntDRpf
1
0q “ IntDRpf

1q. Also, f20 “ ´f
2. Then

‚ f0 : R 99K R,

‚ p P IntDRpf
1q “ IntDRpf

1
0q,

‚ f 10ppq “ p´f
1qppq “ ´0 “ 0 and

‚ f20 ppq “ p´f
2qppq “ ´pf2ppqq ą 0.

Then, by HW#7-3, f0 has a local unique minimum at p in R. So choose

V P NRppq such that V Ď dom rf0s and such that pf0q˚pV
ˆ
p q ą f0ppq.

As V Ď dom rf0s “ dom rf s, it remains only to show: f˚pV
ˆ
p q ă fppq.

We wish to show: @t P dom rf s,

r t P V ˆp s ñ r fptq ă fppq s.

Let t P dom rf s be given. We wish to show:

r t P V ˆp s ñ r fptq ă fppq s.

Assume: t P V ˆp . We wish to prove: fptq ă fppq.

Since t P dom rf s “ dom rf0s, and t P V ˆp , we get f0ptq P pf0q˚pV
ˆ
p q.

So, since pf0q˚pV
ˆ
p q ą f0ppq, we get f0ptq ą f0ppq. Then

´pfptqq “ p´fqptq “ f0ptq ą f0ppq “ p´fqppq “ ´ pfppqq.

Multiplying by ´1, we get fptq ă fppq, as desired. QED



7-5. Let f : R 99K R. Asume both that 0 P IntDRf and that fp0q “ 0.

Define g : R Ñ R by gpxq “ x4. Assume that f{g Ñ 1 near 0. Show

that f has a local unique minimum at 0 in R.

Proof: Want: DV P NRp0q s.t. V Ď dom rf s and fp0q ă f˚pV
ˆ
0 q.

Let D :“ dom rf s. Then 0 P IntDRf “ IntRD. Then D P NRp0q.

So, since BRp0q is a neighborhood base at 0 in R, choose α ą 0 s.t.

BRp0, αq Ď D. Since f{g Ñ 1 near 0, choose β ą 0 s.t., @t P dom rf{gs,

r 0 ă |t| ă β s ñ r | rpf{gqptqs ´ 1 | ă 1{2 s.

Let δ :“ mintα, βu. Then δ ď α, so Bp0, δq Ď Bp0, αq. Also, δ ď β, so

Bp0, δq Ď Bp0, βq. Since BRp0, δq is open in R and since 0 P BRp0, δq,

it follows that BRp0, δq P NRp0q. Let V :“ BRp0, δq. We wish to show:

V Ď dom rf s and fp0q ă f˚pV
ˆ
0 q.

We have V “ BRp0, δq Ď BRp0, αq Ď D “ dom rf s. It remains

to show: fp0q ă f˚pV
ˆ
0 q. We wish to show: @y P f˚pV

ˆ
0 q, fp0q ă y.

Let y P f˚pV
ˆ
0 q be given. We wish to show: fp0q ă y. By assumption,

fp0q “ 0. We wish to show: 0 ă y. Since y P f˚pV
ˆ
0 q, choose t P V ˆ0

such that y “ fptq. We wish to show: 0 ă fptq.

Since t P V ˆ0 “ V zt0u, we see that t ‰ 0. Then t4 ą 0 and 0 ă |t|.

We have t P V ˆ0 Ď V Ď dom rf s. Also, t P R “ dom rgs. Also,

gptq “ t4 ą 0, so, in particular, gptq ‰ 0. Then t P dom rf{gs. Also, we

have t P V ˆ0 Ď V “ BRp0, δq Ď BRp0, βq, so |t| ă β. Since t P dom rf{gs

and since 0 ă |t| ă β, by the choice of β, | rpf{gqptqs ´ 1 | ă 1{2. Then

1´p1{2q ă pf{gqptq ă 1`p1{2q. Then 1{2 ă pf{gqptq. Multiplying this

inequality by gptq, since gptq ą 0, we get r1{2s¨rgptqs ă rpf{gqptqs¨rgptqs.

Since gptq ą 0, we conclude that 0 ă r1{2s ¨ rgptqs. By definition of f{g,

since t P dom rf{gs, we see that rpf{gqptqs ¨ rgptqs “ fptq. Then we have

0 ă r1{2s ¨ rgptqs ă rpf{gqptqs ¨ rgptqs “ fptq, as desired. QED

Homework 6: Due on Tuesday 27 February

6-1. Let f : R 99K R be continuous, and let I Ď dom rf s. Assume that

I is an interval. Show: f˚pIq is an interval.

Proof: Since I is an interval, I ‰ H. So, since I Ď dom rf s, we

get f˚pIq ‰ H. So, by ð of Fact 37.1 p. 276, we need only show:

@a, b P f˚pIq, ra|bs Ď f˚pIq. Given a, b P f˚pIq. Want: ra|bs Ď f˚pIq.



Since a, b P f˚pIq, choose s, t P I such that a “ fpsq and b “ fptq.

Since s, t P I and I is an interval, we conclude, byñ of Fact 37.1 p. 276,

that rs|ts Ď I. Then f˚prs|tsq Ď f˚pIq. Also, rs|ts Ď I Ď dom rf s, so,

as f is continuous, f is continuous on rs|ts. Then, by the Intermediate

Value Theorem (Theorem 29.7 p. 218), rfpsq|fptqs Ď f˚prs|tsq. Then

ra|bs “ rfpsq|fptqs Ď f˚prs|tsq Ď f˚pIq, as desired. QED

6-2. Let X, Y Ď R. Let f : X ãÑą Y be continuous. Let X0 :“ IntRX.

Show that f´1 is continuous on f˚pX0q.

Proof: We wish to show: @q P f˚pX0q, f
´1 is continuous at q. Let

q P f˚pX0q be given. We wish to show: f´1 is continuous at q. Let

g :“ f´1. We wish to show: g is continuous at q. We wish to show:

@U P NRpgpqqq, DV P NRpqq s.t. g˚pV q Ď U . Let U P NRpgpqqq be

given. We wish to show: DV P NRpqq s.t. g˚pV q Ď U .

Since q P f˚pX0q, choose p P X0 s.t. q “ fppq. Then gpqq “ p.

Then U P NRpgpqqq “ NRppq. That is, U is a neighborhood of p in X.

Choose an open U0 in R s.t. p P U0 Ď U . Let V :“ f˚pU0 X X0q. We

wish to show: both V P NRpqq and g˚pV q Ď U .

Since g “ f´1 and since U0 X X0 Ď X0 Ď X “ dom rf s, it follows

that g˚pf˚pU0 XX0qq “ U0 XX0. Then

g˚pV q “ g˚pf˚pU0 XX0qq “ U0 XX0 Ď U0 Ď U.

It remains to show: V P NRpqq.

Since X0 “ IntRX, we get: X0 is open in R. So, since U0 is open in R,

we see that U0XX0 is open in R. Also, U0XX0 Ď X0 Ď X “ dom rf s.

Also, f : R 99K R is 1-1 and continuous. Therefore, by Invariance

of Domain (Theorem 30.3 p. 227), f˚pU0 X X0q is open in R. That

is, V is open in R. Since p P U0 and p P X0, we get p P U0 X X0.

So, since p P X0 Ď X “ dom rf s, we get fppq P f˚pU0 X X0q. Then

q “ fppq P f˚pU0 XX0q “ V . By Remark 16.4 p. 117, any open set is

a neighborhood of each of its points. So, since q P V and since V is

open in R, it follows that V P NRpqq, as desired. QED

6-3. Let f : R 99K R be str. increasing. Show: f´1 is str. increasing.

Proof: Let g :“ f´1. We wish to show: g is str. increasing. We wish

to show: @s, t P dom rgs, p rs ă ts ñ rgpsq ă gptqs q. Let s, t P dom rgs

be given. We wish to show: p rs ă ts ñ rgpsq ă gptqs q. Assume that



s ă t. We want: gpsq ă gptq. Let a :“ gpsq, b :“ gptq. We want: a ă b.

Assume that a ě b. We aim for a contradiction.

Since f is strictly increasing, it follows that f is semiincreasing. So,

since a ě b, we get fpaq ě fpbq. Since a “ gpsq, we get fpaq “ s. Since

b “ gptq, we get fpbq “ t. Then s “ fpaq ě fpbq “ t, so t ď s. Then

t ď s ă t, so t ă t. Contradiction. QED

6-4. Let X, Y Ď R. Let f : X ãÑą Y be strictly increasing. Let a P R.

Assume: X “ ra,8q. Show: f´1 is continuous at fpaq.

Proof: Let g :“ f´1 and let q “ fpaq. We wish to show: g is continuous

at q. We wish to show: @ε ą 0, Dδ ą 0 s.t., @t P dom rgs,

r |t´ q| ă δ s ñ r |rgptqs ´ rgpqqs| ă ε s.

Let ε ą 0 be given. We wish to show: Dδ ą 0 s.t., @t P dom rgs,

r |t´ q| ă δ s ñ r |rgptqs ´ rgpqqs| ă ε s.

We have a, a ` ε P ra,8q “ X “ dom rf s. So, since f is strictly

increasing and a ă a ` ε, we get fpaq ă fpa ` εq. We conclude that

0 ă rfpa`εqs´rfpaqs. Let δ :“ rfpa`εqs´rfpaqs. Want: @t P dom rgs,

r |t´ q| ă δ s ñ r |rgptqs ´ rgpqqs| ă ε s.

Let t P dom rgs be given. We wish to show:

r |t´ q| ă δ s ñ r |rgptqs ´ rgpqqs| ă ε s.

Assume that |t´ q| ă δ. We wish to show: |rgptqs ´ rgpqqs| ă ε.

Let s :“ gptq. Since q “ fpaq, we get gpqq “ a. We want: |s´a| ă ε.

Equivalently, we wish to show: a´ ε ă s ă a` ε.

Since t P dom rgs, we get gptq P im rgs. Since g “ f´1, we get

im rgs “ dom rf s. Then s “ gptq P im rgs “ dom rf s “ X “ ra,8q, so

s ě a. Then a´ ε ă a ď s. It remains to show: s ă a` ε.

Since |t´ q| ă δ, we see that q ´ δ ă t ă q ` δ. Then

t ă q ` δ “ rfpaqs ` rfpa` εqs ´ rfpaqs “ fpa` εq.

Since a ` ε P dom rf s, we get fpa ` εq P im rf s. Since g “ f´1, we

get dom rgs “ im rf s. Then fpa` εq P im rf s “ dom rgs. By HW#6-3,

we see that f´1 is strictly increasing. That is, g is strictly increasing.

So, since t ă fpa ` εq, since t P dom rgs and since fpa ` εq P dom rgs,

we get gptq ă gpfpa ` εqq. Since a ` ε P dom rf s and g “ f´1, we get

gpfpa` εqq “ a` ε. Then s “ gptq ă gpfpa` εqq “ a` ε. QED



6-5. Let X, Y Ď R. Let f : X ãÑą Y be strictly increasing. Let a P R.

Assume: Db P pa,8q s.t. X “ ra, bq. Show: f´1 is continuous at fpaq.

Proof: Let g :“ f´1 and let q “ fpaq. We wish to show: g is continuous

at q. We wish to show: @ε ą 0, Dδ ą 0 s.t., @t P dom rgs,

r |t´ q| ă δ s ñ r |rgptqs ´ rgpqqs| ă ε s.

Let ε ą 0 be given. We wish to show: Dδ ą 0 s.t., @t P dom rgs,

r |t´ q| ă δ s ñ r |rgptqs ´ rgpqqs| ă ε s.

Choose b P pa,8q s.t. X “ ra, bq. Let c :“ pa`bq{2. Since b P pa,8q,

it follows that a ă c ă b. Then c´a ą 0. Let ε0 :“ mintε, c´au. Then

ε0 ą 0, so a ă a`ε0. Also, ε0 ď c´a. Then a`ε0 ď a` c´a “ c ă b.

Then a ă a` ε0 ă b. Then a` ε0 P pa, bq Ď ra, bq.

We have a, a ` ε0 P ra, bq “ X “ dom rf s. So, since f is strictly

increasing and since a ă a ` ε0, it follows that fpaq ă fpa ` ε0q.

Therefore, we have 0 ă rfpa`ε0qs´rfpaqs. Let δ :“ rfpa`ε0qs´rfpaqs.

We wish to show: @t P dom rgs,

r |t´ q| ă δ s ñ r |rgptqs ´ rgpqqs| ă ε s.

Let t P dom rgs be given. We wish to show:

r |t´ q| ă δ s ñ r |rgptqs ´ rgpqqs| ă ε s.

Assume that |t´ q| ă δ. We wish to show: |rgptqs ´ rgpqqs| ă ε.

Let s :“ gptq. Since q “ fpaq, we get gpqq “ a. We want: |s´a| ă ε.

Equivalently, we wish to show: a´ ε ă s ă a` ε.

Since t P dom rgs, we get gptq P im rgs. Since g “ f´1, we get

im rgs “ dom rf s. Then s “ gptq P im rgs “ dom rf s “ X “ ra, bq, so

s ě a. Then a´ ε ă a ď s. It remains to show: s ă a` ε.

Since |t´ q| ă δ, we see that q ´ δ ă t ă q ` δ. Then

t ă q ` δ “ rfpaqs ` rfpa` ε0qs ´ rfpaqs “ fpa` ε0q.

Since a`ε0 P dom rf s, we get fpa`ε0q P im rf s. Since g “ f´1, we get

dom rgs “ im rf s. Then fpa` ε0q P im rf s “ dom rgs. By HW#6-3, we

see that f´1 is strictly increasing. That is, g is strictly increasing. So,

since t ă fpa` ε0q, since t P dom rgs and since fpa` ε0q P dom rgs, we

get gptq ă gpfpa ` ε0qq. Since a ` ε0 P dom rf s and g “ f´1, we get

gpfpa ` ε0qq “ a ` ε0. Then s “ gptq ă gpfpa ` ε0qq “ a ` ε0. Since

a ` ε0 P dom rf s and g “ f´1, we get gpfpa ` ε0qq “ a ` ε0. Then



s “ gptq ă gpfpa ` ε0qq “ a ` ε0. We have ε0 “ mintε, c ´ au ď ε.

Then a` ε0 ď a` ε. Then s ă a` ε0 ď a` ε, as desired. QED

Homework 5: Due on Tuesday 20 February

5-1. Show: @w, x P R, cospw`xq “ pcoswq¨pcosxq ´ psinwq¨psinxq.

Proof: Let w P R be given. We wish to show: @x P R,

cospw ` xq “ pcoswq ¨ pcosxq ´ psinwq ¨ psinxq.

Define τ : RÑ R by τpxq “ w ` x.

Claim 1: @x P R, τ 1pxq “ 1. Proof of Claim 1: Let x P R be given.

We wish to show: τ 1pxq “ 1. We wish to show: lim
0
SSxτ “ 1.

For all h P Rˆ0 , we have

pSSxτ qphq “
rτpx` hqs ´ rτpxqs

h

“
rw ` x` hs ´ rw ` xs

h

“
h

h
“ 1 “ C1

Rphq.

Then SSxτ “ C1
R on Rˆ0 , so lim

0
SSxτ “ lim

0
C1

R. So, since lim
0
C1

R “ 1,

we get lim
0
SSxτ “ 1, as desired. End of proof of Claim 1.

Let f :“ cos ˝ τ . Then, for all x P R, we have

fpxq “ pcos ˝ τqpxq “ cospτpxqq “ cospw ` xq.

We therefore wish to show: @x P R,

fpxq “ pcoswq ¨ pcosxq ´ psinwq ¨ psinxq.

Claim 2: @x P R, f 1pxq “ p´ sinqpw ` xq. Proof of Claim 2: Let

x P R be given. We wish to show: f 1pxq “ ´rsinpw ` xqs.

We have dom rcos ˝ τ s “ R. Then

x P R “ LPRR “ LPRpdom rexp ˝ τ sq “ LPDRpcos ˝ τq.

So, since f “ cos ˝ τ , by the Chain Rule, f 1pxq “˚ rcos1pτpxqqs rτ 1pxqs.

By Claim 1, τ 1pxq “ 1. Then f 1pxq “˚ cos1pτpxqq.

We have cos1 “ ´ sin and τpxq “ w ` x. Then

f 1pxq “˚ p´ sinqpw ` xq ‰ /.



Then f 1pxq “ p´ sinqpw ` xq, as desired. End of proof of Claim 2.

Claim 3: @x P R, f2pxq “ p´ cosqpw ` xq. Proof of Claim 3: By

Claim 2, f 1 “ p´ sinq ˝ τ . Let x P R be given. We wish to show:

f2pxq “ ´rcospw ` xqs.

We have dom rp´ sinq ˝ τ s “ R. Then

x P R “ LPRR “ LPDRpp´ sinq ˝ τq.

So, since f 1 “ p´ sinq ˝ τ , by the Chain Rule, we conclude that

f2pxq “˚ rp´ sinq1pτpxqqs rτ 1pxqs. By Claim 1, τ 1pxq “ 1. Then

f2pxq “˚ p´ sinq1pτpxqq.

We have p´ sinq1 “ ´ cos and τpxq “ w ` x. Then

f 1pxq “˚ p´ cosqpw ` xq ‰ /.

Then f 1pxq “ p´ cosqpw ` xq, as desired. End of proof of Claim 3.

Claim 4: f2 “ ´f . Proof of Claim 4: We wish to show: @x P R,

f2pxq “ p´fqpxq. Let x P R be given. Want: f2pxq “ p´fqpxq.

By Claim 3, f2pxq “ p´ cosqpw ` xq. Then f2pxq “ ´rcospw ` xqs.

By definition of f , we have fpxq “ pcos ˝ τqpxq. Then

fpxq “ cospτpxqq “ cospw ` xq.

We conclude that f2pxq “ ´rcospw ` xqs “ ´rfpxqs “ p´fqpxq, as

desired. End of proof of Claim 4.

Let a :“ fp0q and let b :“ f 1p0q. By Claim 4 and Theorem 35.2,

f “ a ¨ cos` b ¨ sin. By definition of f , fp0q “ cospw ` 0q. Then

a “ fp0q “ cospw ` 0q “ cosw. By Claim 2, f 1p0q “ p´ sinqpw ` 0q.

Then b “ f 1p0q “ p´ sinqpw ` 0q “ ´psinwq. Then: @x P R,

fpxq “ pa ¨ cos` b ¨ sinqpxq

“ a ¨ pcosxq ` b ¨ psinxq

“ pcoswq ¨ pcosxq ´ psinwq ¨ psinxq,

as desired. QED

5-2. Show: @x P R,

sinp2xq “ 2 ¨ psinxq ¨ pcosxq and

cosp2xq “ pcos2 xq ´ psin2 xq.



Proof: Let x P R be given. We wish to show:

sinp2xq “ 2 ¨ psinxq ¨ pcosxq and

cosp2xq “ pcos2 xq ´ psin2 xq.

Let w :“ x. Then sinw “ sinx and cosw “ cosx. By Theorem 35.3,

we have sinpw ` xq “ psinwq ¨ pcosxq ` pcoswq ¨ psinxq. Then

sinp2xq “ sinpx` xq “ sinpw ` xq

“ psinwq ¨ pcosxq ` pcoswq ¨ psinxq

“ psinxq ¨ pcosxq ` pcosxq ¨ psinxq

“ 2 ¨ psinxq ¨ pcosxq.

It remains to show: cosp2xq “ pcos2 xq ´ psin2 xq.

By HW#5-1, cospw` xq “ pcoswq ¨ pcosxq ´ psinwq ¨ psinxq. Then

cosp2xq “ cospx` xq “ cospw ` xq

“ pcoswq ¨ pcosxq ´ psinwq ¨ psinxq

“ pcosxq ¨ pcosxq ´ psinxq ¨ psinxq

“ pcos2 xq ´ psin2 xq,

as desired. QED

5-3. Let f : RÑ R, a :“ fp0q. Assume f 1 “ f . Show: f “ a ¨ exp.

Proof: Let φ :“ f ´ pa ¨ expq. We wish to show: φ “ C0
R. We have

φp0q “ rfp0qs ´ a ¨ rexpp0qs “ ras ´ a ¨ r1s “ 0.

So, by Theorem 35.14, it suffices to show: φ1 “ φ. We wish to show:

@x P R, φ1pxq “ φpxq. Let x P R be given. Want: φ1pxq “ φpxq.

We have dom rf s “ R and dom rexps “ R, so dom rφs “ R. Then

x P R “ dom rφs “ dom rf ´pa ¨ expq. So, by linearity of differentiation

pf ´ pa ¨ expqq1pxq “˚ rf 1pxqs ´ a ¨ rexp1pxqs.

So, since f ´ pa ¨ expq “ φ, we get φ1pxq “˚ rf 1pxqs ´ a ¨ rexp1pxqs.

By assumption, we have f 1 “ f . Then, since exp1 “ exp, we see that

φ1pxq “˚ rfpxqs ´ a ¨ rexppxqs. So, since φpxq “ rfpxqs ´ a ¨ rexppxqs,

we get φ1pxq “˚ φpxq. Since x P R “ dom rφs, we get φpxq ‰ /. Then

φ1pxq “˚ φpxq ‰ /, and so φ1pxq “ φpxq, as desired. QED

5-4. Show: @w, x P R, exppw ` xq “ pexpwq ¨ pexpxq.



Proof: Let w P R be given. We wish to show: @x P R,

exppw ` xq “ pexpwq ¨ pexpxq.

Define τ : RÑ R by τpxq “ w ` x.

Claim 1: @x P R, τ 1pxq “ 1. Proof of Claim 1: Let x P R be given.

We wish to show: τ 1pxq “ 1. We wish to show: lim
0
SSxτ “ 1.

For all h P Rˆ0 , we have

pSSxτ qphq “
rτpx` hqs ´ rτpxqs

h

“
rw ` x` hs ´ rw ` xs

h

“
h

h
“ 1 “ C1

Rphq.

Then SSxτ “ C1
R on Rˆ0 , so lim

0
SSxτ “ lim

0
C1

R. So, since lim
0
C1

R “ 1,

we get lim
0
SSxτ “ 1, as desired. End of proof of Claim 1.

Let f :“ exp ˝ τ . Then, for all x P R, we have

fpxq “ pexp ˝ τqpxq “ exppτpxqq “ exppw ` xq.

We therefore wish to show: @x P R,

fpxq “ pexpwq ¨ pexpxq.

Claim 2: @x P R, f 1pxq “ exppw ` xq. Proof of Claim 2: Let x P R
be given. We wish to show: f 1pxq “ exppw ` xq.

We have dom rexp ˝ τ s “ R. Then

x P R “ LPRR “ LPRpdom rexp ˝ τ sq “ LPDRpexp ˝ τq.

So, since f “ exp ˝ τ , by the Chain Rule, f 1pxq “˚ rexp1pτpxqqs rτ 1pxqs.

By Claim 1, τ 1pxq “ 1. Then f 1pxq “˚ exp1pτpxqq.

We have exp1 “ exp and τpxq “ w ` x. Then

f 1pxq “˚ exppw ` xq ‰ /.

Then f 1pxq “ exppw ` xq, as desired. End of proof of Claim 2.

Claim 3: f 1 “ f . Proof of Claim 3: We wish to show: @x P R,

f 1pxq “ fpxq. Let x P R be given. Want: f 1pxq “ fpxq.

By Claim 2, we have f 1pxq “ exppw ` xq. By definition of f , we

have fpxq “ pexp ˝ τqpxq. Then fpxq “ exppτpxqq “ exppw ` xq. We

conclude: f 1pxq “ exppw ` xq “ fpxq. End of proof of Claim 3.



Let a :“ fp0q. By Claim 3 and HW#5-3, f “ a ¨ exp. By definition

of f , fp0q “ exppw ` 0q. Then a “ fp0q “ exppw ` 0q “ expw. Then:

@x P R, fpxq “ pa ¨ expqpxq “ a ¨ pexpxq “ pexpwq ¨ pexpxq. QED

5-5. Let f : RÑ R. Assume that f 1 “ f . Let g :“ f 2. Show: g1 “ 2g.

Proof: Define P : R Ñ R by P pxq “ x2. By Theorem 16.3, for all

x P R, we have P 1pxq “ 2x. Also, for all x P R, we have

pP ˝ fqpxq “ P pfpxqq “ rfpxqs2 “ f 2
pxq “ gpxq.

Then g “ P ˝ f . We wish to show: @x P R, g1pxq “ p2gqpxq. Let x P R
be given. We wish to show: g1pxq “ p2gqpxq.

We have dom rP ˝ f s “ R. so LPDRpP ˝ fq “ LPRR. Then we have

x P R “ LPRR “ LPDRpP ˝ fq. So, by the Chain Rule, we see that

pP ˝ fq1pxq “˚ rP 1pfpxqqs ¨ rf 1pxqs. Then g1pxq “˚ rP 1pfpxqqs ¨ rf 1pxqs.

We have P 1pfpxqq “ 2 ¨ rfpxqs. By assumption, f 1 “ f , so f 1pxq “ fpxq.

Then g1pxq “˚ 2 ¨ rfpxqs2 ‰ /, so g1pxq “ 2 ¨ rfpxqs2. We have

gpxq “ f 2pxq “ rfpxqs2. Then g1pxq “ 2 ¨ rgpxqs “ p2gqpxq. QED

Homework 4: Due on Tuesday 13 February

4-1. Let m P R. Define λ : RÑ R by λpxq “ mx. Show: λ1 “ Cm
R .

Proof: We want: @x P R, λ1pxq “ Cm
R pxq. Let x P R be given. We

want: λ1pxq “ Cm
R pxq. We have Cm

R pxq “ m. We want: λ1pxq “ m.

Let φ :“ Cm
Rˆ0

. Since φ “ Cm
R on Rˆ0 , it follows that lim

0
φ “ lim

0
Cm

R .

So, since lim
0
Cm

R “ m, we get lim
0
φ “ m. We want: lim

0
SSxλ “ m. It

therefore suffices to show: SSxλ “ φ.

As Rˆ0 is a common superdomain of SSxλ and φ, it suffices to show:

@h P Rˆ0 , SSxλphq “ φphq. Let h P Rˆ0 be given. Want: SSxλphq “ φphq.

We have φphq “ Cm
Rˆ0
phq “ m. Then

SSxλphq “
rλpx` hqs ´ rλpxqs

h
“
rmpx` hqs ´ rmxs

h

“
mx`mh´mx

h
“

mh

h
“ m “ φphq,

as desired. QED

4-2. Let S Ď R. Show: ´pLPRSq “ LPRp´Sq.



Proof: Define λ : RÑ R by λpxq “ ´x. Then λ : RÑ R is continuous

and one-to-one. Also, λ´1 “ λ. Then λ´1 : RÑ R is continuous. Then

λ : RÑ R is a homeomorphism. Then λ˚pLPRSq “ LPRpλ˚pSqq. That

is, ´pLPRSq “ LPRp´Sq, as desried. QED

4-3. Let f : R 99K R, p P R. Define f0 : R 99K R by f0pxq “ fp´xq.

Let p0 :“ ´p. Assume that f has a local maximum at p in R. Show

that f0 has a local maximum at p0 in R.

Proof: Choose V P NRppq s.t. V Ď dom rf s and fppq ě f˚pV q. We wish

to show: DU0 P NRpp0q s.t. U0 Ď dom rf0s and f0pp0q ě pf0q˚pU0q.

Since BRppq is a neighborhood base at p in R, choose δ ą 0 such that

BRpp, δq Ď V . Let U :“ BRpp, δq. Then U Ď V . Let U0 :“ BRpp0, δq.

Since BRpp0q is a neighborhood base at p0 in R, we get U0 P NRpp0q.

Want: U0 Ď dom rf0s and f0pp0q ě pf0q˚pU0q. Since U Ď V Ď dom rf s,

it follows that ´U Ď ´pdom rf sq. We have

U0 “ BRpp0, δq “ BRp´p, δq “ ´rBRpp, δqs “ ´U.

Then U0 “ ´U Ď ´pdom rf sq “ dom rf0s. Want: f0pp0q ě pf0q˚pU0q.

Want: @y0 P pf0q˚pU0q, f0pp0q ě y0. Let y0 P pf0q˚pU0q be given. We

wish to show: f0pp0q ě y0.

Since y0 P pf0q˚pU0q, choose x0 P U0 s.t. y0 “ f0px0q. Let x :“ ´x0.

We have f0pp0q “ fp´p0q “ fppq and y0 “ f0px0q “ fp´x0q “ fpxq.

We wish to show that fppq ě fpxq, or, equivalently, that fpxq ď fppq.

We have x “ ´x0 P ´U0 “ ´p´Uq “ U Ď V Ď dom rf s. Then x P U

and x P dom rf s, and so fpxq P f˚pUq. Since U Ď V , it follows that

f˚pUq Ď f˚pV q. By choice of V , we have f˚pV q ď fppq. We conclude

that fpxq P f˚pUq Ď f˚pV q ď fppq, as desired. QED

4-4. Let f : R 99K R, p P R. Define f1 : R 99K R by f1pxq “ ´rfpxqs.

Assume that f has a local minimum at p in R. Show that f1 has a

local maximum at p in R.

Proof: Want: DV P NRppq s.t. V Ď dom rf1s and fppq ď pf1q˚pV q.

Choose V P NRppq s.t. V Ď dom rf s and fppq ď f˚pV q. We want:

V Ď dom rf1s and f1ppq ě pf1q˚pV q. As V Ď dom rf s “ dom rf1s, it

remains to show: f1ppq ě pf1q˚pV q. We wish to show: @y1 P pf1q˚pV q,

f1ppq ě y1. Let y1 P pf1q˚pV q be given. We wish to show: f1ppq ě y1.



Since y1 P pf1q˚pV q, choose x P V such that y1 “ f1pxq. Since

x P V Ď dom rf s, we get fpxq P f˚pV q. Then, by the choice of V ,

fppq ď fpxq. Then f1ppq “ ´rfppqs ě ´rfpxqs “ f1pxq “ y. QED

4-5. Let f : R 99K R, p P dom rf 1s. Assume that f has a local

extremum at p. Show that f 1ppq “ 0.

Proof: At least one of the following must be true:

(1) f has a local maximum at p in R or

(2) f has a local minimum at p in R.

Case (1): By Lemma 33.16, f 1ppq “ 0, as desired. End of Case (1).

Case (2): Define f1 : R 99K R by f1pxq “ ´rfpxqs. By HW#4-4,

we see that f1 has a local maximum at p in R. Define λ : R Ñ R
by λpxq “ ´x. Then f1 “ λ ˝ f . Since f1 has a local maximum at p

in R, by (3) of Remark 33.9, we get p P LPDRf1. Then p P LPDRpλ˝fq,

so, by the Chain Rule, we get pλ ˝ fq1ppq “˚ rλ1pfppqqsrf 1ppqs. Since

p P dom rf 1s Ď dom rf s, we get fppq P im rf s. So, since im rf s Ď R, we

get fppq P R. By HW#4-2, λ1pfppqq “ ´1. Then

f 11ppq “ pλ ˝ fq1ppq “˚ rλ1pfppqqsrf 1ppqs “ ´rf 1ppqs,

so f 11ppq “
˚ ´rf 1ppqs. Since p P dom rf 1s, we get f 1ppq P im rf s. So,

since im rf s Ď R, we get f 1ppq P R. Then ´rf 1ppqs ‰ /.

Since f 11ppq “
˚ ´rf 1ppqs ‰ /, we conclude that f 11ppq “ ´rf 1ppqs.

Then f 11ppq ‰ /, so p P dom rf 11s. So, since f1 has a local maximum

at p in R, it follows, from Lemma 33.16, that f 11ppq “ 0.

Then 0 “ f 11ppq “ ´rf
1ppqs. Then f 1ppq “ 0. End of Case (2). QED

Homework 3: Due on Tuesday 6 February

3-1. Let X be a topological space, let S Ď X and let p P X. Show:

r p P IntXS s ô r S P NXppq s.

Proof: Proof of ñ: Assume: p P IntXS. We wish to show: S P NXppq.

We wish to show: Dopen U in X s.t. p P U Ď S.

Let U :“ IntXS. Then U is open in X, and we wish to show:

p P U Ď S. We have p P IntXS “ U , and it remains to show: U Ď S.

We have U “ IntXS Ď S, as desired. End of proof of ñ.

Proof of ð: Assume: S P NXppq. We wish to show: p P IntXS.



Since S P NXppq, choose an open U in X s.t. p P U Ď S. Since U is

open in X, we get IntXU “ U . Since U Ď S, IntXU Ď IntXS. Then

p P U “ IntXU Ď IntXS, as desired. End of proof of ð. QED

3-2. Let φ : R 99K R, let p P R and let q ą 0. Assume: φ Ñ q near p.

Show: DU P Nˆ
R ppq s.t. φ˚pUq ą 0.

Proof: Let V :“ p0,8q. Then V is open in R and q P V . Therefore,

by Remark 16.4, we conclude that V P NRpqq. So, since φÑ q near p,

choose U P Nˆ
R ppq s.t. φ˚pUq Ď V . We wish to show: φ˚pUq ą 0.

We have φ˚pUq Ď V “ p0,8q ą 0, as desired. QED

3-3. Let α, β, γ : R 99K R. Let S Ď dom rpα, β, γqs. Let p P IntRS and

let q P R. Assume that α ď β ď γ on S. Assume that αppq “ γppq.

Assume that α1ppq “ q “ γ1ppq. Show: β1ppq “ q.

Proof: We wish to show: lim
0
SSpβ “ q.

Claim: @h P pS ´ pqˆ0 , pSSpβqphq P r pSSpαqphq | pSS
p
γqphq s. Proof

of Claim: Given h P pS´pqˆ0 . Want: pSSpβqphq P r pSS
p
αqphq | pSS

p
γqphq s.

We have h P pS ´ pqˆ0 Ď S ´ p. Then p` h P S. Then

αpp` hq ď βpp` hq ď γpp` hq.

We have p P IntRS Ď S. It follows that αppq ď βppq ď γppq. So,

since αppq “ γppq, we conclude that αppq “ βppq “ γppq. So, since

αpp` hq ď βpp` hq ď γpp` hq, we get:

rαpp` hqs ´ rαppqs ď rβpp` hqs ´ rβppqs ď rγpp` hqs ´ rγppqs.

Dividing this by h, we get:

p h ą 0 q ñ p pSSpαqphq ď pSS
p
βqphq ď SSpγphq q and

p h ă 0 q ñ p pSSpαqphq ě pSS
p
βqphq ě SSpγphq q.

Then

p h ą 0 q ñ p pSSpβqphq P r pSS
p
αqphq | pSS

p
γqphq s q and

p h ă 0 q ñ p pSSpβqphq P r pSS
p
αqphq | pSS

p
γqphq s q.

Since h P pS ´ pqˆ0 , we get h ‰ 0, so: either h ą 0 or h ă 0. Then

pSSpβqphq P r pSS
p
αqphq | pSS

p
γqphq s, as desired. End of proof of Claim.

Let D :“ dom rβs. Then IntRD Ď LPRD “ LPDRβ. We have

S Ď dom rpα, β, γqs Ď D. Then p P IntRS Ď IntRD Ď LPDRβ. It



therefore suffices to show: SSpβ Ñ q near 0. We wish to show: @ε ą 0,

Dδ ą 0 s.t., @h P dom rSSpβs,

r 0 ă |h| ă δ s ñ r |rpSSpβqphqs ´ q| ă ε s.

Let ε ą 0 be given. We wish to show: Dδ ą 0 s.t., @h P dom rSSpβs,

r 0 ă |h| ă δ s ñ r |rpSSpβqphqs ´ q| ă ε s.

Since p P IntRS, by HW#3-1, we get S P NRppq. So, since BRppq

is a neighborhood base at p in R, choose η ą 0 s.t. BRpp, ηq Ď S.

Since α1ppq “ q, it follows that SSpα Ñ q near p. Choose λ ą 0 s.t.,

@h P dom rSSpαs,

r 0 ă |h| ă λ s ñ r |rpSSpαqphqs ´ q| ă ε s.

Since γ1ppq “ q, it follows that SSpγ Ñ q near p. Choose µ ą 0 s.t.,

@h P dom rSSpγs,

r 0 ă |h| ă µ s ñ r |rpSSpγqphqs ´ q| ă ε s.

Let δ :“ mintη, λ, µu. We wish to show: @h P dom rSSpβs,

r 0 ă |h| ă δ s ñ r |rpSSpβqphqs ´ q| ă ε s.

Let h P dom rSSpβs be given. We wish to show:

r 0 ă |h| ă δ s ñ r |rpSSpβqphqs ´ q| ă ε s.

Assume: 0 ă |h| ă δ. We wish to prove: |rpSSpβqphqs ´ q| ă ε. Let

I :“ pq ´ ε, q ` εq. We wish to prove pSSqβqphq P I

Since 0 ă |h|, it follows that h ‰ 0. Since |pp`hq´p| “ |h| ă δ ď η,

we see that p`h P BRpp, ηq. By the choice of η, we have BRpp, ηq Ď S.

Since p` h P BRpp, ηq Ď S, we get h P S ´ p. So, since h ‰ 0, we have

h P pS ´ pqˆ0 . Then, by the Claim, pSSpβqphq P r pSS
p
αqphq | pSS

p
γqphq s.

Since 0 ă |h| ă δ ď λ, by choice of λ, we get: |rpSSpαqphqs ´ q| ă ε.

Then pSSpαqphq P I. Since 0 ă |h| ă δ ď µ, by choice of µ, we get:

|rpSSpγqphqs ´ q| ă ε. Then pSSpγqphq P I. Since I is an interval and

pSSpαqphq P I and pSSpγqphq P I, we get r pSSpαqphq | pSS
p
γqphq s Ď I.

Then pSSpβqphq P r pSS
p
αqphq | pSS

p
γqphq s Ď I, as desired. QED

3-4. Let W be a normed vector space. Let f, g : R 99K W . Let U be

an open subset of R. Assume: U Ď dom rpf, gqs. Assume: f “ g on U .

Show: f 1 “ g1 on U .



Proof: We wish to show: @p P U , f 1ppq “ g1ppq. Let p P U be given.

We wish to show: f 1ppq “ g1ppq. We wish to show: lim
0
SSpf “ lim

0
SSpg .

Since U is open in R, it follows that U ´ p is open in R. So, since

0 P U ´p, we get U ´p P NRp0q. Let V :“ pU ´pqˆ0 . Then V P Nˆ
R p0q.

Claim: SSpf “ SSpg on V . Proof of Claim: We want: @h P V ,

pSSpf qphq “ pSS
p
g qphq. Given h P V . We want: pSSpf qphq “ pSS

p
g qphq.

Since h P pU ´ pqˆ0 Ď U ´ p, we get p`h P U . Since p, p`h P U and

since f “ g on U , we get fppq “ gppq and fpp` hq “ gpp` hq. Then

pSSpf qphq “
rfpp` hqs ´ rfppqs

h
“
rgpp` hqs ´ rgppqs

h
“ pSSpg qphq,

as desired. End of proof of Claim:

Since V P Nˆ
R p0q, by the Claim and by Theorem 20.8, we have

both LIMS
0

pSSpf q Ď LIMS
0

pSSpg q and LIMS
0

pSSpg q Ď LIMS
0

pSSpf q. Then

LIMS
0

pSSpg q “ LIMS
0

pSSpf q. Then

lim
0
SSpf “ ELTpLIMS

0
pSSpf qq “ ELTpLIMS

0
pSSpg qq “ lim

0
SSpg ,

as desired. QED

3-5. Define f : R 99K R by fpxq “ rx2srsinpx´3qs. Let β :“ adj00f .

Show: β1p0q “ 0.

Proof: Define α, γ : R Ñ R by αpxq “ ´x2 and γpxq “ x2. For

all x P Rˆ0 , we have both ´1 ď sinpx´3q ď 1 and x2 ě 0, and so

rx2sr´1s ď rx2srsinpx´3qs ď rx2sr1s, and so αpxq ď fpxq ď γpxq. Then

α ď f ď γ on Rˆ0 . So, since f “ β on Rˆ0 , we get: α ď β ď γ on Rˆ0 .

So, since αp0q “ βp0q “ γp0q “ 0, we get α ď β ď γ on R.

We have αp0q “ 0 “ γp0q. By the Power Rule, for all x P R, we

have γ1pxq “ 2x. Then γ1p0q “ 0. So, since α “ ´γ, by linearity

of differentiation, we have α1p0q “˚ ´rγ1p0qs. Then

α1p0q “˚ ´ rγ1p0qs “ ´0 “ 0 ‰ /.

Then α1p0q “ 0. Then α1p0q “ 0 “ γ1p0q. Let p :“ 0 and q :“ 0.

Then αppq “ γppq and α1ppq “ q “ γ1ppq. Then, by HW#3-3, we get

β1ppq “ q. That is, β1p0q “ 0. QED

Homework 2: Due on Tuesday 30 January



2-1. Let X and Y be topological spaces. Let X0 Ď X and let Y0 Ď Y .

Let f : X0 99K Y0. Show:

r f is pX, Y q-continuous s ñ r f is pX0, Y0q-continuous s.

Proof: Assume: f is pX, Y q-continuous. Want: f is pX0, Y0q-continuous.

Want: @p P dom rf s, f is pX0, Y0q-continuous at p. Given p P dom rf s.

Want: f is pX0, Y0q-continuous at p. Since f is pX, Y q-continuous

and p P dom rf s, it follows that f is pX, Y q-continuous at p. Want:

@V0 P NY0pfppqq, DU0 P NX0ppq s.t. f˚pU0q Ď V0. Let V0 P NY0pfppqq be

given. We wish to show: DU0 P NX0ppq s.t. f˚pU0q Ď V0.

By extension, choose V P NY pfppqq s.t. V X Y0 “ V0. Since f

is pX, Y q-continuous at p, choose U P NXppq s.t. f˚pUq Ď V . We

define U0 :“ U X X0. By restriction, U0 P NX0ppq. We wish to show:

f˚pU0q Ď V0. We wish to show: @x P dom rf s,

r x P U0 s ñ r fpxq P V0 s.

Let x P dom rf s be given. We wish to show:

r x P U0 s ñ r fpxq P V0 s.

Assume: x P U0. We wish to show: fpxq P V0.

We have x P U0 “ U X X0 Ď U . So, since x P dom rf s, we get

fpxq P f˚pUq. Then fpxq P f˚pUq Ď V . Since f : X0 99K Y0, it follows

that im rf s Ď Y0. Then fpxq P im rf s Ď Y0. So, since fpxq P V , we get

fpxq P V X Y0. Then fpxq P V X Y0 “ V0, as desired. QED

2-2. Let X, Y and Z be topological spaces. Let f : X 99K Y and let

g : X 99K Z. Let a P X, b P Y and c P Z. Assume:

(1) f Ñ b in Y near a in X and

(2) g Ñ c in Z near a in X.

Show: pf, gq Ñ pb, cq in Y ˆ Z near a in X.

Proof: Want: @W P NYˆZppb, cqq, DR P Nˆ
X paq s.t. pf, gq˚pRq Ď W . Let

W P NYˆZppb, cqq be given. Want: DR P Nˆ
X paq s.t. pf, gq˚pRq Ď W .

Choose U P NY pbq and V P NZpcq s.t. UˆV Ď W . Since f Ñ b in Y

near a in X and since U P NY pbq, choose P P Nˆ
X paq s.t. f˚pP q Ď U .

Since g Ñ c in Z near a in X and since V P NZpcq, choose Q P Nˆ
X paq

s.t. f˚pQq Ď V . As P,Q P Nˆ
X paq, P X Q P Nˆ

X paq. Let R :“ P X Q.



Then R P Nˆ
x paq. Want: pf, gq˚pRq Ď W . Want: @x P dom rpf, gqs,

r x P R s ñ r pf, gqpxq P W s.

Let x P dom rpf, gqs be given. We wish to show:

r x P R s ñ r pf, gqpxq P W s.

Assume: x P R. We wish to show: pf, gqpxq P W .

We have x P dom rpf, gqs “ pdom rf sq X pdom rgsq, so x P dom rf s

and x P dom rgs. Since x P dom rf s and since x P R “ P XQ Ď P , we

get fpxq P f˚pP q. Since x P dom rf s and since x P R “ P X Q Ď Q,

we get gpxq P g˚pP q. Then fpxq P f˚pP q Ď U and gpxq P g˚pP q Ď V .

Then pf, gqpxq “ pfpxq, gpxqq P U ˆ V Ď W , as desired. QED

2-3. Show: @z P R, D!x P R s.t. x5 ` x3 “ z.

Proof: Let z P R be given. We wish to show: D!x P R s.t. x5 ` x3 “ z.

Define f : RÑ R by fpxq “ x5`x3. Then f is continuous. We wish

to show: D!x P R s.t. fpxq “ z. We wish to show:

(1) Dx P R s.t. fpxq “ z.

(2) @w, x P R, ( r fpwq “ z “ fpxq s ñ rw “ x s ).

Proof of (1): As z P R, ´|z| ď z ď |z|. Let b :“ maxt|z|{2, 1u. Since

b ě 1, we get b5 ě b and b3 ě b. Then b5 ě b ě |z|{2 and b3 ě b ě |z|{2.

Then fpbq “ b5 ` b3 ě p|z|{2q ` p|z|{2q “ |z|. Then ´rfpbqs ď ´|z|.

We have fp´bq “ p´bq5 ` p´bq3 “ ´pb5 ` b3q “ ´rfpbqs ď ´|z|. Then

fp´bq ď ´|z| ď z ď |z| ď fpbq. Then z P rfp´bq, fpbqs. Also, since

b ě 1, we see that ´b ď ´1. Then ´b ď ´1 ă 1 ď b. It suffices

to show: Dx P r´b, bs s.t. fpxq “ z.

By the Intermediate Value Theorem, rfp´bq, fpbqs Ď f˚pr´b, bsq.

Then z P rfp´bq, fpbqs Ď f˚pr´b, bsq, so Dx P r´b, bs s.t. fpxq “ z,

as desired. End of proof of (1).

Proof of (2): Given w, x P R. Want: rfpwq “ z “ fpxqs ñ rw “ xs.

Assume: fpwq “ z “ fpxq. We wish to show: w “ x. Assume: w ‰ x.

We aim for a contradiction.

Let p :“ mintw, xu and let q :“ maxtw, xu. Since w ‰ x, it follows

that p ă q. Also, fppq P tfpwq, fpxqu “ tzu, so fppq “ z. Also,

fpqq P tfpwq, fpxqu “ tzu, so fpqq “ z. Since p ă q, we get p5 ă q5

and p3 ă q3. Then p5 ` p3 ă q5 ` q3. Then

fppq “ p5 ` p3 ă q5 ` q3 “ fpqq “ z “ fppq,



so fppq ă fppq. Contradiction. End of proof of (2). QED

2-4. Let X and Y be topological spaces. Let f : X 99K Y . Let

X0 Ď dom rf s. Assume that f is pX, Y q-continuous on X0. Show that

f |X0 is pX0, Y q-continuous.

Proof: Let g :“ f |X0. Then dom rgs “ X0. We wish to show: g is

pX0, Y q-continuous. By HW#2-1 (with Y0 replaced by Y ), want: g is

pX, Y q-continuous. Want: @p P X0, g is pX, Y q-continuous at p. Let

p P X0 be given. We wish to show: g is pX, Y q-continuous at p. Want:

@V P NY pgppqq, DU P NXppq s.t. g˚pUq Ď V . Let V P NY pgppqq be

given. Want: DU P NXppq s.t. g˚pUq Ď V .

Since p P X0 Ď dom rf s, and since f is pX, Y q-continuous, it fol-

lows that f is pX, Y q-continuous at p. Since p P X0 Ď dom rf s,

we have pf |X0qppq “ fppq. Then gppq “ pf |X0qppq “ fppq. Since

V P NY pgppqq “ NY pfppqq and since f is pX, Y q-continuous at p, choose

U P NXppq s.t. f˚pUq Ď V . We wish to show: g˚pUq Ď V .

Recall that dom rgs “ W0. We wish to show: @w P X0,

r w P U s ñ r gpwq P V s.

Let w P X0 be given. We wish to show:

r w P U s ñ r gpwq P V s.

Assume: w P U . We wish to show: gpwq P V .

As w P X0 Ď dom rf s and as w P U , we get fpwq P f˚pUq. By choice

of U , we have f˚pUq Ď V . Since w P X0 Ď dom rf s, pf |X0qpwq “ fpwq.

Then gpwq “ pf |X0qpwq “ fpwq P f˚pUq Ď V . QED

2-5. Let f : R 99K R. Let α, β P dom rf s. Assume that f is semimono-

tone on rα|βs. Show: f˚prα|βsq Ď rfpαq|fpβqs.

Proof: Since α, β P dom rf s, we conclude that tα, βu Ď dom rf s. Let

a :“ mintα, βu and b :“ maxtα, βu. Then a ď b. Also, rα|βs “ ra, bs.

Then f is semimonotone on ra, bs. Also, a, b P tα, βu Ď dom rf s.

Either ( (a “ α) and (b “ β) ) or ( (a “ β) and (b “ α) ). Then

either rfpαq|fpβqs “ rfpaq|fpbqs or rfpαq|fpβqs “ rfpbq|fpaqs. So, since

rfpbq|fpaqs “ rfpaq|fpbqs, we see that rfpαq|fpβqs “ rfpaq|fpbqs. We

wish to show: f˚pra, bsq Ď rfpaq|fpbqs. We wish to show: @x P dom rf s,

p x P ra, bs q ñ p fpxq P rfpaq|fpbqs q.



Let x P dom rf s be given. We wish to show:

p x P ra, bs q ñ p fpxq P rfpaq|fpbqs q.

Assume: x P ra, bs. We wish to show: fpxq P rfpaq|fpbqs.

Because x P ra, bs, it follows that a ď x ď b. Since f is semimonotone

on ra, bs, at least one of the following must be true:

(1) f is semiincreasing on ra, bs or

(2) f is semidecreasing on ra, bs.

Case (1): Since a, x, b P dom rf s, since a ď x ď b and since f is

semiincreasing on ra, bs, it follows that fpaq ď fpxq ď fpbq. Then

fpxq P rfpaq, fpbqs “ rfpaq|fpbqs, as desired. End of Case (1).

Case (2): Since a, x, b P dom rf s, since a ď x ď b and since f is

semidecreasing on ra, bs, it follows that fpaq ě fpxq ě fpbq. Then

fpxq P rfpbq, fpaqs “ rfpaq|fpbqs, as desired. End of Case (2). QED

Homework 1: Due on Tuesday 23 January

1-1. Let X and Y be metric spaces, and let f : X Ñ Y . Assume that

f is not uniformly continuous. Show: Dε ą 0, Dp, q P XN s.t., @j P N,

r dX p pj , qj q ă 1{j s and r dY p fppjq , fpqjq q ě ε s.

Proof: As f is not u.c., choose ε ą 0 s.t. @δ ą 0, Dp, q P X s.t.

r dXpp, qq ă δ s and r dY pfppq, fpqqq ě ε s.

We wish to show: Dp, q P XN s.t., @j P N,

r dX p pj , qj q ă 1{j s and r dY p fppjq , fpqjq q ě ε s.

Claim: @j P N, Dp, q P X s.t.

r dXpp, qq ă 1{j s and r dY pfppq, fpqqq ě ε s.

Proof of claim: Let j P N be given. By the choice of ε, Dp, q P X s.t.

r dXpp, qq ă 1{j s and r dY pfppq, fpqqq ě ε s,

as desired. End of proof of claim.

By the claim and the Axiom of Choice, Dp, q P XN s.t. @j P N,

r dXppj, qjq ă 1{j s and r dY pfppjq, fpqjqq ě ε s,

as desired. QED



1-2. Let K be a sequentially compact metric space, let Y be a metric

space, and let f : K Ñ Y . Assume that f is not uniformly continuous.

Show: Dε ą 0, Ds, t P KN, Du P K s.t.

p r s‚ Ñ u in K s and r t‚ Ñ u in K s and

r @j P N, dY p fpsjq , fptjq q ě ε s q.

Proof: By HW#1-1, choose ε ą 0 and p, q P KN s.t., @j P N,

r dK p pj , qj q ă 1{j s and r dY p fppjq , fpqjq q ě ε s.

Since K is sequentially compact, p‚ is subconvergent in K. Choose a

subsequence s of p‚ s.t. s‚ is convergent in K. Choose u P K s.t. s‚ Ñ u

in K. Since s‚ is a subsequence of p‚, choose a strictly increasing ` P NN

s.t. s‚ “ pp ˝ `q‚. Let t :“ pq ˝ `q‚. Then s, t P KN and u P K. Want:

p r s‚ Ñ u in K s and r t‚ Ñ u in K s and

r @j P N, dY p fpsjq , fptjq q ě ε s q.

By choice of u, we have s‚ Ñ u in K, so it remains to show:

(1) tÑ u in K and

(2) @j P N, dY p fpsjq , fptjq q ě ε.

Proof of (1): We wish to show: @η ą 0, DI P N s.t., @j P N,

r j ě I s ñ r dKptj, uq ă η s.

Let η ą 0 be given. We wish to show: DI P N s.t., @j P N,

r j ě I s ñ r dKptj, uq ă η s.

Since s‚ Ñ u in K, choose R P N s.t., @j P N,

r j ě R s ñ r dKpsj, uq ă η{2 s.

By the Archimidean Principle, choose S P N such that S ą 2{η. Let

I :“ maxtR, Su. We wish to show: @j P N,

r j ě I s ñ r dKptj, uq ă η s.

Let j P N be given. We wish to show:

r j ě I s ñ r dKptj, uq ă η s.

Assume: j ě I. We wish to show: dKptj, uq ă η.

Since j ě I ě R, by choice of R, we conclude that dKpsj, uq ă η{2.

Since ` P NN and since `‚ is strictly increasing, by Remark 23.12, we

get `j ě j. It follows that 1{`j ď 1{j. Since j ě I ě S ą 2{η, we



get 1{j ă η{2. By the choice of p‚ and q‚, we have dKpp`j , q`jq ă 1{`j.

Then dKptj, sjq “ dKpsj, tjq “ dKpp`j , q`jq ă 1{`j ď 1{j ă η{2. Then

dKptj, uq ď rdKptj, sjqs ` rdpsj, uqs ă pη{2q ` pη{2q “ η,

as desired. End of proof of (1).

Proof of (2): Let j P N be given. Want: dY pfpsjq, fptjqq ě ε.

By the choice of p and q, we have dY pfpp`jq, fpq`jqq ě ε. Then

dY pfpsjq, fptjqq “ dY pfpp`jq, fpq`jqq ě ε. End of proof of (2). QED

1-3. Let X be a metric space, and let s P XN. Assume that s‚ is

convergent in X. Show that s‚ is Cauchy in X.

Proof: We wish to show: @ε ą 0, DK P N s.t., @i, j P N,

r i, j ě K s ñ r dXpsi, sjq ă ε s.

Let ε ą 0 be given. We wish to show: DK P N s.t., @i, j P N,

r i, j ě K s ñ r dXpsi, sjq ă ε s.

Since s‚ is convergent in X, choose u P X s.t. s‚ Ñ u in X. Choose

K P N s.t., @j P N,

r j ě K s ñ r dXpsj, uq ă ε{2 s.

We wish to show: @i, j P N,

r i, j ě K s ñ r dXpsi, sjq ă ε s.

Let i, j P N be given. We wish to show:

r i, j ě K s ñ r dXpsi, sjq ă ε s.

Assume i, j ě K. We wish to show: dXpsi, sjq ă ε.

Since i ě K, by choice of K, we have dpsi, uq ă ε{2. Since j ě K,

by choice of K, we have dpsj, uq ă ε{2.

Then dXpsi, sjq ď rdXpsi, uqs` rdXpu, sjqs ă pε{2q` pε{2q “ ε. QED

1-4. Let X be a metric space, and let s P XN. Assume that s‚ is

Cauchy and subconvergent in X. Show that s‚ is convergent in X.

Proof: Since s‚ is subconvergent in X, choose a subsequence t of s‚
such that t‚ is convergent in X. Choose u P X s.t. t‚ Ñ u in X. We

wish to show: s‚ Ñ u in X. Want: @ε ą 0, DK P N s.t., @j P N,

r j ě K s ñ r dXpsj, uq ă ε s.



Let ε ą 0 be given. We wish to show: DI P N s.t., @j P N,

r j ě I s ñ r dXpsj, uq ă ε s.

Since t‚ Ñ u in X, choose L P N s.t., @j P N,

r j ě L s ñ r dXptj, uq ă ε{2 s.

Since s‚ is Cauchy, choose M P N s.t., @j, k P N,

r j, k ěM s ñ r dXpsj, skq ă ε{2 s.

Let I :“ maxtL,Mu. We wish to show: @j P N,

r j ě I s ñ r dXpsj, uq ă ε s.

Let j P N be given. We wish to show:

r j ě I s ñ r dXpsj, uq ă ε s.

Assume: j ě I We wish to show: dXpsj, uq ă ε.

Since j ě I ě L, by choice of L, we conclude that dXptj, uq ă ε{2.

By Corollary 23.13, choose k P rj..8s such that tj “ sk. Then we

have k ě j ě I ě M . Then j, k ě M , so, by choice of M , we get:

dXpsj, skq ă ε{2. Since tj “ sk, we get dpsj, tjq “ dpsj, skq. Then

dpsj, uq ď rdpsj, tjqs ` rdptj, uqs

“ rdpsj, skqs ` rdptj, uqs

ă rε{2s ` rε{2s “ ε,

as desired. QED

1-5. Let X be a metric space, and let s P XN. Assume that s‚ is

Cauchy in X. Show that s‚ is bounded in X.

Proof: We wish to show: im rs‚s is bounded in X.

Since s‚ is Cauchy in X, choose K P N s.t., @i, j P N,

r i, j ě K s ñ r dXpsi, sjq ă 1 s.

Let p :“ sK . Let a :“ maxtdXpp, s1q, . . . , dXpp, sK´1qu. Let R :“ 1`a.

We wish to show: im rs‚s Ď BXpp,Rq. We wish to show: @q P im rs‚s,

q P BXpp,Rq. Let q P im rs‚s be given. We wish to show: q P BXpp,Rq.

We wish to show dXpp, qq ă R. Since q P im rs‚s, choose j P N such

that q “ sj. We wish to show: dXpp, sjq ă R.

At least one of the follwing must be true:

(1) j ă K or



(2) j ě K.

Case (1): As j P r1..Kq, dXpp, sjq P tdXpp, s1q, . . . , dXpp, sK´1qu.

Then dXpp, sjq ď maxtdXpp, s1q, . . . , dXpp, sK´1qu “ a ă 1` a “ R, as

desired. End of Case (1).

Case (2): Since p “ sK , we conclude that dXpp, sjq “ dXpsK , sjq.

Also, since K, j ě K, by choice of K, we see that dXpsK , sjq ă 1.

By definition of a, we have a ě 0. It follows that 1 ď 1 ` a. Then

dXpp, sjq “ dXpsK , sjq ă 1 ď 1` a “ R. End of Case (2). QED


