Solutions for MATH 4604 (Advanced Calculus II)
Spring 2018

Homework 14: Due on Tuesday 1 May

14-1. Let W be a normed vector space, let f : R --+ W and let p € R.
Show: (/7)(0) = /'(p)
Proof: Let g := fI. Want: ¢'(0) = f'(p). As ¢'(0) = lign S8y and
f'(p) = li(r)n 587, it suffices to show: SS) = SST. Want: Vh € R,
(559)(h) = (SSF)(h). Given h e R. Want: (SS7)(h) = (SS%)(h).

We have

[g(0+h)] — [g(0)] = [g(h)] — [9g(0

= [ ] = [()0)]
= [[fle+m)] - [f)]]
[ fe+0)] = [f(p)] ]
= [flo+n)] = [f(p)]
Then
_ [f(p+h)]h_ [f(p)] _ (SS?)(h),

as desired. QED

14-2. Let V', W be finite dimensional vector spaces, o, : V --» W,
p = 0. Assume: a = f near Oy and a € 0,(V, W). Show: 5 € 0,(V,W).

Proof: By assumption, choose U € Ny (0y) s.t. a = § on U. Also,

(A) dom [Oé] S Nv(OV),

(B) a(0y) = 0w and

(C) « is continuous at Oy .
Let D := dom [a]. By (A), we have D € Ny (0y). As D,U € Ny(0y),
we get D n U € Ny (0y). We wish to show:

(1) dom[S] € Ny (0v),

(2) /B(O\/) = OW and

(3) f is continuous at Oy .



Proof of (1): Since we have D n U € Ny (0y), it suffices to show:
DU < dom|[f]. We want: Yz e D nU, x € dom|[f]. Let € D nU
be given. We want to show: x € dom [5].

We have: z € D and x € U. Since z € D, we get a(z) # ©.
Since z € U, we get a(z) = p(z). Since f(x) = a(r) # O, we get
x € dom [B], as desired. End of proof of (1).

Proof of (2): Since U € Ny (0y), 0y € U. So, since a = 3 on U, we
get a(0y) = B(0y). By (B), we have a(0y) = Oy .

Then S(0y) = a(0y) = O, as desired. End of proof of (2).

Proof of (3): Choose | e |y € N(V) and | e |y € N(IW). We wish
to show: Ve > 0, 36 > 0 such that, Yz € dom [5],

[0<fe—0Ovly <d] = [IB)]-I[80v)]lw<e]
Let € > 0 be given. We wish to show: 36 > 0 such that, Yz € dom 5],

[O0<lz—=0Ovly <] = [lB&)]-[B0v)]lw <e].

Since D n U € Ny (0y) and since By (0y) is a neighborhood base
at Oy in V, choose p > 0 such that By (0y,p) € DnU. By (C), choose
7 > 0 such that, Vx € D,

[O<|z—=0Ovly <7] = [lle(z)] = [a(Ov)]lw <& ]
Let 0 := min{p,7}. Then § > 0, < pand § < 7. Want: Vx € dom [5],

[0<fz=0Ovly <] = [IB@)]-I[80)]lw <e]
Let z € dom [§] be given. We wish to show:

[O<lz—=0Ovly <] = [lBE)]-[80v)]Iw <e]
Assume 0 < |z — Oy|y < 0. Want: [[B(z)] — [8(0v)]|w.

We have 0 < |z —0y| < pand 0 < |z —0y| < 7. Since |z — 0y |y < p,
we get x € By(0y,p). So, since By(Oy,p) € D n U, we see that
xre€DnNU. Then x € D and x € U. Since x € U, by choice of U, we
have a(x) = B(x). By (2), we have §(0y) = Ow. So, by (B), we have
B(0y) = a(0y). Since x € D and since 0 < |x — Oy|y < 7, by choice
of 7, we conclude that |[a(x)] — [@(0v)]|w < €. Then

[[B(x)] = [B0v)]lw = [la(@)] = [a(0)]lw < &
as desired. End of proof of (3). QED

14-3. Let § > 0, let I := (—4,9) and let o : R --» R. Assume: Vz € I,
a(x) € [0|z]. Show that o € O (R, R).



Proof: Let | ¢ | € N(R) denote absolute value. We wish to show:
aelle]] [OR,R)]. Let 8 :=adjy(a/|e|). It suffices to show:

(1) Be OR,R)

(2) a=[le[]-5.

Proof of (1): We wish to show: U € Nk (0) such that

[ U < dom[f] ] and [ sup [B.(U)] < o0 .

Since I = (—9,9), we see that I is open in R. So since 0 € I, we get
I € Nr(0). Let U := I. We wish to show:

(A) U < dom [f] and

(B) sup |8 (U)] < .

Proof of (A): Since U = I, we wish to show I < dom[f]. Since
B£(0) =0 # ®, we get 0 € dom [S]. It remains to show: I < dom [S].

We wish to show: Vx € I, x € dom[S]. Let x € I be given. We
wish to show: x € dom [].

Since z € I, we get x € I and x # 0. Since z # 0, we get |z| # 0
and B(x) = [|a(x)|]/[|z|]. Since z € I, we get a(z) € [0|z] < R. So,
since |z # 0, we get [a(z)]/[|x]] € R. Then 5(z) = [[a(z)[]/[|z[] € R,
so B(z) # ®, and so x € dom (], as desired. End of proof of (A).

Proof of (B): It suffices to show sup |5(U)| < 1. We wish to show:
18:(U)| < 1. As U = I, we wish to show: |B.(I)| < 1. Since

6O = o = 0 < 1,

it remains to show: |B,(1;)| < 1.
We wish to show: Yz € dom [5],

[zely ] = [l <1]
Let = € dom [] be given. We wish to show:

[zelf] = [IB)<1]
Assume: z € I;. Want: |f(z)| < 1.

Since x € I, we get x € [ and x # 0. Let y := |z|. Asz # 0, y > 0.
Since z # 0, f(x) = [o(z)]/[[=[]. That is, f(z) = [e(x)]/y. Since
y > 0, we get |y| = y. Then |B(z)| = [|a(z)]]/[ly|] = [|a(z)]]/y. Since
x eI, we get a(z) = [0]x]. We have —|z| <z < |z|, ie., —y <z < y.
Since —y < 0 and —y < x we get —y < min{0,z}. Since 0 < y and
x <y, we get max{0,x} <y. Then

[0]z] = [min{0,z}, max{0,2}]| < [—v,vy]

and



Then a(x) € [0z] = [—y,y], so —y < a(x) <y, so |a(z)| <y. Then
la(x)|/y < 1. Then |B(z)| = |a(z)|/y < 1, as desired. End of proof
of (B). End of proof of (1).

Proof of (2): We have 0 € (—4,0) = I, so «(0) € [0|0] = {0}, so
a(0) = 0. Also 5(0) = 0. Then

a(0) = 0 = 0-0 = [jof]- [BO)]

It remains to show: a = [| e [] - f on R). We wish to show: Vz € R[,
a(z) = [|z]] - [B(z)]. Let x € R} be given. Want: a(z) = [|z|] - [B(x)].

Since x # 0, it follows that B(x) = [a(z)]/[|x]]. We conclude that
a(x) = [|z]] - [B(x)], as desired. End of proof of (2). QED

14-4. Let k € Ny and let f € 0x(R,R). Let g : R --» R. Assume that
g = f near 0. Assume that g(0) = 0. Show that g € 05,1 (R, R).

Proof: Let |o] € N'(R) denote absolute value. Let ¢ := adj3(g/[|e[**']).
So, since ¢ = g/[| o |*"1] on R}, we get g = | o [F*1 -4 on R}. So, since
g(0) = 0 = [|0/*"'] - [¢(0)], we see that g = | e [F*1.4¢) on R. Then
g=|e|"1 4. We wish to show: g e [| o |*"!]-[6(R,R)]. It therefore
suffices to show: ¢ € 6(R, R). Since 1(0) = 0, we need to show:

[ dom [v] € N&(0) ] and [ % is continuous at 0 ].

We have 0 (R,R) = [| e |] - [0(R,R)], so, since f € 0,(R,R), choose
¢ O(R,R)s.t. f=]|e| ¢ Then dom|f] = (dom[|e|]) n (dom [¢]),
so, since dom [¢] € R = dom || e ||, we get dom [f] = dom [¢]. Since
g = |4, we get dom[g] = (dom[| e []) n (dom [¢]), so, since
dom [¢] € R = dom || e |], we get dom [g] = dom [¢].

Since ¢’ = f near 0, choose U € Ng(0) s.t. f = ¢ on U. Let
D := dom|[¢]. Since ¢ € O(R,R), we have D € Ng(0). So, since
U € Nr(0), we get D n U € Ng(0). So, since Bg(0) is a neighborhood
base at 0 in R, choose p > 0 s.t. Bg(0,p) € D nU. Let I := (—p,p).
Then I € Ng(0). Also, I = Bg(0,p) = DnU,sol < Dand I < U.

We have I € D = dom [¢] = dom [f]. Since f = g on U and since
I < U, it follows that f = ¢’ on I. So, since I < dom [f], we get
I < dom[g¢’]. Then I < dom|[g’] € dom[g] = dom[¢]. So, since
I € Ng(0), it follows that dom [¢/] € Nk(0). It only remains to show
that ¢ is continuous at 0. We want: Ve > 0, 3§ > 0 s.t., Vx € dom [¢/],

[lz=0[<d] = [l[¥@)]-[£0)]<e]



Let € > 0 be given. We wish to show: 36 > 0 s.t., Vo € dom [¢],

[0<fz—-0[<d] = [l[¥@)]-[00O)]<e]
As ¢ € O(R,R), ¢ is continuous at 0. Choose 7 > 0 s.t., Vo € D,

[p()] = [¢(0)]] << ].

[¢
< 7. We want: Vz € dom [¢],

[&(@)] = [$ O] <],

Let x € dom [¢] be given. We wish to show:

[0<fz=0l<d] = [l[¥@)]-[LO]<e]
Assume: 0 < |z — 0| < 0. We wish to show: |[¢(z)] — [£(0)]] < e.
Since 9(0) = 0, we wish to prove: | (z)| < e.

Since [ is an interval and 0 € (—6,9) = I, we know: [0]z] < I. Then
[0|z] € I < dom[¢'], so g is ¢/d on [0|z]. So, by the Mean Value
Theorem, choose a € (0]x) s.t. ¢'(a) = DQ4(0, ). Since g(0) = 0, we
get DQy(0,2) = [g(x)]/x. We have a € (0|z) < [0]x] < I. So, since
g = fonl, weget ¢(a) = f(a). Recall that f = | e [F- ¢ and that
g=|elFl 4. Then

af* - [p(a)] = fla) = g'a) = DQy(0,2)
= [g@)]/z = [2*" [p@)]/=.

Let y := |z|. Taking absolute values gives |a|* - |¢(a)| = y**L- |¢(2)|/y.
Then [¢(z)| = [|al/y]* - [¢(a)|. Want: [|al/y]* - [d(a)] <.

[0<la=0[<7] = |
Let 6 := min{p, 7}. Then § < p and §
[0<|z—-0]<d] = |

We have —|z| < o < |z|, i.e., —y < & < y. Since —y < 0 and
—y < x, we see that —y < min{0,z}. Since 0 < y and z < vy, see
that max{0,2} < y. Then [0z] = [min{0, 2}, max{0,z}] < [~y,y].
Then o € (0|z) < [0|z] = [—y,y], so —y < a < y, so |a] < y. Then

[l /y]* < 1. Tt therefore suffices to show: |p(a)| < e.

Since a € I = (—6,0), we see that |a| < 0. Since o € (0|x), we see
that a # 0, so |a| > 0. Then 0 < |a| < d < 7. Then 0 < |a — 0| < 7.
So, since aw € I < D, by choice of 7, we get |[¢(a)] —[¢(0)]| < . Since
¢ € O(R,R), we have ¢(0) = 0. Then |p(a)| < €, as desired. QED

14-5. Let V', W be finite dimensional vector spaces. Let f,g:V --» W.
Let pe V. Assume: f = g near p. Show: LINS,f < LINS,g.

Proof: We wish to show: VL € LINS,f, L € LINS,g. Let L € LINS, f
be given. We wish to show: L € LINS,g.



As L e LINS, f, we get f —L e &(V,W). Want: g/ —L € & (V,W).
By HW#14-2, it suffices to show: fg — L= gg — L near Oy.

Since f = g near p, choose U € Ny (p) s.t. f = g on U. Choose
| e | € N(V). Since By (p) is a neighborhood base at p in V', choose
§ > 0s.t. By(p,d) € U. Let A := By(0y,d). Then A € Ny (0y), so it
suffices to show: fT L= gp L on A. We wish to show: Vh € A,
(ff —L)(h) = ( L)(h). Let h € A be given. We wish to show:
(fT L)(h) = (g, L)( ). Want: [£7(h)] = [L(h)] = [g; ()] = [L(h)].
It suffices to prove: fl(h) = g} (h).

Since h € A = By (0y,d), we get |h —0y| <. Let x := p+ h. Then
|z —p| = |h| = |h—0y| < d,s0z € By(p,d). So, since By(p,d) < U, we
get z € U. So, since f = g on U, we get f(z) = g(x). As U € Ny (p),
we get pe U. So, since f =g on U, we get f(p) = g(p). Then

(F)(B) = [fo+h)] - [f®)]
= [f@)]-[f)]
= [g(=)] = [9(p)]
= lglp+M]—-lg] = (g5)(h),

as desired. QED

Homework 13: Due on Tuesday 24 April

13-1. Let V, W be finite dimensional VSs. Show: L(V, W) < O, (V, W).

Proof: Want: VT € L(V,W), T € Oy(V,W). Let T € L(V, W) be given.
Want: T € O,(V, W).

Since T € L(V,W), it follows that T'(0y) = Ow. Let | o |, € N(V),
| o lw € N(W). Let o := adjg" (T'/| ® |/). Then T'= | o |y - o on Vy*.
So, since T'(0y) = Ow = 0- 0w = |Oy|y - [@(0y)], we conclude that
T = |e|y-a. It suffices to show: a € O(V,W). We wish to show:
U € Ny(0y) such that: [ U < dom [«] | and [ sup | (U)|w < oo .

We have V € Ny (0y). Let U := V. We wish to show:

[Uc dom[a] ] and [ supl|a.(U)|w < oo .

Since U =V € V = dom [«], it remains to show: sup |a.(U)|w < 0.
By (1) of Theorem 46.2 p. 331, T : V' — W is bounded. We define

M = TVW. Then 0 < M < . Also, T : V — W is M-bounded. It

suffices to show: sup |, (U)|w < M. We wish to show: |a,(U)|lw < M.



We wish to show: Vo e dom|a], [z e U] = | |a(z)|lw < M ]. Let
x € dom|a] be given. We want: [z € U] = [|a(x)|lw < M |.
Assume: z € U. We wish to show: |a(z)|w < M.

One of the following must be true:

(1) z =0y or

Case (1): As a(x) = a(0y) = O, |a(z)|lw = [Ow|lw = 0 < M, as
desired. End of case (1).

Case (2): We have a(z) = [T'(x)]/[|z|v]. Since T is M-bounded, we
have |T'(z)|lw < M - |z|y. Then

as desired. End of case (2). QED

13-2. Let m,n € N. Let V := (R™,| e |, ;) and let W := (R",| e |,1).
Let Z be a normed vector space. Let = € B(V, W, Z). Show: 3K > 0
such that, Yoe V., YVwe W, |vrw|z < K- |v|y - |w|w.

Proof: Let K := max{|e]” = €|z |i € [1.m],j € [1.n]}. We wish to
show: Yoe V., Ywe W, [vxw|z < K- |v|y - |wlw. Let ve V,weW
be given. We wish to show: |v*w|z < K - |v|y - |w|w.

Since o]y = |®|;,1, we see that |v]y = Z |v;]. Since |e|y = |o],.1, we
i=1

see that |w|w = Z |w;|. Since v = Z vie]" and w = Z wjelt, we get

j=1
vEWw = Z Z vw,(e . Then, by subadditivity of | e |, we have
i=1j5=1
v xw|y < ZZMU}] ")z We have: Vi e [1.m], Vj € [1..n],

i=1j=1

lviw;(ef" = €f)lz = |vi| - [wy| - ef" « €}z < |ui| - Jwy| - K



Then

m n
orwlz < Y5> (ol - Jwyl - K)

= K)ol )
- K [Z mw]-[Z W]

as desired. QED

13-3. Let ¢,m,n € N. Let U := (RY| o |p1), let V := (R™,| o |;,1)
and let W := (R",| e |,1). Let Z be a normed vector space. Let
FeT(UV,W,Z). Show: 3K > 0 such that, Yue U, Vv e V, Yw e W,

|Fu,v,w)|z < K-|uly-|v|y-|w|w.

Proof: Let K := max{|F (e}, ej",e})|z | h e [1..0],i € [1.m],j € [1..n]}.
We wish to show: YVue U, Vve V,YVwe W,
[Fu,v,w)lz < K-luly - |vlv - wlw.
Givenue U,ve V,weW. Want: |F(u,v,w)|z < K-|u|y-|v|y-|w|w.
¢

Since |o|iy = |o]1, we see that [uly = > |up|. Since |e]y = [o],,1, we

see that |v|y = Z |v;|. Since ||y = |®|,1, we see that |w|y = Z |w;].
=1 7j=1
Smceu—Zuhehandv—sz andw—Zw]],weget
h=1 i=1 j=1

F(u,v,w) = Z

uMg

n
Z hvzwj eha e;ma 6?))
Then, by subadditivity of | e |z, we have

|uhviwj(F(efm 677 6?))|Z

NgE
=

¢
|F(u,v,w)|z < Z

>
_
-
Il
_
<.
Il
_



We have: Vh e [1..4], Vi e [1.m], Vj € [1..n],

[unviw; (F(ep, e )z = lunl - |vil - [wjl - [F(eh, ", €7) 2

N

Jun| - [oil - [wy] - K

Then

{ m n
|F(u,v,w)lz < 222 Jun| - [oil - |wy] - K7)

|
——
Mf\
s
1
—
o
=
[
—
1=
&
[

= K- |U|U Noly - Jwlw,

as desired. QED

13-4. Let U, V and W be finite dimensional normed vector spaces. Let
Z be a normed vector space. Let F' € T'(U,V,W,Z). Show: 3K > 0
such that, Vue U, Yo e V, Yw e W,

|F(u,v,w)lz < K-ulg-|vlv-|wlw.

Proof: Let ¢ :=dimU, m := dimV and n := dim W. Choose
Ae OB(U), B e OB(V) and C e OB(W).

Let U := (R, |e]s1), let V' := (R™, | o], 1) and let W' := (R",|e],1).
Define F' e T(U', V', W', Z) by

F'(u,v,w) = F(La(u), Lp(v), Lo(w)).
By HW#13-3, choose K/ > 0 s.t., Vu' e U', Vo' € V', Yw' € W/,
[F' (w0 w)lz < K[| [y e
By (1) of Theorem 46.2 p. 331, the maps
L' U—-U, Lz V-V and LW — W
are all bounded. Let

Q = (LZI)E7U/, R = (Lg,l)?/y, and S := (Lal)ﬁuw/.



Then L' : U — U’ is Q-bounded, L' : V — V' is R-bounded and
Lg' : W — W'is S-bounded. Let K := K'-Q-R-S. We wish to show:
YueU,VvoeV,YweWW,

[F(u,v,w)lz < K-|uly-|oly - [w|w.
Let ue U, veV and w e W be given. We wish to show:
[Flu,v,w)lz < K-fuly- vl - |[wlw.

Since L' : U — U’ is Q-bounded, since L' : V — V' is R-bounded
and since L' : W — W' is S-bounded, we get

L (W) < Q- ulu,
L' (v)lv < R-July  and
LM (w)lwr < S |wlw.

Let u' := (L;")(u), v := (L") (v) and v’ := (Lg")(w). Then
|| < Q- |uly, [V < R-|vly, and |w'|pr < S |w|w.
By choice of K’, we have
' )z < KT o ' e

Since Ly (v') = u, Lp(v") = v and Lo(w') = w, by definition of F’, we
get F'(u',v',w') = F(u,v,w). Then

|F(u,v,w)|z < [F'(u',v',w)|z
< K|y v - ! |we
< K'-Q-luly-R-|vly-S-|wlw

K/QRS’MU’U’V‘UJ‘W

K- July - |vlv - |wlw,

I

as desired. QED

13-5. Let S V, W and Z all be finite dimensional vector spaces, and
let « € B(V,W, Z). Show: [O(S,V)] ;[O(S, W) < O(S, 2).

Proof: We wish to show: Va € @(S, V), VB € (’3(5, W), we have:

A~

a;,@’ € O(S,Z). Let a € O(S,V) and 8 € O(S, W) be given. We wish
to show: a;ﬁ e O(S, 7).



Choose | e |s € N(S) and | e |y € N(V) and | o |y € N (W) and
| o |z € N(Z). By Theorem 49.1 p. 359, choose C' > 0 such that,
VweV, Ywe W, [vswlz <C-oly - [w|w.

Since a € O(S, V), choose P € N5(0g) such that

P < dom [a] and sup |ax(P)|yv < .
Let K := sup |a.(P)|y. Then 0 < K < o and |ow(P)|y < K.

Since 8 € O(S, W), choose @ € Ns(0g) such that

Q < dom [f] and sup | B+(Q)|w < .
Let L := sup [B«(Q)[w. Then 0 < L < o0 and |3,(Q)|w < L.

Let v:=« : B. We wish to show: v e O(S, 7). We wish to show:
IR € Ns(0g) such that

R < dom [v] and sup |7«(R)|z < oo.

Since P € N5(0g) and @ € Ng(0g), it follows that P n @ € Ng(0s).
Let R:= P n Q. We wish to show:

R < dom [v] and sup |7« (R)|z < 0.

Since v = « : B, it follows that dom[y] = (dom[a]) n (dom [5]).
Since P < dom [a] and @ < dom [f], it follows that

PnQ@Q = (dom [a]) n (dom [5]).

Then R = Pn Q < (dom[a]) n (dom[f]) = dom[y]. It remains
to show that sup |7«(R)|z < .

Let M := CKL. Then 0 < M < o. It suffices to show that
sup |7« (R)|z < M. We wish to show: Vx € dom [7],

[zeR] = [h@)lz<M]
Let x € dom [7] be given. We wish to show:

[zeR] = [h)lz<M]
Assume: z € R. Want: |y(z)|z < M.

We have x € dom [y] € dom[a] and 2 € R € P, so a(x) € a,(P).
Then |a(x)|y € |ax(P)|y < K. Let v := a(z). Then vy < K. We
have = € dom[y] € dom[f] and x € R < @, so 5(z) € B+«(Q). Then
1B(x)w € 18.(@)w < L. Let w = B(z). Then july < L.

We have v(z) = (« : B)(z) = [a(x)] * [B(z)] = v = w. By the choice
of C, we have |v*w|z < C - |v|y - |w|w.

Then |y(z)|z = |[v+w|z < C ||y - |lwlw < CKL =M. QED




Homework 12: Due on Tuesday 17 April

12-1. Let V and W both lie finite dimens'g)nal vector spaces, and let
[o ], o] eN(W). Show: OV, W,|e]) = OV, W,|e]).

Proof: Want: Yoo € O(V, W, |e|), a € O(V, W, |[o]). Let v € O(V, W, |o|)

A~

be given. Want: € O(V, W, | o |). Want: 3U € Ny (0y) such that
[Ucdom[a]]  and [ supfa.(U)] <]
Since a € O(V, W, | o), choose U € Ny (Oy) such that
[ U < dom[a] ] and [ sup | (U)] < o0 |.

Want: sup ||, (U)| < oo.

Let M :=sup |a,(U)|. Then |a,(U)| < M. By Theorem 46.3 p. 332,
|e| ~ e, s0|e] << |e]|, sochoose K >0st. |o|] <K-|of It
suffices to show: |a,(U)| < KM. We want: Yz € dom [«],

[zeU] = |[|al@)|<KM].
Let x € dom [a] be given. We wish to prove:
[zeU] = [|al)]<KM]

Assume that x € U. We wish to show: ||a(z)| < KM.

Since x € dom [a] and = € U, we get |a(x)| € |ax(U)|. So, since
| (U)| < M, we get |a(x)] < M. Since o < K -|e |, we get
|a(z)| < K-]a(z)]. Then |a(z)| < K-|a(z)] < KM, as desired. QED

12-2. Let V and W both be finite dimensional vector spaces, and let
a :V --» W. Assume that dom[a] € Ny (0y). Assume that « is
continuous at Oy. Show: ae O(V,W).

Proof: Choose | e |y € N(V) and | e |y € N(W). We wish to show:
U € Ny (0y) such that

[Uc dom[a] ] and [ supl|a.(U)|w < oo .

Let z := «(0y). Since « is continuous at 0y, choose ¢ > 0 such
that, Vo € dom [a], we have: [|z]y < 0] = [|la(x)] — zlw < 1].
We define U := (dom|[a]) n (By(0y,0)). Since dom [a] € Ny (0y)
and since By (0y,d) € Ny (0y), it follows that U € Ny (0y). More-
over, we have both U < dom[a] and U < By(0y,d). It remains



to show: sup |, (U)|lw < 0. Let M := 1+ [|z|w ]. It suffices to show:
| (U)|lw < M. We wish to prove: Vo € dom [«],

[zeU] = [|a@)|w<MI].
Let = € dom [a] be given. We wish to prove:
[zeU] = |[|a@)|w<MI].

Assume that x € U. We wish to prove: |a(z)|w < M.

Since x € U < By(0y,d), we conclude that |z|y < §. So, since
x € dom [«], by choice of d, we conclude that: |[a(x)] — z|lw < 1. Let
y := a(x). Then |y — z|lw < 1, and we wish to prove: |ylw < M.

Since y = (y — z) + 2, we get |ylw < [|y —zlw ] + [|z[w]. Then
lylw < 1+ [|z|lw] =M, as desired. QED

12-3. Let V and W both be finite dimensional vector spaces, and let
|o|,[ e eN(V), and let p > 0. Show:

(1) 8,(V, W, o) € 8,(V, W[ o) and

(2) Op(V. W, | e]) = Op(V, W, [ o).

Proof: Let o := adjy, ([|e[”]/[|e"]), 8 := adjo, ([[e[1/[|¢]"]).
Then a, B : V — R. Also, for all z € V\{0y}, we have:
[ ]” jz]” |
e - ] EE] -1 - g
So, since (aB)(0y) =1-1=1= C{(0y), we conclude that a3 = C}..
By Theorem 46.3 p. 332, |e| ~ | e|,s0 |e| << | o], so choose C' > 0
such that |e | < C' - | o||. Then, for all z € V\{0y},
I N TR lC-HxHr o
o - - lEl o< [T -
Let K := max{C? 1}. Then K > 1, so K > 0. Also, for all z € V, we
have 0 < B(z) < K, and so |3(z)| = B(z) < K. Choose |||e]||| € N(WV).
Claim A: 0(V,W) < a - [0(V,W)]. Proof of Claim A: We wish
to show: Vy e o(V, W), ye a- [O(V,W)]. Let v e &6(V,W) be given.
Want: v € a-[0(V,W)]. Since v = v-Cl, =7 [af] = a-[B7], it
suffices to show that 5y € &(V,W). We wish to show:
o dom [Bv] € Ny (Oy),
e (67)(0v) =0w  and
o Bv:V --» W is continuous at Oy .
Since v € 0(V, W), it follows that:




e dom [y] € Ny (0y),
e 7(0y) = O and
o v:V --» W is continuous at Oy .

Since dom [#] = V and since dom [y] € V, we get dom [5v] = dom [7].
Then dom [3v] = dom [y] € Ny (0y). Also, (57)(0y) = 1-0p = O Tt
remains to show: gy :V --» W is continuous at 0y. We wish to show:
Ve > 0, 36 > 0 such that, for all x € dom [f7],

[zl <ol = [lBN@I<e]
Let € > 0 be given. Want: 3§ > 0 such that, for all x € dom [57],

[z <] = [lBN@I<e]
As v :V --s W is continuous at Oy, choose § > 0 s.t., Vo € dom [v],
[fz]<d] = [lh@|]<e/K]
We wish to show: Yz € dom [57],

[zf<o] = T[llBNE@III<e]
Let = € dom 7] be given. We wish to show:

[zl <d] = T[llEN@I <l

Assume that |z| < §. We wish to show: |||(67)(2)||| < e.

We have = € dom [y] € dom [7]. So, since |z| < §, by choice of ¢,
we get: [[[y(2)]]| < /K.

We have x € dom [8v] < dom [7], so, as x € U, y(z) € 7.(U). Then

@Il e (@I < swllw@OIl = M.
Recall: |5(z)] < K. Then
E@I = [IBE@)]- [y
= |B@)] - [y ()]

< K-(¢/K) = ¢,
as desired. End of proof of Claim A.

Claim B: O(V,W) < a - [O(V,W)]. Proof of Claim B: We wish
to show: Vy e O(V, W), ye a-[O(V,W)]. Let v € O(V, W) be given.
Want: v € a-[O(V,W)]. Since vy = v-Cl, =7 [afB] = a-[8], it
suffices to show that Sy e O(V,W). Want: 3U € Ny (0y) such that

Ucdom[fy]  and  sup|[[(87):(U)]]] < .

Since v € O(V,W) = O(V, W, | e |), choose U € Ny (0y) such that



U < dom [7] and sup |||7«(U)]]| < o0.

We wish to show:

Ucdom|[By]  and  supl||(87)(U)|]] < oo

Asdom [] =V and dom [y] € V, we get dom [37] = dom [y]. Then
U < dom [y] = dom [B7]. It remains to show: sup ||[(57)«(U)]|| < 0.

Let M := sup ||| (U)]||. Tt suffices to show: |||(57)«(U)||| < KM.
We wish to show: Vz € dom (7],

[zeU] = [IlBY)@)]] < KM ].

Let = € dom [$7] be given. We wish to show:

[zeU] = [IlBY)(@)] < KM ]

Assume that x € U. Want: |||(67)(z)||| < KM
We have x € dom [8v] € dom [7], so, as x € U, v(x) € 7.(U). Then

@Il e @I < swllw@OI = M.

Recall: |5(z)] < K. Then

HBV@I = [BE@)]- [y@II = 18] - [[Iv@)I] < KM

as desired. End of proof of Claim B.
Claim C:[|e[P]-a = |e|P. Proof of Claim C: On V\{0y}, we have
[[efP]-a=[[eP]-[[e]"/|e]=]e]|P, soitsuffices to show that
([le]-a)(Ov)=(]e]")Ov).
We have ([|eP]-a)(0y) =07-1 =07 = (| e]|P)(0y), as desired.
End of proof of Claim C.
Proof of (1): By Claim A, |
By Claim C, [| e |P] - - [O(V,W)] =

Y
—
=
=
==
IN

.
<
=

Op(V,W, | @) =

as desired. End of proof of (1).



Proof of (2): By Claim B, [ [e[? |-[O(V, W) ] < [ |e[?]-a-[ O(V, W) ].
By Claim C, [|e |[P]-a- [O(V,W)] = |e|P-[O(V,W)]. Then
OV, W, [ o) = [|eP]-[O(V,W)]
[Je] a-[OWV,W)]
= [le["] [O(V,W)]
= O,(V,W,| «]),

=

as desired. End of proof of (2). QED

12-4. Let V and W both be finite dimensional vector spaces, and let

¢ = 0. Assume p < ¢. Show: 0,(V,W) 2 @q(V, W).

Proof: We want: Vv € @q(v, W), v € 0,(V,W). Let v € (’A)q(V, W) be
given. We wish to show: v € 0,(V, W).

Chose | o | € N(V). Then O (V,W) = [| o |9] - [O(V,W)] and
5o(V,W) = [||]-[6(V,W)]. We have ~ € [| ¢ |7]-[O(V,W)]. We wish
to show: v e[| o |P] - O(V, W).

Since 7y € @q(V7 W) = [| e 7] - [O(V,W)], choose e € O(V, W) such
that v = [| ® |7] - a. Choose || e | € N(W). Since v € O(V, W), choose
U € Ny (0y) such that

U < dom [«] and sup [l (U)]| < 0.

Since dom [a] 2 U € Ny (0y), we see that dom [a] € Ny (0y ).
Let f:=[|e|??] -« Then [|eP]-8 =]|®]|?] -« Then
vo= Alel'l-a = [[e[']- 5
and so it suffices to show: € o(V,W). We wish to show:

e dom [ﬁ] € NV<0V),
L4 5(0\/) = OW and
e 3:V --» W is continuous at Oy .

Because dom [| @ |7P] = V and because dom [a] € V', we conclude
that dom[[| @ |9?] - ] = dom [a]. Then

dom[B] = dom[[|e|""] «] = dom]lal.
Then dom [3] = dom [a] € N, (0y). Also,

BOv) = ([[«[""]-a)(0y) = 077 -[a(0v)] = Ow.



It remains to show: §:V --» W is continuous at Oy. We wish to show:
Ve > 0, 30 > 0 such that, Yz € dom [f],

[l <d] = [B8@=)]<e]
Let € > 0 be given. We wish to show: 36 > 0 such that, Yz € dom ],

[zl <d] = [lB@)]<el]

Since U € Ny (0y) and since By (0y) is a neighborhood base at 0y
in V, choose p > 0 such that B(0y, p) € U. Let M := (sup || (U)|)+1.
Then M > 0 and |a.(U)|| < M. Let 7 := (¢/M)YP). We define
0 :=min{p, 7}. We wish to show: Vz € dom [f],

[zl <d] = [lB@)]<el
Let z € dom 5] be given. We wish to show:
[zl <d] = [lB@)]<el

Assume that |z| < §. We wish to show: |5(z)] < e.

Since |z] < 0 < p, we get € By(0y, p). So, since By (0y,p) < U,
x € U. So, since x € dom ] = dom [a], we have a(x) € a,(U). Then
|a(z)]| € |ax(U)| < M. Since 8 = [| @ |9?] - a, we conclude that
B(x) = [|x]|97P] - [a(z)]. Since |z| < d < 7, we get |x|97P < 797P. Then
18()| = [lz*7] - lla(2)| < [7977]- M = [¢/M] - M = e. QED

12-5. Let p,q = 0. Show:

([ (0p(R,R)) - (04(R,R)) € Oprg(R,R) | and
[ (5q(Ra R)) o (5P(R? R)) 5qp<R> R)J).

Proof: Let 0 := 0(R,R). By (1) of Fact 47.10 p. 342, we have 6-6 < 0.

(Op(R,R)) - (0(R,R)) = [e]"-O-[e]"

= e e

¢ O«

N )

- 6p+q(R, R)

It remains to show: (04(R,R)) o (0,(R,R)) < 0, (R,R). We want:
Vfed,(R,R), Vg e 0,(R,R), go f € 0,(R,R). Let f e 0,(R,R) and
g € 04(R,R) be given. We wish to prove: go f € 0,(R,R).



Since f € 0,(R,R) = | o |P- O, choose § € O s.t. f =|e P-4, Since
g€ 0,(R,R) =|e]?-0, choose c € 0s.t. g=|e|7 c. Forall zeR,

g(f(@)) = (e"-e)(f(x)) = [f@)]"[e(f(2))]
= [(el"-0) @) [ [e(f(2))]
= [lal” - [6@)] " [e(f ()]
= \x\qp-\5( )T [e(f(2))]-

Then go f = e[ [6]7-[g0o f].

By Fact 47.12 p. 342, (with V' and W both replaced by R, | e | by
| o | and p by q), [0|9 < &. Then |§|? € |0]7 < 0.

We have f € 0,(R,R) € y(R,R) = &. By (1) of Fact 47.11 p. 342
(with V, W and X all replaced by R), 900 < &. Theneo f € 600 < 0.

Recall that -6 < &. Then [0|7-[eo f] € -0 < 0. It follows that
gof=_e|?-[0]9 [cofle|o|® -0 =0,(R,R), as desired. QED

Homework 11: Due on Tuesday 10 April

11-1. Let S < R. Assume that S has a minimum. (That is, assume:
Ja e S s.t. a < S.) Show that inf S = minS € S.

Proof: Choose a € S s.t. a < S. Since a < S, we get a € LB(S). Since
a € S and a € LB(S), we get a € S n [LB(S5)].

Claim: S n [LB(S)] = {a}. Proof of Claim: Since a € S n [LB(S)],
we have {a} € S n [LB(S)]. We wish to show: S n [LB(S)] < {a}. We
wish to show: Vz € S [LB(S)], z € {a}. Let z € S [LB(S)] be given.
We wish to show: z € {a}. We wish to show: z = a.

We have both z € S and z € LB(S). Also, since a < S, it follows
that S > a. Since z € S > a, we get z > a. It remains to show: z < a.

Since z € LB(S), it follows that z < S. So, since a € S, we conclude
that z < a, as desired. End of proof of Claim.

By the Claim, ELT(S n [LB(S)]) = ELT{a}. Then

minS = ELT(S n [LB(S)]) = ELT{a} = oa.

Since a € S, we get a # @. By Fact 8.13 p. 69, inf S =* minS. Then
inf S =* minS =a # @, soinfS = a. Then inf S = a = min§. It
remains to show: min .S € S.

We have min S = a € 5, as desired. QED




11-2. Let U be a vector space, let | o], || o] € N (V) and let S < U. Let
V:=(U,|e|) and let W := (U, | @ ). Assume both that |e | << | e,
and that S is bounded in W. Show that S is bounded in V.

Proof: Since S is bounded in W, choose A € By s.t. S < A. Since
A e By, choose pe W and r > 0s.t. A= By/(p,r). Since |o| << | o],
choose K > 0 s.t. |e| < K - o|. It suffices to show: S < By (p, Kr).
We wish to show: Vg€ S, g€ By(p, Kr). Let ¢ € S be given. We wish
to show: ¢ € By (p, Kr). That is, we wish to show: |¢ — p|y < K.

Since g € S € A = By (p,r), it follows that |¢ — p|lw < r. So, since
K >0, weget K-|¢g—plw < Kr. We have |e|, = |e| and |e |y = |e].
Then |¢ — plv = |¢ — p| and [¢ — plw = ¢ — p|.

Since |o | < K - | o], we get |¢ —p| < K - |¢ —p|. Then

lg—plv = la—p| < K-|¢g—p| = K-|l¢g—plw < Kr,

as desired. QED

11-3. Let V and W be normed vector spaces, and let T' € L(V,W).
Assume that T': V — W is bounded below. Show that T is 1-1.

Proof: By (3) of Fact 44.3 p. 319, it suffices to show: ker[T] = {0y }.
By (1) of Fact 44.3 p. 319, ker[T'] is a vector subspace of V', and so
{0y} < ker[T]. We wish to show: ker[T] < {0y}. We wish to show:
Va € ker[T], € {Oy}. Given z € ker[T]. Want: z € {0y }.

Since z € ker[T] = T*({Ow }), we get Tz € {Ow}. Then Tx = O .

Since T is bounded below, we see that T > 0. Let ¢ := T. Then
e > 0 and T is e-bounded below. Then, by HW#10-1, |Tx|w = e|z|y.
Then e|z|y < |Tz|lw = |Ow|w = 0. Since ¢ > 0 and ¢|z|y < 0, we
see that |z|y < 0. So, since |z|y = 0, we get |z|y = 0. It follows that
x = 0y, so x € {0y}, as desired. QED

11-4. Let T € L(R*,R*) be defined by Tx = (6z1, 529, 823, Tx4), and
define V := (R*,| e |;2). Show that Ty = 5 and that Ty = 8.

Proof: We wish to show:

(1) Tyy <5,
(2) Tyv =5,
(3) Tyy <8  and
(4) Tyy = 8.



Let e, be the standard basis of R*. Then
e1 = (1,0,0,0), es = (0,1,0,0), e5 = (0,0,1,0), es = (0,0,0,1).
So, since | o |y = | o |42, we get
leiy = ey = eslv = ey = 1,

SO €1, eg,€3,6e4 € Sy. S0, since ey, g, e3,e4 € V = dom [T'], we conclude

that T'(e1),T(e2), T(e3), T(eq) € Tu(Sy). Let E := Ellp. Then
E = T*(Sv), TVV = mf ‘E"/, f{/v = Sup ’E‘V

We have T'(ey),T(ez),T(e3), T (es) € Tu(Sy) = E.

Proof of (1): We have T'(eg) = 5ey. Also, |5ea|y = 5-|ea|y = 5-1 = 5.
Then 5ey = T(ey) € E. Then 5 = |bes|y € |Ely = inf|Ey| = Tyy.
Then Ty < 5, as desired. End of proof of (1).

Proof of (2): We want: T : V — V is 5-bounded below. We want:
VeeV, |Txly =5 |z|y. Given x € V. Want: |Tx|y =5 |x|y.

We have

Tz}, = |(6x1,520,873,7Tx4)|3 = |(621, 51, 8xs, 73:4)|12172
(621)% + (522)* + (823)% + (Tw4)?

3627 + 2525 + 6423 + 49775

2517 + 2525 + 2573 + 25775

25(xF + x5 + 23 + 27)

25 - |g[,-|?l,2 = 25- |z

| I\ N

So, since 25 - |[z]2, = 0, we get 4/|Tz[} = 4/25 - |z[3. Then

Tzly = A/|Tz3 = 4/25 |z} = V25-4/|z]} = 5-|z|y,

as desired. End of proof of (2).
Proof of (3): We wish to show: T : V — V is 8-bounded. We want:
VeeV, |Txly <8 |z|y. Given x € V. Want: |Tx|y < 8- |z|y.



We have

Tz}, = |(6x1,520,873,7T4)|3 = |(621, 512,83, 7:1:4)|421’2
(6.’171)2 + (5.1?2)2 + (81’3)2 + (7134)2
3627 + 2525 + 6423 + 4977

N

64z7 + 64a5 + 6423 + 642
64(2? + 23 + 23 + 27
= 64 |95|421,2 = 64 |z[}.

So, since 0 < |Tz|}, we get A/|Tx|?, < 4/64 - |z[3,. Then
Taly = A\JITxf, < 4f64- |z = V64-y/lzfi = 8-z]v,

as desired. End of proof of (3).

Proof of (4): We have T'(e3) = 8es. Also, |8es|y = 8-|es|ly =8-1 = 8.
Then 8es = T(e3) € E. Then 8 = [8es|y € |E|y < sup|Ey| = Tyv.
Then Tyy > 8, as desired. End of proof of (4). QED

11-5. Let V and W be normed vector spaces and let T': V <> W be
a vector space isomorphism. Assume T : V' — W is bounded below.
Show that T-! : W — V is bounded.

Proof: As T : V. — W is bounded below, Tyw > 0. Let ¢ := Tyw.
Then e > 0 and T : V — W is e-bounded below. Let K := 1/e. Then
K >0, Ke = 1, and it suffices to show: T : W — V is K-bounded.
We wish to show: Yy e W, [T (y)|y < K - |y|w. Let y € W be given.
We wish to show: [T (y)|v < K - |y|lw.

Let z := T~ '(y). Then Tx = y. Since T : V — W is e-bounded
below, we get |Tx|w = €-|x|y. So, since K > 0, K-|Tx|w = (Ke)-|z|y.
So, since Ke =1, we get K - [Tz|w = |z|y. That is, |z|y < K- |Tz|w.
Then [T (y)|ly = |zly < K - |Tx|w = K - |y|w, as desired. QED

Homework 10: Due on Tuesday 3 April

10-1. Let V' and W be normed vector spaces, T' € L(V, W) and ¢ > 0.
Show: [T is e-bounded below | < [Vx e V, |Tz|yw = e|z|y .

Proof: Proof of =: Assume that T is e-bounded below. We want:
Ve eV, |Tx|lw = elz|y. Let z € V be given. Want: |Tx|y = e|x|y.



By Fact 42.5 p. 306, choose @ > 0 and u € Sy s.t. x = au. Since
a > 0, we get |a| = a. Since u € Sy, it follows that |u|y, = 1. Then
\z|y = |auly = la| - July = a-1=a. Want: |Tz|y = ca.

We have u € Sy € V = dom [T]. So, as u € Sy, we get Tu € T,(Sy).
So, since T, (Sy) = Ellr, we get Tu € Ellyp. Since T is e-bounded

~

below, we have T' > ¢. Then

Tulw € |Ellrly = inf|Elglyw = T > e
so, since |a| = a, we get |a| - |Tulw = €a. Then

Tzlw = [T(aw)lw = la-[Tullw = la|-[Tulw = ea,

as desired. End of proof of =.

Proof of «<: Assume that Yz € V, |Tx|w = e|z|,. We wish to show:
T is e-bounded below. Want: T > e. So, since T = inf |Ellr|y, it
suffices to show: |Ellyp|y = e. We wish to show: Vs e |Ellp|y, s = e.
Let s € |Ellr|w be given. We wish to show: s > e.

Since s € |Ellr|w, choose y € Ellp such that s = |y|y. Since
y € Elly = T,(Sy), choose u € Sy such that y = Tu. By assumption,
| Tulw = eluly. Since u € Sy, we conclude that |uly = 1. Then
s=l|ylw = |Tulw = eluly =e-1=c¢e. End of proof of <. QED

10-2. Let m e N. Show: | e |, 0 <|®|m2 <|®|pn1 <m-|e |0

Proof: We wish to show:

(1) | b |moo < | hd |m,27
(2) [®fma <|®]|m1, and
(3) [ @|m1i <m-|e|ne.

Proof of (1): Want: Vo € R™, |2|m.00 < ||m2. Let x € R™ be given.
We wish to prove: |z|m.s < |Z|m.2-

Let a := |z]mo. Want: |2|m0 < a. As |@]pm0 = max{|zi], ..., |zm]},
it suffices to show {|zi|,...,|xm|} < a. Want: Vt € {|z1],..., |zm|},
t <a. Lette{|z],...,|zm|} be given. Want: ¢t < a.

Since t € {|z1],...,|zm|}, choose j € [1..m] such that ¢t = |z;|. We

have 0 < 23 < 2% + - + 27, Then 4 /25 < +/27 + - + 22,. Then

t o= |zl = gf2F < gfat4-+ad = fzly = q,

as desired. End of proof of (1).



Proof of (2): Want: Vz € R™, |z|,2 < |2|m1. Let € R™ be given.
We wish to prove: |z|,2 < |x|m1

Let I := [1..m]. For all j € I, let a; := |x;|. For all j € I, we have
af = |z;]* = 23 Then [z]yn2 = /27 +--- + 22, = \/ai + - + a2,
Also, we have |z|,1 = |z1| + -+ |2m]| = a1 + -+ + ap.

Let K := {r € I*|r; # ro}. For all j € I, we have a; = |z;| >
Then, for all r € K, we have a, a,, > 0. It follows that Z Apy Qpy =

Let S := Z ar,ay,. Then S > 0. We have

reK
(@ + - +an)? = (af +---+d) + S

So, since S = 0, we get (a1 + -+ + a)? = a3 + -+ + a,. Since
0<al+---+a <(a1+ -+ an)? we see that

A2+ +a2, < Ao+t am)

Recall: Vj e I, a; = 0. It follows that a; +-- -+ a,, = 0. Then we have
la + -+ ap| =a + -+ ap. Then

Z|mae = Afad+ -+ a2,
< (a+ -+ ap)?
< Jay + -+ an
= a1+ +am = |Tm,

as desired. End of proof of (2).
Proof of (8): Want: Vo € R™, |21 < m - |2]pm0. Let 2 € R™ be

given. Want: |z|,,1 < m - |2]p0. Let a:= |:1:|mOO Want: |z],,1 < ma.
For all j € [1..m], we have |z;| < max{|z1],...,|Tm|} = |2[mw = a
Then |z|,1 = |21 + -+ + |Tm| < ma. End ofproof of (3). QED

10-3. Let V' be a normed vector space, let Z be a topological space, let
p:V --» Z and let pe V. Let A := u(p + o). Show: l(i)m A = lim p.
\% p

Proof: 1t suffices to show: LIMS A= LIMS L.

Proof of =<: Want: Vy e LIMS A, Y E LIMS . Given y € LIMS A
Want: y € LIMS p. Know: )\ — gy near Oy. Want [t — Y near p We
wish to show:p YU € Nz(y), 36 > 0 s.t., Vo € dom [p],

[O<|z—plv<d] = [wpl)elU]



Let U € Nz(y) be given. We wish to show: 3§ > 0 s.t., Yz € dom [p],

[O0<lz—plv <] = [wx)el]
Since A — y near Oy, choose § > 0 s.t., Vh € dom [A],
[O0<|hly <d0] = [Ah)eU].

We wish to show: Vz € dom [u],
[0<fz—plv<d] = [ul)eU]

Let z € dom [u] be given. We wish to show:
[O<lz—ply<d] = [ux)elU]

Assume that 0 < |z — p|y < §. We wish to show: pu(z) e V.

Let h := x—p. Then h € (dom [pu])—p = dom [A]. Also, 0 < |hly < 0,
so, by choice of 0, we have A(h) € U. By definition of A\, we have
Ah) = pu(p + h). So, since p + h = x, we get A\(h) = p(x). Then
w(x) = A(h) € U. End of proof of <.

Proof of 2: Want: Vy e LH}}/IS [, Y € LIOI‘\//[S A. Given y € LHI}/IS L.

Want: y € LIOMS A. Know: p — y near p. Want: A\ — y near 0y. We
A%
wish to show: YU € Nz(y), 30 > 0 s.t., Vh € dom [A],

[O0<|hly<d0] = [Ah)eU].

Let U € Nz(y) be given. We wish to show: 3§ > 0 s.t., Vh € dom [A],
[O0<|hly <d0] = [Ah)eU].

Since p — y near p, choose 6 > 0 s.t., Vo € dom [p],

[0<fz—plv<d] = [ul)elU]

We wish to show: Vh € dom [A],
[O0<|hly <d0] = [Ah)eU].

Let h € dom [A] be given. We wish to show:
[O0<|hly<d0] = [Ah)eU].

Assume that 0 < |hly < 0. We wish to show: A(h) e U.

Let  := p+ h. Then z € (dom [\]) + p = dom [u]. Also, h =2z —p
Then 0 < |z — ply < §, so, by choice of §, we have u(z) € U. By
definition of A, we have A(h) = u(p + h). So, since p + h = x, we get
A(h) = pu(zx). Then \(h) = p(z) € U. End of proof of 2. QED




10-4. Let X be a metric space, let D < X and let p € IntxD. Show
that there exists B € Bx(p) such that B < D.

Proof: Since p € IntxD, choose an open subset U of X such that
p € U < D. Since U is open in X, we have U € Tx. We have
= (Bx),. Then p € U € (Bx),. Choose C € Bx such that
p € C < U. By the Recentering Down Lemma (Lemma 14.2 p. 104),
choose B € Bx(p) such that B < C'. We wish to show: B < D.
We have B < C < U < D, as desired. QED

10-5. Let g : R --» R. Let p,q € R. Assume g has a local unique min
at p in R. Show: g + C§ has a local unique min at p in R.

Proof: Let h := g + C. We wish to show: 3V € Nx(p) s.t.
(V< doml|h]) and (h(p) < he(V,)) ).
Since g has a local unique min at p in R, choose V' € Nx(p) s.t.
(Vedomlg]) and  (g(p) <g«(V,) )
We wish to show:
(Vedom[B]) and  (h(p) < ha(V7)).

|
We have dom [h] = dom [g + C] = (dom [g]) n (dom [CZ]). So, since
dom[g] € R = dom [C}], we get dom [h] = dom [g]. Then we have
V' < dom [g] = dom [A]. It remains to show: h(p) < h.(V,). We wish
to show: Vy € hy(V,), h(p) < y. Let y € hy (V) be given. We wish
to show: h(p) < y. Since y € h.(V,*), choose x € dom [h] such that:
both z € V* and y = h(x). We wish to show h(p) < h(x).

Since z € dom[h] = dom[g] and since x € V*, it follows that
9(x) € g«(V,). So, since g(p) < g«(V,*), we get g( ) < g(x). Then
l9(p)] + ¢ < [g(2)] + ¢ So since

hip) = (g+Ce)lp) = o] + (CR))] = l9(p)]
and h(r) = (9+Cg)(x) = [9(x)] + (Cp)(=)] = [g(x)]
we conclude that h(p) < h(x), as desired. QED

Homework 9: Due on Tuesday 27 March

9-1. Let V and W be normed vector spaces, T € L(V, W) and K > 0.
Show: [ Tis K-bounded | < [VzeV, |Tzlw < K -|z|v ]



Proof: Proof of =: Assume that T' is K-bounded. We wish to show:
VeeV, |T(x)|lw < K - |z|y. Given x € V. Want: |T(z)|w < K - |z|v.
Since T is K-bounded, we have T < K. By definition of JA”, we
have |Ellr|w < T By the polar decomposition (Fact 42.5), choose
a>0and ue Sy st. v = au. Since u € Sy, we get |u|yy = 1. Then
K-l|zly = K -|auly = K -|a| - [uly = K - |a[ - 1 = |a| - K.
We have |T'(u)|w € |Tx(Sv)|w = |Ellr|lw <T < K. Then

T@)lw = [Tlaw)lw = la-[T(u)]lw
= la-ITw)lw < laf- K = K-|zlv,

as desired. End of proof of =.

Proof of <=: Assume: Yz €V, |T(z)|lw < K - |z|y. We wish to show
that 7' is K-bounded. Want: 7 < K. Want: sup |Ellr|y < K. We
wish to show: |Ellr|yw < K. Want: Vr € |Ellrp|ly, r < K. Let
r € |Ellr|w be given. We want: r < K.

Choose y € Elly st. r = |y|lw. Since y € Elly = T,(Sy), choose
ue Sy st.y =T(u). We have |T'(u)|w < K - |u|y. Since u € Sy, we
have |uly = 1. Then r = |y|lw = |T(u)|lw < K - July = K -1 = K, as
desired. End of proof of <. QED

9-2. Let V and W be normed vector spaces and let K > 0. Let
T e L(V,W) be K-bounded. Show: T is K-Lipschitz. That is, show:

Vo,yeV, [ [T@)] = [TW)] lw < K-z = ylv.

Proof: Let z,y € V be given. Want: |[T'(z)] — [T(y)] |lw < K-|lz—y|v.
By HW#9-1, we know: Yz e V, |T(z)|w < K - |z|y. It follows that

T(z —y)lw < K - |z — ylv. By linearity, T'(z — y) = [T'(x)] — [T'(y)]-

Then |[T(x)] = [T(W)llw = [Tz —y)lw < K[z —ylv. QED

9-3. Let Y and Z be metric spaces and let K > 0. Let f:Y --» Z
be a K-Lipschitz function. Let x € dom [f] and let r > 0. Show that:

f*(BY<x7T)) = BZ(f(‘r)vKT)
Proof: We want to show: Vp € dom [f],

[peBy(z,r)] = [f(p)eBz(f(x), Kr) ]

Let p € dom [ f] be given. We want to show:

[peBy(z,r)] = [f(p)eBz(f(x), Kr) ]



Assume p € By (z,r). We want to show: f(p) € Bz(f(z), Kr).
Since p € By (x,r), we have dy (p,x) < r. So, since f is K-Lipschitz,
dz(f(p), f(x)) < Kr. Then f(p) € Bz(f(x), K1), as desired. QED

9-4. Let V and W be normed vector spaces and let T € L(V,W).
Assume that T is continuous at Oy. Show that 7' is bounded.

Proof: Since T is linear, T'(0y) = Oy . So, since T is continuous at Oy,
choose 6 > 0 s.t., for all z e V|

[lzly <d0] = [|Tzlw<1]

Let K := 2/0. We want: T is K-bounded. By <« of Remark 43.1
p. 311, it suffices to show: Yu € Sy, |Tu|w < K. Let u € V be given:
We want to prove: |Tuly < K. It suffices to show: |Tu|y < K.

Since K = 2/§ > 0, we get |K| = K. Also, |1/K| = [§/2| = §/2.
Since u € Sy, we have |uly = 1. Let x := (1/K)u. Then we have
\zly = [1/K]| - |uly = (6/2) -1 = 6/2 < 0. So, by choice of §, we see
that |[Tz|w < 1. Then K - |Tz|yw < K -1 = K. Since x = (1/K)u, we
get u = Kz, and so, by linearity of T', we have Tu = K - (T'z).

Then |Tulw = |K - (Tx)|w = |K| - |Tz|lw = K - |[Tz|w < K. QED

9-5. Let f,g : R --» R. Assume: IM € R s.t. (M, ) < dom|[g'/f’].
Assume: lim f =0 = lim g. Show: lim (¢/f) =* lim(¢'/f").
0 0 0 0

Proof: Define ¢, : (0,0) --» R by ¢(t) = f(1/t) and ¥(t) = g(1/t).
Then, for all ¢t € (0,0), we have (¢¥/¢)(t) = (g/f)(1/t). Tt follows,
by (1) of Fact 42.19, that lioron (9/f) = 1(i)r+n (V/9).
Claim 1: VYt € (0,0), (¢'/¢')(t) = (¢'/f")(1/t). Proof of Claim 1:
Let t € (0,00) be given. We wish to show: (¢//¢')(t) = (¢'/f")(1/t).
By (2) of Fact 42.19, we have both

"(1/t
LT

g1/t

t2

§0) = - v = -
Then [¢/(1)]/[¢'()] = [g" O/ ()], e, (@'/&)(E) = (¢'/f)(1/1), as
desired. End of proof of Claim 1.

By Claim 1, for all t € (0,0), we have (¢'/¢')(t) = (¢'/f")(1/t). Tt
follows, by (1) of Fact 42.19, that lioron (d'/f) = l(i)r+n (W'/¢").

By assumption, choose M € R such that (M, o) < dom [g'/f’].



Claim 2: (0,1/M) € dom [¢'/¢']. Proof of Claim 2: We wish to show:
Vit € (0,1/M), t € dom[¢)'/¢']. Let t € (0,1/M) be given. We wish
to show: t € dom [¢'/¢'].

Since t € (0,1/M), 1/t € (M, ). Then 1/t € (M, ) < dom [¢'/f],

o (¢'/f)(1/t) # ®. Since t € (0,1/M) < (0,0), by Claim 1, we get
(W'/¢)(t) = (¢'/f)(1/t). Then (4'/¢)(t) = (¢'/f')(1/t) # ©, and so
t € dom [¢'/¢'], as desired. End of proof of Claim 2.

Since hm f=0= hm g, it follows, from (1) of Fact 42.19, that

hm ¢ = 0 = hm Y. By Clalm 2, we have (0,1/M) € dom [¢/'/¢']. There-

fore by Theorem 42.18 (with p replaced by 0, f by ¢ and g by ), we
conclude that hm (p/1) =* hm (¢’ /).

Then lim (g/f) = légn(cb/w) =" lim (¢'/¢) = lim (¢'/ f'). QED

Homework 8: Due on Tuesday 20 March

8-1. Let W be a vector space and let u,v,v’" € W. Assume that
Rov = Rv’ and that u|v. Show that u|v’.

Proof: We wish to show: u € Rv’ or v € Ru. Since uljv, at least one of
the following must be true:

(1) ueRov or
(2) v e Ru.

Case (1): We wish to show: u € Rv’. Since u € Rv, Ru < Rv. So,
as Rv = R/, Ru € Rv’. Then u € Ru € Rv'. End of Case (1).

Case (2): We wish to show: v' € Ru. Since v € Ru, Rv € Ru. So,
as Rv = R/, Rv' € Ru. Then v' € Rv' < Ru. End of Case (2). QED

8-2. Let u,v € R%. Show:
[u[v] < [ (u=0z) or (v=09) or (slu=slv) ].

Proof: Proof of =: Assume that ul|v. We wish to prove:
(u=10y) or (v=0y) or (slu=slv).

Equivalently, we want: [ (u # 02) and (v # 02) | = [ slu=slv ].
Assume (u # 03) and (v # 02). We wish to prove: slu = slw.
Since uljv, at least one of the following is true:

(1) ueRo or



(2) v e Ru.

Case (1): Choose a € R such that u = av. Since av = u # 03 = 0- v,
we conclude that a # 0. Since (u1,u2) = v = av = (avy, avy), we see
that u; = av; and that us = avy. Then

(%) avy Vo
sluy = — = — = = = sglo,
(51 avy U1

as desired. End of Case (1).

Case (2): Choose a € R such that v = au. Since au = v # 03 = 0-u,
we conclude that a # 0. Since (v1,v2) = v = au = (auy, aug), we see
that v; = au; and that vy = auy. Then

(%) aus (%)
slu = — = — = = = glo,
U1 auq U1

as desired. End of Case (2). End of proof of =.

Proof of <: Assume
(%) (u=20y) or (v=0y or (slu=slv).

We wish to prove: ulv. We want: u € Rv or v € Ru.

At least one of the following must be true:

(1) uy =0 =1, or
(2) up #0=v; or
(3) uy =0 # vy or
(4) uy # 0 # vy.

Case (1): We wish to prove that: [u ¢ Rv| = [v € Ru].
Assume that: u ¢ Rv. We wish to prove that: v € Ru.

Since u ¢ Rv and 0, = 0-v € Rv, we get: u # 05. Then we have:
(0,u2) = (uy,uz) = u # 02 = (0,0), so ug # 0. Let a := vy/us. Then
aus = vy. Then au = (auy,aug) = (a-0,v9) = (0,v2) = (v1,v2) = v.
Then v = au € Ru, as desired. End of Case (1).

Case (2): We wish to show: v € Ru.

Since uy # 0, we have (u1,uy) # (0,0), i.e., u # 0y. Since u; # 0, we
get ug/uy # @. Since v; = 0, we get vy/v; = @. Then

slu = w/u; # © = wfvy = sl

Since u # 09 and slu # slv, we see, by (x), that v = 0y. Then
v =0y = 0-u € Ru, as desired. End of Case (2).
Case (3): We wish to show: u € Ru.



Since v, # 0, we have (vy,v9) # (0,0), i.e., v # 0y. Since v, # 0, we

get vy/v1 # @. Since u; = 0, we get us/u; = @. Then

slu = w/u; = © # wfvy = sl

Since v # 0y and slu # slv, we see, by (x), that u = 0s.

u =09 =0-v e Ruv, as desired. End of Case (3).
Case (4): We wish to show: v € Ru.

Then

Since u; # 0, we have (uy,uz) # (0,0), i.e., u # 0g. Since v; # 0,
we have (vy,v2) # (0,0), i.e., v # 05. Since u # 0y and v # 0y, we see,
by (x), that slu = slv. That is, ug/u; = vy/v1. Let a := vy /u;. Then
au; = vy and auy = (v1/ug)ug = (ug/ui)vy = (vy/v1)vy = ve. Then
au = (auy,auy) = (vy,v3) = v. Then v = au € Ru, as desired. End

of Case (4). End of proof of <. QED

8-3. Let u,v € R%. Show:

(uv) < (Det[z]=0>.

Proof: Proof of =: Assume: u|v. Want: Det [ Z ] =0.

Since u|v, at least one of the following is true:

(1) ueRuv or
(2) v e Ru.

Case (1): Choose a € R such that u = av. Then

Det[ulzDet[aU]
v v
. Det [ (avy, avy) ]
(U17v2)
= (avy)-vy — (avg) -v; = 0.
End of Case (1).
Case (2): Choose a € R such that v = au. Then

o] - e[ 2]

= Det[ (1, u2) ]

(aur, aus)

= wuy - (aug) —ug - (auy) = 0.



End of Case (2). End of proof of =.

Proof of «: Assume: Det [ Z ] = 0. We wish to prove: uljv. We want
to show: u € Rv or v € Ru.

Since 0 = Det z = U1Uy — U1, We see that uivy = wuovy. At
least one of the following is true:

(1) ug #0 or
(2) ug #0 or
(3) up =0 = us.
Case (1): Want: v € Ru. Let a := vy /u;. Want: v = au.
We have both au; = v and aus = ugvy/u; = ugvy/u; = ve. Then
v = (v1,v2) = (auy, auy) = au, as desired. End of Case (1).
Case (2): Want: v € Ru. Let a := vg/uy. Want: v = au.
We have both au; = ujve/us = ugvy/us = vy and aug = vy. Then
v = (v1,v2) = (auy, auy) = au, as desired. End of Case (2).
Case (3): Want: u € Rv. Let a := 0. Want u = av.
Since u; = 0 = us, we get u = 0. Since a = 0, we get av = 0. Then
u = 0y = av, as desired. End of Case (3). End of proof of <. QED

8-4. Let V and W be normed vector spaces. Let x : R --» V and
y: R --» W. Let p € R. Assume that  and y are both continuous
at p. Show that (x,y) is continuous at p.

Proof: Let z := (z,y) and let U := V x W. Then z : R --» U and
dom [z] € dom [z] and dom [z] < dom [y].

We want: z is continuous at p. We wish to show: VU, € Ny (z(p)),
JA € Nr(p) s.t. z.(A) < Uy. Let Uy € Ny(z(p)) be given. We wish
to prove: 3A € Ng(p) s.t. z.(A) < Up.

Choose Vi € Ny(x) and Wy € Ny (y) s.t. Vo x Wy < Up. Since
x is continuous at p, choose B € Ng(p) s.t. z.(B) < Vp. Since y is
continuous at p, choose C' € Nr(p) s.t. y.(C) € Wy. As B,C € Ng(p),
we get BN C € Ng(p). Let A:= BnC. We wish to show: z,(A) < Up.
We wish to show: Yq € dom [z],

[geA]l = [2g)el]
Let ¢ € dom [z] be given. We wish to show:
[geA] = [z(@)elo]



Assume: g € A. We wish to show: z(q) € Up.

Since ¢ € dom [z] € dom[z] and since ¢ € A = Bn C < B, we
have z(q) € z«(B). So, by choice of B, we have x(q) € V. Since
q € dom[z] < dom|y]| and since ¢ € A = Bn C < C, we have
y(q) € y«(C). So, by choice of C, we have y(q) € Wp.

Then z(q) = (z(q),y(q)) € Vo x Wy. Then, by choice of V and W,
we conclude that z(q) € Uy, as desired. QED

8-5. Let V and W be normed vector spaces. Let x : R --» V' and
y:R--»W. Let p € LPDg(z,y). Show: (z,y)'(p) =* ('(p), y'(p))-

Proof: Let ¢ := SS, 1) := SSP. Then '(p) = liéngb and y'(p) = lignw.
Also, (z,y)'(p) = lign S8, Forall h e R, we have

ssp, () = @000~ (o)

(z(p+h),ylp+h)) — (z(p), yp))
([z(p+h)] = [z®)], lyp+h)] — [y)])
h

(h@+hﬂ—h@ﬂ w@+hﬂ—b@ﬂ)
h ’ h

SSE(h) , SSE(h) )

S5z, 555 )(h) = (&, 9)(h).

Then S5, = (¢,¢). Since p € LPDg(,y), by (3) of Remark 26.7
p. 197, we get 0 € LPDR(SSZ:’y)). So, since SSg’z’y) = (¢, 1), we con-
clude that 0 € LPDg(¢,%). Then, by Remark 40.4 p. 295, we have
lign (p,0p) =* (li(l)rnqﬁ, 1i611¢). Then

=
(

(x,y) (p) = hm SS?W = lién(qb,z/J)
=*Up¢J%¢)=(f@%y®%

as desired. QED

Homework 7: Due on Tuesday 6 March

7-1. Let f :R--» R, pe R and § > 0. Assume



(1) (p—46,p+0) < dom[f],
(2) f is strictly decreasing on (p — 6, p| and
(3) f is strictly increasing on [p,p + 9).

Show that f has a local unique minimum at p in R.

Proof: We want: 3V € Ng(p) s.t. V < dom [f] and f.(V,*) > f(p).

Since (p—0,p+0) is open in R and since p € (p — 0, p + 4), it follows
that (p —d0,p+d) € Nr(p). Let V := (p—d,p + ). We wish to show:
V < dom [/] and (V) > f(p)

Since V = (p—0,p+6), by (1), we have V < dom [ f]. It remains to
show: f.(V,©) > f(p). We wish to show: Vy e f.(V*), y > f(p). Let
y € f«(V,) be given. We wish to show: y > f(p).

Since y € f«(V,”), choose t € V* such that y = f(¢). We have
teV)=(p—4,p)u(p,p+9), soone of the following must be true:

(A) te(p—95,p) or

(B) te (p,p+9).

Case (A): We have t,p € (p—4,p] and t < p. So, by (2), f(t) > f(p)-
So, as y = f(t), we get y > f(p). End of Case (A).

Case (B): We have t,p € [p,p+0) and ¢t > p. So, by (3), f(t) > f(p)-
So, as y = f(t), we get y > f(p). End of Case (B). QED

7-2. Let g : R --» R and p € IntDgg. Assume both that g(p) = 0 and
that ¢’(p) > 0. Show: 39 > 0 such that all three of the following hold:

(A) (p—0d,p+0) < domlg],
(B) g<0on (p—0,p) and
(C) g>0on (p,p+9).

Proof: By Lemma 32.1 p. 240, choose U € Ng(0) s.t. (SSE).(U) > 0.

Then U + p € Nr(p). Let D := dom[g]. Since p € IntDrg = Intg D,

D e Nr(p). As U + p, D € Nr(p), we get (U +p) n D € Nr(p). So,

since Bg(p) is a neighborhood base at p in R, choose 6 > 0 such that

Br(p,9) < (U +p) n D. We wish to show: (A) and (B) and (C).
Proof of (A): We have

(p—6,p+9d) = Br(p,d) < (U+p)nD < D = domlyg],

as desired. End of proof of (A).
Proof of (B): We wish to show: Vt € (p — 6,p), g(t) < 0. Let
t € (p—9,p) be given. We wish to show: g(t) < 0.



We have t € (p—6,p) < Br(p,d) € (U +p)nD,soteU+pand
teD. SinceteU-+p, wegett—peU. Let h:=1t—p. Then
h €U and p+ h =t. Also, since t < p, we get h < 0. In particular,
h # 0. We have dom [SS?] = [(dom [g]) — plg = [D — ply - So, since
h=t—pe D —pand since h # 0, we get h € dom [SS};]. So, since
heU, we get (S5P)(h) € (SSP).(U). So, since (SSP).(U) > 0, we get
(S8P)(h) > 0. So, since h < 0, we get h - [(SSP)(h)] < 0. So, since
h-[(SS5)(h)] = [9(p + h)] — [9(p)], we get g(p + h) < g(p). So, since
p+h =t, weget g(t) < g(p). By assumption, g(p) = 0. Then g(¢) < 0,
as desired. End of proof of (B).

Proof of (C): We wish to show: Vt € (p,p + ), g(t) > 0. Let
t € (p,p+ 9) be given. We wish to show: g(t) > 0.

We have t € (p,p+0) € Br(p,d) < (U+p)nD,soteU+pand
teD. SinceteU-+p, wegett—peU. Let h :=t—p. Then
heU and p+ h =t. Also, since t > p, we get h > 0. In particular,
h # 0. We have dom [SS?] = [(dom [g]) — plg = [D — ply- So, since
h=1t—-peD—pandsince h # 0, we get h € dom[SS?]. So, since
heU, we get (SSP)(h) € (SSP).(U). So, since (SSP).(U) > 0, we get
(SSP)(h) > 0. So, since h > 0, we get h - [(SSP)(h)] > 0. So, since
h-[(SS5)(h)] = [9(p + R)] = [9(p)], we get g(p + h) > g(p). So, since
p+h =t, we get g(t) > g(p). By assumption, g(p) = 0. Then g(¢) > 0,
as desired. End of proof of (C). QED

7-3. Let f : R --» R and let p € IntDg(f’). Assume both that f'(p) = 0
and that f”(p) > 0. Show: f has a local unique minimum at p in R.

Proof: Let g :== f’. Then p € IntDrg and ¢(p) = 0 and ¢'(p) > 0. So,
by HW#7-2, choose 6 > 0 such that all three of the following hold:
(B) g<0on (p—4,p) and
(C) g>0on (p,p+9).

By HW#7-1, it suffices to show:

(1) (p—b.p+8) < doml[f],
(2) f is strictly decreasing on (p — 4, p| and
(3) f is strictly increasing on [p,p + 0).
Proof of (1): Since dom [g] = dom [f'] < dom|[f], by (A), we see
that (p — 0,p + d) < dom [ f], as desired. End of proof of (1).
Proof of (2): Let I := (p—4,p]. We want: f|I is strictly decreasing,.



Since g = f’, by (A), we see that f is differentiable on (p — 9, p + 9).
So, as I < (p—0d,p+0), f isdifferentiable on I. Then fisc/d on I. Since
g = f"and Intgl = (p — 4§, p), by (B), we get: f" <0 on Intg/. Then,
by (5) of Corollary 34.9 p. 259, we see that f|[ is strictly decreasing,
as desired. End of proof of (2).

Proof of (3): Let I := [p,p+0). We want: f|I is strictly increasing.

Since g = f’, by (A), we see that f is differentiable on (p —d,p + 9).
So, as [ < (p—0,p+9), f is differentiable on I. Then fisc/d on I. Since
g = f"and Intgl = (p,p + 9), by (B), we get: f' > 0 on Intg/. Then,
by (3) of Corollary 34.9 p. 259, we see that f|I is strictly increasing,
as desired. End of proof of (3). QED

7-4. Let f : R --» R and let p € IntDg(f’). Assume both that f'(p) =0
and that f”(p) < 0. Show: f has a local unique maximum at p in R.

Proof: We wish to show 3V € Ng(p) such that V < dom|[f] and
f+(V)7) < f(p).

Let fo := —f. Then dom [fy] = dom|[f]. Also, f§ = —f’. Then
dom [f{] = dom [ f’], so IntDgr(f}) = IntDg(f"). Also, fj = —f". Then

e fo:R--»R,
® DcE Il’ltDR(f/> = IntDR(f(’)),
e fo(p) = (=f)p)=—-0=0 and

o fo(p) = (=1")(p) = =(f"(p)) > 0.
Then, by HW#7-3, fy has a local unique minimum at p in R. So choose
V e Nr(p) such that V' < dom[fy] and such that (fo)«(V,*) > fo(p).
As V < dom [fo] = dom [f], it remains only to show: f.(V,*) < f(p).
We wish to show: Vt e dom [f],
[teV, ] = [f)<flp)]
Let ¢t € dom [ f] be given. We wish to show:

[teV, ]l = [f)<flp)]

Assume: t € V*. We wish to prove: f(t) < f(p).
Since t € dom [f] = dom [fo], and t € VX, we get fo(t) € (fo)«(V,*).
So, since (fo)«(V,) > fo(p), we get fo(t) > fo(p). Then

—(f@) = (=NH@) = folt) > folp) = (=f)p) = —(f(p))
Multiplying by —1, we get f(t) < f(p), as desired. QED




7-5. Let f: R --» R. Asume both that 0 € IntDg f and that f(0) = 0.
Define g : R — R by g(z) = z*. Assume that f/g — 1 near 0. Show
that f has a local unique minimum at 0 in R.

Proof: Want: 3V € Ng(0) s.t. V < dom [f] and f(0) < f. (V).

Let D := dom[f]. Then 0 € IntDgf = IntgD. Then D € Ng(0).
So, since Bg(0) is a neighborhood base at 0 in R, choose a > 0 s.t.
Bgr(0,a) < D. Since f/g — 1 near 0, choose 8 > 0 s.t., V¢t € dom [ f/g],

[0<ftf<B] = [Il(f/9@)] = 1] < 1/2].

Let § := min{«, 5}. Then 6 < «, so B(0,6) < B(0,«). Also, § < 3, so
B(0,6) < B(0, ). Since Bg(0,0) is open in R and since 0 € Bg(0, d),
it follows that Bgr(0,d) € Ng(0). Let V := Bg(0,4). We wish to show:
V < dom|[f] and f(0) < fu (V).

We have V' = Bg(0,0) < Bg(0,a) € D = dom|[f]. It remains
to show: f(0) < f«(Vy). We wish to show: Yy € f.(V5*), f(0) < v.
Let y € f«(Vy*) be given. We wish to show: f(0) < y. By assumption,
f£(0) = 0. We wish to show: 0 < y. Since y € f.(V;*), choose t € V*
such that y = f(¢). We wish to show: 0 < f(¢).

Since t € Vy = V\{0}, we see that ¢ # 0. Then t* > 0 and 0 < [¢|.
We have t € Vi* < V < dom[f]. Also, t € R = dom|[g]. Also,
g(t) = t* > 0, so, in particular, g(t) # 0. Then t € dom [f/g]. Also, we
havet e Vi < V = Bg(0,0) < Br(0, 8), so |[t| < . Since t € dom [ f/g]
and since 0 < |t| < /3, by the choice of 5, | [(f/g)(t)] — 1| < 1/2. Then
1—(1/2) < (f/g)(t) < 14(1/2). Then 1/2 < (f/g)(t). Multiplying this
inequality by g(t), since g(t) > 0, we get [1/2]-[g(t)] < [(f/9)(t)]-[9(t)]-
Since g(t) > 0, we conclude that 0 < [1/2]-[g(¢)]. By definition of f/g,
since t € dom [ f/g], we see that [(f/g)(t)]-[g(t)] = f(t). Then we have

0 <[1/2]-[9(®)] < [(f/9)(®)]-[g(t)] = f(t), as desired. QED

Homework 6: Due on Tuesday 27 February

6-1. Let f: R --» R be continuous, and let I < dom [f]. Assume that
I is an interval. Show: f,(I) is an interval.

Proof: Since I is an interval, I # (J. So, since I < dom|[f], we
get fu(I) # . So, by < of Fact 37.1 p. 276, we need only show:
Va,be f.(I), [a|b] < fi(I). Given a,b e f.(I). Want: [a|b] < f.(]).



Since a,b € f,(I), choose s,t € I such that a = f(s) and b = f(t).
Since s,t € I and [ is an interval, we conclude, by = of Fact 37.1 p. 276,
that [s|t] < I. Then f.([s]t]) € f«(I). Also, [s|t] < I < dom|f], so,
as f is continuous, f is continuous on [s|t]. Then, by the Intermediate

Value Theorem (Theorem 29.7 p. 218), [f(s)|f(¢)] < f«([s]t]). Then
[alb] = [f(s)|f ()] < fe([s]t]) € fe(I), as desired. QED

6-2. Let X, Y < R. Let f: X <> Y be continuous. Let X, := Intg X.
Show that f~! is continuous on f,(Xp).

Proof: We wish to show: Vq € f.(Xy), f~' is continuous at q. Let
q € f«(Xo) be given. We wish to show: f~! is continuous at q. Let
g := f~'. We wish to show: ¢ is continuous at ¢. We wish to show:
YU € Nr(9(q)), 3V € Nz(q) s.t. g«(V) < U. Let U € Nr(g(q)) be
given. We wish to show: 3V € Ng(q) s.t. g«(V) € U.

Since q € f«(Xy), choose p € Xy s.t. ¢ = f(p). Then g(q) = p.
Then U € Ng(g(q)) = Nr(p). That is, U is a neighborhood of p in X.
Choose an open Uy in R s.t. pe Uy € U. Let V := f,(Uy n Xp). We
wish to show: both V € Ng(q) and ¢,(V) € U.

Since g = f~! and since Uy n Xy € Xy € X = dom [f], it follows
that g*(f*<U0 M Xo)) = UO M X(]. Then

g*(V) = g*(f*(UoﬁX())) = UynXy € Uy € U

It remains to show: V € Ng(q).

Since Xy = Intg X, we get: Xy is open in R. So, since Uy is open in R,
we see that Uy n X is open in R. Also, Uy n Xy € Xg € X = dom [f].
Also, f : R --» R is 1-1 and continuous. Therefore, by Invariance
of Domain (Theorem 30.3 p. 227), f.(Uy n Xo) is open in R. That
is, V is open in R. Since p € Uy and p € Xy, we get p € Uy n Xj.
So, since p € Xy € X = dom|[f], we get f(p) € f«(Up n Xp). Then
q = f(p) € fu(Uy n Xo) = V. By Remark 16.4 p. 117, any open set is
a neighborhood of each of its points. So, since ¢ € V' and since V is
open in R, it follows that V € Nk(q), as desired. QED

6-3. Let f : R --» R be str. increasing. Show: f~1! is str. increasing.

Proof: Let g := f~!. We wish to show: g is str. increasing. We wish
to show: Vs,t € dom [g], ([s <t] = [g(s) < g(t)]). Let s,¢ € dom|g]
be given. We wish to show: ([s <t] = [g(s) < g(t)]). Assume that



s <t. We want: g(s) < g(t). Let a := g(s), b := g(t). We want: a < b.
Assume that a > b. We aim for a contradiction.

Since f is strictly increasing, it follows that f is semiincreasing. So,
since a = b, we get f(a) = f(b). Since a = g(s), we get f(a) = s. Since
b= g(t), we get f(b) =t. Then s = f(a) = f(b) =t,sot < s. Then
t<s <t sot <t Contradiction. QED

6-4. Let X, Y < R. Let f: X <> Y be strictly increasing. Let a € R.
Assume: X = [a, ). Show: f~! is continuous at f(a).

Proof: Let g := f~'and let ¢ = f(a). We wish to show: ¢ is continuous
at ¢. We wish to show: Ve > 0, 30 > 0 s.t., V¢ € dom [g],

[[t=al<0] = [llg@®]-Il9@]l <e]
Let € > 0 be given. We wish to show: 36 > 0 s.t., V¢ € dom [¢],

[[t—al<0] = [llg®]-Il9(Dll <e]

We have a,a + ¢ € [a,0) = X = dom[f]. So, since f is strictly
increasing and a < a + ¢, we get f(a) < f(a + ¢). We conclude that
0 <[fla+e)]—[f(a)]. Let 6 := [f(a+e)]—[f(a)]. Want: Vt € dom [g],

[[t=gql <] = [llg@®]-l9(@]l <e]
Let t € dom [g] be given. We wish to show:

[[t=al<o] = [llg®]-Il9(D]l <e]

Assume that |t — ¢| < . We wish to show: |[g(t)] — [9(¢)]] < €.

Let s := g(t). Since ¢ = f(a), we get g(¢) = a. We want: |s—a| < ¢.
Equivalently, we wish to show: a —¢ < s < a +«.

Since t € dom|[g], we get g(t) € im[g]. Since g = f~!, we get
im[g] = dom [f]. Then s = g(t) € im[g] = dom [f] = X = [a,0), so
s> a. Then a — e < a < s. It remains to show: s < a +e.

Since |t — q| < 0, we see that ¢ —§ <t < ¢+ 6. Then

t < q+0 = [fla)]+[fla+e)]-[fla)] = fla+e).

Since a + € € dom|[f], we get f(a +¢) € im[f]. Since g = f~1, we
get dom [g] = im[f]. Then f(a+¢) € im|[f] = dom [g]. By HW#6-3,
we see that f~! is strictly increasing. That is, g is strictly increasing.
So, since t < f(a + ¢€), since ¢t € dom [g] and since f(a + ) € dom [g],
we get g(t) < g(f(a+¢)). Since a + ¢ € dom[f] and g = f~!, we get
g(fla+¢e)) =a+e. Then s =g(t) < g(f(a+¢)) =a+e. QED



6-5. Let X, Y € R. Let f: X <> Y be strictly increasing. Let a € R.
Assume: 3b € (a,0) s.t. X = [a,b). Show: f~! is continuous at f(a).

Proof: Let g := f~'and let ¢ = f(a). We wish to show: g is continuous
at ¢. We wish to show: Ve > 0, 36 > 0 s.t., Vt € dom [g],

[ft—al<d] = [ls®]-lg@]l <e]
Let € > 0 be given. We wish to show: 36 > 0 s.t., V¢ € dom [g],

[lt—ql<d] = [Ilg@®)]-1l9@]l <el

Choose b € (a,0) s.t. X = [a,b). Let ¢ := (a+b)/2. Since b € (a, ),
it follows that @ < ¢ < b. Then ¢c—a > 0. Let ¢y := min{e, c—a}. Then
g0 >0,80a < a+ey. Also,eg <c—a. Thena+ey<a+c—a=c<b.
Then a < a + &g <b. Then a + g € (a,b) < [a,b).

We have a,a + ¢ € [a,b) = X = dom|[f]. So, since f is strictly
increasing and since a < a + g, it follows that f(a) < f(a + €o).
Therefore, we have 0 < [f(a+¢e¢)]—[f(a)]. Let 6 := [f(a+eo)]—[f(a)].
We wish to show: YVt € dom [g],

[[t—ql <] = [llg@®]-lg(@]l <e]
Let ¢t € dom [g] be given. We wish to show:

[[t=ql <] = [llg@®]-lg(@]l <el

Assume that [t — g| < 6. We wish to show: |[g(t)] — [9(¢)]] < e.

Let s := g(t). Since ¢ = f(a), we get g(¢) = a. We want: |s—a| < e.
Equivalently, we wish to show: a —e < s < a+e¢.

Since t € dom [g], we get g(t) € im[g]. Since g = f~!, we get
im[g] = dom|[f]. Then s = ¢(¢t) € im[g] = dom [f] = X = [a,b), so
s=a. Then a — e < a < s. It remains to show: s < a + ¢.

Since |t — ¢q| < 0, we see that ¢ —d <t < g+ ¢. Then

t < q+0 = [fla)]+[flate)]=[fla)] = fla+e)

Since a + gy € dom [f], we get f(a+¢gg) € im[f]. Since g = f~, we get
dom [g] =im[f]. Then f(a +¢ep) € im[f] = dom [g]. By HW#6-3, we
see that f~! is strictly increasing. That is, ¢ is strictly increasing. So,
since t < f(a + €g), since t € dom [¢] and since f(a + &¢) € dom [g], we
get g(t) < g(f(a+ &9)). Since a + gy € dom[f] and g = f~!, we get
g(f(a+ep)) = a+eg. Then s = g(t) < g(f(a+eg)) = a + €o. Since
a+¢g € dom[f] and g = 1, we get g(f(a + &y)) = a + g9. Then

-1



s =g(t) < g(f(a+e)) =a+ey. We have g9 = min{e,c — a} < e.
Then a +e¢p <a+e. Then s <a+¢eg <a+e, as desired. QED

Homework 5: Due on Tuesday 20 February

5-1. Show: Yw,z € R, cos(w+z) = (cosw)-(cosx) — (sinw)-(sinz).
Proof: Let w € R be given. We wish to show: Vx € R,
cos(w+axz) = (cosw)-(cosz) — (sinw) - (sinz).

Define 7: R — R by 7(z) = w + x.
Claim 1: Yz € R, 7/(x) = 1. Proof of Claim 1: Let x € R be given.
We wish to show: 7/(z) = 1. We wish to show: li(r)n SSE=1.

For all h € R}, we have
R el Bl ut)
[w+ x + h] — [w+ x]

Then SS* = C} on R, so lim S57 = lim Cg. So, since lim Cg =1,
we get lién SST =1, as desired. End of proof of Claim 1.
Let f := coso7. Then, for all z € R, we have
f(z) = (cosot)(x) = cos(r(x)) = cos(w + z).
We therefore wish to show: Vx € R,
flz) = (cosw)- (cosx) — (sinw) - (sinz).

Claim 2: Vo € R, f'(z) = (—sin)(w + z). Proof of Claim 2: Let
x € R be given. We wish to show: f'(z) = —[sin(w + z)].
We have dom [coso 7| = R. Then

x € R = LPgRR = LPg(dom|[expoT]) = LPDg(cosor).

So, since f = cosor, by the Chain Rule, f'(z) =* [cos'(7(z))][7'(x)].
By Claim 1, 7/(z) = 1. Then f'(z) =* cos'(7(x)).
We have cos’ = —sin and 7(z) = w + z. Then

fl(x) =% (—sin)(w+zx) # @.



Then f'(z) = (—sin)(w + z), as desired. End of proof of Claim 2.
Claim 3: Yz € R, f"(x) = (—cos)(w + x). Proof of Claim 3: By
Claim 2, f" = (—sin) o 7. Let x € R be given. We wish to show:
f"(x) = —[cos(w + x)].
We have dom [(—sin) o 7] = R. Then

z € R = LPgR = LPDg((—sin)o 7).

So, since f’ = (—sin) o 7, by the Chain Rule, we conclude that
f'(x) =* [(—sin)(7(x))][7'(x)]. By Claim 1, 7/(x) = 1. Then
f'(@) = (=sin)'(7(z)).

We have (—sin)’ = —cos and 7(z) = w 4+ z. Then
f'(z) =% (—cos)(w+zx) # O.

Then f'(z) = (—cos)(w + x), as desired. End of proof of Claim 3.
Claim 4: f" = —f. Proof of Claim 4: We wish to show: Vz € R,
f"(x) = (—f)(z). Let x € R be given. Want: f"(z) = (—f)(z).
By Claim 3, f"(z) = (—cos)(w + x). Then f"(z) = —[cos(w + z)].
By definition of f, we have f(z) = (coso7)(z). Then

f(z) = cos(r(x)) = cos(w + x).

We conclude that f”(x) = —[cos(w + x)] = —[f(z)] = (—f)(x), as
desired. End of proof of Claim 4.

Let a := f(0) and let b := f’(0). By Claim 4 and Theorem 35.2,
f = a-cos+b-sin. By definition of f, f(0) = cos(w + 0). Then
a = f(0) = cos(w + 0) = cosw. By Claim 2, f’(0) = (—sin)(w + 0).
Then b = f/(0) = (—sin)(w + 0) = —(sinw). Then: Vz € R,

f(z) = (a-cos+b-sin)(z)
= a-(cosz)+b- (sinz)

= (cosw) - (cosx) — (sinw) - (sinz),

as desired. QED

5-2. Show: Vr € R,

sin(2z) = 2-(sinx) - (cosz) and

cos(2x) (cos?z) — (sin®z).



Proof: Let x € R be given. We wish to show:
sin(2x) = 2-(sinz)- (cosz) and
cos(2z) = (cos’w) — (sin®z).
Let w := x. Then sinw = sinz and cosw = cosz. By Theorem 35.3,
we have sin(w + z) = (sinw) - (cosx) + (cosw) - (sinz). Then
sin(2x) = sin(x +2z) = sin(w + z)
= (sinw)- (cosz) + (cosw) - (sinx)
= (sinz) - (cosx) + (cosz) - (sinx)
= 2-(sinz)- (cosz).
It remains to show: cos(2z) = (cos?z) — (sin’z).
By HW#5-1, cos(w + ) = (cosw) - (cosx) — (sinw) - (sinx). Then
cos(2z) = cos(zx+x) = cos(w + x)
= (cosw) - (cosx) — (sinw) - (sinx)
= (cosx) - (cosx) — (sinz) - (sinx)
= (cos’w) — (sin®z),

as desired. QED

5-3. Let f: R —> R, a:= f(0). Assume " = f. Show: f = a-exp.
Proof: Let ¢ := f — (a - exp). We wish to show: ¢ = C3. We have

¢(0) = [f(0)] — a-[exp(0)] = [a] —a-[1] = 0.
So, by Theorem 35.14, it suffices to show: ¢ = ¢. We wish to show:
VreR, ¢'(x) = ¢(x). Let z € R be given. Want: ¢'(z) = ¢(z).
We have dom [f] = R and dom [exp] = R, so dom [¢] = R. Then
r € R =dom[¢] = dom[f — (a-exp). So, by linearity of differentiation

(f = (a-exp))'(z) =" [f'(2)] — a-[exp'(2)].

So, since f — (a - exp) = ¢, we get ¢'(x) =* [f'(x)] — a - [exp/(x)].
By assumption, we have f’ = f. Then, since exp’ = exp, we see that
¢'(x) =" [f(x)] = a-[exp(z)]. So, since ¢(z) = [f(z)] — a-[exp(z)],
we get ¢'(x) =" ¢(z). Since x € R = dom [¢], we get ¢(x) # @. Then
¢ (x) =* ¢(x) # @, and so ¢'(x) = ¢(z), as desired. QED

5-4. Show: Vw,z € R, exp(w+x) = (expw) - (expz).



Proof: Let w € R be given. We wish to show: Vx € R,
exp(w+z) = (expw)- (expz).

Define 7: R — R by 7(z) = w + =.
Claim 1: Yz € R, 7/(x) = 1. Proof of Claim 1: Let x € R be given.
We wish to show: 7/(z) = 1. We wish to show: li(r)n SST = 1.

For all h € R}, we have
[7(z + h)] — [7(2)]

h
[w+ x + h] — [w+ x]

(S57)(h) =

Then SS* = Cj on Rf, so lim SST = lim Cg. So, since lim Cg =1,
we get li(gn SST =1, as desired. End of proof of Claim 1.
Let f :=expor. Then, for all x € R, we have

f(x) = (expoT)(z) = exp(r(z)) = exp(w+ z).
We therefore wish to show: Vx € R,

flx) = (expw)-(expx).

Claim 2: Yz € R, f'(x) = exp(w + z). Proof of Claim 2: Let z € R
be given. We wish to show: f'(z) = exp(w + ).
We have dom [exp o7] = R. Then

r € R = LPgR = LPg(dom[expor]) = LPDg(expor).

So, since f = expo T, by the Chain Rule, f'(z) =* [exp/(7(2))] [T/ (x)].
By Claim 1, 7/(z) = 1. Then f'(x) =* exp/(7(z)).
We have exp’ = exp and 7(x) = w + x. Then

() = exp(w+1x) # @.

Then f'(x) = exp(w + x), as desired. End of proof of Claim 2.

Claim 3: f" = f. Proof of Claim 8: We wish to show: Vz € R,
f'(z) = f(x). Let x € R be given. Want: f'(x) = f(z).

By Claim 2, we have f’(x) = exp(w + x). By definition of f, we
have f(z) = (expo7)(x). Then f(z) = exp(7(z)) = exp(w + x). We
conclude: f'(z) = exp(w + x) = f(x). End of proof of Claim 3.



Let a := f(0). By Claim 3 and HW#5-3, f = a - exp. By definition
of f, f(0) = exp(w + 0). Then a = f(0) = exp(w + 0) = expw. Then:
VreR, f(x) = (a-exp)(x) =a- (expx) = (expw) - (expx). QED

5-5. Let f : R — R. Assume that f' = f. Let g := f2. Show: ¢’ = 2g.

Proof: Define P : R — R by P(x) = z%. By Theorem 16.3, for all
x € R, we have P'(z) = 2x. Also, for all x € R, we have

(Pof)x) = P(f(z)) = [f@)]* = f(x) = g(=).

Then g = Po f. We wish to show: Yz e R, ¢'(z) = (29)(z). Let z € R
be given. We wish to show: ¢'(z) = (2g)(z).

We have dom [P o f] = R. so LPDg(P o f) = LPgR. Then we have
r € R = LPgR = LPDg(P o f). So, by the Chain Rule, we see that
(Po fY(x) =* [P'(f(@)]- [/(z)]. Then ¢'(x) =* [P(f(x))] - [F'@)]
We have P'(f(z)) = 2-[f(x)]. By assumption, f' = f, so f'(z) = f(z).
Then ¢'(x) =* 2-[f(2)]* # @, s0 ¢'(z) = 2-[f(z)]>. We have
g(x) = f*(x) = [f(2)]*. Then ¢'(x) = 2-[g(x)] = (29)(z). QED

Homework 4: Due on Tuesday 13 February

4-1. Let m € R. Define A : R — R by A(z) = mz. Show: X = Cg".

Proof: We want: Vo € R, N(z) = Cg(z). Let z € R be given. We
want: N'(x) = Cg'(z). We have CF'(xz) = m. We want: X (z) = m.

Let ¢ := CE’%. Since ¢ = CF' on R, it follows that lignqﬁ = li(I)n Cr'.
So, since li(I)Il Cg' = m, we get lign ¢ =m. We want: h[I)Il SSYy =m. It
therefore suffices to show: SSy = ¢.

As Rj is a common superdomain of SSY and ¢, it suffices to show:
Vhe Ry, SS3(h) = ¢(h). Let h e R} be given. Want: SS§(h) = ¢(h).

We have ¢(h) = Cﬂ% (h) = m. Then

M+ )] = A=)] _ [m + )] = [ma]

mx + mh — mx mh

h h

as desired. QED

4-2. Let S < R. Show: —(LPgS) = LPr(-95).



Proof: Define A : R — R by A(z) = —z. Then A : R — R is continuous
and one-to-one. Also, \™' = \. Then A\™! : R — R is continuous. Then
A : R — R is a homeomorphism. Then A\, (LPgS) = LPr(A(S5)). That
is, —(LPgS) = LPg(—S), as desried. QED

4-3. Let f: R --» R, p e R. Define fy : R --» R by fo(x) = f(—=).
Let pg := —p. Assume that f has a local maximum at p in R. Show
that fy has a local maximum at py in R.

Proof: Choose V € Ng(p) s.t. V < dom [f] and f(p) = f«(V). We wish
to show: 3Uy € Ngr(po) s.t. Uy < dom [ fo] and fo(po) = (fo)«(Up).

Since Bg(p) is a neighborhood base at p in R, choose § > 0 such that
Br(p,0) < V. Let U := Bg(p,d). Then U < V. Let Uy := Bg(po,9).
Since Bg(po) is a neighborhood base at pg in R, we get Uy € Nr(po).
Want: Uy € dom [fo] and fo(po) = (fo)«(Up). Since U < V < dom [ f],
it follows that —U < —(dom [f]). We have

Uy = Br(po,d) = Br(-p,0) = —[Br(p,0)] = —U.

Then Uy = —U < —(dom[f]) = dom [fo]. Want: fo(po) = (fo)«(Uo).
Want: Vyo € (fo)«(Uo), fo(po) =y Let Yo € (fo)«(Up) be given. We
wish to show: fo(po) = vo.

Since yg € (fo)«(Up), choose xg € Uy s.t. yo = fo(zo). Let z := —xy.
We have fo(po) = f(=po) = f(p) and yo = fo(zo) = f(—z0) = f(2).
We wish to show that f(p) > f(z), or, equivalently, that f(z) < f(p).

We have z = —xg€ —Uy = —(=U) =U <V < dom|[f]. Thenxz e U
and x € dom [f], and so f(x) € f.(U). Since U < V, it follows that
f+(U) < f«(V). By choice of V, we have f.(V) < f(p). We conclude
that f(z) € fo(U) < fu(V) < f(p), as desired. QED

4-4. Let f: R --» R, pe R. Define f; : R --» R by fi(z) = —[f(x)].
Assume that f has a local minimum at p in R. Show that f; has a
local maximum at p in R.

Proof: Want: 3V € Ng(p) s.t. V < dom|[fi] and f(p) < (f1)«(V).
Choose V € Ng(p) s.t. V < dom|[f] and f(p) < fo(V). We want:
V < dom[fi] and fi(p) = (f1)«(V). As V < dom|[f] = dom[f1], it
remains to show: fi1(p) = (f1)«(V). We wish to show: Vy; € (f1)«(V),
fi(p) = y1. Let yy € (f1)«(V) be given. We wish to show: fi(p) = v1.



Since y; € (f1)«(V), choose x € V such that y; = fi(z). Since
x €V < dom|f], we get f(z) € fu(V). Then, by the choice of V,

f(p) < f(x). Then fi(p) = —[f(p)] = —[f(x)] = fi(z) =y. QED

4-5. Let f : R --» R, p € dom|[f’]. Assume that f has a local
extremum at p. Show that f'(p) = 0.

Proof: At least one of the following must be true:

(1) f has a local maximum at p in R or
(2) f has a local minimum at p in R.

Case (1): By Lemma 33.16, f'(p) = 0, as desired. End of Case (1).

Case (2): Define f; : R --» R by fi(z) = —[f(x)]. By HW#4-4,
we see that f; has a local maximum at p in R. Define A : R - R
by A(xz) = —z. Then f; = Ao f. Since f; has a local maximum at p
in R, by (3) of Remark 33.9, we get p € LPDg fi. Then p € LPDg(Xo f),
50, by the Chain Rule, we get (Ao /)(p) =" [N(f(p)]Lf'(p)] Since
p € dom [f'] < dom|[f], we get f(p) € im[f]. So, since im[f] < R, we
get f(p) e R. By HW#4-2, X'(f(p)) = —1. Then

filp) = (o f)(p) =" VU@ ] = =1f'?)],

so fi(p) =* —[f'(p)]. Since p € dom[f'], we get f'(p) € im[f]. So,
since im [f] € R, we get f'(p) € R. Then —[f'(p)] # ®.

Since fi(p) =" —[f'(p)] # ®, we conclude that fi(p) = —[f'(p)]-
Then f{(p) # @, so p € dom [f]]. So, since f; has a local maximum
at p in R, it follows, from Lemma 33.16, that f](p) = 0.

Then 0 = f{(p) = —[f'(p)]. Then f'(p) = 0. End of Case (2). QED

Homework 3: Due on Tuesday 6 February

3-1. Let X be a topological space, let S < X and let p e X. Show:
[pentyS] < [SeNx(p) ]

Proof: Proof of =: Assume: p € IntxS. We wish to show: S € Nx(p).
We wish to show: Jopen U in X s.t. pe U = S.

Let U := IntxS. Then U is open in X, and we wish to show:
pelU < S. We have p € IntxS = U, and it remains to show: U < S.

We have U = IntxS < S, as desired. End of proof of =.

Proof of «<: Assume: S € Nx(p). We wish to show: p € IntxS.



Since S € Nx(p), choose an open U in X s.t. pe U < S. Since U is
open in X, we get IntxU = U. Since U < S, IntxU < IntxS. Then
pe U =IntxU < Intx S, as desired. End of proof of <. QED

3-2. Let ¢ : R --» R, let p € R and let ¢ > 0. Assume: ¢ — ¢ near p.
Show: U € N (p) s.t. ¢.(U) > 0.

Proof: Let V := (0,00). Then V is open in R and ¢ € V. Therefore,
by Remark 16.4, we conclude that V' € Ng(q). So, since ¢ — ¢ near p,
choose U € Ny (p) s.t. ¢.(U) < V. We wish to show: ¢.(U) > 0.

We have ¢,(U) €V = (0,00) > 0, as desired. QED

3-3. Let a, 8,7 : R --» R. Let S < dom [(«, 8,7)]. Let p € IntgS and
let ¢ € R. Assume that o < § < v on S. Assume that a(p) = v(p).
Assume that o/ (p) = ¢ = 7/(p). Show: f'(p) = q.
Proof: We wish to show: li(r)n SSh=q.

Claim: Yh € (S —p)g, (SSE)(h) € [(SSE)(h)[(SSE)(h)]. Proof
of Claim: Given h € (S—p)s. Want: (SS5)(h) € [(SSE)(h)[(SSP)(h)].

We have he (S —p); €S —p. Then p+ h e S. Then

alp+h) < Blp+h) < ~p+h).

We have p € IntgS < S. It follows that a(p) < B(p) < v(p). So,
since a(p) = v(p), we conclude that a(p) = S(p) = v(p). So, since
alp+h) <Bp+h)<~v(p+h), we get:

lap + h)] = [a(p)] < [Bp + 1)] = [B(p)] < [v(p+ )] = [v()].
Dividing this by h, we get:

(h>0) = ((55)(h)
(h<0) = ((55)(h)

< (SS3)(h)
> (SS3)(h)

Then

(h>0) = ((555)(h) € [(SSE)(R)[(SST)(R)]) and
(h<0) = ((555)(h) € [(SSE)(R)[(SSD)(R)])-

Since h € (S —p)§, we get h # 0, so: either h > 0 or h < 0. Then

(SSE)(h) € [(SSE)(h)[(SSE)(R)], as desired. End of proof of Claim.
Let D := dom[f]. Then IntgD < LPrD = LPDgS. We have

S < dom|[(a,3,7)] € D. Then p € IntgS < IntgD < LPDgs. It



therefore suffices to show: SSg — ¢ near 0. We wish to show: Ve > 0,
30 > 0 s.t., Yh € dom [SSE],

[0<[nl<d] = [I(SSE) ()] —dql <]
Let ¢ > 0 be given. We wish to show: 30 > 0 s.t., Vi € dom [SSE],
[0<[h[<d] = [I[(SSE))]—ql<e]

Since p € IntgS, by HW#3-1, we get S € Nr(p). So, since Bg(p)
is a neighborhood base at p in R, choose n > 0 s.t. Bgr(p,n) < S.
Since o/(p) = ¢, it follows that SS? — ¢ near p. Choose A > 0 s.t.,
Vh € dom [SS?],

[0<[h[<A] = [I(SSHR)]—ql <e]

Since 7'(p) = ¢, it follows that SS? — ¢ near p. Choose > 0 s.t.,
Vh € dom [SST7],

[0<[hf<p] = T[IESSHR)] gl <e]
Let ¢ := min{n, A, u}. We wish to show: Vh € dom [SSE],

[0<[nl<d] = [I(SSE) ()] —dql <]
Let h € dom [SS}] be given. We wish to show:

[0<[nl<d] = [I(SSE ()] —ql <]

Assume: 0 < |h| < 0. We wish to prove: |[(SS;)(h)] —q| < e. Let
I:=(q—¢,q+¢). We wish to prove (SS5)(h) € [

Since 0 < |h|, it follows that h # 0. Since |(p+h) —p| = |h| <6 < n,
we see that p+ h € Bg(p,n). By the choice of 1, we have Bg(p,n) < S.
Since p + h € Bg(p,n) < S, we get h € S —p. So, since h # 0, we have
he (S—p)y. Then, by the Claim, (SS5)(h) € [ (SS2)(h)|(SS2)(h)].

Since 0 < |h| < § < A, by choice of A, we get: [[(SSE)(h)] —¢q| < e.
Then (SS?)(h) € I. Since 0 < |h| < § < p, by choice of u, we get:
I[(SSE)(h)] — q| < e. Then (SSP)(h) € I. Since I is an interval and
(SSE)(h) € I and (SSP)(h) € I, we get [ (SSE)(h)|(SSP)(h)] < 1.

Then (SS%)(h) € [(SSE)(h)|(SSE)(h)] € I, as desired. QED

3-4. Let W be a normed vector space. Let f,g: R --» W. Let U be
an open subset of R. Assume: U < dom [(f, g)]. Assume: f = gon U.
Show: f' = ¢ on U.



Proof: We wish to show: Vp e U, f'(p) = ¢'(p). Let p € U be given.
We wish to show: f'(p) = ¢'(p). We wish to show: li(r)n SS% = lién SSY.
Since U is open in R, it follows that U — p is open in R. So, since
0eU—p, weget U—pe Ng(0). Let V := (U—p)§. Then V e N (0).
Claim: SS? = SSP on V. Proof of Claim: We want: Vh € V,
(SSF)(h) = (SSP)(h). Given h e V. We want: (SS¥)(h) = (SSP)(h).
Since h e (U—p)g € U —p, we get p+h e U. Since p,p+h € U and
since f =g on U, we get f(p) = g(p) and f(p+ h) = g(p+ h). Then

Lfp+M] -] _ L9+ h)]—19/)]
h h

as desired. End of proof of Claim:

Since V' € N (0), by the Claim and by Theorem 20.8, we have
both LIMS (S5%) < LIMS (557) and LIMS (S57) < LIMS (SS%). Then
LIMS (S57) = LIMS (S5%). Then

(SS7)(h) =

= (555)(h),

lim 557 = ELT(LIMS(SS})) = ELT(LIMS(SS?)) = lim SS%,

as desired. QED

3-5. Define f : R --» R by f(z) = [#?][sin(z7®)]. Let 8 := adjyf.
Show: p’'(0) =

Proof: Define a,7 : R — R by a(z) = —z? and y(z) = 2% For
all z € Ry, we have both —1 < sin(z™®) < 1 and 2* > 0, and so
[2%][-1] < [2%][sin(z7?)] < [z%][1], and so a(z) < f(z) < v(x). Then
a< f<yonRjJ. So, since f = on Ry, we get: @ < <y on Rj.
So, since a(0) = B(0) = v(0) =0, we get o < <y on R.

We have a(0) = 0 = v(0). By the Power Rule, for all 2 € R, we
have v/(z) = 2x. Then +/(0) = 0. So, since a = —~, by linearity
of differentiation, we have o/(0) =* —[7/(0)]. Then

Q(0) =F —[Y(0)] = -0 = 0 # ©.

Then /(0) = 0. Then /(0) = 0 = 4/(0). Let p := 0 and ¢ := 0.
Then a(p) = v(p) and o/(p ) = q = v'(p). Then, by HW#3-3, we get
B'(p) = q. That is, 8/(0) = 0. QED

Homework 2: Due on Tuesday 30 January




2-1. Let X and Y be topological spaces. Let Xy < X and let Y, € Y.
Let f: Xo --+ Y. Show:

[ fis (X,Y)-continuous | = [ fis (Xo, Yp)-continuous |.

Proof: Assume: fis (X,Y)-continuous. Want: f is (X, Yp)-continuous.
Want: Vp € dom [f], f is (Xo, Yo)-continuous at p. Given p € dom [ f].
Want: [ is (Xo, Yp)-continuous at p. Since f is (X,Y)-continuous
and p € dom[f], it follows that f is (X,Y)-continuous at p. Want:
YVo € Ny, (f(p), 3Us € Nx,(p) s-t. fo(Uo) < Vi Let Vi € Ny, (f(p)) be
given. We wish to show: 30Uy € Ny, (p) s.t. f«(Up) < V.

By extension, choose V € Ny(f(p)) st. V.nYy = V. Since f
is (X,Y)-continuous at p, choose U € Nx(p) s.t. fo(U) =€ V. We
define Uy := U n Xy. By restriction, Uy € Nx,(p). We wish to show:
J«(Uy) < Vy. We wish to show: Vz € dom[f],

[zelo] = [fl@)eW]
Let z € dom [ f] be given. We wish to show:
[zelo] = [[fl@)eW]

Assume: z € Uy. We wish to show: f(x) € V.

We have x € Uy = U n Xy € U. So, since z € dom|[f], we get
f(z) e fu(U). Then f(z) € fu(U) < V. Since f: Xy --» Yy, it follows
that im [f] € Yy. Then f(z) € im[f] < Yo. So, since f(z) € V, we get
f(z) eV nYy. Then f(z) eV nYy =V, as desired. QED

2-2. Let X, Y and Z be topological spaces. Let f: X --» Y and let
g: X --+»Z. Letae X, beY and ce Z. Assume:

(1) f—>binY near a in X and
(2) g — cin Z near a in X.

Show: (f,g) — (b,c) in Y x Z near a in X.

Proof: Want: YW € Ny z((b,c)), IR € N5 (a) s.t. (f,9)«(R) € W. Let
W e Ny.z((b,c)) be given. Want: IR € N (a) s.t. (f,9)«(R) = W.
Choose U € Ny (b) and V € Nz(c) s.t. UxV < W. Since f > binY
near a in X and since U € Ny (b), choose P € N5 (a) s.t. fo(P) < U.
Since g — ¢ in Z near a in X and since V € Nz(c), choose Q € N5 (a)
st. fu(Q) V. As PQ e Ng(a), Pn Qe Ng(a). Let R:= Pn Q.



Then R e N (a). Want: (f,g)«(R) € W. Want: Va € dom [(f, g)],

[zeR] = [(f,9)(x)eW]
Let = € dom [(f, g)] be given. We wish to show:

[zeR] = [(f,9)@x)eW]

Assume: z € R. We wish to show: (f,g)(z) e W.

We have = € dom |[(f,g)] = (dom|[f]) n (dom[g]), so z € dom|[f]
and z € dom [g]. Since = € dom [f] and since x € R=P n Q < P, we
get f(z) € fu(P). Since z € dom [f] and since z € R = Pn Q < Q,
we get g(z) € g«(P). Then f(x) € fo(P) < U and g(x) € g.(P) = V.
Then (f,g)(x) = (f(z),g(x)) e U x V< W, as desired. QED

2-3. Show: Vz e R, Iz e Rs.t. 2° + 2% = 2.

Proof: Let z € R be given. We wish to show: 3!z € R s.t. 2° + 23 = 2.

Define f : R — R by f(z) = 2° + 2. Then f is continuous. We wish
to show: Jlz € R s.t. f(z) = z. We wish to show:

(1) Jz e R s.t. f(x) = =
2) Vw,zeR, ([flw)=2=f(2)] = [w=2z]).

Proof of (1): As ze R, —|z| < z < |z|. Let b := max{|z|/2,1}. Since
b>1,wegetd® =band b® > b. Thend® > b > |z|/2 and b > b > |z|/2.
Then f(b) = b° +b* = (|2]/2) + (|z|/2) = |z|. Then —[f(b)] < —|z|.
We have f(—b) = (=b)° + ()3 = —(b° + b%) = —[f(b)] < —|z|. Then
f(=b) < —|z] < 2z < |2z| < f(b). Then z € [f(—0b), f(b)]. Also, since
b > 1, we see that —b < —1. Then —b < —1 1 < b. It suffices
to show: Jx € [—b,b] s.t. f(x) =

By the Intermediate Value Theorem, [f(—b), f(b)] < f«([-0,D]).
Then z € [f(=b), f(b)] < fu«([=D,b]), so Jx € [=b,b] s.t. f(x) = 2
as desired. End of proof of (1).

Proof of (2): Given w,x € R. Want: [f(w) =z = f(z)] = [w = z].
Assume: f(w) =z = f(x). We wish to show: w = x. Assume: w # z.
We aim for a contradiction.

Let p := min{w, 2} and let ¢ := max{w, z}. Since w # z, it follows
that p < ¢. Also, f(p) € {f(w), f(x)} = {z}, so f(p) = z. Also,
f(@) € {f(w), f(x)} = {2}, so f(q) = 2. Since p < ¢, we get p° < ¢’
and p* < ¢>. Then p° + p* < ¢® + ¢*. Then

fp) = +p < +¢ = fla) = 2 = fp),



so f(p) < f(p). Contradiction. End of proof of (2). QED

2-4. Let X and Y be topological spaces. Let f : X --» Y. Let
Xo € dom [f]. Assume that f is (X,Y)-continuous on Xy. Show that
f1Xo is (Xo, Y')-continuous.

Proof: Let g := f|Xo. Then dom [g] = X,. We wish to show: g is
(Xo, Y)-continuous. By HW#2-1 (with Yj replaced by Y), want: g is
(X,Y)-continuous. Want: Vp € Xy, ¢ is (X,Y)-continuous at p. Let
p € Xo be given. We wish to show: ¢ is (X, Y)-continuous at p. Want:
YV e Ny(g(p)), 3U € Nx(p) s.t. g.(U) < V. Let V e Ny(g(p)) be
given. Want: 3U € Nx(p) s.t. g.(U) € V.

Since p € Xy € dom|[f], and since f is (X,Y)-continuous, it fol-
lows that f is (X,Y)-continuous at p. Since p € Xy < dom|[f],
we have (f|Xo)(p) = f(p). Then g(p) = (f|Xo)(p) = f(p). Since
Ve Ny(g(p)) = Ny (f(p)) and since f is (X, Y)-continuous at p, choose
UeNx(p) st. fo(U) € V. We wish to show: ¢,(U) < V.

Recall that dom [g] = Wy. We wish to show: Yw € X,

[weU] = [gw)eV].
Let w € X be given. We wish to show:
[weU] = [gw)eV].

Assume: w e U. We wish to show: g(w) e V.

Aswe Xy < dom|[f] and as w € U, we get f(w) € f.(U). By choice
of U, we have f,(U) € V. Since w € Xy < dom [f], (f|Xo)(w) = f(w).
Then g(w) = (f|Xo)(w) = f(w) € /() € V. QED

2-5. Let f: R --» R. Let o, 8 € dom [ f]. Assume that f is semimono-
tone on [a]8]. Show: fu([al3]) < [f(@)|f(5)].

Proof: Since «, € dom [f], we conclude that {a, 8} < dom[f]. Let
a := min{a, 8} and b := max{«, 8}. Then a < b. Also, [o|5] = [a,]].
Then f is semimonotone on [a, b]. Also, a,b € {a, f} < dom [f].
Either ( (¢ = a) and (b = ) ) or ( (a = ) and (b = «) ). Then
cither [£(a) £ (3)] = [F(@)|£(0)] or [F@LF(B)] = [FB)LF(@)]. So, since

LF(O)If(a)] = [f(@)lf(D)], we see that [f(a)[f(B)] = [f(a)[f(b)]. We
wish to show: f.([a,b]) < [f(a)|f(b)]. We wish to show: Yz € dom [ f],

(zela0]) = (flx)e[f@)lfO)])



Let € dom [ f] be given. We wish to show:

(zelad]) = (flz)elf(a)|f®)])
Assume: z € [a,b]. We wish to show: f(x) € [f(a)|f(D)].

Because x € [a, b], it follows that a < x < b. Since f is semimonotone
on [a,b], at least one of the following must be true:

(1) f is semiincreasing on [a, b| or

(2) f is semidecreasing on [a, b].

Case (1): Since a,z,b € dom|[f], since a < = < b and since f is
semiincreasing on [a,b], it follows that f(a) < f(z) < f(b). Then
f(z)e[f(a), f(b)] = [f(a)|f(b)], as desired. End of Case (1).

Case (2): Since a,z,b € dom|[f], since a < = < b and since [ is
semidecreasing on [a,b], it follows that f(a) > f(z) = f(b). Then

f(x) e [f(b), f(a)] = [f(a)|f(b)], as desired. End of Case (2). QED

Homework 1: Due on Tuesday 23 January

1-1. Let X and Y be metric spaces, and let f : X — Y. Assume that
f is not uniformly continuous. Show: 3¢ > 0, Ip, g € XV s.t., Vj e N,

Ldx (pj, ;) < /3] and [dy (f(p;), flg;)) = €]
Proof: As f is not u.c., choose € > 0 s.t. Vd > 0, Ip,q € X s.t.

[dx(p,q) <6] and [dy(f(p),f(q))=¢].
We wish to show: Ip,qe XN s.t., Vj e N,
[dx(pj,q) < /3] and [dy (f(pj), fg;)) = €]
Claim: Vj e N, dp,q € X s.t.
[dx(p.q) <1/5] and [dy(f(p),f(q)) =€ ]
Proof of claim: Let j € N be given. By the choice of ¢, dp,q € X s.t.

[ dx(p,q) <1/j] and [dy(f(p),f(q)) =€ ],

as desired. End of proof of claim.
By the claim and the Axiom of Choice, 3p,q e XN s.t. Vj e N,

[dx(pj.q;) <1/5 ] and [dy(f(ps), fg;)) =€ ],
as desired. QED




1-2. Let K be a sequentially compact metric space, let Y be a metric
space, and let f : K — Y. Assume that f is not uniformly continuous.
Show: 3¢ > 0, 3s,t € KN, Jue K s.t.

( [se >uin K] and [t, —>win K] and
[VieN,  dy ([f(s;), f(t;)) = ] )

Proof: By HW#1-1, choose € > 0 and p,qge KN s.t., Vj e N,
[drx (pj,q;) < 1/5] and [dy (f(p;), flg;)) = €]

Since K is sequentially compact, p, is subconvergent in K. Choose a
subsequence s of p, s.t. s, is convergent in K. Choose u € K s.t. s — u
in K. Since s, is a subsequence of p,, choose a strictly increasing ¢ € NN
st. 8¢ =(pol),. Let t :=(qof),. Then s,te K and u e K. Want:

( [se >uin K| and [t, —win K] and
[VieN,  dv(f(s;), f(t;)) = ] )
By choice of u, we have s, — u in K, so it remains to show:
(1)t >uin K and
(2) VjeN,  dyv(f(s), f(t;)) = e
Proof of (1): We wish to show: Vn >0, 3] e Ns.t., Vj e N,
[j=1] = [dg(tju)<n].
Let n > 0 be given. We wish to show: 3/ e N s.t., Vj e N,
[7=1] = [dx(tju)<n]
Since s, — u in K, choose R € N s.t., Vj e N,
[i=2R] = [dr(sju)<n/2]
By the Archimidean Principle, choose S € N such that S > 2/n. Let
I := max{R, S}. We wish to show: Vj e N,
[j=1] = [dk(t;u) <nl
Let 5 € N be given. We wish to show:
[j=1] = [dg(tju)<n].
Assume: j > I. We wish to show: dg(t;,u) <.
Since j = I > R, by choice of R, we conclude that dg(s;,u) < n/2.

Since £ € NN and since /, is strictly increasing, by Remark 23.12, we
get ¢; = j. It follows that 1/¢; < 1/j. Since j = I > S > 2/n, we



get 1/j < n/2. By the choice of p, and q., we have dx(ps,, qe;) < 1/¢;.
Then di(t;,s;) = dx(sj,t;) = dx(pe;, qe;) < 1/€; < 1/j < n/2. Then

di(tj,u) < [dr(t;,s;)] + [d(sj,w)] < (n/2) + (n/2) = n,

as desired. End of proof of (1).
Proof of (2): Let j € N be given. Want: dy (f(s;), f(t;))
By the choice of p and ¢, we have dy(f(pe,), f(q,)) Then
dy (f(s;), [(t;)) = dy (f(pe,), f(ae;)) = €. End of proof of (2). QED

= E.
= €.

1-3. Let X be a metric space, and let s € X~. Assume that s, is
convergent in X. Show that s, is Cauchy in X.

Proof: We wish to show: Ve > 0, 3K € N s.t., Vi,7 € N,
[i,j = K] = [dx(si,s5) <e].

Let € > 0 be given. We wish to show: 1K € N s.t., V7,7 € N,
[i,j = K] = [dx(si,s;)<e].

Since s, is convergent in X, choose u € X s.t. s, — u in X. Choose
K eNst., VjeN,

[j=>K] = [dx(sj,u)<e/2].
We wish to show: Vi,j e N,

[i,j=K] = [dx(sis;)<e]
Let 7,7 € N be given. We wish to show:

[i,j = K] = [dx(si,s5) <€l

Assume 4, j > K. We wish to show: dx(s;,s;) < e.

Since i = K, by choice of K, we have d(s;,u) < /2. Since j > K,
by choice of K, we have d(s;,u) < &/2.

Then dx(s;, ;) < [dx(si,w)] + [dx(u, s;)] < (¢/2) +(¢/2) = e. QED

1-4. Let X be a metric space, and let s € X~. Assume that s, is
Cauchy and subconvergent in X. Show that s, is convergent in X.

Proof: Since s, is subconvergent in X, choose a subsequence t of s,
such that ¢, is convergent in X. Choose u € X s.t. t, > u in X. We
wish to show: s, — u in X. Want: Ve > 0, dK e Ns.t., Vj e N,

[j=>K] = [dx(s;u)<el].



Let € > 0 be given. We wish to show: 3/ € N s.t., Vj € N,
[j=1] = [dx(sju)<el]
Since t, — u in X, choose L € N s.t., Vj e N,
[j=L] = [dx(t,u)<e/2]
Since s, is Cauchy, choose M € N s.t., Vj, ke N,
[]7k>M] = [dX<Sj7$k)<8/2]'
Let I := max{L, M}. We wish to show: Vj e N,
[j=1] = [dx(s;u)<el].
Let j € N be given. We wish to show:
[7=21] = [dx(sju)<e]
Assume: j > I We wish to show: dx(s;,u) <e.

Since j = I > L, by choice of L, we conclude that dx(t;,u) < /2.
By Corollary 23.13, choose k € [j..0] such that ¢t; = s;. Then we
have k = j = I > M. Then j,k = M, so, by choice of M, we get:
dx(sj, sk) < €/2. Since t; = si, we get d(s;,t;) = d(s;, sg). Then

d(sj,u) < [d(s;,t5)] + [d(t;, u)]
= [d(sj, s)] + [d(t;, u)]
< [e/2] + [¢/2] = &,
as desired. QED

1-5. Let X be a metric space, and let s € X~. Assume that s, is
Cauchy in X. Show that s, is bounded in X.

Proof: We wish to show: im [s,] is bounded in X.
Since s, is Cauchy in X, choose K € N s.t., Vi,7 e N,

[i,j=2K] = [dx(sis;)<1].

Let p := sk. Let a := max{dx(p,s1),...,dx(p,Sk-1)}. Let R :=1+a.
We wish to show: im [s.] € Bx(p, R). We wish to show: Vg € im [s.],
q € Bx(p, R). Let ¢ € im [s.] be given. We wish to show: ¢ € Bx(p, R).
We wish to show dx(p,q) < R. Since ¢ € im [s,], choose j € N such
that ¢ = s;. We wish to show: dx(p,s;) < R.

At least one of the follwing must be true:

(1) j <K or



(2) j = K.

Case (1): As j € [1.K), dx(p,s;) € {dx(p,s1),...,dx(p,sk-1)}.
Then dx(p, sj) < max{dx(p,s1),...,dx(p,sk-1)} =a<1l+a=R, as
desired. End of Case (1).

Case (2): Since p = sk, we conclude that dx(p,s;) = dx(sk, ;).
Also, since K,j > K, by choice of K, we see that dx(sk,s;) < L.
By definition of a, we have a > 0. It follows that 1 < 1 + a. Then
dx(p,s;) = dx(sk,sj) <1<1l4a=R. End of Case (2). QED




