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1. What is Mathematics?

What is mathematics? What distinguishes it from the many subjects

that use mathematics? Answer: Mathematics is the study of absolute

truth. Following Antis Pilate, we ask: What is truth? In the view

of the pure mathematician, to distinguish truth from falsehood, we

need to have a precise formal language and a set of formal rules for

identifying which statements are mathematical statements. Then we

need another set of formal rules for proceeding from a collection of

assumed statements, called axioms, to a collection of statements, called

theorems.

In this section, we will outline one way of formalizing the meaning

of a mathematical statement. It is not necessarily the easiest formalism

to use, but it is relatively easy to describe, and is tailored to the needs

of a real analysis course like this one. In what follows, by a logic

purist, I will mean someone who is ONLY willing to consider the

highly restrictive formalism described in this section.

We will be using the following abbreviations:

@ forall (or, sometimes, for any)

D there exists (or, sometimes, there exist)

D1 there exists a unique

s.t. such that

 not

& and

_ or

6 therefore

ñ implies

ô if and only if

iff if and only if

P is an element of

/ undefined

The symbols “@” and “D” are called quantifiers. The first one, “@”,

is called the universal quantifier, and the second one, “D”, is called

the existential quantifier. The symbol “P” is NOT the Greek letter

epsilon, written “ε”. Our use of / is unconventional. We will use it

to indicate that some particular computation cannot be completed in

a conventional manner. So, for example, in this course, 1{0 “ /.
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Now let’s start with a mathematical sounding statement:

Every real number is not an integer.

This sentence is quite ambiguous. It may mean that there are real

numbers that are not integers, or it may mean that no real number

is ever an integer. Ambiguity is one of the many enemies of truth,

and so we need to know which kinds of statements we even consider

worth trying to prove, and which statements are so poorly worded that

it’s a waste of time to even try to understand them. The statement

above would likely lose you some points, if you write it on homework

or an exam. Written in a more precise way, it would come out as:

 p@real x, x an integerq .

For our course, this statment will be considered close enough to a formal

mathematical statement that it will be acceptable. However, once we

give our exact definition of a formal statement, we will see that, to be

perfectly correct, we need to say:

 p p@xqp px is a real numberq ñ px is an integerq q q .

To describe which streams of symbols are formal statements, we

begin by deciding which symbols we will use to build such statements.

In this course, our symbols will come in three types:

First, alphabetic characters:

lowercase Roman letters: a,b,c,. . . ,z ;

uppercase Roman letters: A,B,C,. . . ,Z ;

a blank space to separate words.

Later, we may add more (like period and comma) as needed.

Second, variables. We will use:

lowercase italic Roman letters: a,b,c,. . . ,z ;

uppercase italic Roman letters: A,B,C,. . . ,Z ;

uppercase script letters: A,B,C,. . . ,Z ;

lowercase Greek letters: α,β,γ,. . . ,ω ;

some uppercase Greek letters: Γ,∆,Θ,Λ,Ξ,Π,Σ,Φ,Ψ,Ω.

Some uppercase Greek letters look exactly like uppercase Roman let-

ters, e.g., a capital η is H. They are not exactly omitted from our list

of variables; they are just not listed twice. This completes our list

of variables. The Roman alphabet has 26 letters. The Greek alphabet



CLASS NOTES 7

has 24 letters. We compute 26` 26` 26` 24` 10 “ 112. We therefore

have 112 variables to start. Later, we may add more, as needed.

Third, various special characters:

@ , D , p , q , ` , ´ , ¨ , P ,  , & , _ , ñ , ă , “ ,

8 , / , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 .

Later, we may add more, as needed.

Using our characters, we form our list of constants:

8 , ´8 , / , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 .

Note that most constants are single characters, but character streams,

like “´8” are okay, too. Later, we may add more constants, as needed.

Next, we have our list of ten starter statements. Keep in mind

that every formal mathematical statement has a list of free variables,

abbreviated “FV”. In each of our ten starter statements, every variable

is free. We will get to more complicated statements later, and you will

see how some variables can fail to be free. Here are our ten starter

statements, together with the list free variables in each:

Statement FV

x is a real number x

j is an integer j

S is a set S

a “ b a, b

a P S a, S

x ă y x, y

x` y “ z x, y, z

x ¨ y “ z x, y, z

UEpSq “ a S, a

CHpSq “ a S, a

These ten character streams are simply declared to be formal state-

ments. We may add more starter statements, as needed.

If we pick a starter statement, and then replace the variables by vari-

ables or constants, we end up with a atomic statement. Sometimes,

more than one variable is replaced by the same variable, e.g., “x ă y”

becomes “z ă z”, on replacing both “x” and “y” by “z”. Sometimes,

more than one variable is replaced by the same constant, e.g., “x ă y”

becomes “1 ă 1”, on replacing both “x” and “y” by “1”. All of the

following are “atomic statements”:
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Statement FV

a is an integer a

b is a real number b

8 is a real number

q “ q q

A P B A,B
´8 “ 8

3 ă 4

4 ă 3

3 ă z z

x` y “ x x, y

p ¨ q “ 1 p, q

p ¨ p “ p p

3 ¨ 4 “ 5

3` 4 “ 5

As you can see, some atomic statements are simply untrue. Since there

are (currently) 112 variables and 13 constants, the starter statement

“x is an integer” yields 125 atomic statements. Similarly, “x` y “ z”

yields 1253 “ 1, 953, 125 atomic statements. Continuing, we see that

there are only finitely many atomic statements. It would not be difficult

to write computer code that would print them all out.

There are two general methods by which we can take known state-

ments and develop them into new statements:

(1) Quantification development and

(2) Construction development .

First, quantification development. This kind of development

comes in two types: D-quantification and @-quantification. To illus-

trate D-quantification, we will start with:

Statement FV

r “ z r, z

We select one of its free variables, say “z”. We then surround the

statement by parentheses. We then place “pDzq” in front. We then

remove “z” from the list of free variables, obtaining:

Statement FV

pDzqpr “ zq r
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Next, to illustrate @-quantification, we will select the only remaining

free variable, “r”, and then apply p@rq-quantification, obtaining:

Statement FV

p@rqppDzqpr “ zqq

Note that there are now no free variables remaining, so we cannot apply

quantification to this statement.

Second, construction devleopment. This comes in four types:

 -construction ,

&-construction ,

_-construction and

ñ-construction.

To illustrate  -construction, we will start with the statement

Statement FV

a P B a,B

We now surround the statement by parentheses. We then place the

symbol “ ” in front. The list of free variables is unchanged:

Statement FV

 pa P Bq a,B

To illustrate &-construction, we start with two statements:

Statement FV

a P B a,B

s ă t s, t

We now surround each by parentheses, and concatenate them, but with

“&” in bewteen. The free variables are also concatenated:

Statement FV

pa P Bq& ps ă tq a,B, s, t

As you might expect, _-construction and ñ-construction work simi-

larly. Start again with the two statements:

Statement FV

a P B a,B

s ă t s, t

If we apply _-construction and ñ-construction, we obtain:

Statement FV

pa P Bq _ ps ă tq a,B, s, t

pa P Bq ñ ps ă tq a,B, s, t
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By a formal statement, we mean a finite sequence of characters

(from the character list) that can be developed from

the collection of all atomic statements

via repeated quantification and construction. Example:

pp@pqpp ă qqq ñ pq “ 8q .

To get this formal statement, start with the atomic statement “p ă q”,

then use p@pq-quantification on it, to get “p@pqpp ă qq”. Then, using

the ñ-construction, combine that with the atomic statement “q “ 8”.

We will generally leave it as work for the reader to think about how a

particular formal statement is developed, and about what free variables

it has. In “pp@pqpp ă qqq ñ pq “ 8q” the only free variable is “q”.

Applying pDqq-quantification, we get

pDqqppp@pqpp ă qqq ñ pq “ 8qq ,

which is a formal statement that has no free variables.

Unassigned homework: Write code that would take a string as input

and, after analyzing it, would ouput either

“the string is not a formal statement” or

“the string is a formal statement, with free variables:” ,

followed by a list of

all of the free variables in the formal statement .

This code implements an algorithm that we will call the formal state-

ment algorithm. Once this code is written, a more precise definition

of a formal sentence would simply be a string that, if input into the

formal sentence algorithm, yields “the string is a formal statement,

. . . ”.

By a formal sentence, we mean a formal statement that has no

free variables. Example: “pDqqppp@pqpp ă qqq ñ pq “ 8qq”. The logic

purist would be aghast, but we sometimes replace some parentheses

by brackets, for readability, e.g.: “pDqqprp@pqpp ă qqs ñ rq “ 8sq”.

Unassigned homework: Write code that would take a string as input

and, after analyzing it, would ouput either

“the string is not a formal sentence” or

“the string is a formal sentence” .

This code implements an algorithm that we will call the formal sen-

tence algorithm. Once this code is written, a more precise definition

of a formal sentence would simply be a string that, if input into the

formal sentence algorithm, yields “the string is a formal sentence”.
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A formal axiom means: a formal sentence that is accepted as true

without proof. In the first few weeks of this course, we will be describ-

ing various formal sentences as axioms. Unassigned homework: After

those few weeks are over, write code that would take a string as input

and, after analyzing it, would output either

“the string is not an axiom” or

“the string is an axiom” .

This code implements an algorithm that we will call the axiom algo-

rithm. Once this code is written, a more precise definition of an axiom

would simply be a string that, if input into the axiom algorithm, yields

“the string is an axiom”.

Let’s say that two strings are inference ready if the first

is a finite sequence of formal sentences,

separated by commas ,

and the second

is a single formal sentence .

Unassigned homework: After studying truth tables and logical rules

of inference, write code that would take as input two strings and, after

analyzing them, would output

“the two strings are not infrence ready” or

“the single sentence follows from the sequence of sentences” or

“the single sentence does not follow

from the sequence of sentences” .

This code implements an algorithm that we will call the inference al-

gorithm. Once this code is written, if P and Q are two strings, then,

by P |ù Q, we mean: if you input P and Q into the inference algo-

rithm, the output will be “the single sentence follows from the sequence

of sentences”. If this code is written correctly, then, for example,

p2` 2 “ 5q _ p2` 2 “ 4q ,  p2` 2 “ 5q |ù 2` 2 “ 4 .

In fact, part of the coding should enable the inference algorithm to know

that, for any two formal sentences S and T,

pSq _ pTq ,  pSq |ù T .

Another part of the coding should enable the inference algorithm to know

that, for any two formal sentences S and T,

pSq ñ pTq , S |ù T .

There are a few other logical inferences that will need to be coded into

the inference algorithm. In this course, we will not take the time to

write them all out. However, if you have ever learned to compute truth
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tables, then you know enough logic to write the code for the inference

algorithm. Keep in mind that

p2` 2 “ 5q _ p2` 2 “ 4q ,  p2` 2 “ 5q ­|ù 1` 1 “ 2 .

The inference algorithm should not know how to add, and should

not know any mathematics except for the basics of propositional logic

(i.e., the logic of truth tables).

A formal proof is a finite sequence of formal sentences, separated

by commas, such that each one either

is an axiom or follows from earlier sentences according

to the inference algorithm . In this course, we will not write down

any completely formal proofs. We WILL develop standards of proof,

but not be at the level required to please the logic purist. By a formal

theorem, we mean the last formal sentence in a formal proof.

In this course, we relax standards from “formal” to “pidgin”. That

is, we usually use pidgin statements, pidgin sentences, pidgin axioms,

pidgin theorems, pidgin proofs. By a pidgin statement, we mean

a finite sequence of characters

that can be rewritten as a formal statement. As the course goes on,

you should come to understand, better and better, how this rewrit-

ing process is done. In pidgin statements, we will allow a few extra

characters, like comma and period.

There are simliar meanings for pidgin sentences, pidgin axioms,

pidgin theorems and pidgin proofs. Since we will not be developing

formal proofs, we will not describe how to rewrite a pidgin proof into

a formal proof. However, you should be aware that such rewriting is

always possible, and it is this formalism that makes mathematics rigor-

ous, even if it only operates in the background. For more information

on formal proofs, read up on the foundations of mathematics.

Our first axiom expresses the idea that

Everything is equal to itself.

As written, such a statement is not sufficiently formalized to be accept-

able in this course. If it were to appear in homework or exams, would

result in loss of points. In pidgin form, it becomes acceptable:

AXIOM 1.1. @x, x “ x.

The logic purist would say “tsk!” and insist on a formal statement:

p@xqpx “ xq .
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We will look at more and more pidgin statements, and rewrite them

into formal statements. Our first theorem:

THEOREM 1.2. @x, y, r px “ yq ñ py “ xq s.

Proof. See Theorem 29.1. �

Our main focus now is not on proofs, but on converting from pidgin

to formal. To rewrite Theorem 1.2 as a formal sentence, we start with:

p@xqp@yqprx “ ys ñ ry “ xsq .

To be completely pure, we need to change brackets to parentheses.

Also, following our rules for quantification development, we should sur-

round “p@yqppx “ yq ñ py “ xqq” by parentheses, obtaining:

p@xqpp@yqppx “ yq ñ py “ xqqq .

Our next theorem:

THEOREM 1.3. @x, y, z, r px “ y “ zq ñ px “ zq s.

Proof. See Theorem 29.2. �

To rewrite this as a formal sentence, we start with

p@xqp@yqp@zqppx “ y “ zq ñ px “ zqq .

We should change “x “ y “ z” to “px “ yq& py “ zq”. Also, because

of the rules of quantification development, we need more parentheses:

p@xqpp@yqpp@zqpppx “ yq& py “ zqq ñ px “ zqqqq .

Our first definition:

DEFINITION 1.4. @a, b, by a ‰ b we mean:  pa “ bq.

In our formalism, the logic purist does not tolerate definitions. The

logic purist would ask that we remove this definition, and that we

‚ extend our character list to by adding: “‰” ,

‚ add a new starter statement: “a ‰ b” and

‚ put in a new axiom: p@aqpp@bqpra ‰ bs ô r pa “ bqsqq .

This would be followed replacement of brackets by parentheses. Also,

the “ô” needs to be broken into two implications, yielding:

p@aqpp@bqpppa ‰ bq ñ p pa “ bqqq& pp pa “ bqq ñ pa ‰ bqqqq .

But who can read such dense code?

Finally, let’s look at:

THEOREM 1.5. @ε ą 0, Dδ ą 0 s.t. δ2 ` δ ď ε.
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By convention, in this course, “@ε ą 0” means “@real ε ą 0”. Also,

“Dδ ą 0” means “Dreal δ ą 0. The logic purist would prefer:

p@εq p r p ε is a real number q& p ε ą 0 q s ñ r

pDδq p r p δ is a real number q& p δ ą 0 q s& r

δ2 ` δ ď ε

s q s q .

The logic purist would replace the text “δ2` δ ď ε” by something like:

Dreal a, L is a real number s.t.

p p δ ¨δ “ a q& p a`δ “ L q q& p pL ă ε q _ pL “ ε q q .

After a bit more “tsk!”ing, we get to

p@εq p r p ε is a real number q& p ε ą 0 q s ñ r

pDδq p r p δ is a real number q& p δ ą 0 q s& r

pDaq p r a is a real number s& r

pDLq p rL is a real number s& r

p p δ ¨ δ “ a q& p a` δ “ L q q& p pL ă ε q _ pL “ ε q q

s q s q s q s q .

Finally, change brackets to parentheses and write this all on one line.

Life ain’t easy for the logic purist.

2. Some set theory

DEFINITION 2.1. @S, T , S Ď T means:

pS and T are sets q and p@x P S, x P T q.

Logic purist: Introduce a new special character “Ď”, then introduce

a new starter statement “S Ď T”, then introduce a new axiom:

p@Sqp

p@T qp

rS Ď T s ô

r p pS is a set q& pT is a set q q&

p p@xqprx P Ss ñ rx P T sq q s

q q .

The logic purist would ask us to change brackets to parentheses, break

the “ô” into two implications, and to put all of this on one line.

The text “S Ď T” is read “S is a subset of T”.

DEFINITION 2.2. @S, T , T Ě S means: S Ď T .
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Logic purist: Introduce a new special character “Ě”, then introduce

a new starter statement “T Ě S”, then introduce a new axiom:

p@Sqp

p@T qp

pT Ě Sq ô pS Ď T q

q q .

The logic purist would ask us to break the “ô” into two implications,

and to put all of this on one line.

The text “S Ě T” is read “S is a superset of T”.

The following is sometimes called the Axiom of Extensionality.

It is a quantified equivalence for equality of sets.

AXIOM 2.3. @sets S, T , r pS “ T q ô p rS Ď T s& rT Ď S s q s.

Logic purist:

p@SqprS is a sets ñ r

p@T qprT is a sets ñ r

pS “ T q ô prS Ď T s& rT Ď Ssq

s q s q .

The logic purist would ask us to change brackets to parentheses, break

the “ô” into two implications, and to put all of this on one line.

DEFINITION 2.4. @a, @set S, by a R S , we mean  pa P Sq.

Logic purist: Introduce a new special character “R”, then introduce

a new starter statement “a R S”, then introduce a new axiom:

p@aqp

p@SqprS is a sets ñ r

pa R Sq ô p pa P Sqq

s q q .

The logic purist would ask us to change brackets to parentheses, break

the “ô” into two implications, and to put all of this on one line.

The preceding remarks about Definition 2.4 apply, mutatis mutandis,

to the following two definitions.

DEFINITION 2.5. @sets S, T , by S Ę T , we mean  pS Ď T q.

DEFINITION 2.6. @sets S, T , by S Ğ T , we mean  pS Ě T q.

We sometimes put a definition within an axiom or a theorem, e.g.:
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AXIOM 2.7. D1set S, denoted H, s.t. @x, x R S.

We will say a few words about “denoted H”. A logic purist would

insist that, instead of Axiom 2.7, we add

a new special character: H ,

a new constant: H ,

a new axiom: H is a set and

a new axiom: @set S, r p @x, x R S q ô pS “ Hq s.

Exercise: Formalize these two axioms. The set H is called the empty

set. The symbol “H” is NOT the Greek letter phi, written “φ”.

AXIOM 2.8. @a, S, r p a P S q ñ pS is a set q s.

Logic purist:

p@aqp

p@Sqp

p a P S q ñ pS is a set q

q q .

Can there be a set that is an element of itself? It would have to be

a pretty weird set, and, in fact, we will not allow such a set to exist:

AXIOM 2.9. @a, a R a.

Logic purist:

p@aqp

a R a

q .

The next axiom states that / “lives outside of set theory”:

AXIOM 2.10. p/ is not a set q& p @set S, / R S q.

Logic purist: r  p/ is a set q s& r p@Sqp rS is a sets ñ r/ R S s q s .

The logic purist would then ask us to change brackets to parentheses.

It follows that / has no elements:

THEOREM 2.11. @a, a R /.

Proof. Given a. Want: a R /.

Assume a P /. Want: Contradiction.

By Axiom 2.8, / is a set.

By Axiom 2.10, / is not a set.

Contradiction. �

The logic purist would prefer: p@aqpa R /q.
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3. Sets of up to nine objects

We will use “@!a, . . . . . .” to mean “p@aqp r a ‰ / s ñ r . . . . . . s q”.

Similar conventions are adopted for all the 112 variables, not just “a”.

AXIOM 3.1. @!a, D1set S, denoted tau, s.t.

@x, r px P S q ô px “ a q s.

Logic purist: Introduce two new special characters “t” and u, then

a new starter statement “tau “ S”, then two new axioms:

@!a, Dset S s.t. tau “ S and

@!a, @set S, r p tau “ S q ô p @x, r px P S q ô px “ a q s q s .

Exercise: Formalize these two axioms.

We have similar axioms for ta, bu and ta, b, cu:

AXIOM 3.2. @!a, @!b, D1set S, denoted ta, bu, s.t.

@x, r px P S q ô p rx “ as _ rx “ bs q s.

AXIOM 3.3. @!a, @!b, @!c, D1set S, denoted ta, b, cu, s.t.

@x, r px P S q ô p rx “ as _ rx “ bs _ rx “ cs q s.

There are more of these axioms, ending with:

AXIOM 3.4. @!a, . . . ,@!i, D1set S, denoted ta, . . . , iu, s.t.

@x, r px P S q ô p rx “ as _ ¨ ¨ ¨ _ rx “ i q s.

AXIOM 3.5. t/u “ /.

AXIOM 3.6. @a, r p ta,/u “ t/, au “ / q s.

AXIOM 3.7. @a, @b,

r p ta, b,/u “ ta,/, bu “ t/, a, bu “ / q s.

This continues until:

AXIOM 3.8. @a, . . . ,@h,

r p ta, . . . , h,/u “ ¨ ¨ ¨ “ t/, a, . . . , hu “ / q s.

In Axiom 3.4 and Axiom 3.8, the use of an ellipsis (“¨ ¨ ¨ ”) causes the

logic purist great pain, but we think you can fill in those blanks. Also,

we leave it to you to fill and formalize the missing axioms between

Axiom 3.3 and Axiom 3.4, as well as the missing axioms beween Ax-

iom 3.7 and Axiom 3.8. We could continue with sets of ten elements,

but nine should be enough.



18 SCOT ADAMS

Axiom 3.5 through Axiom 3.8 are part of a general understanding

that / is “infective”. That is, if an expression has / inside, then it

equals /.

THEOREM 3.9. t1, 2u “ t2, 1u.

More formally:

DL, DR s.t.

r p t1, 2u “ L s & r t2, 1u “ R s & rL “ R s .

A simpler way to formalize Theorem 3.9:

pDSqp p t1, 2u “ S q& p t2, 1u “ S q q .

THEOREM 3.10. t3, 3u “ t3u.

More formally:

DL, DR s.t.

r t3, 3u “ L s & r t3u “ R s & rL “ R s .

THEOREM 3.11. tt3u, t3, 3uu “ tt3u, t3uu “ tt3uu.

More formally:

p

DS, DT , DL, DR s.t.

r t3u “ S s & r t3, 3u “ T s & r tS, T u “ L s&

r tS, Su “ R s & rL “ R s

q & p

DS, DL, DR s.t.

r t3u “ S s &r tS, Su “ L s &r tSu “ R s &rL “ R s

q .

A simpler way to formalize Theorem 3.11:

pDSqp pDT qp r p t3, 3u “ S q& p t3u “ S q s &

r p tS, Su “ T q& p tSu “ T q s q q .

THEOREM 3.12. 3 R tt3uu.

More formally:

DL, DS, DR s.t.

r 3 “ L s & r t3u “ S s & r tSu “ R s & rL “ R s .

THEOREM 3.13. 3 P t3u P tt3uu.

More formally:

p
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DL, DR s.t.

r 3 “ L s r t3u “ R s rL P R s

q & p

DS, DL, DR s.t.

r t3u “ L s r t3u “ S s r tSu “ R s rL P R s

q .

A simpler way to formalize Theorem 3.13:

pDSqp pDT qp r p t3u “ S q& p tSu “ T q s &

r p 3 P S q& pS P T q s q q .

Unassigned homework: Formalize the next four theorems.

THEOREM 3.14. p 1 R tt1, 2uu q& p 2 R tt1, 2uu q.

THEOREM 3.15. 1, 2 P t1, 2u P tt1, 2uu.

THEOREM 3.16. t1,/, 3, 4, 5u “ /.

THEOREM 3.17. t1, t/, 3, 4, 5uu “ t1,/u “ /.

4. Picking an element from a set

We will use “D!a, . . . . . .” to mean “pDaqp r a ‰ / s& r . . . . . . s q”.

Similar conventions are adopted for all the 112 variables, not just “a”.

DEFINITION 4.1. @S, by S is a singleton, we mean:

p S is a set q & p D!a s.t. S “ tau q.

The logic purist would prefer to introduce a new starter statement,

“S is a singleton”, and to make Definition 4.1 into an axiom:

@S, r pS is a singleton q ô

p pS is a set q& p Da s.t. r a ‰ / s& r tau “ S s q s .

THEOREM 4.2. H is not a singleton, t1u is a singleton,

t1, 2u is not a singleton and t t1, 2u u is a singleton.

Recall the starter statement:
Statement FV

UEpSq “ a S, a

AXIOM 4.3. @singleton S, @a, r pUEpSq “ a q ô p a P S q s.

So, for any singleton S, UEpSq is the unique element of S.

We are sometimes sloppy and leave off parentheses, writing CHS.

We can write Axiom 4.3 in a more “pure” way:
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p@SqprS is a singletons ñ r

p@aqp

r pUEpSq “ a q ô p a P S q s

q s q .

We insist that, when S is not a singleton, then S has no unique

element, and therefore we should have UEpSq “ /:

AXIOM 4.4. @S, r pS is not a singleton q ñ pUEpSq “ / q s .

As always, there is lots to “tsk!” about. More formally:

p@Sqp

p rS is a singleton s q ñ pUEpSq “ / q
q .

If you are feeling energetic, change the brackets to parentheses, and

then write this entire stream of symbols on one line.

THEOREM 4.5. UEH “ /.

Recall the starter statement:
Statement FV

CHpSq “ a S, a

We next state the Axiom of Choice:

AXIOM 4.6. @nonempty set S, Da P S s.t. CHpSq “ a.

So, for any nonempty set S, CHpSq is some element of S. So CH

chooses, from every nonempty set, one of its elements.

We are sometimes sloppy and leave off parentheses, writing CHS.

We can write Axiom 4.6 in a more formal way:

p@Sqp r pS is a set q& pS ‰ Hq s ñ r

pDaqp r a P S s& r

CHpSq “ a

s q s q .

If you are feeling energetic, change the brackets to parentheses, and

then write this entire stream of symbols on one line.

Sad to say, the set H has no element to choose:

AXIOM 4.7. CHH “ /.

THEOREM 4.8. UEt1u “ 1.

THEOREM 4.9. UEt2u “ 2.
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THEOREM 4.10. UEtt1, 2uu “ t1, 2u.

THEOREM 4.11. UEt1, 2u “ /.

THEOREM 4.12. CHt1u “ 1.

THEOREM 4.13. CHt2u “ 2.

THEOREM 4.14. CHtt1, 2uu “ t1, 2u.

THEOREM 4.15. CHt1, 2u P t1, 2u.

THEOREM 4.16. CHt1, 2u ‰ / “ UEt1, 2u.

AXIOM 4.17. UEp/q “ / “ CHp/q.

5. Formalism and intuition

Logic purity really takes it out of a fellow. The point is not that

we SHOULD rewrite every pidgin statement as a formal statement,

only that it CAN be done, if the need for extra precision should arise.

There are many reasons why we do not want to obsess about formalism.

For one thing, it requires a great deal of effort, and produces results that

are very difficult to read. More importantly, if we focus on formalism

to the complete exclusion of intuition, then we have lost a crucial aspect

of the mathematical experience.

Intuition and formalism are yin and yang. At first blush, they may

seem in competition, but, in fact, each reinforces the other, and each

depends on the other. For example, intuition depends on formalism:

Each person’s intuition is based on their own experiences, so rigor

and formal writing provides a basis for resolving differences of opinion.

Conversely, I find that formal writing almost always starts as vague

intuitive ideas, refined repeatedly to increasing levels of formality. I

cannot imagine proving any complicated theorem without having some

intuitive insight driving my thinking.

From the purist’s point of view, certain streams of symbols are state-

ments, and others are just the ramblings of someone who has learned

to speak the English language, and accepts all the lack of clarity that

comes with it. From this purist point of view, a proof is a sequence

of formal statements each of which follows, by precise rules, from ear-

lier statements, or from a list of axioms. So we could feed a proof

into a computer, and the computer can check its validity.
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We, however, are not computers. When we see

p@xqpx “ xq

we want it to have some intuitive meaning; otherwise, mathematics

becomes a subject fit only for code-monkeys. Reading

p@xqpx “ xq

or the less formal version, “@x, x “ x”, one might interpret it to mean

for any mathematical object x, we have: x “ x ,

but this begs the question: Which objects are mathematial objects?

The answer actually varies from subject to subject, from mathe-

matician to mathematician. Logicians someimes refer to the collection

of all mathematical objects as the “domain of discourse”, and so, we

are asking: What is the domain of discourse in this particular course,

i.e., what is our mathematical universe? For us, it consists of

real numbers , sets ,

8 , ´8 and / .

These terms are intuitive. We will not, in this course, try to define

a real number or set, or any of the other three objects. Also, at the

moment, we have not given a name to any real number, so, while can

talk about all of them at once, we cannot yet talk about any particular

real number. So, for example, the statement

1 is a real number

is just a stream of symbols that, according to our rules, is a formal

statement. We do not yet have the axiomatic framework to determine

whether or not it is a theorem. However, we rely on your intuition and

earlier learning to know that we should eventually set up our axioms

in such a way that that statement IS a formal theorem.

Similarly, “8” is not just a sideways “8”. If you see “8” used, you

do not need to turn your head to understand it. We hope you have

some intuitive sense of the infinite, and the formal theorems that we

will prove later on should dovetail with that intuition.

6. A doubly quantified theorem

In §14, we will explain how to prove:

THEOREM 6.1. @ε ą 0, Dδ ą 0 s.t. δ2 ` δ ď ε.
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In this section, we only attempt to understand, at an intuitive level,

why the Theorem 6.1 is true. It is very difficult to prove a theorem

until you believe in your heart that it is valid.

Imagine the following game, which is based on Theorem 6.1:

You move first: You choose a real ε ą 0, and reveal it to me.

My move: I choose a real δ ą 0, and reveal it to you.

We check to see if δ2 ` δ ď ε.

If so, then I win.

If not, then you win.

Let’s play: Say you choose ε “ 100. I will laugh at your poor play,

and choose δ “ 1. We check that 12 ` 1 ď 100 is true, so I win.

We play again. You try ε “ 1000. I laugh even harder, and choose

δ “ 1 again. We check that 12 ` 1 ď 1000 is true, so I win again.

You begin to see that making ε large is not in your interest. However,

by the rules, you cannot make it negative or zero. You try ε “ 0.001.

Now I have to concentrate. I choose δ “ 0.00001. We check that

0.000012 ` 0.00001 ď 0.001 is true, so I win again. You begin to think

the game is rigged. Saying that the game is rigged against you is the

same as saying that you believe that Theorem 6.1 is true, and that is

really the first step in proving it.

Theorem 6.1 is “doubly quantified”; it has one “@” and one “D”, to-

taling to two quantifiers. Most of us do not spend a great deal of time

considering the validity of doubly quantified assertions, EXCEPT when

we play games. The chess player may say: “whatever move my oppo-

nent makes, I will be able to checkmate him/her on my next move”.

This is an example of a doubly quantified statement:

@move of my opponent, Dmove of mine s.t. checkmate .

Somehow we are hardwired to deal with highly quantified statements

while playing certain games, and you can piggyback off that hardwiring

by converting highly quantified theorems into games.

Now that we believe in Theorem 6.1, we need a specific strategy

to win. It is not enough to say, “Well, just make sure the δ is very

small”. We need a specific method for choosing δ after we know ε.

Sometimes, it helps to focus first on the finish, in order to see what

is needed in the δ-strategy. We wish to force

δ2 ` δ ď ε .
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Some students may have practiced solving quadratic inequalities, which

is one route to setting up a δ-strategy. However, there are more com-

plicated problems leading to, e.g., δ5 ` δ2 ` δ ď ε, and this kind of in-

equality is hard to solve. We favor a more robust approach, in which

we break the problem down, term by term. That is, we work separately

on the first term δ2 and the second term δ. If we can force

δ2 ď ε{2 and δ ď ε{2 .

then we will win the game. It is therefore enough to force

0 ă δ ď
a

ε{2 and δ ď ε{2 .

This leads us to the strategy:

Let δ :“ mintε{2,
a

ε{2u.

We now need to take this strategy and turn it into a pidgin proof.

Before we can do that, however, we will need to expose the basics

of arithmetic and inequalities. In particular, we need to define

mint , u and
?

.

That will take a few sections, but, in §14, we will prove Theorem 6.1.

7. Arithmetic

Here are two of our starter statements:

Statement FV

x is a real number x

j is an integer j

AXIOM 7.1. D1set S, denoted Z, s.t.:

@j, r p j P S q ô p j is an integer q s.

The logic purist would drop the axiom above, then add “Z” to the

list of special characters and to the list of constants, and would then

add two axioms:

Z is a set and

@set S, r p @j, r pj P Sq ô pj is an integerq s q ô pS “ Z q s .

Exercise: Formalize the last of these axioms.

AXIOM 7.2. D1set S, denoted R, s.t.:

@x, r px P S q ô px is a real number q s.
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The logic purist would drop the axiom above, then add “R” to the

list of special characters and to the list of constants, and would then

add two axioms:

R is a set and

@set S, rp@x, rpx P Sq ô px is a real numberqsq ô pS “ R qs .

Exercise: Formalize the last of these axioms.

Our next axiom says, in set-theoretic language, that 1 is an integer,

and that every integer is a real number:

AXIOM 7.3. 0, 1 P Z Ď R.

Our next axiom says that any two real numbers have a real sum:

AXIOM 7.4. @x, y P R, Dz P R s.t. x` y “ z.

More formally:

@x, p rx P Rs ñ r

@y, p ry P Rs ñ r

Dz s.t. p rz P Rs& r
x` y “ z

s q s q s q .

Finally, if you are feeling energetic, change the brackets to parentheses,

and then write the entire stream of symbols on one line.

Our next axiom:

AXIOM 7.5. @x P R, x` 0 “ x.

More formally:

@x, px P Rq ñ px` 0 “ xq.

From there, the remaining “tsk!”s are easily dealt with:

p@xqppx P Rq ñ px` 0 “ xqq .

AXIOM 7.6. @x, y P R, x` y “ y ` x.

The equation “x` y “ y ` x” needs to be broken apart into several

atomic statements, like:

x` y “ L, y ` x “ R , L “ R .

So we could partially formalize Axiom 7.6 as

@x, y P R, DL,R P R s.t.

px` y “ Lq& py ` x “ Rq& pL “ Rq .
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From there, we can work on “@ ¨ ¨ ¨ P R” and “D ¨ ¨ ¨ P R”:

p@xqprx P Rs ñ r

p@yqpry P Rs ñ r

pDLqprL P Rs& r
pDRqprR P Rs& r

px` y “ Lq& py ` x “ Rq& pL “ Rq

s q s q s q s q .

Finally, if you are feeling energetic, change the brackets to parentheses,

and then write the entire stream of symbols on one line.

AXIOM 7.7. @x, y, z P R, x` py ` zq “ px` yq ` z.

We could formalize the above axiom as:

@x, y, z P R, Da, b, L,R P R s.t.

py ` z “ aq& px` a “ Lq&

px` y “ bq& pb` z “ Rq&

pL “ Rq .

From there, we can work on “@ ¨ ¨ ¨ P R” and “D ¨ ¨ ¨ P R”:

p@xqprx P Rs ñ r

p@yqpry P Rs ñ r

p@zqprz P Rs ñ r

pDaqpra P Rs& r
pDbqprb P Rs& r
pDLqprL P Rs& r
pDRqprR P Rs& r

py ` z “ aq& px` a “ Lq&

px` y “ bq& pb` z “ Rq&

pL “ Rq

s q s q s q s q s q s q s q .

Finally, if you are feeling energetic, change the brackets to parentheses,

and then write the entire stream of symbols on one line. Uff da!

For lack of time, going forward, we will avoid formalizing most of our

pidgin statements. However, if any question arises about how to con-

vert a pidgin statement into a formal statement, be sure to ask.

Some more axioms:

AXIOM 7.8. @x, y P R, Dz P R s.t. xy “ z.

AXIOM 7.9. @x P R, x ¨ 1 “ x.
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AXIOM 7.10. @x, y P R, xy “ yx.

AXIOM 7.11. @x, y, z P R, xpyzq “ pxyqz.

AXIOM 7.12. @x, y, z P R, xpy ` zq “ xy ` xz.

To formalize “xpy ` zq “ xy ` xz”, we would write:

Da, b, c, L,R P R s.t.

py ` z “ aq& px ¨ a “ Lq&

px ¨ y “ bq& px ¨ z “ cq& pb` c “ Rq&

pL “ Rq .

We leave the rest of this formalization as an exercise for the reader.

Next, we develop negation and subtraction.

AXIOM 7.13. @x P R, D1y P R, denoted ´x, s.t. x` y “ 0.

DEFINITION 7.14. @a, b P R, b´ a :“ b` p´aq.

In high school, we teach students to solve simple equations in a single

unknown. For example, solving 4 ` x “ 7 leads to x “ 3. It should

be no surprise that, for any two real numbers a and b, we can solve

a` x “ b, and find a real solution x. More formally, we have:

THEOREM 7.15. @a, b P R, Dx P R s.t. a` x “ b.

We are not yet writing proofs, but, in the proof of this theorem,

at some point, we would write “Let x :“ b´ a”, see Theorem 29.3.

THEOREM 7.16. @a, x, y P R, p a` x “ a` y q ñ px “ y q.

THEOREM 7.17. @x P R, x ¨ 0 “ 0.

Next, division. The next axiom is the multiplicative analogue of The-

orem 7.15. It says: @a, b P R, we can solve ax “ b, PROVIDED a ‰ 0.

That solution x is unique, and is denoted b{a. Formally:

AXIOM 7.18. @a, b P R,

p a ‰ 0 q ñ p D1x P R, denoted b{a, s.t. ax “ b q.

Logic Purist: Add a new special character “{”, then add a new starter

statement “b{a “ x”, then add two new axioms:

@a, b P R, p a ‰ 0 q ñ p Dx P R s.t. b{a “ x q and

@a, b P R, p a ‰ 0 q ñ p @real x, r p ax “ b q ô p b{a “ x q s q .

AXIOM 7.19. @a, a{0 “ /.
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The next axioms are part of a general understanding that / is “in-

fective”. That is, if an expression has / inside, then it equals /.

AXIOM 7.20. ´/ “ /.

AXIOM 7.21. @x, x`/ “ /` x “ /.

AXIOM 7.22. @x, x ¨/ “ / ¨ x “ /.

AXIOM 7.23. @x, x{/ “ /{x “ /.

8. Some real numbers of interest

Let’s pin down how 1, . . . , 9 are related:

AXIOM 8.1. All of the following are true:

1` 1 “ 2, 2` 1 “ 3, 3` 1 “ 4, 4` 1 “ 5,

5` 1 “ 6, 6` 1 “ 7, 7` 1 “ 8, 8` 1 “ 9.

The logic purist would ask either that we create eight separate ax-

ioms, or that we combine with parentheses and “&”s:

p1` 1 “ 2q& p2` 1 “ 3q& p3` 1 “ 4q& p4` 1 “ 5q&

p5` 1 “ 6q& p6` 1 “ 7q& p7` 1 “ 8q& p8` 1 “ 9q .

The logic purist would have us put this all on one line.

DEFINITION 8.2. 10 :“ 9` 1.

Logic purist: Make

a new constant: “10” and

a new axiom: “9` 1 “ 10” .

DEFINITION 8.3. 100 :“ 10 ¨ 10.

DEFINITION 8.4. 1000 :“ 10 ¨ 100.

DEFINITION 8.5. 10000 :“ 10 ¨ 1000.

DEFINITION 8.6. 100000 :“ 10 ¨ 10000.

DEFINITION 8.7. 0.1 :“ 1{10 and 0.01 :“ 1{100 and

0.001 :“ 1{1000 and 0.0001 :“ 1{10000 and 0.00001 :“ 1{100000.

DEFINITION 8.8. 11 :“ 10` 1, 12 :“ 10` 2, 13 :“ 10` 3,

14 :“ 10` 4, 15 :“ 10` 5, 16 :“ 10` 6,

17 :“ 10` 7, 18 :“ 10` 8, 19 :“ 10` 9.
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THEOREM 8.9. 0, 1, 2, 3, . . . , 19 P R.

Also, 100, 1000, 10000, 100000 P R.

Also, 0.1, 0.01, 0.001, 0.0001, 0.00001 P R.

9. Sets of sets, unions and intersections

A “set of sets” is just a set all of whose elements are sets:

DEFINITION 9.1. @S, by S is a set of sets, we mean:

pS is a set q & p @A P S, A is a set ).

THEOREM 9.2. Let A :“ t5, 6, 7, 8u and let B :“ t7, 8, 9u.

Then tA,Bu is a set of sets.

THEOREM 9.3. H is a set of sets.

Proof. See Theorem 15.4. �

THEOREM 9.4. tHu is a set of sets.

AXIOM 9.5. @set S of sets, D1set U , denoted
Ť

S, s.t.:

@x, r px P U q ô p DA P S s.t. x P A q s.

AXIOM 9.6.
Ť

/ “ /.

THEOREM 9.7. Let A :“ t5, 6, 7, 8u and let B :“ t7, 8, 9u. Then
ď

tA,Bu “ t5, 6, 7, 8, 9u.

THEOREM 9.8.
Ť

H “ H.

Proof. See Theorem 15.5. �

THEOREM 9.9.
Ť

tHu “ H.

AXIOM 9.10. @nonempty set S of sets, D1set V , denoted
Ş

S, s.t.:

@x, r px P V q ô p @A P S, x P A q s.

AXIOM 9.11.
Ş

/ “
Ş

H “ /.

THEOREM 9.12. Let A :“ t5, 6, 7, 8u and let B :“ t7, 8, 9u. Then
č

tA,Bu “ t7, 8u.

THEOREM 9.13.
Ş

tHu “ H.

AXIOM 9.14. @S, pS is not a set of sets q ñ p
Ť

S “ / “
Ş

S q.
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THEOREM 9.15. @set A,
Ť

tAu “ A “
Ş

tAu.

DEFINITION 9.16. @sets A,B,

AYB :“
Ť

tA,Bu and AXB :“
Ş

tA,Bu.

THEOREM 9.17. Let A :“ t5, 6, 7, 8u and let B :“ t7, 8, 9u. Then

AYB “ t5, 6, 7, 8, 9u and AXB “ t7, 8u.

DEFINITION 9.18. @sets A,B,C,

AYB Y C :“
Ť

tA,B,Cu and

AXB X C :“
Ş

tA,B,Cu.

DEFINITION 9.19. @sets A,B,C,D,

AYB Y C YD :“
Ť

tA,B,C,Du and

AXB X C XD :“
Ş

tA,B,C,Du.

We leave it to you to continue these definitions until we have unions

and intersections of nine sets A, . . . , I, finishing by writing out the

following definition, without ellipses.

DEFINITION 9.20. @sets A, . . . , I,

AY ¨ ¨ ¨ Y I :“
Ť

tA, . . . , Iu and

AX ¨ ¨ ¨ X I :“
Ş

tA, . . . , Iu.

10. Extended reals and inequalities

DEFINITION 10.1. @x, y, by x ď y, we mean:

px ă yq_px “ yq.

DEFINITION 10.2. @x, y, by x ą y, we mean: y ă x.

DEFINITION 10.3. @x, y, by x ě y, we mean:

px ą yq_px “ yq.

AXIOM 10.4. @x, y, z, px ă y ă zq ñ px ă zq.

AXIOM 10.5. @x,  px ă xq.

THEOREM 10.6. @x, y, px ă yq ñ p px ě yq.

AXIOM 10.7. 8 ‰ / ‰ ´8.

By Axiom 10.7 and Axiom 3.2, there is a set denoted t´8,8u whose

elements are exactly ´8 and 8.

DEFINITION 10.8. R˚ :“ RY t´8,8u.
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Elements of R˚ are called extended real numbers.

We can now formulate our domain of discourse, as an axiom:

AXIOM 10.9. @!x, r px P R˚ q _ px is a set q s.

AXIOM 10.10. @x P R˚, x is not a set.

AXIOM 10.11. @x P R, ´8 ă x ă 8

THEOREM 10.12. ´8 ă 8.

THEOREM 10.13. @x P R, ´8 ‰ x ‰ 8 ‰ ´8.

AXIOM 10.14. 0 ă 1.

AXIOM 10.15. @a, x, y P R, px ă yq ñ pa` x ă a` yq.

THEOREM 10.16. 1 ă 2 ă 3 ă 4 ă 5 ă 6 ă 7 ă 8 ă 9 ă 10.

AXIOM 10.17. @a, x, y P R, r pa ą 0q& px ă yq s ñ r ax ă ay s.

DEFINITION 10.18. 20 :“ 2¨10, 30 :“ 3¨10, 40 :“ 4¨10, 50 :“ 5¨10,

60 :“ 6 ¨10, 70 :“ 7 ¨10, 80 :“ 8 ¨10 and 90 :“ 9 ¨10.

THEOREM 10.19. 10 ă 20 ă 30 ă ¨ ¨ ¨ ă 90 ă 100.

AXIOM 10.20. @x, y P R, px ă yq ñ p´x ą ´yq.

THEOREM 10.21. ´10 ă ´9 ă ´8 ă ¨ ¨ ¨ ă ´1 ă 0.

AXIOM 10.22. @x, y P R˚, px ă yq _ px “ yq _ px ą yq.

Combining Axiom 10.22 and Theorem 10.6, we get:

THEOREM 10.23. @x, y P R˚, px ă yq ô p px ě yqq.

DEFINITION 10.24. Let x P R.

By x is positive, we mean x ą 0.

By x is semi-positive, we mean x ě 0.

By x is negative, we mean x ă 0.

By x is semi-negative, we mean x ď 0.

Finally, / is strictly incomparable with everything:

AXIOM 10.25. @x, r p r/ ă x s q & p rx ă / s q s.

THEOREM 10.26. @!x, r p r/ ď x s q & p rx ď / s q s.

However, do keep in mind that, by Axiom 1.1, / “ /. It follows

that / compares NONstrictly with itself:

THEOREM 10.27. / ď /.
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11. Axioms of specification

By a specification triple, we mean three pieces of data:

(1) a formal statement with at least one free variable ,

(2) one of its free variables and

(3) a set .

Since we know how to formalize pidgin statements, we will relax, and

allow a pidgin statement in (1), so long it has at least one free variable.

We will soon see, example by example, that each specification triple

leads to an Axiom of Specification. There are infinitely many such

triples, leading to infintely many axioms. We illustrate a few:

We begin with the specification triple

(1) a ă x ă b ,

(2) x and

(3) R .

To get the corresponding Axiom of Specification, identify all the free

variables in (1), except for the variable in (2). This yields: “a” and “b”.

Then the axiom we seek begins “@a, @b”. It reads:

AXIOM 11.1. @a, @b, D1set S, denoted tx P R | a ă x ă bu,

s.t., @x, p r x P S s ô r px P R q& p a ă x ă b q s q.

Here is another specification triple:

(1) Dt P R s.t. a` q ` t2 “ 1 ,

(2) a and

(3) Z .

To get the corresponding Axiom of Specification, identify all the free

variables in (1), except for the variable in (2). This yields: “q”. Then

the axiom we seek begins “@q”. It reads:

AXIOM 11.2. @q, D1set S, denoted ta P Z | Dt P R s.t. a`q` t2 “ 1u,

s.t., @a, p r a P S s ô r p a P Z q& p Dt P R s.t. a` q` t2 “ 1 q s q.

Here is another specification triple:

(1) z ‰ 0 ,

(2) z and

(3) R .

To get the corresponding Axiom of Specification, identify all the free

variables in (1), except for the variable in (2). There are none. The

axiom reads:
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AXIOM 11.3. D1set S, denoted tz P R | z ‰ 0u,

s.t., @z, p r z P S s ô r p z P R q& p z ‰ 0 q s q.

Here is another specification triple:

(1) x2 “ a ,

(2) x and

(3) R .

To get the corresponding Axiom of Specification, look at all the free

variables, except the one in (2). This yields: “a”. Then the axiom we

seek begins “@a”. It reads:

AXIOM 11.4. @a, D1set S, denoted tx P R |x2 “ au,

s.t., @x, p r x P S s ô r px P R q& px2 “ a q s q.

Here is another specification triple:

(1) x2 “ 4 ,

(2) x and

(3) R .

To get the corresponding Axiom of Specification, look at all the free

variables, except the one in (2). There are none. The axiom reads:

AXIOM 11.5. D1set S, denoted tx P R |x2 “ 4u,

s.t., @x, p r x P S s ô r px P R q& px2 “ 4 q s q.

In high school algebra one learns that the solutions of x2 “ 4 are ´2

and 2. We express that result as a theorem:

THEOREM 11.6. tx P R |x2 “ 4u “ t´2, 2u.

The focus on the variable x is somewhat arbitrary. We also have:

THEOREM 11.7. tz P R | z2 “ 4u “ t´2, 2u.

Because this is a real analysis course, and not a complex analysis

course, our formalism is focused on R. You may have learned, in high

school, that p1 ` iq2 “ 2i, but, for us, this is not a theorem. Conse-

quently, we do NOT have a theorem that says

tz P C | z2 “ 2iu “ t1` i,´1´ iu.

In fact, C is not a set in this course, and “z2 “ 2i” is not a formal

statement. So we do not have a specification axiom that defines the

set tz P C | z2 “ 2iu. The point is: There are many formal systems

of mathematics. We are tailoring ours to this particular course.
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Now that we have specification, we can define many useful sets.

DEFINITION 11.8. @a, b P R˚,
ra; bs :“ tx P R˚ | a ď x ď bu,

pa; bq :“ tx P R˚ | a ă x ă bu,

ra; bq :“ tx P R˚ | a ď x ă bu and

pa; bs :“ tx P R˚ | a ă x ď bu.

DEFINITION 11.9. 1.3 :“ 1` p3{10q and 2.6 :“ 2` p6{10q.

THEOREM 11.10. r1.3; 1.3s “ t1.3u, 1.3 R p1.3; 2.6s, 2.6 P p1.3; 2.6s,

p2.6; 2.6q “ r2.6; 1.3q “ r2.6; 1.3s “ H.

DEFINITION 11.11. Z˚ :“ ZY t´8,8u.

Elements of Z˚ are called extended integers.

DEFINITION 11.12. @a, b P R˚,
ra..bs :“ tx P Z˚ | a ď x ď bu ,

pa..bq :“ tx P Z˚ | a ă x ă bu ,

ra..bq :“ tx P Z˚ | a ď x ă bu and

pa..bs :“ tx P Z˚ | a ă x ď bu .

THEOREM 11.13. r1..1s “ t1u and p1..2s “ t2u and

p1.3..2.6q “ t2u and p2..2q “ r2..2q “ p2..2s “ r2..1q “ H.

DEFINITION 11.14. N :“ r1..8q, N0 :“ r0..8q,

N˚ :“ r1..8s, N˚0 :“ r0..8s.

DEFINITION 11.15. Let A and B be sets.

Then we define AzB :“ tx P A |x R Bu.

THEOREM 11.16. Let A :“ t5, 6, 7, 8u and let B :“ t7, 8, 9u.

Then AzB “ t5, 6u.

DEFINITION 11.17. Q :“ t j{k P R | p j P Z q & p k P N q u.

According to specification, between “t” and “|”, we should have:

a single variable, then “P” then a set .

The logic purist would therefore do some rewriting of Definition 11.17:

Q :“ tx P R | Dj P Z, Dk P N s.t. j{k “ xu.

Elements of Q are called rational numbers.
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12. Upper bounds, lower bounds, max, min, sup and inf

DEFINITION 12.1. @S Ď R˚, @a P R˚,
S ď a means: @x P S, x ď a ,

a ě S means: @x P S, a ě x ,

a ď S means: @x P S, a ď x ,

S ě a means: @x P S, x ě a ,

S ă a means: @x P S, x ă a ,

a ą S means: @x P S, a ą x ,

a ă S means: @x P S, a ă x and

S ą a means: @x P S, x ą a .

DEFINITION 12.2. @S Ď R˚,
UBpSq :“ ta P R˚ |S ď au and LBpSq :“ ta P R˚ | a ď Su.

We also define UBp/q :“ /.

DEFINITION 12.3. @S Ď R˚,
maxpSq :“ UEpS X rUBpSqsq and minpSq :“ UEpS X rLBpSqsq.

DEFINITION 12.4. @S Ď R˚,
suppSq :“ minpUBpSqq and infpSq :“ maxpLBpSqq.

Here, “suppSq” is read “the supremum of S”. Sometimes “supre-

mum” is abbreviated to “sup”, which is read “soup”. We sometimes

change “min” to “least” and “UB” to “upper bound”, and then “sup”

becomes “least upper bound”.

Also, “infpSq” is read “the infimum of S”. Sometimes “infimum” is

abbreviated to “inf”, which is read as written. We sometimes change

“max” to “greatest” and “LB” to “lower bound”, and then “inf” be-

comes “greatest lower bound”. Some examples:

S LB UB min max inf sup

t5u r´8; 5s r5;8s 5 5 5 5

r0; 1s r8; 0s r1;8s 0 1 0 1

p0; 1q r8; 0s r1;8s / / 0 1

r0; 1q r8; 0s r1;8s 0 / 0 1

p0; 1s r8; 0s r1;8s / 1 0 1

t0, 1u r8; 0s r1;8s 0 1 0 1

R˚ t´8u t8u ´8 8 ´8 8

R t´8u t8u / / ´8 8

H R˚ R˚ / / 8 ´8
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Up to this point, all of our axioms about R would be equally true

about Q. There is, however, a significant problem with trying to do

real analysis using only rational numbers: Let S :“ tx P Q |x2 ď 2u.

It turns out that the supremum of S is NOT a rational number, so,

working over Q has the disadvantage that not every subset of Q has

its supremum in Q. Since supR “ 8, we are aslo forced into working

in R˚ if we want to guarantee infima and suprema. And we do! The

next axiom is called completeness of the extended reals:

AXIOM 12.5. @S Ď R˚, infpSq ‰ / ‰ suppSq.

THEOREM 12.6. @a P r0;8q, D1r P r0;8q s.t. r2 “ a.

More formally, Theorem 12.6 would be written:

p@aq p r a P r0;8q s ñ r

p pDrq p rr P r0;8q s& r r2 “ a s q q &

p p@rq p p@sq p

p r r P r0;8q s& r s P r0;8q s&

r r2 “ a s& r s2 “ a s q

ñ p r “ s q

q q q

s q .

THEOREM 12.7. @a P p´8; 0q, Er P R s.t. r2 “ a.

More formally, Theorem 12.7 would be written:

p@aq p ra P p´8; 0q s ñ r

 p pDrq p rr P Rs& rr2 “ as q q

s q.

DEFINITION 12.8. @a P R,
?
a :“ UEtr P r0;8q | r2 “ au.

By Theorem 12.6, @a P r0;8q,
?
a P r0;8q. On the other hand,

by Theorem 12.7, @a P p´8; 0q,
?
a “ /.

In this course, when we write a "P S, we mean: p a “ / q _ p a P S q.

THEOREM 12.9. @S Ď R˚, pminS "P S q& pmaxS "P S q.

In this course, when we write a "ă b, we mean: p a “ / q _ p a ă b q.

In this course, when we write a "ą b, we mean: p a “ / q _ p a ą b q.

In this course, when we write a "ď b, we mean: p a “ / q _ p a ď b q.

In this course, when we write a "ě b, we mean: p a “ / q _ p a ě b q.
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In this course, when we write a ă" b, we mean: p a ă b q _ p b “ / q.
In this course, when we write a ą" b, we mean: p a ą b q _ p b “ / q.
In this course, when we write a ď" b, we mean: p a ď b q _ p b “ / q.
In this course, when we write a ě" b, we mean: p a ě b q _ p b “ / q.

THEOREM 12.10. @S Ď R˚, pminS "ď S q& pmaxS "ě S q.

THEOREM 12.11. @S Ď R˚, p inf S ď S q& p supS ě S q.

AXIOM 12.12. supN “ 8.

13. Unassigned homework

THEOREM 13.1. @S Ď R˚, r pS ą 0 q ñ pminS "ą 0q q s.

THEOREM 13.2. @S Ď R˚, @x P S, r px ď S q ñ pminS “ x q s.

THEOREM 13.3. @a, b P R˚, r pminta, bu “ aq _ pminta, bu “ bq s.

THEOREM 13.4. @a ą 0, @b ą 0, minta, bu ą 0.

THEOREM 13.5. @a, b P R˚, r pminta, bu ď a q& pminta, bu ď b q s.

THEOREM 13.6. @ε ą 0, @a ą 0, ε{a ą 0.

THEOREM 13.7. @x ą 0,
?
x ą 0.

THEOREM 13.8. @a, b P R, r p 0 ď a ď b q ñ p a2 ď b2 q s.

We cannot square the inequality ´2 ă ´1; in fact, p´2q2 ą p´1q2.

So, in Theorem 13.8, the assumption that 0 ď a is important.

THEOREM 13.9. @a, b, c, d P R,

p r a ă b s & r c ă d s q ñ p a` c ă b` d q.

THEOREM 13.10. @s ą 0, p
?
sq2 “ s.

THEOREM 13.11. @ε P R, pε{2q ` pε{2q “ ε.

THEOREM 13.12. 12 ` 1 ă 100 ă 1000.

THEOREM 13.13. 0.000012 ` 0.00001 ă 0.001.
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14. A doubly quantified theorem, redux

We next discuss the art of proof-writing, with a focus on proving The-

orem 6.1. In writing proofs, the most common mistake made by stu-

dents in this course is failure to follow the Cardinal Binding Rule:

You must bind a variable before you use it.

In any proof, ANY time you use a variable, you MUST be able to tell me

where you did the binding of that variable, and that binding must hap-

pen before the variable is used. Otherwise, you lose some credit. There

is only one exception to this rule, see §24. Also tricky: Some bindings

are temporary, and only last until the end of the clause in which they

appear. For example, suppose, in a homework, I see

p @x P S, x ą 3 q& px` 5 is an integer q .

Then the binding on x expires before “x ` 5 is an integer”, and the

student will lose some credit. By contrast, if I see

@x P S, r px ą 3 q& px` 5 is an integer q s ,

then the binding continues to “s”, so there is no problem.

For the logic purist, each time “p@xqp. . . . . . q” or “pDxqp. . . . . . q” ap-

pears, the binding of the variable x continues inside “p. . . . . . q”. Imme-

diately after “q”, that binding expires. This is a straightforward rule.

In less formal (“pidgin”) mathematical writing, to follow the Cardinal

Binding Rule, it helps to know how to formalize pidgin statements,

to determine where their clauses begin and end.

The past participle of “to bind” is “bound”; it is NOT “bounded”.

After you bind a variable, it becomes bound, NOT bounded. Confu-

sion arises because the verb “to bound” is also used frequently in math-

ematics, and the past participle of “to bound” is “bounded”. After you

bound a variable, it becomes bounded. Within this section, we will

bound no variables; we only bind them. So, in this section, no vari-

ables become bounded; they become bound.

Free is the opposite of bound. To say that a variable is free is to say

that it is not bound. Read everything in the Exposition Handout (EH)

up to, but not including, (7) on pp. 1–3. This describes how to tell if a

given variable is free or bound. Recall Theorem 6.1, which we restate:

THEOREM 14.1. @ε ą 0, Dδ ą 0 s.t. δ2 ` δ ď ε.

Recall, from §6, that Theorem 14.1 is doubly quantified: There is

one “@” quantifier, and one “D” quantifier.
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In this section, we explain how to write a proof of Theorem 14.1.

First, observe that, in Theorem 14.1,

the quantifier “@” binds the variable “ε” and

the quantifier “D” binds the variable “δ”,

but both of these bindings are temporary, and they expire at the end

of the sentence. So, as we begin our proof, there are NO bound vari-

ables. We therefore cannot use any variables, until some binding hap-

pens. Now read (7)–(12) on the EH, pp. 3–4.

At the start of our proof, we will implement Template (10) on p. 4

of the EH. Following it, we write:

Given ε ą 0.

Want: Dδ ą 0 s.t. δ2 ` δ ď ε.

At this point, the variable “ε” is bound until the end of the proof,

and that is the only bound variable. The variable “δ” was temporarily

bound, but that binding expired at the end of its sentence.

We next implement Template (11) on p. 4 of the EH. Following it, we

leave a blank space, and keep in mind that, somewhere in that blank

space, a line must eventually appear that binds the variable δ, and,

moreover, it is important that δ ą 0. We will refer to this blank space

as our “δ-strategy”. After this blank space, we write:

Want: δ2 ` δ ď ε.

Then we leave a blank space for the remainder of the proof, followed

by a small rectangular box. We will call this second blank space the

“finish”. At this point we have finished structuring the proof, and

the proof has the following apperance:

Proof. Given ε ą 0. Want: Dδ ą 0 s.t. δ2 ` δ ď ε.

BLANK SPACE FOR δ-strategy.

Want: δ2 ` δ ď ε.

BLANK SPACE FOR finish. �

For a proof of a doubly quantified theorem, if you can even structure

the proof correctly, then you should receive substantial credit, typically

about one third of the available points. The structuring of a proof is

straightforward: You just untangle the quantifiers, carefully following

templates (10)–(12) on p. 4 of the EH, leaving blank spaces as needed.

The hard part comes next: We must fill in the blanks, which typi-

cally requires that you both understand the proof as a game and know



40 SCOT ADAMS

a winning strategy. It also requires that you communicate that strategy,

following all of the rules in the Exposition Handout (EH).

In the case of Theorem 14.1, recall the strategy from §6:

Let δ :“ mintε{2,
a

ε{2u.

Because ε ą 0, by Theorem 13.6 and Theorem 13.7, it follows that

both ε{2 and
a

ε{2 are positive. Then, by Theorem 13.4, δ ą 0. So

our δ-stragtegy could be expressed as follows:

Let δ :“ mintε{2,
a

ε{2u. Then δ ą 0.

All we have left is the finish.

Read (24) on p. 8. We cannot stop until we KNOW that δ2` δ ď ε.

Read (25) on p. 8. We MUST stop once we know that δ2 ` δ ď ε.

Following Theorem 13.5, because δ “ mintε{2,
a

ε{2u, we consider

the inequalities δ ď
a

ε{2 and δ ď ε{2 to be obvious. Then, by Theo-

rem 13.10, p
a

ε{2q2 “ ε{2. Finally, by Theorem 13.11, pε{2q ` pε{2q “

ε. So, knowing Theorem 13.8 and Theorem 13.9, the finish might read:

0 ď δ ď
a

ε{2, so δ2 ď ε{2.

δ ď ε{2 and δ2 ď ε{2, so δ ` δ2 ď ε.

By (24) and (25) of the EH, we must stop writing because what we

know matches what we want. The full proof now reads:

Proof. Given ε ą 0. Want: Dδ ą 0 s.t. δ2 ` δ ď ε.

Let δ :“ mintε{2,
a

ε{2u. Then δ ą 0.

Want: δ2 ` δ ď ε.

0 ď δ ď
a

ε{2, so δ2 ď ε{2.

δ ď ε{2 and δ2 ď ε{2, so δ ` δ2 ď ε. �

Question for discussion: Suppose, in some proof, a student shows

that δ ą 0, and, somewhere after that, writes

δ ď
a

ε{2, so δ2 ď ε{2

instead of

0 ď δ ď
a

ε{2, so δ2 ď ε{2 .

Is this bad style? Should it result in a loss of credit? I say yes. Recall:

We cannot square the inequality ´2 ă ´1; in fact, p´2q2 ą p´1q2.

For some students, it may be tempting to replace

0 ď δ ď
a

ε{2, so δ2 ď ε{2

by

0 ď δ ď
a

ε{2 ñ δ2 ď ε{2 .
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However, this is bad style, and would lead to a loss of credit. The

problem is that we KNOW that 0 ď δ ď
a

ε{2, so this statement does

not belong on the left of ñ. When we say A ñ B, the understood

meaning is “I am not sure if A is true, but if it should turn out to be

true, then B must be true as well.” Typically, someone who knows

for sure that it is raining outside would not say: “If it is raining outside,

then I will need my umbrella.” Instead, they would say: “It is raining

outside, so I will need my umbrella.” For more explanation of this,

read (26) on pp. 8–9 of the EH. I accept “6” as an abbreviation for

“therefore” or “so”. Consequently, if you wish, you may replace

0 ď δ ď
a

ε{2, so δ2 ď ε{2

by

0 ď δ ď
a

ε{2 6 δ2 ď ε{2 .

15. Three subtleties in mathematical logic

First, we discuss null true statements. Let P and Q be formal

statements, and suppose we are, for some reason, interested in proving

that P ñ Q. The rules of inference are set up in such a way that,

if we can prove  P, then P ñ Q follows. One sometimes expresses

this by saying that P ñ Q is “null true”, because P is false. Example:

THEOREM 15.1. p3 ‰ 3q ñ p1 “ 2q.

Read (13), p. 7 of the Exposition Handout, on proof by contradiction.

Proof. Assume 3 ‰ 3. Want: 1 “ 2.

Assume 1 ‰ 2. Want: Contradiction.

3 ‰ 3. By Axiom 1.1, 3 “ 3. Contradiction. �

Keep in mind:

any false statement implies every statement, true or false.

So be careful what you believe in!

Second, we apply null truth to the empty setH, obtaining void true

statements. For example, the two statements

@u P H, u “ 9

and

@u P H, u ‰ 9

are both true. In fact, for any formal statement P, if u is the only free

variable in P, then
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@u P H, P

is a theorem. For example:

THEOREM 15.2. @u P H, u “ 9.

Proof. Given u P H. Want: u “ 9.

Assume u ‰ 9. Want: Contradiction.

u P H. By Axiom 2.7, u R H. Contradiction. �

THEOREM 15.3. @set A, H Ď A.

Proof. Given a set A. Want: H Ď A.

Want: @x P H, x P A.

Given x P H. Want: x P A.

Assume x R A. Want: Contradiction.

x P H. By Axiom 2.7, x R H. Contradiction. �

The following is Theorem 9.3:

THEOREM 15.4. H is a set of sets.

Proof. Know: H is a set.

Want: @A P H, A is a set.

Given A P H. Want: A is a set.

Assume A is not a set. Want: Contradiction.

A P H. By Axiom 2.7, A R H. Contradiction. �

The following is Theorem 9.8:

THEOREM 15.5.
Ť

H “ H.

Proof. By Theorem 15.3, H Ď
Ť

H.

So, by the Axiom of Extensionality (Axiom 2.3),

Want:
Ť

H Ď H.

Want: @x P
Ť

H, x P H.

Given x P
Ť

H. Want: x P H.

Assume x R H. Want: Contradiction.

Since x P
Ť

H, choose A P H s.t. x P A.

Then A P H. By Axiom 2.7, A R H. Contradiction. �

Third, the inclusive or. When Hamlet says, “To be or not to be”,

it is understood that a choice must be made. Hamlet cannot decide

both both to “be” and “not be” at the same time. However, this is

not how “or” is used in mathematics. The rules of inference are set up
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in such a way that, for any two formal statements P and Q, if both P

and Q are known, then P_Q is known. So for eample, we have:

THEOREM 15.6. @x P R˚, r px ď 0 q _ px ě 0 q s.

Read (16)–(17) on p. 6 of the Exposition Handout (EH).

Proof. Given x P R˚. Want: px ď 0 q _ px ě 0 q.

By Axiom 10.22, one of the following is true:

(1) x ă 0,

(2) x “ 0 or

(3) x ą 0.

Case (1):

Since x ă 0, x ď 0, so r px ď 0 q _ px ě 0 q s.

End of Case (1).

Case (2):

Since x “ 0, x ď 0, so r px ď 0 q _ px ě 0 q s.

End of Case (2).

Case (3):

Since x ą 0, x ě 0, so r px ď 0 q _ px ě 0 q s.

End of Case (3). �

16. Unassigned homework

THEOREM 16.1. @x, y, z P R˚, px ď y ď zq ñ px ď zq.

THEOREM 16.2. @a, b, c P R, r p 0 ď a ď b ď c q ñ p a2 ď c2 q s.

17. A triply quantified theorem with implication

In this section, we explain how to write a proof of:

THEOREM 17.1. @ε ą 0, Dδ ą 0 s.t., @x P R,

r 0 ď x ď δ s ñ r x2 ` x ď ε s.

There are two “@” quantifiers, one “D” quantifier and one “ñ”, so

we describe Theorem 17.1 as: triply quantified with implication.

We begin by structuring the proof, using

(10) on p. 4, for “@ε ą 0, . . . . . .”, then

(11) on p. 4, for “Dδ ą 0 s.t. . . . . . .”, then
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(10) on p. 4, for “@x P R, . . . . . .”, then

(12) on p. 4, for “r¨ ¨ ¨ ¨ ¨ ¨ s ñ r¨ ¨ ¨ ¨ ¨ ¨ s” .

This yields:

Proof. Given ε ą 0.

Want: Dδ ą 0 s.t., @x P R, p r 0 ď x ď δ s ñ rx2 ` x ď ε s q.

BLANK SPACE FOR δ-strategy.

Want: @x P R, p r 0 ď x ď δ s ñ rx2 ` x ď ε s q.

Given x P R. Want: r 0 ď x ď δ s ñ r x2 ` x ď ε s.

Assume: 0 ď x ď δ. Want: x2 ` x ď ε.

BLANK SPACE FOR finish. �

The first blank area is for our “δ-strategy”, within which δ must

become bound, satisfying δ ą 0. The second blank area is for our

“finish”. In this second blank area, we must show that x2 ` x ď ε.

Also, once we have proven x2 ` x ď ε, we MUST immediately STOP.

Theorem 17.1 is triply quantified with implication, and, for the struc-

turing of a proof of that kind of statement, I would typically give half

credit. This is a good deal, so learn the structuring process. In partic-

ular, learn p. 4 of the Exposition Handout.

To go further, it helps to turn Theorem 17.1 into a game:

You move first: You choose a real ε ą 0, and reveal it to me.

My move: I choose δ ą 0, and reveal it to you.

Your move: You choose x P R, and reveal it to me.

We check to see if r0 ď x ď δs ñ rx2 ` x ď εs.

If so, then I win.

If not, then you win.

Remember that, if you choose x so that  r0 ď x ď δs, then the impli-

cation

r0 ď x ď δs ñ rx2 ` x ď εs

is “null true”, and so I will win. So you are effectively forced to choose

x satisfying 0 ď x ď δ. if you want to have any hope of winning. For

that reason, it is common to revise the game, and make it part of the

rules that your choice of j must satisfy j ě K. This revised game

reads:

You move first: You choose a real ε ą 0, and reveal it to me.

My move: I choose δ ą 0, and reveal it to you.
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You move: You choose a x P R s.t. 0 ď x ď δ, and reveal it to

me.

We check to see if x2 ` x ď ε.

If so, then I win.

If not, then you win.

Let’s play. Say you choose ε “ 100. I will laugh at your poor play,

and choose δ “ 3. You choose, say, x “ 1. Since 12`1 ď 100, I win. We

play again. You try ε “ 1000. I laugh even harder, and choose δ “ 3

again. Maybe this time, you try x “ 2. Since 22` 2 ď 100, I win. You

begin to see that making ε large is not in your interest. However, by

the rules, you cannot make it negative or zero. You try ε “ 0.001. Now

I have to concentrate. I choose δ “ 0.00001. You begin to understand

that your goal, in choosing x, is to make x as large as possible, so that

x2 ` x will be large. However, you face a constraint: You are required

to choose x so that 0 ď x ď 0.00001. So your best move is x “ 0.00001.

Since 0.000012 ` 0.00001 ď 0.001, I win. You begin to think the game

is rigged. Saying that the game is rigged against you is the same as

saying that you believe that Theorem 17.1 is true. Belief is the first

step in proof. Now that we believe in Theorem 17.1, we need a specific

strategy to win. It is not enough to say, “Well, just make sure the δ is

really small”. We have to come up with a specific method for choosing

δ after we know ε.

Sometimes, it helps to focus first on the finish, in order to see what

is needed in the δ-strategy. We wish to force

x2 ` x ď ε .

We break the problem down term-by-term. That is, work separately

on the first term x2 and the second term x. If we can force

x2 ď ε{2 and x ď ε{2 .

then we will win the game. It is therefore enough to force

0 ď x ď
a

ε{2 and x ď ε{2 .

So, since 0 ď x ď δ, we can win by forcing

δ ď
a

ε{2 and δ ď ε{2 .

This leads us to the same δ-strategy as for Theorem 14.1:

Let δ :“ mintε{2,
a

ε{2u. Then δ ą 0.

For the finish, by Theorem 16.1 and Theorem 16.2, we could write:

x ď δ ď ε{2, so x ď ε{2.
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0 ď x ď δ ď
a

ε{2, so x2 ď ε{2.

x2 ď ε{2 and x ď ε{2, so x2 ` x ď ε.

Here, then, is the full proof:

Proof. Given ε ą 0.

Want: Dδ ą 0 s.t. @x P R, p r 0 ď x ď δ s ñ rx2 ` x ď ε s q.

Let δ :“ mintε{2,
a

ε{2u. Then δ ą 0.

Want: @x P R, p r 0 ď x ď δ s ñ rx2 ` x ď ε s q.

Given x P R. Want: r 0 ď x ď δ s ñ r x2 ` x ď ε s.

Assume: 0 ď x ď δ. Want: x2 ` x ď ε.

x ď δ ď ε{2, so x ď ε{2.

0 ď x ď δ ď
a

ε{2, so x2 ď ε{2.

x2 ď ε{2 and x ď ε{2, so x2 ` x ď ε. �

DEFINITION 17.2. For all s P R, we define |x| :“ maxtx,´xu.

Let x P R. Then |x| is called the absolute value of x.

THEOREM 17.3. |3| “ 3 and | ´ 6| “ 6.

THEOREM 17.4. @x P R, |x| ě 0.

THEOREM 17.5. |p´2q ` 3| ‰ | ´ 2| ` |3|.

THEOREM 17.6. All of the following are true:

(1) @x P R, |x| ě 0.

(2) @x, y P R, |x ¨ y| “ |x| ¨ |y|.

(3) @x P R, |x2| “ |x|2.

(4) @x, y P R, |x` y| ď |x| ` |y|.

THEOREM 17.7. @ε ą 0, Dδ ą 0 s.t., @x P R,

r ||x ă δ s ñ r |x2 ` x| ă ε s.

Proof. Given ε ą 0.

Want: Dδ ą 0 s.t. @x P R, p r |x| ă δ s ñ r |x2 ` x| ă ε s q.

Let δ :“ mintε{2,
a

ε{2u. Then δ ą 0.

Want: @x P R, p r |x| ă δ s ñ r |x2 ` x| ă ε s q.

Given x P R. Want: r |x| ă δ s ñ r |x2 ` x| ă ε s.

Assume: |x| ă δ. Want: |x2 ` x| ă ε.

|x| ă δ ď ε{2, so |x| ă ε{2.
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0 ď |x| ă δ ď
a

ε{2, so 0 ď |x| ă
a

ε{2, so |x|2 ă ε{2.

Then

|x2 ` x| ď |x2| ` |x| “ |x|2 ` |x|

ă pε{2q ` pε{2q “ ε,

as desired. �

18. Unassigned homework

THEOREM 18.1. Let S Ď R˚ and let x P R˚.
Assume x ă sup S. Then  pS ď xq.

THEOREM 18.2. Let S Ď R˚ and let x P R˚.
Assume  pS ď xq. Then Dy P S s.t. y ą x.

19. The Archimedean Principle

The next theorem is called the Archimedean Principle.

THEOREM 19.1. @x P R, Dk P N s.t. x ă k.

Proof. Given x P R. Want: Dk P N s.t. x ă k.

By Axiom 12.12, supN “ 8.

Since x P R, by Axiom 10.11, x ă 8.

Then x ă supN.

Then  pN ď xq.

Choose k P N s.t. k ą x.

Want: x ă k.

Since k ą x, we conclude that x ă k, as desired. �

20. Arithmetic of sets of real numbers

DEFINITION 20.1. @S Ď R, ´S :“ t´x P R |x P Su.

DEFINITION 20.2. @S Ď R, @a P R,

S ` a :“ tx` a P R |x P Su, S ´ a :“ tx´ a P R |x P Su,
a` S :“ ta` x P R |x P Su, a´ S :“ ta´ x P R |x P Su,
a ¨ S :“ tax P R |x P Su and S ¨ a :“ txa P R |x P Su.

Also, @S Ď Rzt0u, @a P R, a{S :“ ta{x P R |x P Su.
Also, @S Ď R, @a P Rzt0u, S{a :“ tx{a P R |x P Su.

THEOREM 20.3. @S Ď R, @a P R, a` S “ S ` a.
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THEOREM 20.4. Let S :“ p0; 1s. Then

´S “ r´1; 0q,

S ` 3 “ 3` S “ p3; 4s,

S ´ 4 “ p´4;´3s,

4´ S “ r3; 4q,

6S “ S ¨ 6 “ p0; 6s,

1{S “ r1;8q and

S{5 “ p0; 1{5s.

21. Primitive ordered pairs, relations and functions

DEFINITION 21.1. @x, y, xxx, yyy :“ ttxu, tx, yuu.

THEOREM 21.2. xx1, 2yy “ tt1u, t1, 2uu.

THEOREM 21.3. xx2, 1yy “ tt2u, t1, 2uu ‰ tt1u, t1, 2uu “ xx1, 2yy.

THEOREM 21.4. @x, y, tx, yu “ ty, xu.

THEOREM 21.5. xx3, 3yy “ tt3u, t3, 3uu “ tt3u, t3uu “ tt3uu.

THEOREM 21.6. xx5,/yy “ tt5u, t5,/uu “ tt5u,/u “ /.

THEOREM 21.7. @a, xxa,/yy “ / “ xx/, ayy.

THEOREM 21.8. @!a, @!b, @!c, @!d,

p xxa, byy “ xxc, dyy q ô p r a “ c s& r b “ d s q .

DEFINITION 21.9. @q, by q is a primitive ordered pair, we

mean: D!x, D!y s.t. q “ xxx, yyy.

AXIOM 21.10. @sets A,B, D1set C, denoted Aˆ̂ B, s.t., @z, r p z P

C q ô p Dx P A, Dy P B s.t. z “ xxx, yyy q s.

Well refer to the set Aˆ̂ B of Definition 21.10 as the primitive

product of A and B. A set of primitive ordered pairs is called a

relation:

DEFINITION 21.11. @R, by R is a relation, we mean:

R is a set and

@q P R, q is a primitive ordered pair.

THEOREM 21.12. Let R :“ t xx5, 2yy, xx5, 9yy, xx7, 6yy, xx8, 4yy u.

Then R is a relation.
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THEOREM 21.13. H is a relation.

AXIOM 21.14. Let R be a relation. Then D1set A, denoted domrRs,

s.t., @x, r px P A q ô p Dy s.t. xxx, yyy P R q s.

AXIOM 21.15. Let R be a relation. Then D1set B, denoted imrRs,

s.t., @y, r p y P B q ô p Dx s.t. xxx, yyy P R q s.

THEOREM 21.16. Let R :“ t xx5, 2yy, xx5, 9yy, xx7, 6yy, xx8, 4yy u.

Then domrRs “ t5, 7, 8u.

THEOREM 21.17. Let R :“ t xx5, 2yy, xx5, 9yy, xx7, 6yy, xx8, 4yy u.

Then imrRs “ t2, 4, 6, 9u.

DEFINITION 21.18. Let R be a relation,

A :“ domrRs, B :“ imrRs.

Then R´1 :“ t xxy, xyy P Bˆ̂ A | xxx, yyy P R u.

According to specification, between “t” and “|”, we should have:

a single variable, then “P” then a set .

The logic purist would therefore do some rewriting of Definition 21.18,

and define R´1 to be

tz P Bˆ̂ A | Dx P A, Dy P B s.t. rpxxx, yyy P Rq&pxxy, xyy “ zqsu.

THEOREM 21.19. Let R :“ t xx5, 2yy, xx5, 9yy, xx7, 6yy, xx8, 4yy u.

Then R´1 “ t xx2, 5yy, xx9, 5yy, xx6, 7yy, xx4, 8yy u,

domrR´1s “ t2, 4, 6, 9u “ imrRs,

imrR´1s “ t5, 7, 8u “ domrRs and

pR´1q´1 “ t xx5, 2yy, xx5, 9yy, xx7, 6yy, xx8, 4yy u “ R.

THEOREM 21.20. Let R be a relation.

Then: R Ď pdomrRsqˆ̂ pimrRsq and

@x P domrRs, Dy P imrRs s.t. xxx, yyy P R and

@y P imrRs, Dx P domrRs s.t. xxx, yyy P R.

THEOREM 21.21. @relation R, r p pR´1q´1 “ R q &

p domrR´1s “ imrRs q & p imrR´1s “ domrRs q s.

DEFINITION 21.22. @f , by f is a function, we mean:

(1) f is a relation and

(2) @x P domrf s, @y, z P imrf s,

r xxx, yyy, xxx, zyy P f s ñ r y “ z s.
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Condition (2) in Definition 21.22 is called the vertical line test.

THEOREM 21.23. Let R :“ t xx5, 2yy, xx7, 6yy, xx8, 4yy, xx5, 9yy u.

Then R is a not a function.

THEOREM 21.24. Let f :“ t xx5, 2yy, xx7, 6yy, xx8, 4yy u.

Then: f is a function, domrf s “ t5, 7, 8u and imrf s “ t2, 4, 6u.

THEOREM 21.25. Let f :“ t xx5, 2yy, xx7, 6yy, xx8, 6yy u.

Then: f is a function, domrf s “ t5, 7, 8u and imrf s “ t2, 6u.

THEOREM 21.26. Let f :“ txxx, yyy P Rˆ̂ R | y “ x2u.

Then: f is a function, domrf s “ R and imrf s “ r0;8q.

THEOREM 21.27. Let f :“ txxx, yyy P Rˆ̂ R | y “ x3u.

Then: f is a function, domrf s “ R and imrf s “ R.

THEOREM 21.28. Let f :“ H.

Then: f is a function, domrf s “ H and imrf s “ H.

DEFINITION 21.29. Let f be a function. Then, @x,

fpxq :“ UE t y P imrf s | xxx, yyy P f u.

We also often use fx instead of fpxq:

DEFINITION 21.30. Let f be a function. Then, @x,

fx :“ UE t y P imrf s | xxx, yyy P f u.

THEOREM 21.31. Let f :“ t xx5, 2yy, xx7, 6yy, xx8, 4yy u.

Then fp7q “ 6, f8 “ 4 and fp0q “ /.

THEOREM 21.32. Let f :“ t xx2, 8yy, xx3, 8yy, xx4, 9yy u.

Then f is a function, fp2q “ fp3q “ 8, fp4q “ 9 and fp5q “ /.

THEOREM 21.33. Let f :“ txxx, yyy P Rˆ̂ r0;8q | y “ x2u. Then

fp3q “ fp´3q “ 9, f2 “ 4, fp0q “ 0,

fp8q “ fp´8q “ / and fp/q “ /.

DEFINITION 21.34. @f ,

r f not a function s ñ r @x, p p fpxq :“ / q& p fx :“ / q q s.

THEOREM 21.35. Let R :“ txx5, 2yy, xx5, 9yy, xx7, 6yy, xx8, 4yyu.

Then R5 “ R7 “ R8 “ R1 “ /.

Also, @x, Rx “ /.
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THEOREM 21.36. Let f :“ t xx2, 8yy, xx3, 8yy, xx4, 9yy u. Then

f´1 “ t xx8, 2yy, xx8, 3yy, xx9, 4yy u,

f´1 is not a function,

f´1p0q “ /, f´1p8q “ /, f´1p9q “ / and

@x, f´1pxq “ /

Unhappiness is infective:

THEOREM 21.37. @f, fp/q “ f/ “ /.

DEFINITION 21.38. @S, by S is set-valued, we mean:

pS is a function q and p @j P domrSs, Sj is a set q.

THEOREM 21.39. Let S :“ t xx1, t2, 5uyy, xx7, t0uyy, xx9,Hyy u.

Then S is set-valued, S1 “ t2, 5u, S7 “ t0u, S9 “ H and S2 “ /.

We will use the following notational convention: By

¨

˝

5 ÞÑ 2

7 ÞÑ 6

8 ÞÑ 4

˛

‚, we

mean the function t xx5, 2yy, xx7, 6yy, xx8, 4yy u. Following this conven-

tion, then

¨

˚

˚

˝

1 ÞÑ 7

2 ÞÑ 4

3 ÞÑ 0

4 ÞÑ 6

˛

‹

‹

‚

is the function t xx1, 7yy, xx2, 4yy, xx3, 0yy, xx4, 6yy u.

Also,

¨

˝

1 ÞÑ t2, 5u

7 ÞÑ t0u

9 ÞÑ H

˛

‚is the function t xx1, t2, 5uyy, xx7, t0uyy, xx9,Hyy u.

We will use the following notational convention: By p7, 4, 0, 6q, we

mean the function

¨

˚

˚

˝

1 ÞÑ 7

2 ÞÑ 4

3 ÞÑ 0

4 ÞÑ 6

˛

‹

‹

‚

. Following this convention, then p3, 7q is

the function

ˆ

1 ÞÑ 3

2 ÞÑ 7

˙

, which, in turn, is equal to t xx1, 3yy, xx3, 7yy u.

Also, pt3, 7uq is the function
`

1 ÞÑ t3, 7u
˘

, which, in turn, is equal

to txx1, t3, 7uyyu. Finally, pq is the empty set, sometimes called the

empty function. That is, pq “ H.

The logic purist has no patience with conventions, and would insist

that every function be written out as a set of primitive ordered pairs.

DEFINITION 21.40. @q, by q is an ordered pair, we mean:

D!a, D!b s.t. q “ pa, bq.
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DEFINITION 21.41. @q, by q is an ordered triple, we mean:

D!a, D!b, D!c s.t. q “ pa, b, cq.

An ordered pair is sometimes called an ordered 2-tuple. An or-

dered triple is sometimes called an ordered 3-tuple. There are simi-

lar definitions for ordered quadruple, a.k.a. ordered 4-tuple, and

for ordered pentatuple, a.k.a. ordered 5-tuple. Let’s not use “hex-

atuple”, “septuple”, “octuple”, “nonuple”, and instead, keep it simple,

by using “6-tuple”, “7-tuple”, “8-tuple”, “9-tuple”.

Exercise: Continue with the definitions appearing above, until you

get to ordered 9-tuples. In particular, fill in the ellipses in:

DEFINITION 21.42. @q, by q is an ordered 9-tuple, we mean:

phantomx D!a, . . . , D!i, s.t. q “ pa, . . . , iq.

THEOREM 21.43. Let A :“ t5, 6, 7, 8u and let B :“ t7, 8, 9u.

Then pA,Bq “

ˆ

1 ÞÑ A

2 ÞÑ B

˙

“ t xx1, t5, 6, 7, 8uyy, xx2, t7, 8, 9uyy u.

Also, we have domrpA,Bqs “ t1, 2u and imrpA,Bqs “ tA,Bu.

Also, pA,Bq is set-valued.

THEOREM 21.44. Let A :“ t5, 6, 7, 8u and let B :“ t7, 8, 9u.

Let S :“

ˆ

0 ÞÑ A

3 ÞÑ B

˙

. Then S “ txx0, Ayy, xx1, Byyu.

Also, domrSs “ t0, 3u and imrSs “ tA,Bu.

Also, S0 “ A and S3 “ B and S1 “ /.

Also S is set-valued.

THEOREM 21.45. @set-valued S, imrSs is a set of sets.

DEFINITION 21.46. @set-valued S,
Ť

S‚ :“
Ť

imrSs.

DEFINITION 21.47. @set-valued S,
Ş

S‚ :“
Ş

imrSs.

THEOREM 21.48.
Ť

pq‚ “
Ť

H‚ “
Ť

imrHs “
Ť

H “ H.

THEOREM 21.49.
Ş

pq‚ “
Ş

H‚ “
Ş

imrHs “
Ş

H “ /.

THEOREM 21.50. Let A :“ t5, 6, 7, 8u and let B :“ t7, 8, 9u.

Then
Ť

pA,Bq‚ “ t5, 6, 7, 8, 9u and
Ş

pA,Bq‚ “ t7, 8u.

THEOREM 21.51. Let A :“ t5, 6, 7, 8u and let B :“ t7, 8, 9u.

Let S :“

ˆ

0 ÞÑ A

3 ÞÑ B

˙

. Then
Ť

S‚ “ t5, 6, 7, 8, 9u and
Ş

S‚ “ t7, 8u.
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22. Injectivity

DEFINITION 22.1. @function f , by f is one-to-one, we mean:

(˚) @w, x P domrf s, p r fpwq “ fpxq s ñ rw “ x s q.

Condition (˚) in Definition 22.1 is called the horizontal line test.

The word injective is synonomous with one-to-one. We typically

write “one-to-one” as “1-1”.

THEOREM 22.2. Let f :“ t xx5, 2yy, xx7, 6yy, xx8, 6yy u. Then

f is a function,

fp7q “ 6 “ fp8q, f is not 1-1,

f´1 “ t xx2, 5yy , xx6, 7yy , xx6, 8yyu,

xx6, 7yy , xx6, 8yy P f´1, f´1 is not a function,

f´1p6q “ /, f´1p2q “ / and p @x, f´1pxq “ / q.

THEOREM 22.3. Let f :“ t xx5, 2yy, xx7, 6yy, xx8, 4yy u. Then

f is a 1-1 function, fp7q “ 6,

f´1 “ t xx2, 5yy , xx4, 8yy , xx6, 7yy u,

f´1 is a function and f´1p6q “ 7.

THEOREM 22.4. Let f :“ txxx, yyy P Rˆ̂ R | y “ x2u. Then

f is a function,

fp3q “ 9 “ fp´3q, f is not 1-1,

f´1 “ txxy, xyy P Rˆ̂ R | y “ x2u,

xx9, 3yy, xx9,´3yy P f´1,

f´1 is not a function and f´1p9q “ f´1p0q “ /
and p @x, f´1pxq “ / q.

THEOREM 22.5. Let f :“ txxx, yyy P Rˆ̂ R | y “ x3u. Then

f is a 1-1 function, fp2q “ 8,

f´1 “ txxy, xyy P Rˆ̂ R | y “ x3u,

f´1 is a function and f´1p8q “ 2.

THEOREM 22.6. @function f ,

p f is 1-1 q ô p f´1 is a function q.

23. Arrow notation for functions

DEFINITION 23.1. Let f be a function and let A be a set. By A is

a superdomain of f , we mean: A Ě domrf s.
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The following is a quantified equivalence for equality of functions.

Two functions are equal iff they agree on a common superdomain:

THEOREM 23.2. Let f and g be functions and let A be a set.

Assume that A Ě domrf s and that A Ě domrgs.

Then: pf “ gq ô p@x P A, fpxq “ gpxqq

DEFINITION 23.3. Let f be a function and let B be a set. By B is

a superimage or target of f , we mean: A Ě imrf s.

Any function has many superdomains and many superimages, but

only one domain and one image.

In this course, we will not use the term “range”, since it has different

meanings to different people: Some take it to mean image, while others

take it to mean target.

DEFINITION 23.4. @f, A,B, by f : A 99K B, we mean

f is a function and A and B are sets and

domrf s Ď A and imrf s Ď B.

DEFINITION 23.5. @f, A,B, by f : AÑ B, we mean

f is a function and A and B are sets and

domrf s “ A and imrf s Ď B.

DEFINITION 23.6. @f, A,B, by f : AÑą B, we mean

f is a function and A and B are sets and

domrf s “ A and imrf s “ B.

DEFINITION 23.7. @f, A,B, by f : A ãÑ B, we mean

f : AÑ B and f is 1-1.

DEFINITION 23.8. @f, A,B, by f : A ãÑą B, we mean

f : AÑą B and f is 1-1.

THEOREM 23.9. Let f : A ãÑą B. Then f´1 : B ãÑą A.

DEFINITION 23.10. @sets A,B,

DA ãÑ B means: Df s.t. f : A ãÑ B,

DAÑą B means: Df s.t. f : AÑą B and

DA ãÑą B means: Df s.t. f : A ãÑą B.

THEOREM 23.11. @sets A,B, r DA ãÑą B s ô r DB ãÑą A s.
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24. How to define a function

Instead of

f :“ txxx, yyy P Rˆ̂ R | y “ x2u,

the logic purist would prefer

f :“ tz P Rˆ̂ R | Dx, y P R s.t. y “ x2&xxx, yyyu.

We are not logic purists, but, nevertheless, from here on out, in this

course, we will treat

f :“ txxx, yyy P Rˆ̂ R | y “ x2u

as an example of poor style (with a loss of credit). Instead, the preferred

syntax will be

Define f : R 99K R by fpxq “ x2.

The variable x is free, and it might be better to write Define

f : R 99K r0;8q by: @x P domrf s, fpxq “ x2.

However, in practice, the “@x P domrf s” is typically omitted. This is

our ONLY exception to the Cardinal Binding Rule. We compute

domrf s “ tx P R |x2 P Ru “ R, imrf s “ tx2 P R |x P Ru “
r0;8q. We could therefore just as easily have written:

Define f : RÑ R by fpxq “ x2 .

Or:

Define f : RÑ p´3;8s by fpxq “ x2 .

All that is important is that the superimage (or “target”) contain the

image of f , which is r0;8q. In this course, it is unacceptable to say “Let

fpxq “ x2”. You must always specify a superdomain and superimage.

Another example:

Let g : R 99K r5;8q be defined by by gpxq “ 1{x .

We only know that R is a superdomain of g, i.e., that R is a superset

of domrgs. In this situation, gp0q “ / R r5;8q, and so it is understood

that 0 is not in the domain of g. In fact, by convention, if we write

Let g : R 99K r5;8q be defined by by gpxq “ 1{x ,

then the domain of g is given by:

domrgs “ t x P R | 1{x P r5;8q u “ p0; 1{5s .

DEFINITION 24.1. Let A be a set.

We define idA : AÑ A by idApxq “ x.

The function idA is called the identity function on A.
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THEOREM 24.2. @set A, idA : A ãÑą A.

THEOREM 24.3. @set A, DA ãÑą A.

25. Restriction, forward image and preimage

DEFINITION 25.1. @function f , @set A,

the function f |A : AX pdomrf sq Ñ imrf s

is defined by pf |Aqpxq “ fpxq.

THEOREM 25.2. Let B :“ t3, 4, 5u, C :“ t8, 9u, f :“

¨

˝

3 ÞÑ 9

4 ÞÑ 9

5 ÞÑ 8

˛

‚.

Let A :“ t0, 3, 5u. Then f : B Ñ C and f |A “

ˆ

3 ÞÑ 9

5 ÞÑ 8

˙

.

THEOREM 25.3. Let A, B and C be sets. Let f : B Ñ C.

Then f |A is a function and domrf |As “ pdomrf sq X A.

THEOREM 25.4. Let B :“ t3, 4, 5u, C :“ t8, 9u, f :“

¨

˝

3 ÞÑ 9

4 ÞÑ 9

5 ÞÑ 8

˛

‚.

Let A :“ t3, 5u. Then A Ď B and f : B Ñ C and f |A “

ˆ

3 ÞÑ 9

5 ÞÑ 8

˙

.

THEOREM 25.5. Let B and C be sets. Let A Ď B. Let f : B Ñ C.

Then, @t P A, pf |Aqptq “ fptq. Also, @t R A, pf |Aqptq “ /.

THEOREM 25.6. Define f : RÑ R by fpxq “ x2. Let A :“ r0;8q.

Then: f is not 1-1 and f |A is 1-1 and

f |A : A ãÑą A and @y P A, pf |Aq´1pyq “
?
y.

DEFINITION 25.7. Let f be a function. Let S be a set. Then

f˚pSq :“ t fpxq P imrf s | x P S X pdomrf sq u and

f˚pSq :“ t x P domrf s | fpxq P S u.

THEOREM 25.8. Let f :“

¨

˚

˚

˝

1 ÞÑ 7

2 ÞÑ 7

3 ÞÑ 6

4 ÞÑ 9

˛

‹

‹

‚

. Then

f˚pt0, 1, 2, 4uq “ t7, 9u and f˚pt6, 7, 8uq “ t1, 2, 3u.

THEOREM 25.9. Define f : RÑ R by fpxq “ x` 2.

Then: f˚pr0;8qq “ r2;8q and f˚pr0;8qq “ r´2;8q.
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THEOREM 25.10. Define f : RÑ R by fpxq “ x2. Then

f˚pr9; 16qq “ p´4;´3s Y r3; 4q.

26. Composition

THEOREM 26.1. Let f and g be functions. Then D1function h,

denoted g ˝ f ,

s.t., @x, hpxq “ gpfpxqq.

THEOREM 26.2. Define f, g : RÑ R by fpxq “ x` 2, gpxq “
?
x.

Then, @x P R, pg ˝ fqpxq “
?
x` 2.

Also, domrg ˝ f s “ r´2;8q “ f˚pdomrgsq.

Also, imrg ˝ f s “ r0;8q “ g˚pimrf sq.

THEOREM 26.3. Define f, g : RÑ R by fpxq “
?
x, gpxq “ x` 2.

Then, @x P R, pg ˝ fqpxq “
?
x` 2.

Also, domrg ˝ f s “ r0;8q “ f˚pdomrgsq.

Also, imrg ˝ f s “ r2;8q “ g˚pimrf sq.

THEOREM 26.4. Let f and g be functions. Then

(1) domrg ˝ f s “ f˚pdomrgsq and

(2) imrg ˝ f s “ g˚pimrf sq.

Composition of functions is associative:

THEOREM 26.5. @functions f, g, h, we have: h˝pg˝fq “ ph˝gq˝f .

THEOREM 26.6. Let f : A ãÑą B and let g : B ãÑą C. Then

g ˝ f : A ãÑą C.

THEOREM 26.7. Let A, B and C be sets.

Assume that DA ãÑ B and that DB ãÑ C.

Then: DA ãÑ C.

27. Power sets and sets of functions

AXIOM 27.1. @set S, D1set P, denoted 2S, s.t.

@A, pA P Pq ô pA Ď Sq.

For any set S, the set 2S is called the power set of S. It is the set

of all subsets of S.

THEOREM 27.2. 2t7,8,9u “

t H, t9u, t8u, t8, 9u,

t7u, t7, 9u, t7, 8u, t7, 8, 9u u.
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DEFINITION 27.3. @sets A,B, BA :“ tf Ď Aˆ̂ B | f : AÑ Bu.

According to specification, between “t” and “|”, we should have:

a single variable, then “P” then a set .

The logic purist would therefore do some rewriting of Definition 21.18,

and define BA to be BA :“ tf P 2Aˆ̂ B | f : AÑ Bu.

THEOREM 27.4. t0, 1ut7,8,9u “
"

¨

˝

7 ÞÑ 0

8 ÞÑ 0

9 ÞÑ 0

˛

‚,

¨

˝

7 ÞÑ 0

8 ÞÑ 0

9 ÞÑ 1

˛

‚,

¨

˝

7 ÞÑ 0

8 ÞÑ 1

9 ÞÑ 0

˛

‚,

¨

˝

7 ÞÑ 0

8 ÞÑ 1

9 ÞÑ 1

˛

‚,

¨

˝

7 ÞÑ 1

8 ÞÑ 0

9 ÞÑ 0

˛

‚,

¨

˝

7 ÞÑ 1

8 ÞÑ 0

9 ÞÑ 1

˛

‚,

¨

˝

7 ÞÑ 1

8 ÞÑ 1

9 ÞÑ 0

˛

‚,

¨

˝

7 ÞÑ 1

8 ÞÑ 1

9 ÞÑ 1

˛

‚

*

.

THEOREM 27.5. @set A, Dt0, 1uA ãÑą 2A.

THEOREM 27.6. t7, 8, 9ut1,2u “
"ˆ

1 ÞÑ 7

2 ÞÑ 7

˙

,

ˆ

1 ÞÑ 7

2 ÞÑ 8

˙

,

ˆ

1 ÞÑ 7

2 ÞÑ 9

˙

,
ˆ

1 ÞÑ 8

2 ÞÑ 7

˙

,

ˆ

1 ÞÑ 8

2 ÞÑ 8

˙

,

ˆ

1 ÞÑ 8

2 ÞÑ 9

˙

,
ˆ

1 ÞÑ 9

2 ÞÑ 7

˙

,

ˆ

1 ÞÑ 9

2 ÞÑ 8

˙

,

ˆ

1 ÞÑ 9

2 ÞÑ 9

˙*

“

t p7, 7q , p7, 8q , p7, 9q , p8, 7q , p8, 8q , p8, 9q , p9, 7q , p9, 8q , p9, 9q u.

28. Orbits

DEFINITION 28.1. Let f be a function. Let k P N0.

Let S :“ pdomrf sq Y pimrf sq. Then, @a,

ORBk
f paq :“ UEtx P Sr0..ks | px0 “ aq&p@j P r1..ks, fpxj´1q “ xjqu.

The function ORBk
f paq is called the k-orbit of a under f .

THEOREM 28.2. Define f : r1, 8s Ñ R by fpxq “ x` 2.

Then ORB0
f p3q “ p0 ÞÑ 3q, ORB1

f p3q “

ˆ

0 ÞÑ 3

1 ÞÑ 5

˙

,

ORB2
f p3q “

¨

˝

0 ÞÑ 3

1 ÞÑ 5

2 ÞÑ 7

˛

‚, ORB3
f p3q “

¨

˚

˚

˝

0 ÞÑ 3

1 ÞÑ 5

2 ÞÑ 7

3 ÞÑ 9

˛

‹

‹

‚

and

ORB4
f p3q “ /.
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Also, pORB0
f p3qq0 “ 3, pORB1

f p3qq1 “ 5,

pORB2
f p3qq2 “ 7, pORB3

f p3qq3 “ 9 and

pORB4
f p3qq4 “ /.

DEFINITION 28.3. Let f be a function, k P N0.

Then, @a, fk˝ paq :“ pORBk
f paqqk.

THEOREM 28.4. Define f : r1, 8s Ñ R by fpxq “ x` 2.

Then f 0
˝ p3q “ 3, f 1

˝ p3q “ 5, f 2
˝ p3q “ 7, f 3

˝ p3q “ 9, f 4
˝ p3q “ /.

THEOREM 28.5. Define f : r1, 8s Ñ R by fpxq “ x` 2.

Then f 0
˝ p3q “ 3, f 1

˝ p3q “ fp3q, f 2
˝ p3q “ pf ˝ fqp3q,

f 3
˝ p3q “ pf ˝ f ˝ fqp3q and f 4

˝ p3q “ pf ˝ f ˝ f ˝ fqp3q.

THEOREM 28.6. @function f , @a,

f 0
˝ paq “ a, f 1

˝ paq “ fpaq, f 2
˝ paq “ pf ˝ fqpaq,

f 3
˝ paq “ pf ˝f ˝fqpaq and f 4

˝ paq “ pf ˝f ˝f ˝fqpaq.

THEOREM 28.7. @function f , @a, fpf j˝ paqq “ f j`1˝ paq.

DEFINITION 28.8. Let a P R. Define f : RÑ R by fpxq “ ax.

Then, @k P N0, ak :“ fk˝ p1q.

DEFINITION 28.9. @a P R, @k P N, a´k :“ 1{pakq.

THEOREM 28.10. 20 “ 1, 21 “ 2, 22 “ 4, 23 “ 8,

2´1 “ 1{2, 2´2 “ 1{4, 2´3 “ 1{8.

THEOREM 28.11. @j P N0, 2 ¨ 2j “ 2j`1.

THEOREM 28.12. @a P R, a0 “ 1.

THEOREM 28.13. 00 “ 1.

THEOREM 28.14. @a P R, a1 “ a and a´1 “ 1{a.

DEFINITION 28.15. @set A, @k P N, Ak :“ Ar1..ks.

Review Theorem 27.6.

THEOREM 28.16. t7, 8, 9u2 “ t7, 8, 9ut1,2u “

t p7, 7q , p7, 8q , p7, 9q , p8, 7q , p8, 8q , p8, 9q , p9, 7q , p9, 8q , p9, 9q u.

DEFINITION 28.17. @sets A and B,

AˆB :“ t pa, bq P pAYBq2 | p a P A q& p b P B q u.

We call AˆB of Definition 28.17 the product of A and B.
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THEOREM 28.18. t7u ˆ t8, 9u “ t p7, 8q , p7, 9q u.

THEOREM 28.19. t1, 2, 3u ˆ t8, 9u “

t p1, 8q , p2, 8q , p3, 8q , p1, 9q , p2, 9q , p3, 9q u

DEFINITION 28.20. @sets A and B and C,

AˆB ˆ C :“ tpa, b, cq P pAYB Y Cq3 | pa P Aq&pb P Bq&pc P Cu.

We call AˆB ˆC of Definition 28.20 the product of A, B and C.

THEOREM 28.21. t1, 2, 3u ˆ t8, 9u ˆ t0u “

t p1, 8, 0q , p2, 8, 0q , p3, 8, 0q , p1, 9, 0q , p2, 9, 0q , p3, 9, 0q u

We leave it to you to continue these definitions up to nine sets.

For the last definition, fill in the ellipses (¨ ¨ ¨ ) in:

DEFINITION 28.22. @sets A, . . . , I,

Aˆ ¨ ¨ ¨ ˆ I :“ tpa, . . . , iq P pAY ¨ ¨ ¨ Y Iq9 | pa P Aq& ¨ ¨ ¨&pi P Iqu.

THEOREM 28.23. @set A, A2 “ A ˆ A and A3 “ A ˆ A ˆ A and

A4 “ Aˆ Aˆ Aˆ A and A5 “ Aˆ Aˆ Aˆ Aˆ A.

We also have similar formulas for A6, A7, A8 and A9.

Let A, B and C be sets. Let f : AˆB Ñ C. Then, @x P A, @y P B,

we have px, yq P AˆB and fppx, yqq P C, but it is common to eliminate

one set of parentheses, and write fpx, yq instead of fppx, yqq.

The logic purist eschews ellipses (¨ ¨ ¨ ). Consider the theorem

1 ` ¨ ¨ ¨ ` 4 “ 10 .

The logic purist would prefer

1 ` 2 ` 3 ` 4 “ 10 .

On the other hand, consider the theorem:

THEOREM 28.24. @` P N, 1` ¨ ¨ ¨ ` ` “ `p`` 1q{2.

We now have a challenge in eliminating the ellipsis, because ` is a

variable. We can use composition powers to deal with this challenge:

THEOREM 28.25. Define f : Zˆ RÑ Zˆ R by

fpj, xq “ pj ` 1, x` jq.

Then fp1, 0q “ p2, 1q and fp2, 1q “ p3, 3q and

fp3, 3q “ p4, 6q and fp4, 6q “ p5, 10q.
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Also, pf 1
˝ p1, 0qq2 “ pp2, 1qq2 “ 1,

pf 2
˝ p1, 0qq2 “ pp3, 3qq2 “ 3 “ 1` 2,

pf 3
˝ p1, 0qq2 “ pp4, 6qq2 “ 6 “ 1` 2` 3 and

pf 4
˝ p1, 0qq2 “ pp5, 10qq2 “ 10 “ 1` 2` 3` 4.

Instead of Theorem 28.24, the logic purist would prefer:

THEOREM 28.26. Define f : Zˆ RÑ Zˆ R by

fpj, xq “ pj ` 1, x` jq.

Then, @` P N, we have pf `˝p1, 0qq2 “ `p`` 1q{2.

However, as is often the case, purity comes at the cost of readability,

and, in this course, we will often use ellipses. Theorem 28.24 is proved

below, see Theorem 30.7. Next, we introduce the summation notation:

DEFINITION 28.27. Let α be a function, let k, ` P N.

Assume k ď `, rk..`s Ď domrαs and imrαs Ď R.

Then:
ÿ̀

k

α‚ :“ αk ` ¨ ¨ ¨ ` α`.

Assuming that j is a free variable, we can also use the notation
ÿ̀

j“k

αj

to denote
ÿ̀

k

α‚. In this case, the variable j becomes bound between

“
ÿ̀

j“k

” and “αj”, and is then free again. If j is not free, but i is free,

then we could use
ÿ̀

i“k

αi, and, again i is temporarily bound. Any free

variable is acceptable, not just i or j. For this reason, the variable

is sometimes called a “dummy variable”, meaning a variable that is

easily replaced by another, as a dummy mannequin is easly replaced

by another in a department store.

Definition 28.27 is not acceptable to a logic purist because of the

ellipsis. The following, while difficult to read, is formally better.

DEFINITION 28.28. Let α be a function and let k, ` P N.

Assume k ď `, rk..`s Ď domrαs and imrαs Ď R.

Define f : rk..`s ˆ RÑ Zˆ R by fpj, xq “ pj ` 1, x` αjq.

Then:
ÿ̀

k

α‚ :“ p f `´k`1˝ pk, 0q q2.
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The product notation is similar:

DEFINITION 28.29. Let α be a function and let k, ` P N.

Assume k ď `, rk..`s Ď domrαs and imrαs Ď R.

Then
ź̀

k

α‚ :“ αk ¨ ¨ ¨ ¨ ¨ α`.

Assuming that j is a free variable, we can also use the notation
ź̀

j“k

αj

to denote
ź̀

k

α‚. In this case, the variable j becomes bound between

“
ź̀

j“k

” and “αj”, and is then free again. If j is not free, but i is free,

then we could use
ź̀

i“k

αi, and, again i is temporarily bound. This is

another dummy variable; any free variable is okay, not just i or j.

More formally:

DEFINITION 28.30. Let α be a function and let k, ` P N.

Assume k ď `, rk..`s Ď domrαs and imrαs Ď R.

Define f : rk..`s ˆ RÑ Zˆ R by fpj, xq “ pj ` 1, x ¨ αjq.

Then:
ź̀

k

α‚ :“ p f `´k`1˝ pk, 1q q2.

Using summation notation, we can rewrite Theorem 28.24 in a way

that is readable and avoids ellipses:

THEOREM 28.31. @` P N,
ÿ̀

j“1

j “ `p`` 1q{2.

THEOREM 28.32. Then @` P N,
ÿ̀

1

pidRq‚ “ `p`` 1q{2.

29. Appendix 1

The following is Theorem 1.2:

THEOREM 29.1. @x, y, r px “ yq ñ py “ xq s.
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Proof. Given x, y.

Want: px “ yq ñ py “ xq.

Assume x “ y.

Want: y “ x.

By Axiom 1.1, x “ x.

Since x “ y, we may replace the first x in x “ x by y.

Then y “ x, as desired. �

The following is Theorem 1.3.

THEOREM 29.2. @x, y, z, r px “ y “ zq ñ px “ zq s.

Proof. We have x “ y and y “ z.

Since x “ y, we may replace y in y “ z by x.

Then x “ z, sa desired. �

The following is Theorem 7.15:

THEOREM 29.3. @a, b P R, Dx P R s.t. a` x “ b.

Proof. Given a, b P R. Want: Dx P R s.t. a` x “ b.

Let x :“ b´ a.

Then

a` x “ a` pb´ aq “ a` b` p´aq

“ b` a` p´aq “ b` 0 “ b,

as desired. �

30. Principle of Mathematical Induction

DEFINITION 30.1. @S Ď R, by S is successor closed, we mean:

@x P S, x` 1 P S.

AXIOM 30.2. N is successor closed.

Recall that N “ r1..8q. Then 1 P N. Recall:

p1` 1 “ 2q& p2` 1 “ 3q& p3` 1 “ 4q& p4` 1 “ 5q&

p5` 1 “ 6q& p6` 1 “ 7q& p7` 1 “ 8q& p8` 1 “ 9q ,

and 9` 1 “ 10. So, as N :“ r1..8q Ď Z, using Axiom 30.2, we have:

THEOREM 30.3. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 P N Ď Z.

AXIOM 30.4. Z “ p´Nq Y t0u Y N.
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THEOREM 30.5. 0,´1,´2,´3,´4,´5,´6,´7,´8,´9,´10 P Z.

The next axiom is the Principle of Mathematical Induction.

AXIOM 30.6. Let S Ď N.

Assume that 1 P S and that S is successor closed.

Then S “ N.

THEOREM 30.7. @` P N, 1` ¨ ¨ ¨ ` ` “ `p`` 1q{2.

Proof. Let S :“ t` P N | 1` ¨ ¨ ¨ ` ` “ `p`` 1q{2u.

Want: S “ N.

Since 1 “ 1 ¨ p1` 1q{2, it follows that 1 P S.

So, by the PMI, it suffices to show: S is successor closed.

Want: @` P S, `` 1 P S.

Given ` P S. Want: `` 1 P S.

Know: 1` ¨ ¨ ¨ ` ` “ `p`` 1q{2.

Want: 1` ¨ ¨ ¨ ` `` p`` 1q “ p`` 1qpp`` 1q ` 1q{2.

We have:

1` ¨ ¨ ¨ ` `` p`` 1q “ p`p`` 1q{2q ` p`` 1q

“ pp`2 ` `q{2q ` pp2`` 2q{2q

“ p`2 ` 3`` 2q{2 “ p`` 1qp`` 2q{2

“ p`` 1qpp`` 1q ` 1q{2,

as desired. �

THEOREM 30.8. @j, k P N, j ` k P N.

Proof. Let S :“ tk P N | @j P N, j ` k P Nu.
Want: S “ N.

Since N is successor closed, we know: @j P N, j ` 1 P N.

Then 1 P S.

By the PMI, it suffices to show: S is successor closed.

Want: @k P S, k ` 1 P S.

Given k P S. Want: k ` 1 P S.

Know: @j P N, j ` k P N.

Want: @j P N, j ` pk ` 1q P N.

Given j P N. Want: j ` pk ` 1q P N.

j ` k P N and N is successor closed.

Then pj ` kq ` 1 P N.

Then j ` pk ` 1q “ pj ` kq ` 1 P N, as desired �
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We leave it as unassigned homework to show that successor closed is

“translation invariant”. That is:

@S Ď R, @a P R,

r pS is successor closed q ñ pS ` a is successor closed q s.

We can generalize the PMI:

THEOREM 30.9. Let k P Z. Let S Ď rk..8q.

Assume that k P S and that S is successor closed.

Then: S “ rk..8q.

Proof. Let a :“ 1´ k. Then a` k “ 1.

Since S is successor closed, S ` a is successor closed.

Since k P S, k ` a P S ` a.

Since S Ď rk..8q, S ` a Ď rk..8q ` a.

Then S ` a is successor closed

and 1 “ k ` a P S ` a

and S ` a Ď rk..8q ` a “ r1..8q,

so, by Axiom 30.6, S ` a “ N.

Then S “ N´ a “ r1..8q ´ a “ rk..8q, as desired. �

THEOREM 30.10. @j P N0, 2j ě j ` 1.

Proof. Let S :“ tj P N0 | 2
j ě j ` 1u.

Then S Ď N0 “ r0..8q. Want: S “ N0. Want: S “ r0..8q.

Since 20 “ 1 ě 0` 1, we see that 0 P S.

Then, by Theorem 30.9, it suffices to show: S is successor closed.

Want: @j P S, j ` 1 P S.

Given j P S. Want: j ` 1 P S.

Know: 2j ě j ` 1. Want: 2j`1 ě pj ` 1q ` 1.

Since 2j ě j ` 1, we get 2 ¨ 2j ě 2 ¨ pj ` 1q.

Since j P S Ď N0 “ r0..8q ě 0, we get j ě 0.

Then j ` pj ` 2q ě 0` pj ` 2q, so 2j ` 2 ě j ` 2.

Then 2j`1 “ 2 ¨ 2j ě 2 ¨ pj ` 1q “ 2j ` 2 ě j ` 2 “ pj ` 1q ` 1. �

THEOREM 30.11. @j P N0, 2j ą j.

Proof. Given j P N0. Want: 2j ą j.

By Theorem 30.10, 2j ě j ` 1.

Then 2j ě j ` 1 ą j, as desired. �
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31. Well-ordered sets

DEFINITION 31.1. Let S Ď R˚. By S is well-ordered, we mean:

@nonempty A Ď S, minA ‰ /.

THEOREM 31.2. Let A Ď N˚ and let j P N0. Let k :“ j ` 1.

Assume r1..js X A “ H ‰ r1..ks X A. Then min A “ k.

Proof. Unassigned homework. �

THEOREM 31.3. N˚ is well-ordered.

Proof. Want: @nonempty A Ď N˚, min A ‰ /.

Given nonempty A Ď N˚.
Want: min A ‰ /.

Assume min A “ /.

Want: Contradiction.

Claim 1: @j P N0, r1..js X A “ H.

Proof of Claim 1:

Let S :“ tj P N0 | r1..js X A “ Hu.

Want: S “ N0. Want: S “ r0..8q.

Since r1..0s X A “ HX A “ H, we see that 0 P S.

Then, by the GPMI,

Want: S is successor closed.

Want: @j P S, j ` 1 P S.

Given j P S. Want: j ` 1 P S.

Let k :“ j ` 1. Want: k P S.

Since j P S, we have r1..js X A “ H.

So, since k ‰ / “ minA, by Theorem 31.2, we see that r1..ksXA “ H.

Then k P A, as desired. End of proof of Claim 1.

Claim 2: A Ď t8u.

Proof of Claim 2:

We have N˚zN “ t8u. Want: A Ď N˚zN.

We have A Ď N˚. Want: @j P N, j R A.

Given j P N. Want: j R A.

Since j P N, we conclude that j P r1..js.

By Claim 1, r1..js X A “ H.

Then j R r1..js X A.

So, since j P r1..js, we see that j R A, as desired.
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End of proof of Claim 2.

Since H ‰ A Ď t8u, we see that A “ t8u, so min A “ 8.

Then min A “ 8 ‰ / and min A “ /.

Contradiction. �

THEOREM 31.4. Let T Ď R˚ and let S Ď T .

Assume that T is well-ordered. Then S is well-ordered.

THEOREM 31.5. N is well-ordered.

THEOREM 31.6. Let S Ď R˚ and let t P R.

Assume that S is well-ordered. Then S ` t is well-ordered.

THEOREM 31.7. @k P Z, rk..8s is well-ordered.

THEOREM 31.8. @k P Z, rk..8q is well-ordered.

DEFINITION 31.9. Let S Ď R.

By S is bounded below in R, we mean: Du P R s.t. u ď S.

By S is bounded above in R, we mean: Du P R s.t. S ď u.

THEOREM 31.10. The following are all true:

r1;8q is bounded below in R, but not bounded above in R,

N is bounded below in R, but not bounded above in R,

p´8; 5q is bounded above in R, but not bounded below in R,

Z is neither bounded above nor bounded below in R and

p2; 5s is both bounded above and bounded below in R.

H is both bounded above and bounded below in R.

The following will be called the Reverse Archimedean Principle:

THEOREM 31.11. @u P R, Dk P ´N s.t. k ă u.

Proof. Given u P R. Want: Dk P ´N s.t. k ă u. By the Archimedean

Principle (Theorem 19.1),

choose j P N s.t. j ą ´u.

Let k :“ ´j.

Want: k ă u.

Since j ą ´u, we see that ´j ă ´p´uq.

Then k “ ´j ă ´p´uq “ u, as desired. �

THEOREM 31.12. Let S Ď Z be nonempty.

Assume that S is bounded below in R. Then min S ‰ /.
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Proof. Since S is bounded below in R, choose u P R s.t. u ď S.

By the Reverse Archimedean Principle (Theorem 31.11),

choose k P ´N s.t. k ă u.

Then S Ď pk;8q X Z “ pk..8q Ď rk..8s.
By Theorem 31.8, rk..8s is well-ordered.

So, since H ‰ S Ď rk..8s, we get min S ‰ /, as desired. �

THEOREM 31.13. Let S Ď R.

Assume that S is bounded above in R.

Then ´S is bounded below in R.

Proof. Unassigned HW. �

THEOREM 31.14. @S Ď R, minp´Sq “ ´pmax Sq.

Proof. Unassigned HW. �

THEOREM 31.15. Let S Ď Z be nonempty.

Assume that S is bounded above in R. Then max S ‰ /.

Proof. Since S Ď Z, we see that ´S Ď Z.

Since S ‰ H, we see that ´S ‰ H.

Since S is bounded above in R, by Theorem 31.13,

we see that ´S is bounded below in R.

Then, by Theorem 31.12 (with S replaced by ´S),

we see that minp´Sq ‰ /.

By Theorem 31.14, minp´Sq “ ´pmax Sq.

Then ´pmax Sq ‰ /. Then max S ‰ /, as desired. �

32. Constants, punctures, fills and adjustments

DEFINITION 32.1. @set A, @!y,

we define Cy
A : AÑ tyu by Cy

Apxq “ y.

The function Cy
A of Definition 32.1 is called the constant function

on A with value y. For example, the graph of C1
R is the horizontal line

through the point p0, 1q. Another example:

THEOREM 32.2. C6
t2,5,9u “

¨

˝

2 ÞÑ 6

5 ÞÑ 6

9 ÞÑ 6

˛

‚.

In class, we graphed C1
R.
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DEFINITION 32.3. @set S, 0S :“ C0
S.

DEFINITION 32.4. Let A be a set. Then, @!b,

Aˆb :“ Aztbu and A`b :“ AY tbu.

Also, @b, the set Aˆb is called A punctured at b.

Also, @b, the set A`b is called A filled by b, or A adjoin b.

THEOREM 32.5. Let A :“ t5, 6, 7, 8u. Then

Aˆ5 “ t6, 7, 8u, Aˆ9 “ t5, 6, 7, 8u ,

A`5 “ t5, 6, 7, 8u, A`9 “ t5, 6, 7, 8, 9u .

Let X :“ p0; 2q.

In class, we graphed X and then Xˆ
1 and then X`

1 on a number line.

We then graphed Xˆ
3 and then X`

3 .

THEOREM 32.6. Let f be a function.

Then, @!p, @!q, D1function g, denoted adjqp f , s.t.

r @x, px ‰ p q ñ p gpxq “ fpxq q s and r gppq “ q s.

The function adjqp f is called the adjustment of f sending p to q.

THEOREM 32.7. Let f :“

¨

˝

1 ÞÑ 4

2 ÞÑ ´1

5 ÞÑ 6

˛

‚, φ :“

¨

˚

˚

˝

0 ÞÑ 3

1 ÞÑ 4

2 ÞÑ ´1

5 ÞÑ 6

˛

‹

‹

‚

.

Then adj70 f “ adj70 φ “

¨

˚

˚

˝

0 ÞÑ 7

1 ÞÑ 4

2 ÞÑ ´1

5 ÞÑ 6

˛

‹

‹

‚

.

THEOREM 32.8. Define f : R 99K R by fpxq “ x{x.

Then adj10 f “ C1
R.

THEOREM 32.9. Define f : R 99K R by fpxq “ px2`x´2q{px´1q.

Let g :“ adj31 f . Then, @x P Rˆ1 , fpxq “ x` 2. Also, fp1q “ /.

Also, @x P R, gpxq “ x` 2.

THEOREM 32.10. @function f , @!p, @!q,

domrpadjqp fqs “ pdomrf sq`p and imrpadjqp fqs Ď pimrf sq
`
q .
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33. Finite and infinite sets

THEOREM 33.1. Let S be a set. Let A :“ tj P N0 | DS ãÑ r1..jsu.

Let B :“ A`8. Then H ‰ B Ď N˚0 .

DEFINITION 33.2. Let S be a set. Let A :“ tj P N0 | DS ãÑ r1..jsu.

Let B :“ A`8. Then #S :“ minB.

THEOREM 33.3. #t2, 7, 9u “ 3 and #Z “ 8 “ #R and #H “ 0.

THEOREM 33.4. @set S, #S P N˚0 .

DEFINITION 33.5. @set S, by S is finite, we mean #S ă 8.

DEFINITION 33.6. @set S, by S is infinite, we mean #S “ 8.

THEOREM 33.7. Let S be a set, k P N0.

Then: p#S “ k q ô p Dr1..ks ãÑą S q.

THEOREM 33.8. @finite sets A, B,

Then: p#A “ #B q ô p DA ãÑą B q.

THEOREM 33.9. @sets A,B, r p DA ãÑ B q _ p DB ãÑ A q s.

The next theorem is the Schroeder-Bernstein Theorem:

THEOREM 33.10. @sets A,B,

r p DA ãÑ B q & p DB ãÑ A q s ñ r DA ãÑą B s.

We described the “World of Sets”, as a big blob on the board, with

no top. Inside, sets that are at the same horizontal level are bijective.

If one set is above another then there’s an injection from the lower one

to the upper one, but not the other way around. Inside, starting at

the bottom, we showed the empty set, then singletons, then unordered

pairs, etc., and then a dividing line between finite and infinite.

THEOREM 33.11. Let S be a set.

Then: p#S “ 8q ô p DN ãÑ S q.

In the World of Sets, we showed N at the bottom of the infinite

sets. Sets at or below N are said to be “countable”. Sets above N are

“uncountable”. Sets at the same horizontal level as N are “countably

infite”. That is:

DEFINITION 33.12. Let S be a set.

Then S is countable means: DS ãÑ N.

Also, S is countably infinite means: DS ãÑą N.

Also, S is uncountable means: ES ãÑ N.
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THEOREM 33.13. Let S be a set. Then:

rS is countably infnite s ô r pS is countable q& pS is infnite q s.

THEOREM 33.14. @countable set C, @A Ď C, A is countable.

THEOREM 33.15. N0 and Z and Q are all countably infinite.

We put N0, Z, Q all at the same level as N.

THEOREM 33.16. @ sets A, r p DA ãÑ 2A q& p E2A ãÑ A q s.

We put in 2N and 22N , and explained that there is no top.

THEOREM 33.17. D2N ãÑą R.

We put in R at the same level as 2N. Sets at that level are said to

have “continuum cardinality”:

DEFINITION 33.18. Let S be a set.

By S has continuum cardinality, we mean: DS ãÑą R.

Any Euclidean space had continuum cardinality:

THEOREM 33.19. @k P N, Rk has continuum cardinality.

We put R1, R2, R3 at the same level as R.

Any nondegenerate interval has continuum cardinality:

THEOREM 33.20. Let a, b P R˚. Assume a ă b. Then:

ra; bs, ra; bq, pa; bs and pa; bq all have continuum cardinality.

We put r0; 1s and p0; 1q at the same level as R.

Within our axiom system, there is no way to determine if there are

any sets strictly between N and 2N. The assertion

Eset S s.t. p pDN ãÑ Sq& pDS ãÑ 2Nq& pES ãÑ Nq& pE2N ãÑ Sq q

is called the Continuum Hypothesis or CH. The axiom system

of this course is equivalent to a standard axiomatic system called ZFC.

Within ZFC, it is impossible to prove CH, but it is also impossible

to prove  CH. To convey this, one says: “CH is independent of ZFC”.

Within our axiom system, @infinite set A, there is no way to deter-

mine if there are any sets strictly between A and 2A. The Generalized

Continuum Hypothesis or GCH is the assertion: @infinite set A,

Eset S s.t. p pDA ãÑ Sq& pDS ãÑ 2Aq& pES ãÑ Aq& pE2A ãÑ Sq q

Within ZFC, it is impossible to prove GCH, but it is also impossible

to prove  GCH. That is, GCH is independent of ZFC.
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Here are a few important sets:

Let c0 :“ H.

Let c1 :“ tc0u.

Let c2 :“ tc0, c1u.

Let c3 :“ tc0, c1, c2u.
...

Let ℵ0 :“ tc0, c1, c2, c3, . . .u.

Then c0 is called the 0th cardinal number, and it is the only set at the

bottom level of the World of Sets. The first cardinal number is c1, and

we will position it as the leftmost set at the level of singleton sets. The

second cardinal number is c2, and we will position it as the leftmost

set at the level of unordered pairs. The third cardinal number is c3,

and we will position it as the leftmost set at the level of sets with three

elements. The countably infinite cardinal number is ℵ0, and we will

position it as the leftmost set at the level of countably infinite sets.

We will not go into more detail here, but there is a system for produc-

ing exactly one cardinal number at each horizontal level in the World

of Sets, and I like to position these sets on the left. The “cardinality”

of a set is the unique cardinal number that is bijective with that set.

Then two sets are bijective iff they have the same cardinality.

THEOREM 33.21. @finite, nonempty A Ď R˚, min A ‰ / ‰ max A.

Recall Theorem 27.4:

THEOREM 33.22. t0, 1ut7,8,9u “
"

¨

˝

7 ÞÑ 0

8 ÞÑ 0

9 ÞÑ 0

˛

‚,

¨

˝

7 ÞÑ 0

8 ÞÑ 0

9 ÞÑ 1

˛

‚,

¨

˝

7 ÞÑ 0

8 ÞÑ 1

9 ÞÑ 0

˛

‚,

¨

˝

7 ÞÑ 0

8 ÞÑ 1

9 ÞÑ 1

˛

‚,

¨

˝

7 ÞÑ 1

8 ÞÑ 0

9 ÞÑ 0

˛

‚,

¨

˝

7 ÞÑ 1

8 ÞÑ 0

9 ÞÑ 1

˛

‚,

¨

˝

7 ÞÑ 1

8 ÞÑ 1

9 ÞÑ 0

˛

‚,

¨

˝

7 ÞÑ 1

8 ÞÑ 1

9 ÞÑ 1

˛

‚

*

.

Recall Theorem 27.6:

THEOREM 33.23. t7, 8, 9ut1,2u “
"ˆ

1 ÞÑ 7

2 ÞÑ 7

˙

,

ˆ

1 ÞÑ 7

2 ÞÑ 8

˙

,

ˆ

1 ÞÑ 7

2 ÞÑ 9

˙

,
ˆ

1 ÞÑ 8

2 ÞÑ 7

˙

,

ˆ

1 ÞÑ 8

2 ÞÑ 8

˙

,

ˆ

1 ÞÑ 8

2 ÞÑ 9

˙

,
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ˆ

1 ÞÑ 9

2 ÞÑ 7

˙

,

ˆ

1 ÞÑ 9

2 ÞÑ 8

˙

,

ˆ

1 ÞÑ 9

2 ÞÑ 9

˙*

“

t p7, 7q , p7, 8q , p7, 9q , p8, 7q , p8, 8q , p8, 9q , p9, 7q , p9, 8q , p9, 9q u.

THEOREM 33.24. @finite sets A,B, #pBAq “ p#Bq#A.

Recall: Theorem 27.2:

THEOREM 33.25. 2t7,8,9u “

t H, t9u, t8u, t8, 9u,

t7u, t7, 9u, t7, 8u, t7, 8, 9u u.

Recall Theorem 27.5:

THEOREM 33.26. @set A, Dt0, 1uA ãÑą 2A.

THEOREM 33.27. @finite set A, #p2Aq “ 2#A.

34. Arithmetic of functionals

DEFINITION 34.1. @f , by f is a functional, we mean:

p f is a function q& p imrf s Ď R q.

DEFINITION 34.2. Let a P R and let f be a functional.

Then a ¨ f , a{f and f{a are the functionals defined by: @x,

pa ¨ fqpxq “ a ¨ rfpxqs,

pa{fqpxq “ a{rfpxqs and

pf{aqpxq “ rfpxqs{a.

We often write af instead of a ¨ f .

DEFINITION 34.3. For any functional f , we define ´f :“ p´1q ¨f .

DEFINITION 34.4. Let f and g be functionals.

Assume that imrf s Ď R and that imrgs Ď R.

Then f ` g, f ´ g, f ¨ g and f{g are the functionals defined by: @x,

pf ` gqpxq “ rfpxqs ` rgpxqs,

pf ´ gqpxq “ rfpxqs ´ rgpxqs,

pf ¨ gqpxq “ rfpxqs ¨ rgpxqs and

pf{gqpxq “ rfpxqs{rgpxqs.

We often write fg instead of f ¨ g.

THEOREM 34.5. p1, 2, 3q ` p4, 0,´3q “ p5, 2, 0q and

p1, 2, 3q ´ p4, 0,´3q “ p´3, 2, 6q.
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THEOREM 34.6. 3 ¨ p2, 0,´3, 1q “ p6, 0,´9, 3q.

THEOREM 34.7. p6, 0,´9, 3q{3 “ p2, 0,´3, 1q.

35. Absolute value and dot product

THEOREM 35.1. @x P R, x2 ě 0.

THEOREM 35.2. @x P R, px2 “ 0 q ô px “ 0 q.

THEOREM 35.3. @x ě 0, |x| “ x

THEOREM 35.4. @x ď 0, |x| “ ´x

THEOREM 35.5. @x P R, |x| “
?
x2.

THEOREM 35.6. All of the following are true:

(1) @x P R, r px “ 0 q ô p |x| “ 0 q s.

(2) @a P R, @x P R, |ax| “ |a| ¨ |x|.

(3) @x, y P R, |x` y| ď |x| ` |y|.

In Theorem 35.6,

(1) says that “| ‚ | separates zero” ,

(2) says that “| ‚ | is absolute homogeneous” and

(3) says that “| ‚ | is subadditive” .

The three properties together say “| ‚ | is a norm”.

DEFINITION 35.7. @k P N, @v, w P Rk,

v ‚ w :“ v1w1 ` ¨ ¨ ¨ ` vkwk.

Logic purist: Replace “v1w1 ` ¨ ¨ ¨ ` vkwk” by “
k
ÿ

1

pvwq‚”.

DEFINITION 35.8. 44 :“ 4 ¨ 10` 4.

THEOREM 35.9. p1, 3, 5q ‚ p2, 4, 6q “ 1 ¨ 2` 3 ¨ 4` 5 ¨ 6 “ 44.

THEOREM 35.10. @k P N, @v, w P Rk, v ‚ w “ w ‚ v.

THEOREM 35.11. @k P N, @u, v, w P Rk,

u ‚ pv ` wq “ pu ‚ vq ` pu ‚ wq.

THEOREM 35.12. @k P N, @a P R, @v, w P Rk,

pavq ‚ w “ a ¨ pv ‚ wq.

THEOREM 35.13. @k P N, @v P Rk, v ‚ v ě 0.
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36. Standard norms on Euclidean spaces

FOR NEXT YEAR: Define |v|p :“ p|v1|
p ` ¨ ¨ ¨ ` |vk|

pq1{p and note

that |v|2 “
?
v ‚ v. Don’t use |v|k; instead, use |v|2. LATER, don’t use

|v|k,p; instead, use |v|p.

DEFINITION 36.1. @k P N, @v P Rk, we define |v|k :“
?
v ‚ v.

THEOREM 36.2. @k P N, @v P Rk, v ‚ v “ |v|2k.

THEOREM 36.3. |p3, 4q|2 “
a

p3, 4q ‚ p3, 4q “
?

32 ` 42 “ 5.

DEFINITION 36.4. 194 :“ 1 ¨ 100` 9 ¨ 10` 4.

THEOREM 36.5. |p7, 8, 9q|3 “
?

72 ` 82 ` 92 “
?

194.

Recall (Definition 32.3) that, @set S, we defined 0S :“ C0
S.

DEFINITION 36.6. @k P N, 0k :“ 0r1..ks.

Then 02 “ p0, 0q and 03 “ p0, 0, 0q and 04 “ p0, 0, 0, 0q, etc.

THEOREM 36.7. Let k P N. Then all of the following are true:

(1) @v P Rk, r p v “ 0k q ô p |v|k “ 0 q s.

(2) @a P R, @v P Rk, |av|k “ |a| ¨ |v|k.

(3) @v, w P Rk, |v ` w|k ď |v|k ` |w|k.

Let k P N. In Theorem 36.7,

(1) says that “| ‚ |k separates zero” ,

(2) says that “| ‚ |k is absolute homogeneous” and

(3) says that “| ‚ |k is subadditive” .

The three properties together say “| ‚ |k is a norm”.

We sometimes refer to the absolute value function, | ‚ | : RÑ r0;8q,

as the standard norm on R. For all k P N, the standard norm

on Rk is | ‚ |k : Rk Ñ r0;8q. Some use “Euclidean norm” instead of

standard norm.

THEOREM 36.8. Let k P N, v P Rk. Let a :“ |v|k.

Then Du P Rk s.t.: p |u|k “ 1 q & p v “ au q.

Proof. One of the following is true:

(1) v “ 0k or

(2) v ‰ 0k.
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Case (1):

Let u :“ p1, 0, . . . , 0q.

Want: p |u|k “ 1 q & p v “ au q.

We have |u|k “
?

12 ` 02 ` ¨ ¨ ¨ ` 02 “ 1.

Want: v “ au.

We have v “ 0k “ 0 ¨ u “ au.

End of Case (1).

Case (2):

Since v ‰ 0k, we see that |v|k ‰ 0.

Then a “ |v|k ‰ 0.

So, since a P r0;8q, we conclude that a P Rˆ0 .

Let u :“ v{a.

Want: p |u|k “ 1 q & p v “ au q.

We have |u|k “ |v{a|k “ p|v|kq{a “ a{a “ 1.

Want: v “ au.

We have v “ a ¨ pv{aq “ au.

End of Case (2). �

The following theorem is the Cauchy-Schwarz inequality:

THEOREM 36.9. @k P N, @v, w P Rk, |v ‚ w| ď |v|k ¨ |w|k.

Proof. Let a :“ |v|k and b :“ |w|k.

By Theorem 36.8, choose t P Rk s.t. |t|k “ 1 and v “ at.

By Theorem 36.8, choose u P Rk s.t. |u|k “ 1 and w “ bu.

Then t ‚ t “ |t|2k “ 12 “ 1. Also, u ‚ u “ |u|2k “ 12 “ 1.

We have pt´ uq ‚ pt´ uq ě 0.

Expanding this, we get 1´ 2 ¨ pt ‚ uq ` 1 ě 0, so 2´ 2 ¨ pt ‚ uq ě 0.

Then 2 ě 2 ¨ pt ‚ uq, so 1 ě t ‚ u.

Then t ‚ u ď 1, so pabq ¨ pt ‚ uq ď ab.

Then v ‚ w “ patq ‚ pbuq “ pabq ¨ pt ‚ uq ď ab “ |v|k ¨ |w|k. �

37. Unassigned homework

THEOREM 37.1. @a, z P R, r |a| ď z s ô r p a ď z q& p´a ď z q s.

38. Metric spaces

FOR NEXT YEAR: Put nonemptyness as part of the definition of

a metric space.
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FOR NEXT YEAR: Maybe we should define “extended metric” as

a function d : SˆS Ñ r0;8s with the same properties as a metric, but

with the target including 8. So, some points could be at an infinite

distance from others. This would allow for a standard extended metric

on R˚. We’d need to define: @a P R`8, a`8 “ 8 to make the triangle

inequality make sense.

DEFINITION 38.1. Let S be a set, and let d : S ˆ S Ñ r0;8q.

By d is a metric on S, we mean:

(1) @x, y P S, p r x “ y s ô r dpx, yq “ 0 s q,

(2) @x, y P S, dpx, yq “ dpy, xq and

(3) @x, y, z P S, dpx, zq ď rdpx, yqs ` rdpy, zqs.

In Definition 38.1,

(1) says that “d separates points” ,

(2) says that “d is symmetric” and

(3) says that “d satisfies the triangle inequality” .

DEFINITION 38.2. For any set S,

MpSq :“ td : S ˆ S Ñ r0;8q | d is a metric on Su.

The logic purist would object because, according to our Axioms

of Specification, in Definition 38.2, we should write “td P . . . | . . .u”.

To fix this, we could write

MpSq :“ td P r0;8qSˆS | d is a metric on Su.

THEOREM 38.3. D1d PMpRq, denoted d0,

s.t., @x, y P R, dpx, yq “ |y ´ x|.

We call d0 the standard metric on R.

THEOREM 38.4. Let k P N. Then D1d PMpRkq, denoted dk,

s.t., @v, w P Rk, dpv, wq “ |w ´ v|k.

We call dk the standard metric on Rk.

DEFINITION 38.5. A metric space is an ordered pair pS, dq s.t.

S is a set and d PMpSq.

DEFINITION 38.6. Let X be a metric space.

Then Xset :“ X1 and dX :“ X2.

Also, Xset is called the underlying set of X.

Also, dX is called the metric on X.
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We sometimes omit the subscript “X” from “dX”.

We almost always omit the subscript “set” from “Xset”, so, by slop-

piness, the underlying set Xset of X is often denoted X. This means

that X has two different meanings, and, in each usage, you have to fig-

ure out, by context, which X is intended. For example, if you see “dX”,

then X is a metric space. On the other hand, if you see “a : R Ñ X”

or “b P X”, then X is a set.

For your confusion, pR, d0q is denoted R. Then d0 “ dR.

Let k P N. For confusion, pRk, dkq is denoted Rk. Then dk “ dRk .

THEOREM 38.7. dRp5, 7q “ 2 and dRp9, 3q “ 6 and

d2pp1, 7q, p4, 3qq “
a

p1´ 4q2 ´ p7´ 3q2 “ 5.

A basic property of | ‚ | is that it is “distance semi-decreasing”:

THEOREM 38.8. @x, y P R, dRp|x|, |y|q ď dRpx, yq.

Proof. Unassigned HW. �

According to Theorem 38.8, @x, y P R,

| |x| ´ |y| | ď | x ´ y |.

For each k P N, | ‚ |k is also “distance semi-decreasing”:

THEOREM 38.9. @k P N, @v, w P Rk, dRp|v|k, |w|kq ď dkpv, wq.

Proof. Given k P N and v, w P Rk.

Want: dRp|v|k, |w|kq ď dkpv, wq.

Let a :“ |v|k ´ |w|k and let z :“ |v ´ w|k.

Then dRp|v|k, |w|kq “ |a| and dkpv, wq “ z.

Want: |a| ď z. Want: a ď z and ´a ď z.

We have |v|k “ |w ` pv ´ wq|k ď |w|k ` |v ´ w|k “ |w|k ` z.

Subtracting |w|k from both sides, we see that a ď z.

Want: ´a ď z.

We have |w ´ v|k “ |v ´ w|k “ z and ´a “ |w|k ´ |v|k.

Then |w|k “ |v ` pw ´ vq|k ď |v|k ` |w ´ v|k “ |v|k ` z.

Subtracting |v|k from both sides, we see that ´a ď z, as desired. �

According to Theorem 38.9, @k P N, @v, w P Rk,

| |v|k ´ |w|k | ď | v ´ w |k.

DEFINITION 38.10. Let X be a metric space, z P X, r ą 0.

Then BXpz, rq :“ tq P X | dXpz, qq ă ru.
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We sometimes omit the subscript “X” from “BXpz, rq”.

The set BXpz, rq of Definition 38.10 is called: the open ball about

z of radius r. We sometimes omit “open” and simply say “ball about

z of radius r”.

THEOREM 38.11. @a P R, @δ ą 0, BRpa, δq “ pa´ δ; a` δq.

The next result says that any two points in a metric space can be

separated by balls of equal radii.

THEOREM 38.12. Let X be a metric space, and let y, z P X.

Assume y ‰ z. Then Dr ą 0 s.t. rBXpy, rqs X rBXpz, rqs “ H.

Proof. This is HW#6-2. �

Theorem 38.12, above, is the Hausdorff property of metric spaces.

DEFINITION 38.13. Let X be a metric space and let z P X.

We define BXpzq :“ tBpz, rq | r ą 0u.

We sometimes omit the subscript “X” from “BXpzq”.

THEOREM 38.14. Let X be a metric space and let p, q P X.

Assume that p ‰ q. Then DA P BXppq, DB P BXpqq s.t. AXB “ H.

Proof. By Theorem 38.12,

choose r ą 0 s.t. rBpy, rqs X rBpz, rqs “ H. Let A :“ Bpy, rq and

B :“ Bpz, rq.

Want: AXB “ H.

We have: AXB “ rBpy, rqs X rBpz, rqs “ H, as desired. �

DEFINITION 38.15. Let X be a metric space.

Then BX :“ t Bpz, rq Ď X | z P X, r ą 0 u.

THEOREM 38.16. Let X be a metric space, B P BX and p P B.

Then DA P Bppq s.t. A Ď B.

Proof. Since B P BX , choose q P X and t ą 0 s.t. B “ Bpq, tq.

Since p P B “ Bpq, tq, we get dpp, qq ă t.

Let s :“ dpp, qq. Then s ă t.

Let r :“ t´ s. Then r ą 0 and r ` s “ t.

Let A :“ Bpp, rq. Then A P Bppq.
Want: A Ď B.

Want: @z P A, z P B.
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Given z P A. Want: z P B.

Since z P A “ Bpp, rq, we get dpz, pq ă r.

Since dpz, pq ă r and dpp, qq “ s,

we get rdpz, pqs ` rdpp, qqs ă r ` s.

Then dpz, qq ď rdpz, pqs ` rdpp, qqs ă r ` s “ t, so z P Bpq, tq.

Then z P Bpq, tq “ B, as desired. �

THEOREM 38.17. Let X be a metric space, A P BX and q P X.

Then DB P Bpqq s.t. B Ě A.

Proof. This is HW#6-3. �

Theorem 38.16 is called the Subset Recentering Lemma.

Theorem 38.17 is called the Superset Recentering Lemma.

DEFINITION 38.18. Let X be a metric space and let S Ď X.

By S is bounded in X, we mean: DB P BX s.t. S Ď B.

The following is the same as Theorem 31.10:

THEOREM 38.19. The following are all true:

r1;8q is bounded below in R, but not bounded above in R,

N is bounded below in R, but not bounded above in R,

p´8; 5q is bounded above in R, but not bounded below in R,

Z is neither bounded above nor bounded below in R and

p2; 5s is both bounded above and bounded below in R.

H is both bounded above and bounded below in R.

THEOREM 38.20. The following are all true:

r1;8q is not bounded in R,

N is not bounded in R,

p´8; 5q is not bounded in R,

Z is not bounded in R and

p2; 5s bounded in R.

H bounded in R.

THEOREM 38.21. Let S Ď R. Then:

r pS is bounded in Rq ô

p pS is bounded below in R q& pS is bounded above in R q q s.

39. Sequences

DEFINITION 39.1. @a, by a is a sequence, we mean:

a is a function and domras “ N.
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DEFINITION 39.2. @a, @X, by a is a sequence in X, we mean:

a P XN.

DEFINITION 39.3. Let f be a function and let X be a set.

By f is X-valued, we mean imrf s Ď X.

DEFINITION 39.4. Let X be a metric space and let f be an X-

valued function.

By f is bounded into X, we mean:

imrf s is bounded in X.

We sometimes say “bounded in X” instead of “bounded into X”.

FOR NEXT YEAR, let’s just write “a Ñ z in X”, not “a‚ Ñ z in

X”. Also, use s instead of a; think of a is indicating a sequence of

reals, and s as a more general sequence.

DEFINITION 39.5. Let X be a metric space, a P XN and z P X.

By a‚ Ñ z in X, we mean: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dpaj, zq ă ε q.

We sometimes omit “in X” in “a‚ Ñ z in X”. For any sequence a,

we sometimes denote a by pa1, a2, a3, . . .q. Then, for example, the text

Define a P RN by aj “ 1{j

might be replaced by

Let a :“ p1, 1{2, 1{3, . . .q.

This is very irksome to the logic purist who does not like ellipses.

THEOREM 39.6. p1, 1{2, 1{3, . . .q‚ Ñ 0 in R.

The purist would prefer:

THEOREM 39.7. Define a P RN by aj “ 1{j. Then a‚ Ñ 0 in R.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dpaj, 0q ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dpaj, 0q ă ε q.

By the Archimedean Principle (Theorem 19.1),

choose K P N s.t. K ą 1{ε.

Want: @j P N, r p j ě K q ñ p dpaj, 0q ă ε q s.

Given j P N. Want: p j ě K q ñ p dpaj, 0q ă ε q.

Assume j ě K. Want: dpaj, 0q ă ε.

Since j ě K ą 1{ε, we get j ą 1{ε.
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Since j ą 1{ε ą 0, we get 1{j ă ε.

Since aj “ 1{j ą 0, we get |aj| “ aj.

Then dpaj, 0q “ |aj ´ 0| “ |aj| “ aj “ 1{j ă ε, as desired. �

DEFINITION 39.8. Let X be a metric space and let a P XN.

Then a is convergent in X means:

Dz P X s.t. a‚ Ñ z in X.

Sometimes “in X” is omitted from “convergent in X”.

From Definition 38.18 and Definition 39.4, we have:

THEOREM 39.9. @metric space X, @a P XN,

pa is bounded in Xq ô pimras is bounded in Xq

ô pDS P BX s.t. imras Ď Sq.

A bounded sequence is not necessarily convergent:

THEOREM 39.10. Define a P RN by aj “ p´1qj.

Then: a “ p´1, 1,´1, 1´ 1, 1´ 1, 1´ 1, 1´ 1, 1, . . .q and

a is bounded in R and

a is not convergent in R.

THEOREM 39.11. Let X be a metric space, a P XN and z P X.

Assume that a‚ Ñ z in X.

Then: @B P BXpzq, DK P N s.t., @j P N,

p j ě K q ñ p aj P B q.

Proof. Given B P BXpzq. Want: DK P N s.t., @j P N,

p j ě K q ñ p aj P B q.

Since B P BXpzq, choose ε ą 0 s.t. B “ BXpz, εq.

Since a‚ Ñ z in X, choose K P N s.t., @j P N,

p j ě K q ñ p dXpaj, zq ă ε q.

Want: @j P N, r p j ě K q ñ p aj P B q s.

Given j P N. Want: p j ě K q ñ p aj P B q.

Assume j ě K. Want: aj P B.

Since j ě K, by choice of K,

we have dXpaj, zq ă ε, and so aj P BXpz, εq.

Then aj P BXpz, εq “ B, as desired. �

THEOREM 39.12. Let X be a metric space, p, q P X and s P XN.

Assume: p s‚ Ñ p in X q & p s‚ Ñ q in X q. Then p “ q.
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Proof. Assume that p ‰ q. Want: Contradiction.

By Theorem 38.14, choose A P BXppq and B P BXpqq s.t. AXB “ H.

Since s‚ Ñ p in X, by Theorem 39.11, choose K P N s.t., @j P N,

p j ě K q ñ p sj P A q.

Since s‚ Ñ q in X, by Theorem 39.11, choose L P N s.t., @j P N,

p j ě L q ñ p sj P B q.

Let j :“ maxtK,Lu. Then j P N.

Since j ě K, by choice of K, we have sj P A.

Since j ě L, by choice of L, we have sj P B.

Then sj P AXB, so AXB ‰ H.

By choice of A and B, we have: AXB “ H. Contradiction. �

40. Properties of limits

THEOREM 40.1. Let s, t P RN and let x, y P R.

Assume: p s‚ Ñ x in R q & p t‚ Ñ y in R q.
Then ps` tq‚ Ñ x` y in R.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dRpps` tqj, x` yq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dRpps` tqj, x` yq ă ε q.

Since sj Ñ x in R, choose L P N s.t., @j P N,

p j ě L q ñ p dRpsj, xq ă ε{2 q.

Since tj Ñ y in R, choose M P N s.t., @j P N,

p j ěM q ñ p dRptj, yq ă ε{2 q.

Let K :“ maxtL,Mu. Then K P N and K ě L and K ěM .

Want: @j P N, r p j ě K q ñ p dRpps` tqj, x` yq ă ε q s.

Given j P N. Want: p j ě K q ñ p dRpps` tqj, x` yq ă ε q.

Assume j ě K. Want: dRpps` tqj, x` yq ă ε.

Since j ě K ě L, by choice of L, we have dRpsj, xq ă ε{2.

Since j ě K ěM , by choice of M , we have dRptj, yq ă ε{2.

Then dRpps` tqj, x` yq “ dRpsj ` tj, x` yq

“ | p sj ` tj q ´ px` y q | “ | p sj ´ x q ` p tj ´ y q |

ď | sj ´ x | ` | tj ´ y | “ r dRpsj, xq s ` r dRptj, yq s

ă r ε{2 s ` r ε{2q s “ ε, as desired. �

THEOREM 40.2. Let s P RN and let a, y P R.

Assume that s‚ Ñ x in R. Then pasq‚ Ñ ax in R.
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Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dRppasqj, axq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dRppasqj, axq ă ε q.

Let b :“ |a| ` 1. Then b ą 0 and |a|{b ă 1.

Since sj Ñ x in R, choose K P N s.t., @j P N,

p j ě K q ñ p dRpsj, xq ă ε{b q.

Want: @j P N, r p j ě K q ñ p dRppasqj, axq ă ε q s.

Given j P N. Want: p j ě K q ñ p dRppasqj, axq ă ε q.

Assume j ě K. Want: dRppasqj, axq ă ε.

Since j ě K, by choice of K, we have dRpsj, xq ă ε{b.

So, since |a| ě 0, we get |a| ¨ rdRpsj, xqs ď |a| ¨ rε{bs.

Since |a|{b ă 1 and ε ą 0, we get r|a|{bs ¨ ε ă ε.

Then dRppasqj, axq “ dRpa ¨ sj, a ¨ xq “ | a ¨ sj ´ a ¨ x |

“ | a ¨ psj ´ xq | “ |a| ¨ |sj ´ x| “ |a| ¨ rdRpsj, xqs

ď |a| ¨ rε{bs “ r|a|{bs ¨ ε ă ε, as desired. �

THEOREM 40.3. Let X be a metric space and let z P X.

Then Cy
N Ñ y in X.

Proof. Unassigned HW. �

THEOREM 40.4. Let s, t P RN and let x, y P R.

Assume: p s‚ Ñ x in R q & p t‚ Ñ y in R q.
Then ps´ tq‚ Ñ x´ y in R.

Proof. Unassigned HW. �

THEOREM 40.5. Let s, t P RN and x, y P R.

Assume that s‚ Ñ x in R and that t‚ Ñ y in R.

Then pstq‚ Ñ xy in R.

Proof. Since s‚ is convergent in R, by HW#6-4, s‚ is bounded in R.

Let c :“ Cy
N. By Theorem 40.3, c‚ Ñ y in R.

So, since t‚ Ñ y in R and since y ´ y “ 0, by Theorem 40.4,

we see that pt´ cq‚ Ñ 0 in R.

So, since s‚ is bounded in R, by HW#6-5,

we see that ps ¨ pt´ cqq‚ Ñ 0 in R.

So, since s ¨ pt´ cq “ st´ sc, we get pst´ scq‚ Ñ 0 in R.

Since s‚ Ñ x in R, by Theorem 40.2, we get ysÑ yx in R.

So, since ys “ cs “ sc and since yx “ xy, we get scÑ xy in R.
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So, since pst´ scq‚ Ñ 0 in R, by Theorem 40.1,

we see that psc` st´ scq‚ Ñ xy ` 0 in R.

So, since sc` st´ sc “ st and since xy ` 0 “ xy,

we see that pstq‚ Ñ xy in R, as desired. �

Recall (Theorem 38.8): | ‚ | is distance semi-decreasing.

That is, @x, y P R, we have: dp|x|, |y|q ď dpx, yq.

THEOREM 40.6. Let b P pRˆ0 qN and z P Rˆ0 .

Assume that b‚ Ñ z in R.

Then p1{bq‚ Ñ 1{z in R.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dRpp1{bqj, 1{zq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dRpp1{bqj, 1{zq ă ε q.

Let η :“ min t |z|{2 , εz2{2 u.

Then η ď |z|{2 and η ă εz2{2.

Since z P Rˆ0 , we get |z| ą 0 and z2 ą 0.

So, since ε ą 0, we get η ą 0.

So, since bj Ñ z in R, choose K P N s.t., @j P N,

p j ě K q ñ p dRpbj, zq ă η q.

Want: @j P N, r p j ě K q ñ p dRpp1{bqj, 1{zq ă ε q s.

Given j P N. Want: p j ě K q ñ p dRpp1{bqj, 1{zq ă ε q.

Assume j ě K. Want: dRpp1{bqj, 1{zq ă ε.

Since j ě K, it follows, from the choice of K, that dRpbj, zq ă η.

Then |z ´ bj| “ dRpz, bjq “ dRpbj, zq ă η.

By Theorem 38.8, dRp|bj|, |z|q ď dRpbj, zq.

Since dRp|bj|, |z|q ď dRpbj, zq ă η, we get |z| ´ η ď |bj| ď |z| ` η.

Since η ď |z|{2, we get |z| ´ η ě |z| ´ p|z|{2q “ |z|{2.

Then |bj| ą |z| ´ η ě |z| ´ p|z|{2q “ |z|{2.

So, since |z ´ bj| ă η, we get:
|z ´ bj|

|bj| ¨ |z|
ă

η

p|z|{2q ¨ |z|
.

Then dRpp1{bqj, 1{zq “ dR

ˆ

1

bj
,
1

z

˙

“

ˇ

ˇ

ˇ

ˇ

1

bj
´

1

z

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

z ´ bj
bjz

ˇ

ˇ

ˇ

ˇ

“
|z ´ bj|

|bj| ¨ |z|
ă

η

p|z|{2q ¨ |z|
“

2 ¨ η

|z|2
“

2 ¨ η

z2
ď

2 ¨ pεz2{2qq

z2
“ ε. �

THEOREM 40.7. Let a P RN, y P R, b P pRˆ0 qTN, z P Rˆ0 . Assume

that a‚ Ñ y in R and that b‚ Ñ z in R. Then pa{bq‚ Ñ y{z in R.
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Proof. By Theorem 40.6, p1{bq‚ Ñ 1{z in R.

So, since a‚ Ñ y in R, by Theorem 40.5, pp1{bq ¨ aq‚ Ñ p1{zq ¨ y in R.

So, since p1{zq ¨ y “ y{z, we get: pp1{bq ¨ aq‚ Ñ y{z in R.

It therefore suffices to show: a{b “ p1{bq ¨ a.

Want: @j P N, pa{bqj “ pp1{bq ¨ aqj.

Given j P N. Want: pa{bqj “ pp1{bq ¨ aqj.

We have pa{bqj “ aj{bj “ p1{bjq ¨ aj “ pp1{bq ¨ aqj, as desired. �

41. Diamond and square norms

DEFINITION 41.1. @k P N, @v P Rk, we define:

|v|Dk :“ |v1| ` ¨ ¨ ¨ ` |vk| and

|v|Sk :“ maxt|v1|, . . . , |vk|u.

Let k P N. We leave it as an unassigned exercise to show that | ‚ |Dk
separates 0k, is symmetric and satisfies the triangle inequality. Thus

| ‚ |Dk is a norm, called the diamond norm in Rk. Since | ‚ |Dk is a

norm, its unit level set

tv P Rk s.t. |v|Dk “ 1u

is called its “unit sphere” and is denoted t| ‚ |Dk “ 1u. Since | ‚ |Dk is a

norm, its open unit sublevel set

tv P Rk s.t. |v|Dk ă 1u

is called its “unit ball” and is denoted t| ‚ |Dk ă 1u.

We graphed t| ‚ |D2 “ 1u, and observed that it is a diamond.

Let k P N. We leave it as an unassigned exercise to show that | ‚ |Sk
separates 0k, is symmetric and satisfies the triangle inequality. Thus

| ‚ |Sk is a norm, called the square norm in Rk. Since | ‚ |Sk is a norm,

its unit level set

tv P Rk s.t. |v|Sk “ 1u

is called its “unit sphere” and is denoted t| ‚ |Sk “ 1u. Since | ‚ |Sk is a

norm, its open unit sublevel set

tv P Rkk s.t. |v|Sk ă 1u

is called its “unit ball” and is denoted t| ‚ |Sk ă 1u.

We graphed t| ‚ |S2 “ 1u, and observed that it is a square.

We explained how to reccover any absolutely homgeneous function

from its unit level set. The graph of that unit level set contains, in geo-

metric form, all of the information of the function, and it is a skill

to look at that graph, and, from it, to “see” properties of the function.

For example, for any absolutely homogeneous function, that function
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is a norm iff

its unit level set is symmetric through the origin, and

its unit sublevel set is convex.

Let k P N. Every positive multiple of a norm is a norm. So, for

example 2 ¨ | ‚ |Sk is a norm. We observed that

t2 ¨ | ‚ |Sk ă 1u Ď t| ‚ |Dk ă 1u Ď t| ‚ |k ă 1u Ď t| ‚ |Sk ă 1u.

According to the “Compensation Principle”, big norms have small

balls and small norms have big balls. Thus, we expect that:

@v P Rk, 2 ¨ |v|Sk ě ¨|v|Dk ě ¨|v|k ě ¨|v|Sk ,

and we will leave it as homework to verify these inequalities via sym-

bolic proofs. (See HW#7-1, HW#7-2 and HW#7-3.)

42. Pairing together functions

DEFINITION 42.1. @functions f, g, by pf, gqfn, we mean the func-

tion defined by: @x, pf, gqfnpxq “ pfpxq, gpxqq.

Keep in mind that, in Definition 42.1, pf, gq would refer to an ordered

pair, and pf, gq “

ˆ

1 ÞÑ f

2 ÞÑ g

˙

. Unfortunately, the subscript “fn” is

almost always omitted from the notation “pf, gqfn”, and so “pf, gq”

might mean pf, gqfn or it might mean

ˆ

1 ÞÑ f

2 ÞÑ g

˙

. It is up to the

reader to figure out, from context, which is meant.

THEOREM 42.2. Let f, g : R 99K R be defined by fpxq “
?
x and

gpxq “
?

1´ x. Then

pf, gq : R 99K R2,

@x P R, pf, gqpxq “ p
?
x,
?

1´ xq and

domrpf, gqs “ r0;8q X p´8; 1s “ pdomrf sq X pdomrgsq.

The domain of the pairing is always the intersection of the domains,

for any two functions, not just for the particular two functions f and g

that were specified in Theorem 42.2:

THEOREM 42.3. @functions f and g, we have:

domrpf, gqs “ pdomrf sq X pdomrgsq.

Since a sequence is just a function with domain N, we see, from

Theorem 42.3, that a pairing of two sequences is again a sequence:

THEOREM 42.4. @sequences a and b, pa, bq is a sequence.
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Moreover, any evaulation of a paired sequence is done by evaluating

the first and second parts of the pair:

THEOREM 42.5. @sequences a and b, @j P N, pa, bqj “ paj, bjq.

Targets of paired functions also behave predictably:

THEOREM 42.6. @sets S and T , @functions f and g,

r p imrf s Ď S q & p imrgs Ď T q s ñ r imrpf, gqs Ď S ˆ T s.

Targets of paired sequences also behave predictably:

THEOREM 42.7. @sets S and T , @a P SN, @b P TN,

pa, bq P pS ˆ T qN.

Projection to the x-axis is distance semi-decreasing:

THEOREM 42.8. @v, w P R2, dRpv1, w1q ď d2pv, wq.

Proof. Given v, w P R2. Want: dRpv1, w1q ď d2pv, wq.

Let x :“ v ´ w. Then |x|2 “ d2pv, wq.

Want: dRpv1, w1q ď |x|2.

Since x1 “ v1 ´ w1, we get |x1| “ dRpv1, w1q.

Want: |x1| ď |x|2.

Since 0 ď x21 and 0 ď x22, we get 0 ď x21 ď x21 ` x
2
2.

It follows that
a

x21 ď
a

x21 ` x
2
2.

Then |x1| “
a

x21 ď
a

x21 ` x
2
2 “ |x|2, as desired. �

THEOREM 42.9. Let a, b P RN and let p, q P R.

Assume that a‚ Ñ p in R and that b‚ Ñ q in R.

Then pa, bq‚ Ñ pp, qq in R2.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p d2ppa, bqj, pp, qqq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p d2ppa, bqj, pp, qqq ă ε q.

Let η :“ ε{2.

Then η ą 0 and 2η “ ε.

Since a‚ Ñ p in R, choose L P N s.t., @j P N,

p j ě L q ñ p dRpaj, pq ă η q.

Since b‚ Ñ q in R, choose M P N s.t., @j P N,

p j ěM q ñ p dRpbj, qq ă η q.

Let K :“ maxtL,Mu. Then K ě L and K ěM and K P N.
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Want: @j P N, r p j ě K q ñ p d2ppa, bqj, pp, qqq ă ε q s.

Given j P N. Want: p j ě K q ñ p d2ppa, bqj, pp, qqq ă ε q.

Assume j ě K. Want: d2ppa, bqj, pp, qqq ă ε.

Since j ě K ě L, by choice of L, we have: dRpaj, pq ă η.

Since j ě K ěM , by choice of M , we have: dRpbj, qq ă η.

Let v :“ paj ´ p, bj ´ qq.

Then v “ paj, bjq ´ pp, qq and |v|D2 “ |aj ´ p| ` |bj ´ q|.

By HW 7-1, we have: |v|D2 ě |v|2.

Then d2ppa, bqj, pp, qqq “ d2ppaj, bjq, pp, qqq “ |paj, bjq ´ pp, qq|2
“ |v|2 ď |v|

D
2 “ |aj ´ p| ` |bj ´ q|

“ rdRpaj, pqs ` rdRpbj, qqs ă η ` η “ 2η “ ε, as desired. �

43. Product metrics and relative metrics

DEFINITION 43.1. Let X and Y be metric spaces.

Define d PMpX ˆ Y q by

dpv, wq “
a

rdXpv1, w1qs
2 ` rdY pv2, w2qs

2.

Then d is called the product metric on X ˆ Y from X and Y .

We leave it as an unassigned exercise to show that the function

d : pX ˆ Y q ˆ pX ˆ Y q Ñ r0;8q

of Definition 43.1 is, in fact, a metric on X ˆ Y .

In Definition 43.1, the phrase “from X and Y ” is often omitted.

For any metric spaces X and Y , the standard metric on X ˆ Y is the

product metric.

We can generalize Definition 43.1 to products X ˆ Y ˆ Z of three

metric spaces X and Y and Z. Or to four, or to five, etc.

THEOREM 43.2. Let X and Y be metric spaces.

Let a P XN, p P X, b P Y N and q P Y .

Then: p r pa, bq‚ Ñ pp, qq in X ˆ Y s ô

r p a‚ Ñ p in X q & p b‚ Ñ q in Y q s q.

DEFINITION 43.3. Let X be a metric space and let S Ď X.

Then dX |pSˆSq is called the relative metric on S inherited from X.

We leave it as an unassigned exercise to show that the function

d|pS ˆ Sq : S ˆ S Ñ r0;8q

of Definition 43.3 is, in fact, a metric on S.
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In Definition 43.3, the phrase “inherited from X” is often omitted.

For any metric space X, for any S Ď X, the standard metric on S is

the relative metric.

THEOREM 43.4. Let C :“ tv P R2 | v21 ` v
2
2 “ 1u

be the unit circle about the origin in R2.

Let d be the product metric on Rˆ R from pR, dRq and pR, dRq.
Let δ be the relative metric on C inherited from pRˆ R, dq.
Let v :“ p1, 0q and w :“ p0, 1q.

Then d “ d2 and δpv, wq “
?

2.

44. Continuity

DEFINITION 44.1. Let X and Y be metric spaces.

Let f : X Ñ Y and p P X.

By f is continuous at p from X to Y , we mean:

@a P XN, p a‚ Ñ p in X q ñ p pf ˝ aq‚ Ñ fppq in Y q.

DEFINITION 44.2. Let X and Y be metric spaces, f : X Ñ Y .

By f is continuous from X to Y , we mean:

@p P X, f is continuous at p from X to Y .

Also, @S Ď X, by f is continuous on S from X to Y , we mean:

@p P S, f is continuous at p from X to Y .

In Definition 44.1 and in Definition 44.2, sometimes, the text “from

X to Y ” is omitted, provide the domain and target of f are clear.

DEFINITION 44.3. Let φ be a functional and let k P N.

Define f : RÑ R by fpxq “ xk.

Then φk :“ f ˝ φ.

THEOREM 44.4. @functional φ,

φ0 “ C1
domrφs and φ1 “ φ and φ2 “ φ ¨ φ and φ3 “ φ ¨ φ ¨ φ.

THEOREM 44.5. @a P RN,

a0 “ C1
N and a1 “ a and a2 “ a ¨ a and a3 “ a ¨ a¨!a.

THEOREM 44.6. Let f : RÑ R be defined by fpxq “ x2.

Then f is continuous from R to R.
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Proof. Want: @x P R, f is continuous at x from R to R.

Given x P R. Want: f is continuous at x from R to R.

Want: @a P RN, r p a‚ Ñ x in R q ñ p pf ˝ aq‚ Ñ fpxq in R q s.
Given a P RN. Want: p a‚ Ñ x in R q ñ p pf ˝ aq‚ Ñ fpxq in R q.
Assume that a‚ Ñ x in R. Want: pf ˝ aq‚ Ñ fpxq in R.

Since a‚ Ñ X in R and since a‚ Ñ x in R,

by Theorem 40.5, we get pa ¨ aq‚ Ñ x ¨ x in R.

So, since a ¨ a “ a2 “ f ˝ a and since x ¨ x “ x2 “ fpxq,

we get pf ˝ aq‚ Ñ fpxq in R, as desired. �

THEOREM 44.7. Let A : R2 Ñ R be defined by Apx, yq “ x` y.

Then A is continuous from R2 to R.

Proof. Want: @z P R2, A is continuous at z from R2 to R.

Given z P R2. Want: A is continuous at z from R2 to R.

Want: @v P pR2qN, r p v‚ Ñ z in R2 q ñ p pA ˝ vq‚ Ñ Apzq in R q s.
Given v P pR2qN. Want: p v‚ Ñ z in R2 q ñ p pA˝vq‚ Ñ Apzq in R q.
Assume that v‚ Ñ z in R2. Want: pA ˝ vq‚ Ñ Apzq in R.

Let x :“ z1 and y :“ z2. Then z “ pz1, z2q “ px, yq.

Define s, t P RN by sj “ pvjq1 and tj “ pvjq2.

Then, @j P N, vj “ ppvjq1, pvjq2q “ psj, tjq “ ps, tqj.

Then v “ ps, tq.

Since v‚ Ñ z in R2, since v “ ps, tq and since z “ px, yq,

we see that ps, tq‚ Ñ px, yq in R2.

Then, by Theorem 43.2,

we see that s‚ Ñ x in R and t‚ Ñ y in R. Then, by Theorem 40.1,

we see that ps` tq‚ Ñ x` y in R.

So, since Apx, yq “ x` y, we see that ps` tq‚ Ñ Apx, yq in R.

Recall that we want: pA ˝ vq‚ Ñ Apzq in R.

It therefore suffices to show that A ˝ v “ s` t.

Want: @j P N, pA ˝ vqj “ ps` tqj.

Given j P N. Want: pA ˝ vqj “ ps` tqj.

We have pA˝vqj “ Apvjq “ Apsj, tjq “ sj`tj “ ps`tqj, as desired. �

The next two theorems are proved similarly.

THEOREM 44.8. Let S : R2 Ñ R be defined by Spx, yq “ x´ y.

Then S is continuous from R2 to R.

THEOREM 44.9. Let M : R2 Ñ R be defined by Mpx, yq “ xy.

Then M is continuous from R2 to R.
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In Theorem 44.10, below, the metric on RˆRˆ0 is the relative metric

inherited from pR2, d2q. In Theorem 44.10, below, the metric on R is

the standard metric dR.

THEOREM 44.10. Let D : RˆRˆ0 Ñ R be defined by Dpx, yq “ x{y.

Then D is continuous from Rˆ Rˆ0 to R.

THEOREM 44.11. Let X be a metric space.

Let S Ď X, a P SN and p P S.

Assume that a‚ Ñ p in S. Then a‚ Ñ p in X.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dXpaj, pq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dXpaj, pq ă ε q.

Since a‚ Ñ p in S, choose K P N s.t.,, @j P N,

p j ě K q ñ p dSpaj, pq ă ε q.

Want: @j P N, r p j ě K q ñ p dXpaj, pq ă ε q s.

Given j P N. Want: r p j ě K q ñ p dXpaj, pq ă ε q s.

Assume j ě K. Want: dXpaj, pq ă ε.

Since j ě K, by choice of K, we get dSpaj, pq ă ε.

Since aj, p P S Ď X, we have dSpaj, pq “ dXpaj, pq.

Then dXpaj, pq “ dSpaj, pq ă ε, as desired. �

The converse of Theorem 44.11 holds, with similar proof:

THEOREM 44.12. Let X be a metric space.

Let S Ď X, a P SN and p P S.

Assume that a‚ Ñ p in X. Then a‚ Ñ p in S.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dSpaj, pq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dSpaj, pq ă ε q.

Since a‚ Ñ p in X, choose K P N s.t.,, @j P N,

p j ě K q ñ p dXpaj, pq ă ε q.

Want: @j P N, r p j ě K q ñ p dSpaj, pq ă ε q s.

Given j P N. Want: r p j ě K q ñ p dXpaj, pq ă ε q s.

Assume j ě K. Want: dXpaj, pq ă ε.

Since j ě K, by choice of K, we get dSpaj, pq ă ε.

Since aj, p P S Ď X, we have dSpaj, pq “ dXpaj, pq.

Then dSpaj, pq “ dXpaj, pq ă ε, as desired. �
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The buzz phrase for Theorem 44.13, below, is “restriction maintains

continuity”. In Theorem 44.13, below, the metric on S is the relative

metric, inherited from X.

THEOREM 44.13. Let X and Y be metric spaces.

Let f : X Ñ Y , S Ď X and p P S.

Assume that f is continuous at p from X to Y .

Then f |S is continuous at p from S to Y .

Proof. Want: @a P SN,

p a‚ Ñ p in S q ñ p ppf |Sq ˝ aq‚ Ñ pf |Sqppq in Y q.

Given a P SN.

Want: p a‚ Ñ p in S q ñ p ppf |Sq ˝ aq‚ Ñ pf |Sqppq in Y q.

Assume a‚ Ñ p in S. Want: ppf |Sq ˝ aq‚ Ñ pf |Sqppq in Y .

Since a‚ Ñ p in S, it follows, by Theorem 44.11,

that a‚ Ñ p in X.

Then, by continuity of f at p from X to Y ,

we see that pf ˝ aq‚ Ñ fppq in Y .

Since p P S, we have pf |Sqppq “ fppq.

Then pf ˝ aq‚ Ñ pf |Sqppq in Y .

Recall that we want: ppf |Sq ˝ aq‚ Ñ pf |Sqppq in Y .

It therefore suffices to show that f ˝ a “ pf |Sq ˝ a.

Want: @j P N, pf ˝ aqj “ ppf |Sq ˝ aqj.

Given j P N. Want: pf ˝ aqj “ ppf |Sq ˝ aqj.

Since a P SN, we get aj P S, and so pf |Sqpajq “ fpajq.

Then pf ˝ aqj “ fpajq “ pf |Sqpajq “ ppf |Sq ˝ aqj, as desired. �

The buzz phrase for Theorem 44.14, below, is “decrease of target

maintains continuity”. The buzz phrase for Theorem 44.15, below, is

“increase of target maintains continuity”. In both Theorem 44.14 and

Theorem 44.15, below, the metric on Y0 is the relative metric, inherited

from Y .

THEOREM 44.14. Let X and Y be metric spaces.

Let p P X, Y0 Ď Y and φ : X Ñ Y0.

Assume that φ is continuous at p from X to Y .

Then φ is continuous at p from X to Y0.

Proof. We have both φ : X Ñ Y0 and φ : X Ñ Y .

Want: @a P XN, r p a‚ Ñ p in X q ñ p pφ ˝ aq‚ Ñ φppq in Y0 q s.

Given a P XN. Want: p a‚ Ñ p in X q ñ p pφ ˝ aq‚ Ñ φppq in Y0 q.
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Assume a‚ Ñ p in X. Want: pφ ˝ aq‚ Ñ φppq in Y0.

Since a‚ Ñ p in X, by continuity of φ at p from X to Y ,

we see that pφ ˝ aq‚ Ñ φppq in Y .

Since a P XN and φ : X Ñ Y0, it follows that φ ˝ a P Y N
0 .

Since p P X and φ : X Ñ Y0, it follows that φppq P Y0.

Then, by Theorem 44.12 (with b replaced by φ ˝ a, and q by φppq),

we see that pφ ˝ aq‚ Ñ φppq in Y0, as desired. �

The converse of Theorem 44.14 holds, with similar proof:

THEOREM 44.15. Let X and Y be metric spaces.

Let p P X, Y0 Ď Y and φ : X Ñ Y0.

Assume that φ is continuous at p from X to Y0.

Then φ is continuous at p from X to Y .

Proof. We have both φ : X Ñ Y0 and φ : X Ñ Y .

Want: @a P XN, r p a‚ Ñ p in X q ñ p pφ ˝ aq‚ Ñ φppq in Y q s.

Given a P XN. Want: p a‚ Ñ p in X q ñ p pφ ˝ aq‚ Ñ φppq in Y q.

Assume a‚ Ñ p in X. Want: pφ ˝ aq‚ Ñ φppq in Y .

Since a‚ Ñ p in X, by continuity of φ at p from X to Y0,

we see that pφ ˝ aq‚ Ñ φppq in Y0.

Since a P XN and φ : X Ñ Y0, it follows that φ ˝ a P Y N
0 .

Since p P X and φ : X Ñ Y0, it follows that φppq P Y0.

Then, by Theorem 44.11 (with b replaced by φ ˝ a, and q by φppq),

we see that pφ ˝ aq‚ Ñ φppq in Y , as desired. �

The next theorem, Theorem 44.16 below, is transitivity of inher-

ited metrics; it follows from HW 8-2.

THEOREM 44.16. Let X be a metric space, let T Ď X and let

S Ď T .

Then pdX |pT ˆ T qq|pS ˆ Sq “ dX |pS ˆ Sq

In Theorem 44.17 below, the point is that, to prove that fppq P f˚pSq,

it is not sufficient that p P S; one also needs p P domrf s. Otherwise,

we get: fppq/ R f˚pSq.

THEOREM 44.17. @function f , @set S, @p,

r p p P S q & p p P domrf s s ñ r fppq P f˚pSq s.

THEOREM 44.18. Let S, T , U and V be sets, let a : S Ñ T and let

f : U Ñ V .

Assume that T Ď U . Then f ˝ a : S Ñ f˚pT q.
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Proof. Unassigned HW. �

THEOREM 44.19. @functions f and g, @set S, we have:

(1) f˚pSq Ď domrf s and

(2) f˚pSq P imrf s.

Proof. Unassigned homework. �

THEOREM 44.20. Let X, Y and Z be metric spaces.

Let f : X 99K Y , g : Y 99K Z and p P X.

Assume that f is continuous at p from domrf s to Y .

Assume that g is continuous at fppq from domrgs to Z.

Then g ˝ f is continuous at p from domrg ˝ f s to Z.

Proof. Want: @a P pdomrg ˝ f sqN,

p a‚ Ñ p in domrg ˝ f s q ñ p ppg ˝ fq ˝ aq‚ Ñ pg ˝ fqppq in Z q.

Given a P pdomrg ˝ f sqN.

Want: p a‚ Ñ p in domrg ˝ f s q ñ p ppg ˝ fq ˝ aq‚ Ñ pg ˝ fqppq in Z q.

Assume that a‚ Ñ p in domrg ˝ f s.

Want: ppg ˝ fq ˝ aq‚ Ñ pg ˝ fqppq in Z.

By (1) of Theorem 44.19, we have: f˚pdomrgsq Ď domrf s.

Since a P pdomrg ˝ f sqN, we get a : NÑ domrg ˝ f s.

Since f : X 99K Y , we get f : domrf s Ñ Y .

By (1) of Theorem 26.4, we have domrg ˝ f s “ f˚pdomrgsq.

So, since f˚pdomrgsq Ď domrf s, we conclude that domrg˝f s Ď domrf s.

Since a : NÑ domrg˝f s and domrg˝f s Ď domrf s and f : domrf s Ñ Y ,

it follows, from Theorem 44.18, that f ˝ a : NÑ f˚pdomrg ˝ f sq.

Recall that domrg ˝ f s “ f˚pdomrgsq.

By HW#8-1, we have f˚pf
˚pdomrgsqq Ď domrgs.

Then f˚pdomrg ˝ f sq “ f˚pf
˚pdomrgsqq Ď domrgs.

So, since f ˝ a : NÑ f˚pdomrg ˝ f sq, we get f ˝ a : NÑ domrgs.

Then f ˝ a P pdomrgsqN.

Since f is continuous at p, it follows that p P domrf s.

Since g is continuous at fppq, it follows that fppq P domrgs.

Since p a‚ Ñ p in domrg ˝ f s q and since p domrg ˝ f s Ď domrgs q,

we conclude, from Theorem 44.11, that a‚ Ñ p in domrf s.

So, since f is continuous at p from domrf s to Y ,

we conclude that pf ˝ aq‚ Ñ fppq in Y .
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So, since f ˝ a P pdomrgsqN and fppq P domrgs,

we conclude, from Theorem 44.12, that pf ˝aq‚ Ñ fppq in domrgs.

So, since g is continuous at p from domrgs to Z,

we conclude that pg ˝ pf ˝ aqq‚ Ñ gpfppqq in Z.

So, since g ˝ pf ˝ aq “ pg ˝ fq ˝ a and since gpfppqq “ pg ˝ fqppq,

we conclude that ppg ˝ fq ˝ aq‚ Ñ pg ˝ fqppqq in Z, as desired. �

THEOREM 44.21. Let X, Y and Z be metric spaces.

Let f : X 99K Y and g : X 99K Z.

Assume that f is continuous at p.

Assume that g is continuous at p.

Then pf, gq is continuous at p.

Proof. Let S :“ domrf s and T :“ domrgs. Then SXT “ domrpf, gqs.

Also, f : S Ñ Y and g : T Ñ Z and pf, gq : S X T Ñ Y ˆ Z.

Also, f is continuous at p from S to Y .

Also, g is continuous at p from T to Z.

Want: pf, gq is continuous at p from S X T to Y ˆ Z.

Want: @a P pS X T qN,

p a‚ Ñ p in S X T q ñ p ppf, gq ˝ aq‚ Ñ pf, gqppq in Y ˆ Z q.

Given a P pS X T qN.

Want: p a‚ Ñ p in S X T q ñ p ppf, gq ˝ aq‚ Ñ pf, gqppq in Y ˆ Z q.

Assume a‚ Ñ p in S X T . Want: ppf, gq ˝ aq‚ Ñ pf, gqppq in Y ˆ Z.

Since a‚ Ñ p in S X T , by Theorem 44.11,

we conclude that a‚ Ñ p in S.

So, since f is continuous at p from S to Y ,

we conclude that pf ˝ aq‚ Ñ fppq in Y .

Since a‚ Ñ p in S X T , by Theorem 44.11,

we conclude that a‚ Ñ p in T .

So, since g is continuous at p from T to Z,

we conclude that pg ˝ aq‚ Ñ gppq in Z.

Since pf ˝ aq‚ Ñ fppq in Y and pg ˝ aq‚ Ñ gppq in Z,

by ð of Theorem 43.2, we get pf ˝ a, g ˝ aq‚ Ñ pfppq, gppqq in Z.

So, since pf, gqppq “ pfppq, gppqq, we get pf ˝ a, g ˝ aq‚ Ñ pf, gqppq in Z.

Recall that we want: ppf, gq ˝ aq‚ Ñ pf, gqppq in Y ˆ Z.

It therefore suffices to show: pf ˝ a, g ˝ aq “ pf, gq ˝ a.

Want: @j P N, pf ˝ a, g ˝ aqj “ ppf, gq ˝ aqj.

Given j P N. Want: pf ˝ a, g ˝ aqj “ ppf, gq ˝ aqj.
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We have pf ˝ a, g ˝ aqj “ ppf ˝ aqj, pg ˝ aqjq “ pfpajq, gpajqq

“ pf, gqpajq “ ppf, gq ˝ aqj, as desired. �

THEOREM 44.22. Let X be a metric space.

Let f, g : X 99K R and let p P R.

Assume that f is continuous at p from domrf s to R.

Assume that g is continuous at p from domrgs to R.

Then f ` g is continuous at p from domrf ` gs to R.

Proof. We have pf, gq : X 99K R2.

Let A : R2 Ñ R be defined by Apx, yq “ x` y.

Since pf, gq is continuous at p and A is continuous at pf, gqppq,

it follows, from Theorem 44.20, that

A ˝ pf, gq is continuous at p from domrA ˝ pf, gqs to R.

Recall that we want: f ` g is continuous at p from domrf ` gs to R.

It therefore suffices to show: A ˝ pf, gq “ f ` g.

Want: @z P X, pA ˝ pf, gqqpzq “ pf ` gqpzq.

Given z P R. Want: pA ˝ pf, gqqpzq “ pf ` gqpzq.

We have pA ˝ pf, gqqpzq “ Appf, gqpzqq “ Apfpzq, gpzqq

“ rfpzqs ` rgpzqs “ pf ` gqpzq, as desired. �

THEOREM 44.23. Let X be a metric space.

Let f, g : X 99K R and let p P R.

Assume that f is continuous at p from domrf s to R.

Assume that g is continuous at p from domrgs to R.

Then fg is continuous at p from domrf ` gs to R.

Proof. We have pf, gq : X 99K R2.

Let M : R2 Ñ R be defined by Mpx, yq “ xy.

Since pf, gq is continuous at p and M is continuous at pf, gqppq,

it follows, from Theorem 44.20, that

M ˝ pf, gq is continuous at p from domrM ˝ pf, gqs to R.

Recall that we want: fg is continuous at p from domrfgs to R.

It therefore suffices to show: M ˝ pf, gq “ fg.

Want: @z P X, pM ˝ pf, gqqpzq “ pfgqpzq.

Given z P R. Want: pM ˝ pf, gqqpzq “ pfgqpzq.

We have pM ˝ pf, gqqpzq “Mppf, gqpzqq “Mpfpzq, gpzqq

“ rfpzqs ¨ rgpzqs “ pfgqpzq, as desired. �
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45. A squeeze theorem

THEOREM 45.1. Let u P RN and let x P R.

Assume: @j P N, x´ p1{jq ď uj ď x.

Then u‚ Ñ x in R.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dRpuj, xq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dRpuj, xq ă ε q.

By the Archimedean Principle, choose K P N s.t. K ą 1{ε.

Want: @j P N, r p j ě K q ñ p dRpuj, xq ă ε q s.

Given j P N. Want: p j ě K q ñ p dRpuj, xq ă ε q.

Assume that j ě K. Want: dRpuj, xq ă ε.

Want: |uj ´ x| ă ε. Want: x´ ε ă uj ă x` ε.

By assumption uj ď x. Since ε ą 0, we get x ă x` ε.

Then uj ď x ă x` ε. Want: x´ ε ă uj.

By assumption, x´ p1{jq ď uj.

Want: x´ ε ă x´ p1{jq. Want: 1{j ă ε.

Since j ě K ą 1{ε, we get j ą 1{ε.

Since ε ą 0, it follows that 1{ε ą 0.

Since j ą 1{ε ą 0, we conclude that 1{j ă ε, as desired. �

46. The supremum is a limit

THEOREM 46.1. Let S Ď R and let x :“ supS.

Assume that S ‰ H and that S is bounded above in R.

Then Du P SN s.t. u‚ Ñ x in R.

Proof. We have S ď supS “ x, so S ď x.

Also, @w ă x, we have ­ pS ď wq.

Claim: @j P N, rx´ p1{jq;xs X S ‰ H.

Proof of Claim:

Given j P N. Want: rx´ p1{jq;xs X S ‰ H.

Since p@w ă x, ­ pS ď wqq and since x´ p1{jq ă x,

we conclude: ­ pS ď x´ p1{jqq.

Then choose t P S s.t. t ą x´ p1{jq.

We have t P S ď x, so t ď x.
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Also, x´ p1{jq ă t ď x, so x´ p1{jq ă t.

Then x´ p1{jq ă t ď x, so t P px´ p1{jq;xs.

Since t P px´ p1{jq;xs Ď rx´ p1{jq;xs and since t P S,

we conclude: t P rx´ p1{jq;xs X S.

Then rx´ p1{jq;xs X S ‰ H, as desired.

End of proof of Claim.

By the Claim, and by Axiom 4.6, we have:

@j P N, CHprx´ p1{jq;xs X Sq P rx´ p1{jq;xs X S.

Define u P SN by uj “ CHprx´ p1{jq;xs X Sq.

Want u‚ Ñ x in R.

By Theorem 45.1, it suffices to show: @j P N, x´ p1{jq ď uj ď x.

Given j P N. Want: x´ p1{jq ď uj ď x.

We have uj “ CHprx´p1{jq;xsXSq P rx´p1{jq;xsXS Ď rx´p1{jq;xs.

Then x´ p1{jq ď uj ď x, as desired.

�

47. Limit preserves nonstrict inequalities

THEOREM 47.1. Let w P RN and let y, z P R.

Assume that w‚ Ñ z in R.

Assume: @j P N, wj ď y.

Then z ď y.

Proof. HW#8-2. �

THEOREM 47.2. Let w P RN and let y, z P R.

Assume that w‚ Ñ z in R.

Assume: @j P N, wj ě y.

Then z ě y.

Proof. Unassigned HW. �

48. Increasing and decreasing functions R 99K R

DEFINITION 48.1. Let f : R 99K R and let S Ď domrf s.

By f is strictly increasing on S, we mean:

@t, u P S, r p t ă u q ñ p fptq ă fpuq q s.

By f is strictly decreasing on S, we mean:

@t, u P S, r p t ă u q ñ p fptq ą fpuq q s.

By f is semi-increasing on S, we mean:
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@t, u P S, r p t ď u q ñ p fptq ď fpuq q s.

By f is semi-decreasing on S, we mean:

@t, u P S, r p t ď u q ñ p fptq ě fpuq q s.

THEOREM 48.2. Let f : R 99K R and let S Ď domrf s. Then:

(1) p f is strictly increasing on S q ñ

p f is semi-increasing on S q

and (2) p f is strictly decreasing on S q ñ

p f is semi-dencreasing on S q.

THEOREM 48.3. Let f : R 99K R and let S Ď domrf s. Then:

and (1) p f is strictly increasing on S q ô

p @t, u P S, r p t ą u q ñ p fptq ą fpuq q s q

and (2) p f is strictly decreasing on S q ô

p @t, u P S, r p t ą u q ñ p fptq ă fpuq q s q

and (3) p f is semi-increasing on S q ô

p @t, u P S, r p t ě u q ñ p fptq ě fpuq q s q

and (4) p f is semi-decreasing on S q ô

p @t, u P S, r p t ě u q ñ p fptq ď fpuq q s q.

DEFINITION 48.4. Let f : R 99K R.

By f is strictly increasing, we mean:

f is strictly increasing on domrf s.

By f is strictly decreasing, we mean:

f is strictly decreasing on domrf s.

By f is semi-increasing, we mean:

f is semi-increasing on domrf s.

By f is semi-decreasing, we mean:

f is semi-decreasing on domrf s.

DEFINITION 48.5. @f : R 99K R, @a, b,

pDQf qpa, bq :“
rfpbqs ´ rfpaqs

b´ a
.

In Definition 48.5, “DQ” stands for “Difference Quotient”.

We drew a graph of a function f and demonstrated how pDQf qpa, bq

is the slope of a secant line.

For Theorem 48.6 below, we showed the graphs of idR and pidRq
2 and

pidRq
3 and C3

R. We discussed slopes of secant lines for these graphs and

used various variants of HW#9-1.



CLASS NOTES 101

THEOREM 48.6. All of the following are true:

(1) p idR is strictly increasing q

and (2) p pidRq
3 is strictly increasing q

and (3) p pidRq
2 is neither strictly decreasing nor strictly increasing q

and (4) p pidRq
2 is strictly decreasing on p´8; 0s q

and (5) p pidRq
2 is strictly increasing on r0;8q q

and (6) p C3
R is neither strictly decreasing nor strictly increasing q

and (7) p C3
R is both semi-decreasing and semi-increasing q.

THEOREM 48.7. @` P Z, r p ` ą 0 q ñ p ` ě 1 q s.

Proof. Unassigned HW. �

Theorem 48.8, below, is of use in HW#9-2. It follows easily from

Theorem 48.7, above.

THEOREM 48.8. @j, k P Z, r p j ă k q ñ p j ` 1 ď k q s.

Proof. Unassigned HW. �

DEFINITION 48.9. Let f be a functional.

By f is bounded above into R, we mean:

imrf s is bounded above in R.

By f is bounded below into R, we mean:

imrf s is bounded below in R.

49. Cauchy sequences

DEFINITION 49.1. Let X be a metric space, S Ď X and ε ą 0.

By S is ε-small in X, we mean: @y, z P S, dXpy, zq ă ε.

DEFINITION 49.2. Let X be a metric space and a P XN.

By a is Cauchy in X, we mean: @ε ą 0, DK P N s.t., @i, j P N,

p i, j ě K q ñ p dXpai, ajq ă ε q.

A buzz phrase for Definition 49.2 is:

“A sequence is Cauchy iff,

@ε ą 0, the sequence has an ε-small tail.”

More precisely, @ε ą 0, there is a tail with ε-small image.

50. Intermediate Value Theorems (IVTs)

The following is HW#8-4:
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THEOREM 50.1. Let w P RN and let y, z P R.

Assume that w‚ Ñ y in R. Assume: @j P N, wj ď z.

Show: y ď z.

The following is an unassigned exercise:

THEOREM 50.2. Let w P RN and let y, z P R.

Assume that w‚ Ñ y in R. Assume: @j P N, wj ě z.

Show: y ě z.

THEOREM 50.3. Let f be a function and let S be a set. Then, @p,

r p p P S q& p p P domrf s q s ñ r fppq P f˚pSq s.

THEOREM 50.4. Let b, x P R. Assume that x ă b.

Define v P RN by vj “ x`
b´ x

j
.

Then p v‚ Ñ x in R q and p @j P N, x ă vj ď b q.

THEOREM 50.5. Let f : R 99K R.

Let a, b, y P R. Assume a ď b.

Assume f is continuous on ra; bs from domrf s to R.

Assume fpaq ď y ď fpbq. Then Dx P ra; bs s.t. fpxq “ y.

Proof. Since f is continuous on ra; bs, we see that ra; bs Ď domrf s.

Let S :“ tt P ra; bs | fptq ď yu.

Then S Ď ra; bs Ď domrf s. Then SN Ď pdomrf sqN.

Claim 1: f˚pSq ď y.

Proof of Claim 1:

Want: @q P f˚pSq, q ď y.

Given q P f˚pSq. Want: q ď y.

Since q P f˚pSq, choose t P S X pdomrf sq s.t. fptq “ q.

Since t P S, it follows, from the definition of S, that fptq ď y.

Then q “ fptq ď y, as desired.

End of proof of Claim 1.

By assumption, fpaq ď y.

Since a P ra; bs and fpaq ď y, we conclude,

from the definition of S, that a P S.

Since a P S, it follows that S ‰ H.

We have a P S ď sup S, so a ď supS.

Since S Ď ra; bs ď b, we get S ď b.
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Then sup S ď b. Then a ď sup S ď b.

Let x :“ sup S. Then a ď x ď b, so x P ra; bs.

Want: fpxq “ y.

Since x P ra; bs and since f is continuous on ra; bs from domrf s to R,

we conclude that f is continuous at x from domrf s to R.

Since S ď b, we conclude that S is bounded above in R.

So, since S ‰ H, by Theorem 46.1, choose u P SN s.t. u‚ Ñ x in R.

We have u P SN Ď pdomrf sqN. Also, x P ra; bs Ď domrf s.

Then, by Theorem 44.12, u‚ Ñ x in domrf s.

So, since f is continuous at x from domrf s to R,

we see that pf ˝ uq‚ Ñ fpxq in R.

Claim 2: @j P N, pf ˝ uqj ď y.

Proof of Claim 2:

Given j P N. Want: pf ˝ uqj ď y.

Since u P SN, we get uj P S.

Then uj P S Ď domrf s.

By Claim 1, f˚pSq ď y.

Since uj P S and uj P domrf s, we get: fpujq P f˚pSq.

Then pf ˝ uqj “ fpujq P f˚pSq ď y, as desired.

End of proof of Claim 2.

Since pf ˝ uq‚ Ñ fpxq in R, by Theorem 50.1,

it follows, from Claim 2, that fpxq ď y.

It remains to show: fpxq ě y.

Since x P ra; bs, we conclude that one of the following is true:

pαq x “ b or pβq x P ra; bq.

Case pαq:

By assumption y ď fpbq.

Then fpxq “ fpbq ě y, as desired.

End of Case α.

Case pβq:

Define v P RN by vj “ x`
b´ x

j
.

By Theorem 50.4, we know both of the following:

(A) v‚ Ñ x in R
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and (B) @j P N, x ă vj ď b.

Claim 3: v P ra; bsN.

Proof of Claim 3:

Since v P RN, we see that domrvs “ N.

Want: imrvs Ď ra; bs.

Want: @z P imrvs, z P ra; bs.

Given z P imrvs. Want z P ra; bs.

Since z P imrvs and v : NÑ R, choose j P N s.t. z “ vj.

By (B), x ă vj ď b.

Since x P ra; bs, we get a ď x.

Then a ď x ă vj, so a ă vj. Then a ď vj.

Since a ď vj ď b, we get vj P ra; bs.

Then z “ vj P ra; bs.

End of proof of Claim 3.

By (A), we have: v‚ Ñ x in R.

Recall that x P domrf s.

Since ra; bs Ď domrf s, it follows that ra; bsN Ď pdomrf sqN.

Then, by Claim 3, we see that v P pdomrf sqN.

It follows, from Theorem 44.12, that v‚ Ñ x in domrf s.

So, since f is continuous at x from domrf s to R,

we see that pf ˝ vq‚ Ñ fpxq in R.

Recall that we want to show: fpxq ě y.

Then, by Theorem 50.2, it suffices to prove: @j P N, pf ˝ vqj ě y.

Given j P N. Want: pf ˝ vqj ě y.

By (B), x ă vj.

Since S ď sup S “ x ă vj, we get S ă vj, so vj ą S, so vj R S.

By Claim 3, imrvs Ď ra; bs.

Then vj P imrvs Ď ra; bs, so vj P ra; bs.

So, since vj R S, by definition of S, we see that  pfpvjq ď yq.

Then fpvjq ą y. Then fpvjq ě y.

So, since pf ˝ vqj “ fpvjq, we get: pf ˝ vqj ě y, as desired.

End of Case pβq. �

THEOREM 50.6. Let f : R 99K R.

Let a, b, y P R. Assume a ď b.
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Assume f is continuous on ra; bs from domrf s to R.

Assume fpaq ě y ě fpbq. Then Dx P ra; bs s.t. fpxq “ y.

Proof. Let g :“ ´f and let z :“ ´y.

We have gpaq “ ´pfpaqq and z “ ´y and gpbq “ ´pfpbqq.

Since fpaq ě y ě fpbq, we get ´pfpaqq ď ´y ď ´pfpbqq.

Then gpaq ď z ď gpbq.

By HW#8-3, g is continuous on ra; bs.

Then, by Theorem 50.5 (with f replaced by g and y by z),

choose x P ra; bs s.t. gpxq “ z.

Want: fpxq “ y.

Since g “ ´f , we get gpxq “ ´pfpxqq, and so fpxq “ ´pgpxqq.

We have z “ ´y, so ´z “ y.

Then fpxq “ ´pgpxqq “ ´z “ y, as desired. �

DEFINITION 50.7. @a, b P R˚, ra|bs :“ ra; bs Y rb; as.

THEOREM 50.8. r1|3s “ r1; 3s “ r3|1s.

THEOREM 50.9. @a, b P R˚, r a | b s “ rminta, bu ; maxta, bu s.

The following is the Intermediate Value Theorem.

THEOREM 50.10. Let f : RÑ R, a, b P R.

Assume f is continuous on ra|bs. Then rfpaq|fpbqs Ď f˚pra|bsq.

Proof. Want: @y P rfpaq|fpbqs, y P f˚pra|bsq.

Given y P rfpaq|fpbqs. Want: y P f˚pra|bsq.

Want: Dx P ra|bs X pdomrf sq s.t. fpxq “ y.

Since f is continuous on ra|bs,

it follows that ra|bs Ď domrf s,

so ra|bs X pdomrf sq “ ra|bs.

Want: Dx P ra|bs s.t. fpxq “ y.

Let α :“ minta, bu and β :“ maxta, bu.

Then ra|bs “ rα; βs, so, by assumption, f is continuous on rα; βs.

Also, rfpaq|fpbqs “ rfpαq|fpβqs, so y P rfpαq|fpβqs.

Want: Dx P rα; βs s.t. fpxq “ y.

At least one of the following is true:

(1) fpαq ď fpβq or (2) fpαq ě fpβq.

Case 1:

We have rfpαq|fpβqs “ rfpαq; fpβqs, so y P rfpαq; fpβqs,



106 SCOT ADAMS

so fpαq ď y ď fpβq.

Then, by Theorem 50.6 (with a replaced by α and b by β),

we see that Dx P rα; βs s.t. fpxq “ y, as desired.

End of Case 1.

Case 2:

We have rfpαq|fpβqs “ rfpβq; fpαqs, so y P rfpβq; fpαqs,

so fpαq ě y ě fpβq.

Then, by Theorem 50.5 (with a replaced by α and b by β),

we see that Dx P rα; βs s.t. fpxq “ y, as desired.

End of Case 2. �

51. Isometries and homeomorphisms

DEFINITION 51.1. Let X and Y be metric spaces.

Then, @f , by f is an isometry from X to Y , we mean:

p f : X ãÑą Y q &

p @p, q P X, dY p fppq , fpqq q “ dX p p , q q q.

Also, by X and Y are isometric, we mean:

Df s.t. f is an isometry from X to Y .

Also, @f , by f is a homeomorphism from X to Y , we mean:

p f : X ãÑą Y q &

p f is continuous from X to Y q &

p f´1 is continuous from Y to X q.

Also, by X and Y are homeomorphic, we mean:

Df s.t. f is a homeomorphism from X to Y .

We sometimes omit “from X to Y ”. We sometimes say “X is isomet-

ric to Y ” or “Y is isometric to X” instead of “X and Y are isometric”.

We sometimes say “X is homeomorphic to Y ” or “Y is homeomorphic

to X” instead of “X and Y are homeomorphic”.

We drew pictures indicating that two circles of the same radius are

isometric. We indicated that any circle is homeomorphic to any el-

lipse. We drew a wandring simple closed curve and indicated that it is

homeomorphic to a circle.

THEOREM 51.2. p´1; 1q is homeomorphic to R.
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Proof. Define f : p´1; 1q Ñ R by fpxq “ x{
?

1´ x2.

Unassigned HW: f is a homeomorphism from p´1; 1q to R.

Then p´1; 1q is homeomorphic to R. �

Theorem 51.2 shows that it is possible for a bounded subset of R like

p´1; 1q to be homeomorphic to an unbounded one, like R itself.

DEFINITION 51.3. Let X be a metric space, p P X, r ą 0. Then:

BXpp, rq :“ tq P X | dXpp, qq ď ru and

SXpp, rq :“ tq P X | dXpp, qq “ ru.

We sometimes omit the subscript X from “BXpp, rq” and “SXpp, rq”.

The set BXpp, rq is called the closed ball in X about p of radius r.

When X “ R, BXpp, rq is a closed interval. When X “ R2, BXpp, rq

is a closed disk. The set SXpp, rq is called the sphere in X about p

of radius r. When X “ R, BXpp, rq is a set of two real numbers. When

X “ R2, BXpp, rq is a circle.

THEOREM 51.4. Let C :“ SR2p02, 1q and let p :“ p0, 1q.

Then Cˆp is homeomorphic to R.

Proof. Define f : Cˆp Ñ R by fpx, yq “ x{p1´ yq.

Unassigned HW: f is a homeomorphism from Cˆp to R.

Then Cˆp is homeomorphic to R. �

Theorem 51.4 shows that it is possible for a bounded subset of R2

like Cˆp to be homeomorphic to an unbounded subset of R, like R itself.

DEFINITION 51.5. Let X be a metric space.

By X is geometrically bounded, we mean: X is bounded in X.

By X is topologically bounded, we mean: @metric space Y ,

p Y is homeomorphic to X q ñ p Y is geometrically bounded q.

Note that the definition of topologically bounded is universally quan-

tified over metric spaces. This makes it a challenge to study, but study

it we will. Moreover, even though it is a topological concept, we will

relate it to real analysis through the Extreme Value Theorem.

THEOREM 51.6. Let C :“ SR2p02, 1q and p :“ p0, 1q.

Let X :“ tpx, 0q |x P Ru. Let I :“ p´1; 1q and J :“ r´1; 1s.

Then I, J C and Cˆp are all geometrically bounded.

Also, R and X are both not geometrically bounded.

Also, I, Cˆp , R and X are all not topologically bounded.
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In Theorem 51.6, the fact that I is not topologically bounded fol-

lows from Theorem 51.2. In Theorem 51.6, the fact that Cˆp is not

topologically bounded follows from Theorem 51.4.

Let C :“ SR2p02, 1q and let J :“ r´1; 1s. We drew pictures of subsets

of R2 that are homeomorphic to J , and noted that they were all geomet-

rically bounded. Some were very big, stretching across several black-

boards, but all were geometrically bounded. We drew pictures of sub-

sets of R2 that are homeomorphic to C, and noted that they were all

geometrically bounded. Some were very big, stretching across several

blackboards, but all were geometrically bounded. Based on these ob-

servations, we speculated that J and C are both topologically bounded.

Our intention is to spend the next class or two developing the material

necessary to analyze topological boundedness.

DEFINITION 51.7. Let s and t be sequences.

By t is a subsequence of s, we mean:

Dstrictly increasing ` P NN s.t. t “ s ˝ `.

The intuition is: The sequence t is obtained from s by dropping some

of the terms of s. The terms of s that are NOT dropped must appear

in t in exactly the same order as they appear in s.

THEOREM 51.8. The following are all true:

p1{2, 1{4, 1{6, 1{8, . . .q is a subsequence of p1, 1{2, 1{3, 1{4, . . .q.

p42, 82, 122, 162, . . .q is a subsequence of p2, 4, 6, 8, . . .q.

p3, 4, 5, 6, . . .q is a subsequence of p1, 2, 3, 4, . . .q.

p2, 1, 3, 4, 5, 6, 7, 8, 9, . . .q is NOT a subsequence of p1, 2, 3, 4, . . .q.

All of the following are true:

p1{2, 1{4, 1{6, 1{8, . . .q “ p1, 1{2, 1{3, 1{4, . . .q ˝ p2, 4, 6, 8, . . .q.

p42, 82, 122, 162, . . .q “ p2, 4, 6, 8, . . .q ˝ p8, 32, 72, 128, . . .q.

p3, 4, 5, 6, . . .q “ p1, 2, 3, 4, . . .q ˝ p3, 4, 5, 6, . . .q.

p2, 1, 3, 4, 5, 6, 7, 8, 9, . . .q “ p1, 2, 3, 4, . . .q ˝ p2, 1, 3, 4, 5, . . .q.

We noted that p2, 1, 3, 4, 5, . . .q is not strictly increasing.

DEFINITION 51.9. Let X be a metric space and s P XN.

By s is subconvergent in X, we mean:

Da subsequence t of s s.t. t is convergent in X.

We sometimes drop “in X” from “subconvergent in X”.

THEOREM 51.10. The following are all true:

p´1, 1,´1, 1,´1, 1,´1, 1, . . .q is NOT convergent in R.
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p´1, 1,´1, 1,´1, 1,´1, 1, . . .q IS subconvergent in R.

p1, 2, 3, 4, . . .q is NOT subconvergent in R.

DEFINITION 51.11. Let X be a metric space.

By X is compact, we mean:

@s P XN, s is subconvergent in X.

Also, by X is proper, we mean:

@bounded s P XN, s is subconvergent in X.

Our upcoming goals:

(1) r´1; 1s and SR2p02, 1q are both compact.

(2) If a metric space is homeomorphic to a compact metric space,

then it is compact.

(3) Any compact metric space is geometrically bounded.

By Definition 51.5 and (2) and (3), we get:

(A) Any compact metric space is topologically bounded.

By (1) and (4), we get our earlier goal:

(B) r´1; 1s and SR2p02, 1q are both topologically bounded.

We will see that (1) is hard, (2) is easy and (3) is medium.

A subsequence of a convergent sequence has the same limit:

THEOREM 51.12. Let X be a metric space, s P XN and p P X.

Let t be a subsequence of s. Assume that s‚ Ñ p in X.

Then t‚ Ñ p in X.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dXptj, pq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dXptj, pq ă ε q.

Since s‚ Ñ p in X, choose K P N s.t., @j P N,

p j ě K q ñ p dXpsj, pq ă ε q.

Want: @j P N, r p j ě K q ñ p dXptj, pq ă ε q s.

Given j P N. Want: p j ě K q ñ p dXptj, pq ă ε q.

Assume j ě K. Want: dXptj, pq ă ε.

Since t is a subsequence of s,

choose a strictly increasing ` P NN s.t. t “ s ˝ `.

By HW#9-2, we see that `j ě j.

Since `j ě j ě K, by the choice of K, we get: dXps`j , pq ă ε.

So, since tj “ ps ˝ `qj “ s`j , we get dXptj, pq ă ε, as desired. �
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DEFINITION 51.13. Let s P RN.

Then s‚ Ñ 8 in R˚ means: @M P R, DK P N s.t., @j P N,

p j ě K q ñ p sj ąM q.

Also, s‚ Ñ ´8 in R˚ means: @N P R, DK P N s.t., @j P N,

p j ě K q ñ p sj ă N q.

THEOREM 51.14. Let s P RN.

Then p s‚ Ñ 8 in R˚ q ñ p s is not bounded above in R q.
Also, p s‚ Ñ ´8 in R˚ q ñ p s is not bounded below in R q.

Proof. Unassigned HW. �

THEOREM 51.15. Let s P RN.

Let t be a subsequence of s. Assume that s‚ Ñ 8 in R˚.
Then t‚ Ñ 8 in R˚.

Proof. Want: @M P R, DK P N s.t., @j P N,

p j ě K q ñ p tj ąM q.

Given M P R. Want: DK P N s.t., @j P N,

p j ě K q ñ p tj ąM q.

Since s‚ Ñ 8 in X, choose K P N s.t., @j P N,

p j ě K q ñ p sj ąM q.

Want: @j P N, r p j ě K q ñ p tj ąM q s.

Given j P N. Want: p j ě K q ñ p tj ąM q.

Assume j ě K. Want: tj ąM .

Since t is a subsequence of s,

choose a strictly increasing ` P NN s.t. t “ s ˝ `.

By HW#9-2, we see that `j ě j.

Since `j ě j ě K, by the choice of K, we get: s`j ąM .

So, since tj “ ps ˝ `qj “ s`j , we get tj ąM , as desired. �

THEOREM 51.16. Let s P RN.

Let t be a subsequence of s. Assume that s‚ Ñ ´8 in R˚.
Then t‚ Ñ ´8 in R˚.

Proof. Unassigned HW. �

52. The ε-δ quantified equivalence for continuity

THEOREM 52.1. Let a P RN. Assume: @j P N, 0 ď aj ă 1{j.

Then a‚ Ñ 0 in R.

Proof. Unassigned HW. �
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THEOREM 52.2. Let X and Y be metric spaces.

Let f : X Ñ Y and let q P X.

Assume: @ε ą 0, Dδ ą 0 s.t., @p P X,

p dXp p , q q ă δ q ñ p dY p fppq , fpqq q ă ε q.

Then f is continuous at q from X to Y .

Proof. This is HW#10-4. �

The converse of Theorem 52.2 is also true:

THEOREM 52.3. Let X and Y be metric spaces.

Let f : X Ñ Y and let q P X.

Assume that f is continuous at q from X to Y .

Then: @ε ą 0, Dδ ą 0 s.t., @p P X,

p dXp p , q q ă δ q ñ p dY p fppq , fpqq q ă ε q.

Proof. Assume: Dε ą 0 s.t., @δ ą 0, Dp P X s.t.

p dXp p , q q ă δ q & p dY p fppq , fpqq q ě ε q.

Want: Contradiction.

Choose ε ą 0 s.t., @δ ą 0, Dp P X s.t.

p dXp p , q q ă δ q & p dY p fppq , fpqq q ě ε q.

Define A : NÑ 2R by

Aj “ t p P X | p dXp p , q q ă 1{j q& p dY p fppq , fpqq q ě ε qu.

Claim 1: @j P N, Aj ‰ H.

Proof of Claim 1:

Given j P N. Want: Aj ‰ H.

Since 1{j ą 0, by the choice of ε, choose p P X s.t.

p dXp p , q q ă 1{j q & p dY p fppq , fpqq q ě ε q.

Then p P Aj, so Aj ‰ H, as desired.

End of proof of Claim 1.

Define s P XN by sj “ CHpAjq.

Claim 2: @j P N, 0 ď pdXps, qqqj ă 1{j.

Proof of Claim 2:

Given j P N. Want: 0 ď pdXps, qqqj ă 1{j.

Since pdXps, qqqj “ dXpsj, qq, we want: 0 ď dXpsj, qq ă 1{j.

Since dXpsj, qq P imrdXs Ď r0;8q ě 0, want: dXpsj, qq ă 1{j.

Since Aj ‰ H, it follows that CHpAjq P Aj.

Since sj “ CHpAjq P Aj, we conclude that:
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p dXp sj , q q ă 1{j q & p dY p fpsjq , fpqq q ě ε q.

Then dXpsj, qq ă 1{j, as desired.

End of proof of Claim 2.

Claim 3: @j P N, dY p pf ˝ sqj , fpqq q ě ε.

Proof of Claim 3:

Given j P N. Want: dY p pf ˝ sqj , fpqq q ě ε.

Since Aj ‰ H, it follows that CHpAjq P Aj.

Since sj “ CHpAjq P Aj, we conclude that:

p dXp sj , q q ă 1{j q & p dY p fpsjq , fpqq q ě ε q.

Then dY p pf ˝ sqj , fpqq q “ dY p fpsjq , fpqq q ě ε, as desired.

End of proof of Claim 3.

By Claim 2 and Theorem 52.1, we see that pdXps, qqq‚ Ñ 0 in R.

Then, by ð of HW#10-2, we have: s‚ Ñ q in X.

By assumption, f is continuous at q from X to Y .

Then pf ˝ sq‚ Ñ fpqq in Y , so choose K P N s.t., @j P N,

p j ě K q ñ p dY p pf ˝ sqj , fpqq q ă ε q.

Let j :“ K.

From Claim 3, we get: ε ď dY p pf ˝ sqj , fpqq q.

Since j ě K, by the choice of K, we have:

dY p pf ˝ sqj , fpqq q ă ε.

Then ε ď dY p pf ˝ sqj , fpqq q ă ε, so ε ă ε. Contradiction. �

53. Distance between a sequence and a point

DEFINITION 53.1. Let X be a metric space, s P XN and q P X.

Then dXps, qq P r0;8qN is defined by: pdXps, qqqj “ dXpsj, qq.

The subscript X in “dXps, qq” is sometimes omitted.

THEOREM 53.2. Let X be a metric space, s, t P XN and q P X.

Assume that t is a subsequence of s.

Then dXpt, qq is a subsequence of dXps, qq.

Proof. Let a :“ dXps, qq and b :“ dXpt, qq.

Want: b is a subsequence of a.

Want: Dstrictly increasing ` P NN s.t. b “ a ˝ `.

Since t is a subsequence of s,

choose a strictly increasing ` P NN s.t. t “ s ˝ `.
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Want: b “ a ˝ `.

Want: @j P N, bj “ pa ˝ `qj.

Given j P N. Want: bj “ pa ˝ `qj.

Let k :“ `j. Then ak “ pdXps, qqqk “ dXpsk, qq.

Since tj “ ps ˝ `qj “ s`j “ sk, we get dXptj, qq “ dXpsk, qq.

Then bj “ pdXpt, qqqj “ dXptj, qq “ dXpsk, qq “ ak “ a`j “ pa ˝ `qj. �

THEOREM 53.3. Let X be a metric space, s P XN and q P X.

Assume that s is bounded in X. Then dXps, qq bounded in R.

Proof. Let σ :“ dXps, qq. Want: σ is bounded in R.

Want: imrσs is bounded in R. Want: C P BR s.t. imrσs Ď C.

Since s is bounded in X, we know that imrss is bounded in X.

Then choose B P BX s.t. imrss Ď B.

Choose p P X and r ą 0 s.t. B “ BXpp, rq. Let a :“ dXpp, qq.

Since a “ dXpp, qq P imrdXs Ď r0;8q ě 0, we get a ě 0.

So, since r ą 0, we conclude that a` r ą 0.

Let C :“ BRp0, r ` aq. Then C P BR. Want: imrσs Ď C.

Want: @z P imrσs, z P C.

Given z P imrσs. Want: z P C.

Want: z P BRp0, r ` aq. Want: dRpz, 0q ă r ` a.

Since z P imrσs, choose j P N s.t. z “ σj.

Then z “ σj “ pdXps, qqqj “ dXpsj, qq.

By the triangle inequality, dXpsj, qq ď rdXpsj, pqs ` rdXpp, qqs.

We have sj P imrss Ď B “ BXpp, rq, so dXpsj, pq ă r.

So, since dXpp, qq “ a, we get rdXpsj, pqs ` rdXpp, qqs ă r ` a.

Since a` r ą 0, we see that ´pa` rq ă 0.

Since dXpsj, qq P imrdXs Ď r0;8q ě 0,

we get dXpsj, qq ě 0, and so 0 ď dXpsj, qq.

Then ´pr ` aq ă 0 ď dXpsj, qq “ z, so ´pr ` aq ă z.

Also, z “ dXpsj, qq ď rdXpsj, pqs ` rdXpp, qqs ă r ` a, so z ă r ` a.

Then ´pr ` aq ă z ă r ` a, so |z| ă r ` a.

Then dRpz, 0q “ |z ´ 0| “ |z| ă r ` a, as desired. �

54. Compact implies geometrically bounded

We finish goal (3):

THEOREM 54.1. Let X be a nonempty compact metric space.

Then X is geometrically bounded.
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Proof. Let A :“ X. Then A is compact.

So, by HW#10-5, we conclude that A is bounded in X.

Then X is bounded in X, so X is geometrically bounded. �

Our remaining goals:

(1) r´1; 1s and SR2p02, 1q are both compact.

(2) If a metric space is homeomorphic to a compact metric space,

then it is compact.

55. A continuous image of a compact is compact

THEOREM 55.1. Let X and Y be sets, f : X Ñ Y and s, t P XN.

Assume that t is a subsequence of s.

Then f ˝ t is a subsequence of f ˝ s.

Proof. Want: Dstrictly increasing ` P NN s.t. f ˝ t “ pf ˝ sq ˝ `.

Since t is a subsequence of s,

choose a strictly increasing ` P NN s.t. t “ s ˝ `.

Want: f ˝ t “ pf ˝ sq ˝ `.

We have f ˝ t “ f ˝ ps ˝ `q “ pf ˝ sq ˝ `, as desired. �

THEOREM 55.2. Let X and Y be metric spaces and let t P XN.

Assume that f is continuous from X to Y .

Assume that t is convergent in X.

Then f ˝ t is convergent in Y .

Proof. Choose p P X s.t. t‚ Ñ p in X.

Since t‚ Ñ p in X and since f is continuous at p from X to Y ,

it follows that f ˝ tÑ fppq in Y .

Then f ˝ t is convergent in Y . �

THEOREM 55.3. Let X and Y be sets. Let f : X Ñą Y .

Then, @z P Y , f˚ptzuq ‰ H.

Proof. Given z P Y . Want: f˚ptzuq ‰ H.

Since f : X Ñą Y , we see that imrf s “ Y .

Then z P Y “ imrf s, so choose p P X s.t. fppq “ z.

Since fppq “ z P tzu, it follows that p P f˚ptzuq.

Then f˚ptzuq ‰ H, as desired. �
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THEOREM 55.4. Let X and Y be metric spaces. Let f : X Ñą Y .

Assume that f is continuous from X to Y .

Asume that X is compact. Then Y is compact.

Proof. Want: @σ P Y N, σ is subconvergent in Y .

Given σ P Y N. Want: σ is subconvergent in Y .

Claim 1: @j P N, f˚ptσjuq ‰ H.

Proof of Claim 1:

Given j P N. Want: f˚ptσjuq ‰ H.

By Theorem 55.3 (with z replaced by σj),

we see that f˚ptσjuq ‰ H, as desired.

End of proof of Claim 1.

By Claim 1, @j P N, CHpf˚ptσjuqq P f
˚ptσjuq.

Define s P XN by sj “ CHpf˚ptσjuqq.

Then: @j P N, sj P f
˚ptσjuq.

Since X is compact, s is subconvergent in X.

Choose a subsequence t of s s.t. t is convergent in X.

By Theorem 55.2, f ˝ t is convergent in Y .

By Theorem 55.1, f ˝ t is a subsequence of f ˝ s.

Then f ˝ s is subconvergent in Y .

It therefore suffices to show: f ˝ s “ σ.

Want: @j P N, pf ˝ sqj “ σj.

Given j P N. Want: pf ˝ sqj “ σj.

We have sj P f
˚ptσjuq, so fpsjq P tσju, so fpsjq “ σj.

Then pf ˝ sqj “ fpsjq “ σj, as desired.

�

We finish goal (2):

THEOREM 55.5. Let X and Y be metric spaces.

Assume that X is compact and that X is homeomorphic to Y .

Then Y is compact.

Proof. Since X is homeomorphic to Y ,

choose f s.t. f is a homeomorphism from X onto Y .

Then f is continuous from X to Y and f : X Ñą Y .

So, since X is compact, by Theorem 55.4, we get: Y is compact. �
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56. Some topology

Our remaining goal:

(1) r´1; 1s and SR2p02, 1q are both compact.

FOR NEXT YEAR: Define BXA as points approached from inside

and outside A. Then define IntXA as AzpBXAq and ClXA as AYpBXAq.

Then the definitions below will become theorems.

DEFINITION 56.1. Let X be a metric space and let A Ď X.

Then IntXA :“ tp P X | DB P BXppq s.t. B Ď Au.

Also, ClXA :“ tp P X | Ds P AN s.t. s‚ Ñ p in Xu.

In Definition 56.1, IntXA is called the interior in X of A, and ClXA

is called the closure in X of A. When X is clear, we simply say the

interior of A and the closure of A, and we simply write IntA and ClA.

THEOREM 56.2. Let I :“ p´1; 1q, J :“ p´1; 1s, K :“ r´1; 1s.

Then IntRJ “ I and ClRJ “ K and IntR2J2 “ I2 and ClR2J2 “ K2.

THEOREM 56.3. Let X be a metric space and let A Ď X. Then:

r IntXA Ď A Ď ClXA s &

r IntXpIntXAq “ IntXA s &

r ClXpClXAq “ ClXA s &

r IntXpXzAq “ XzpClXAq s &

r ClXpXzAq “ XzpIntXAq s.

DEFINITION 56.4. Let X be a metric space and let A Ď X.

By A is open in X, we mean: IntXA “ A.

By A is closed in X, we mean: ClXA “ A.

In Definition 56.4, when X is clear, we omit “in X”.

DEFINITION 56.5. Let X be a metric space.

Then TX :“ tU Ď X |U is open in Xu.

Also, T 1X :“ tC Ď X |C is closed in Xu.

In Definition 56.5, TX is called the topology on X.

The following theorem gives quantified equivalences for open and

closed subsets of a metric space.

THEOREM 56.6. Let X be a metric space and let A Ď X.

Then: pA P TXq ô p@p P A, DB P BXppq s.t. B Ď Aq.

Also: pA P T 1Xq ô p@s P AN, @p P X, rps‚ Ñ p in Xq ñ pp P Aqsq.
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THEOREM 56.7. Let A :“ p´1; 1q, B :“ p´1;8q,

C :“ r´1; 1s, D :“ r´1;8q.

Then A,B P TR and C,D P T 1R and A2, B2 P TR2 and C2, D2 P T 1R2.

Recall: R˚ “ R Y t´8,8u. Define a function f : p´1; 1q Ñ R
by fpxq “ x{

?
1´ x2. Then f is a homeomorphism from p´1; 1q

onto R. Let g :“ adj´8´1 padj81 pfqq. Then g : r´1, 1s ãÑą R˚. De-

fine d˚ P MpR˚q by d˚pp, qq “ dRpg
´1ppq, g´1pqqq. Then, for example,

d˚p´8,8q “ dRp´1, 1q “ |p´1q ´ 1| “ 2. It may seem strange that

´8 should be a finite distance from 8, and, in fact, we will call d˚
the weirdo metric on R˚. There are other metrics on R˚, but for any

“reasonable” d P MpR˚q, we have: TpR˚,dq “ TpR˚,d˚q. So, while there

is no “standard” metric on R˚, we do have a standard topology on R˚.
By Theorem 56.7, D P T 1R. That is, r´1;8q is closed in R. In fact, the

closure ClRB in R of p´1;8q is r´1;8q. It is NOT equal to r´1;8s.

This may seem strange, but keep in mind that, since 8 R R, we cannot

have 8 P ClRB. The set r´1;8q is “as closed as it can be”, within

R. Working in pR˚, d˚q, things are very different. In fact, the closure

ClpR˚,d˚qB in pR˚, d˚q of p´1;8q is equal to r´1;8s.

We drew a few amoeba-like subsets of R2 and discussed their interi-

ors and closures. Some were bounded, some unbounded. We discussed

open amoeba-like subsets of R2, both bounded and unbounded. We dis-

cussed closed amoeba-like subsets of R2, both bounded and unbounded.

We noted that many subsets of R2 contain part, but not all, of their

boundaries; such sets are neither open nor closed. It can also happen

that a set is both open and closed:

DEFINITION 56.8. Let X be a metric space and let A Ď X.

Then A is clopen in X means: A P T 1X X TX .

THEOREM 56.9. Let X be a metric space.

Then: H , X P T 1X X TX .

THEOREM 56.10. Let X :“ r1; 2s Y r3; 4s.

Then r1; 2s P T 1X X TX . Also, r3; 4s P T 1X X TX .

DEFINITION 56.11. Let X be a metric space.

Then X is connected means: T 1X X TX “ tH, Xu.

That is, a topological space is connected iff it has no clopen sets

except for the obvious ones.
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THEOREM 56.12. All of the following are true:

(1) R and R2 are both connected.

(2) r1; 2s Y r3; 4s is not connected.

(3) @a P R, Rˆa is not connected.

(4) @v P R2, pR2qˆv is connected.

THEOREM 56.13. R and R2 are not homeomorphic.

Proof. Assume that R and R2 are homeomorphic.

Want: Contradiction.

Choose f such that f is a homeomorphism from R onto R2.

Let A :“ Rˆ0 . Let B :“ pR2q
ˆ

fp0q.

Then f |A is a homeomorphism from A onto B.

By (4) of Theorem 56.12, B is connected.

So, since A and B are homeomorphic, A is connected.

By (3) of Theorem 56.12, A is not connected. Contradiction. �

Thus connectedness becomes a topological tool for distinguishing

between the Euclidean spaces R and R2. There is another tool called

“simple connectedness” that is used to distinguish between R2 and R3.

There are many other tools, but topology is not the focus of our course,

so we return to basics.

THEOREM 56.14. Let X be a metric space and let A Ď X.

Then: p A P TX q ô p XzA P T 1X q.
Also: p A P T 1X q ô p XzA P TX q.

That is, a set is open iff its complement is closed, and a set is closed

iff its complement is open. In any metric space, singletons are closed:

THEOREM 56.15. Let X be a metric space and let p P X.

Then txu P T 1X .

THEOREM 56.16. Let a, b P R. Then ra; bs P T 1R.

Proof. Let C :“ ra; bs. Want: C P T 1R.

Want: @s P CN, @p P R, r p s‚ Ñ p in R q ñ p p P C q s.

Given s P CN, p P R. Want: p s‚ Ñ p in R q ñ p p P C q.

Assume: s‚ Ñ p in R. Want: p P C.

Since s P CN “ ra; bsN, we conclude: @j P N, a ď sj ď b.

So, since s‚ Ñ p, by HW#8-4 and by unassigned HW, a ď p ď b.

Then p P ra; bs “ C, as desired. �
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THEOREM 56.17. Let a P R. Then ra;8q P T 1R.

Proof. Unassigned HW. �

THEOREM 56.18. Let b P R. Then p´8; bs P T 1R.

Proof. Unassigned HW. �

Our only remaining goal is to show that r´1; 1s and SR2p02, 1q are

both compact. We can now break this up into various subgoals:

(A) r´1, 1s is closed and bounded in R.

(B) SR2p02, 1q is closed and bounded in R2.

(C) For any subset of a metric space,

( compact ) implies ( closed and bounded ).

(D) For any subset of a proper metric space,

( closed and bounded ) implies ( compact ).

(E) R and R2 are both proper.

By (C), (D) and (E), we see that

a subset of R is compact iff it is closed and bounded.

By (C), (D) and (E), we also see that

a subset of R2 is compact iff it is closed and bounded.

Then, by (A) and (B), r´1; 1s and SR2p02, 1q are both compact.

We next work on these five subgoals, (A) to (E).

57. Subgoals (A)-(D)

THEOREM 57.1. Let X and Y be metric spaces and let f : X Ñ Y .

Assume: f is continuous from X to Y . Then: @C P T 1Y , f˚pCq P T 1X .

Proof. Given C P T 1Y . Want: f˚pCq P T 1X .

Let A :“ f˚pCq. Want: A P T 1X .

Want: @s P AN, @p P X, r p s‚ Ñ p in X q ñ p p P A q s

Given s P AN, p P X. Want: p s‚ Ñ p in X q ñ p p P A q

Assume s‚ Ñ p in X. Want: p P A.

Let t :“ f ˝ s and let q :“ fppq.

Since f is continuous at p from X to Y and since s‚ Ñ p in X,

we conclude that t‚ Ñ q in Y .

Claim 1: t P CN.

Proof of Claim 1:

Want: domrts “ N and imrts Ď C.

Since A Ď X, we get AN Ď XN.
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We have s P AN Ď XN, so s : NÑ X.

Since s : NÑ X and f : X Ñ Y , we see that t : NÑ Y .

Then domrts “ N. Want: imrts Ď C.

Want: @z P imrts, z P C.

Given z P imrts. Want: z P C.

Since z P imrts, choose j P N s.t. z “ tj.

Since s P AN, we have imrss Ď A.

Then sj P imrss Ď A “ f˚pCq, and so fpsjq P C.

Then z “ tj “ pf ˝ sqj “ fpsjq P C, as desired.

End of proof of Claim 1.

Since t P CN, since t‚ Ñ q in Y and since C P T 1Y ,

we conclude that q P C.

Since fppq “ q P C, we get p P f˚pCq.

Then p P f˚pCq “ A, as desired. �

THEOREM 57.2. Let X and Y be metric spaces and let f : X Ñ Y .

Assume: @C P T 1Y , f˚pCq P T 1X . Then: f is continuous from X to Y .

Proof. Unassigned HW. �

By Theorem 57.1 and Theorem 57.2, a function is continuous iff

the preimage of any closed set is closed.

THEOREM 57.3. Let X and Y be metric spaces and let f : X Ñ Y .

Assume: f is continuous from X to Y . Then: @U P TY , f˚pUq P TX .

Proof. Unassigned HW. �

THEOREM 57.4. Let X and Y be metric spaces and let f : X Ñ Y .

Assume: @U P TY , f˚pUq P TX . Then: f is continuous from X to Y .

Proof. Unassigned HW. �

By Theorem 57.3 and Theorem 57.4, a function is continuous iff

the preimage of any open set is open.

It may seem strange that, in

Theorem 57.1, Theorem 57.2,

Theorem 57.3 and Theorem 57.4,

preimages are so important by contrast with forward images. Part
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of the explanation is that, generally,

points want to go forward,

sets want to go backward and

sequences want to go forward.

Other mathematical objects have a similar propensity to move in one

direction or another, and the astute learner will start to track which

ones want to do what. Looking at open sets and closed sets, following

this philosophy, it makes sense that preimages come up a lot. However,

one does sometimes study maps such that the forward image of a closed

set is closed, or such that the forward image of an open set is open:

DEFINITION 57.5. Let X and Y be metric spaces and f : X Ñ Y .

By f is a closed mapping from X to Y , we mean:

@C P T 1X , f˚pCq P T 1Y .

By f is an open mapping from X to Y , we mean:

@U P TX , f˚pUq P TY .

THEOREM 57.6. Let f : R2 Ñ R be defined by fpx, yq “ x2 ` y2.

Then f is continuous from R2 to R.

Proof. Unassigned HW. �

We leave subgoal (A) as an unassigned exercise. For subgoal (B),

because SR2p02, 1q Ď BR2p02, 2q, it follows that SR2p02, 1q is bounded in

R2. To finish subgoal (B), we need only show:

THEOREM 57.7. SR2p02, 1q P T 1R2.

Proof. Let A :“ SR2p02, 1q. Want: A P T 1R2 .

Define f : R2 Ñ R by fpx, yq “ x2 ` y2. Then A “ f˚pt1uq.

Also, by Theorem 57.6, we see that f is continuous from R2 to R.

By Theorem 56.15, we conclude that t1u P T 1R.

So, since f is continuous from R2 to R,

by Theorem 57.1, we get: f˚pt1uq P T 1R2 .

Then A “ f˚pt1uq P T 1R2 , as desired. �

To do subgoal (C), we must show that any compact subset of a metric

space is closed and bounded. By HW#10-5, any compact subset of a

metric space is bounded. The following shows that it’s also closed:

THEOREM 57.8. Let X be a metric space and let C Ď X.

Assume that C is compact. Then C P T 1X .
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Proof. Want: @s P CN, @p P X, r p s‚ Ñ p in X q ñ p p P C q s.

Given s P CN, p P X. Want: p s‚ Ñ p in X q ñ p p P C q.

Assume s‚ Ñ p in X. Want: p P C.

Since C is compact and s P CN, we get: s is subconvergent in C.

Choose a subsequence t of s s.t. t is convergent in C.

Choose q P C s.t. t‚ Ñ q in C. Then t‚ Ñ q in X.

Since s‚ Ñ p in X and since t is a subsequence of s,

it follows, from Theorem 51.12, that t‚ Ñ p in X.

Since t‚ Ñ p in X and t‚ Ñ q in X,

it follows, from Theorem 39.12, that p “ q.

Then p “ q P C, as desired. �

THEOREM 57.9. Let X be a topological space, A Ď X and t P AN.

Then: p t is convergent in A q ñ p t is convergent in X q.

Proof. Unassigned HW. �

THEOREM 57.10. Let X be a topological space, A Ď X and s P AN.

Then: p s is subconvergent in A q ñ p s is subconvergent in X q.

Proof. Unassigned HW. �

THEOREM 57.11. Let X be a topological space, A P T 1X and t P AN.

Then: p t is convergent in A q ô p t is convergent in X q.

Proof. By Theorem 57.9, we have:

p t is convergent in A q ñ p t is convergent in X q.

Want: p t is convergent in X q ñ p t is convergent in A q.

Assume: t is convergent in X. Want: t is convergent in A.

Choose p P X s.t. t‚ Ñ p in X.

Since A P T 1X and t P AN and t‚ Ñ p in X, it follows that p P A.

Since t‚ Ñ p in X, since t P AN and since p P A,

it follows that t‚ Ñ p in A.

Then t is convergent in A, as desired. �

THEOREM 57.12. Let X be a topological space, A P T 1X and s P AN.

Then: p s is subconvergent in A q ô p s is subconvergent in X q.

Proof. By Theorem 57.10, we have:

p s is subconvergent in A q ñ p s is subconvergent in X q.

Want: p s is subconvergent in X q ñ p s is subconvergent in A q.

Assume: s is subconvergent in X. Want: s is subconvergent in A.
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Choose a subsequence t of s s.t. t is convergent in X.

Then, by ð of Theorem 57.11, we see that t is convergent in A.

So, since t is a subsequence of s, s is subconvergent in A, as desired. �

We now finish subgoal (D):

THEOREM 57.13. Let X be a proper metric space and let A Ď X.

Assume: pA P T 1X q& pA is bounded in X q. Then A is compact.

Proof. Want: @s P AN, s is subconvergent in A.

Given s P AN. Want: s is subconvergent in A.

Since imrss Ď A and since A is bounded in X,

we conclude that imrss is bounded in X.

Then s is bounded in X.

So, since X is a proper metric space, s is subconvergent in X.

By ð of Theorem 57.12, s is subconvergent in A, as desired. �

Our only remaining subgoal:

(E) R and R2 are both proper.

This is addressed in §58 and §60.

58. Properness and completeness of the line

THEOREM 58.1. Let S be a set. Then:

p #S ď 1 q ô p @x, y P S, x “ y q.

THEOREM 58.2. Let A Ď R˚. Then #pAX rLBpAqsq ď 1

Proof. Unassigned HW. �

Proof. Let S :“ AX rLBpAqs. Want: #S ď 1.

By Theorem 58.1, want: @x, y P S, x “ y.

Given x, y P S. Want: x “ y.

Since S “ AX rLBpAqs, we get: S Ď A and S Ď LBpAq.

Since x P S Ď LBpAq, it follows that x ď A, so A ě x.

Then y P S Ď A ě x, so y ě x. Want: x ě y.

Since y P S Ď LBpAq, it follows that y ď A, so A ě y.

Then x P S Ď A ě y, so x ě y, as desired. �

THEOREM 58.3. @set S, @x,

r p#S “ 1 q& px P S q s ñ rUEpSq “ x s.

Proof. Unassigned HW. �
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THEOREM 58.4. Let A Ď R. Assume:

pA ‰ Hq& pA is closed in R q& pA is bounded above in R q.
Then maxA ‰ /.

Proof. This is HW#11-3. �

THEOREM 58.5. Let A Ď R. Assume:

pA ‰ Hq& pA is closed in R q& pA is bounded below in R q.
Then minA ‰ /.

Proof. Let B :“ ´A. Then minA “ ´pmaxBq. Also,

pB ‰ Hq& pB is closed in R q& pB is bounded above in R q,
so, by Theorem 58.4, we see that maxB ‰ /.

Then maxB P B Ď R, so ´pmaxBq P R, so ´pmaxBq ‰ /.

Then minA “ ´pmaxBq ‰ /, as desired. �

THEOREM 58.6. Let A Ď R. Assume: pA ‰ Hq& pA is compact q.

Then minA ‰ / ‰ maxA.

Proof. By HW#10-5, A is bounded.

By Theorem 57.8, A P T 1R, so A is closed in R.

Then, by Theorem 58.5 and Theorem 58.4, minA ‰ / ‰ maxA. �

We consider sequences in metric spaces:

According to HW#6-4, convergent implies bounded.

According to HW#9-5, convergent implies Cauchy.

According to HW#11-4, Cauchy implies bounded.

So, HW#9-5 and HW#11-4, together, prove HW#6-4.

Observe that, in the metric space Q, Cauchy does not imply con-

vergent: Let s :“ p1, 1.4, 1.41, 1.414, . . .q be the sequence of decimal

approximations to
?

2. Then s is Cauchy, but not convergent.

Observe that, in the metric space R, bounded does not imply Cauchy:

The sequence p´1, 1,´1, 1,´1, 1, . . .q is bounded, but not Cauchy.

DEFINITION 58.7. Let f : R 99K R.

Then f is strictly monotone means:

p f is strictly increasing q _ p f is strictly decreasing q.

Also, f is semi-monotone means:

p f is semi-increasing q _ p f is semi-decreasing q.

THEOREM 58.8. Let a P RN.

Assume: a is semi-increasing and bounded above in R.

Then: a is convergent in R.
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Proof. This is HW#9-4. �

THEOREM 58.9. Let a P RN.

Assume: a is semi-decreasing and bounded below in R.

Then: a is convergent in R.

Proof. Let b :“ ´a. Then a “ ´b. Want: b is convergent in R.

Since b is semi-increasing and bounded above in R,

it follows, from Theorem 58.8, that b is convergent in R, as desired. �

THEOREM 58.10. Let a P RN.

Assume: a is semi-monotone and bounded in R.

Then: a is convergent in R.

Proof. Since a is semi-monotone, we know that at least one of the fol-

lowing is true:

(1) a is semi-decreasing or

(2) a is semi-increasing.

Case (1): Since a is bounded, it follows that a is bounded below.

Since a is semi-decreasing and bounded below, by Theorem 58.9,

a is convergent, as desired.

End of Case (1).

Case (2): Since a is bounded, it follows that a is bounded above.

Since a is semi-increasing and bounded above, by Theorem 58.9,

a is convergent, as desired.

End of Case (2). �

The next theorem is fundamental to the area of dynamical systems.

THEOREM 58.11. Let X be a set, let f : X Ñ X and let z P X.

Then: @j P N0, f j˝ pzq P X.

Proof. Unassigned HW. (Hint: Use induction on j.) �

THEOREM 58.12. Let P Ď N and let m :“ maxpP`0 q.

Assume m ‰ /. Then @j P pm..8q, j R P .

Proof. Unassigned HW. �

THEOREM 58.13. Let s P RN.

Then Dsubsequence t of s s.t. t is semi-monontone.
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Proof. Let P :“ tj P N | @q P pj..8q, sj ě squ.

Then one of the following is true:

(1) P is finite or

(2) P is infinite.

Case (1):

Since P Ď N, it follows that P`0 Ď N0.

Since P is finite, it follows that P`0 is finite.

Since P`0 Ď R and since P`0 is finite, we get maxpP`0 q P P
`
0 .

Let m :“ maxpP`0 q. Then m P P`0 .

Then m P P`0 Ď N0, so m P N0. Also m ‰ /.

Define A : NÑ 2N by Aj :“ tq P pj..8q | sj ă squ.

Define f : pm..8q 99K pm..8q by fpjq “ minAj.

Claim A: @j P pm..8q, fpjq P Aj.

Proof of Claim A:

Given j P pm..8q. Want: fpjq P Aj.

By Theorem 58.12, j R P .

Then, by definition of P , we get:  p@q P pj..8q, sj ě sqq.

Then Dq P pj..8q s.t. sj ă sq. Choose q P pj..8q s.t. sj ă sq.

Then q P Aj, so Aj ‰ H.

So, since Aj Ď N and since N is well-ordered,

we conclude that minAj ‰ /, and so minAj P Aj.

Then fpjq “ minAj P Aj, as desired.

End of proof of Claim A.

We have f : pm..8q 99K pm..8q.
Also, by Claim A, @j P pm..8q, fpjq ‰ /.

Then f : pm..8q Ñ pm..8.

Then: @j P N, f j˝ pm` 1q P pm..8q Ď N.

Define ` P NN by `j “ f j˝ pm` 1q.

Claim B: ` is strictly increasing.

Proof of Claim B:

Want: @j P N, `j ă `j`1.

Given j P N. Want: `j ă `j`1.

Let k :“ `j. Want: k ă `j`1.

We have fpkq “ fp`jq “ fpf j˝ pm` 1qq “ f j`1˝ pm` 1q “ `j`1.
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By Claim A, we have fpkq P Ak.

Also, by defininition of A, we have Ak Ď pk..8q.

Then `j`1 “ fpkq P Ak Ď pk..8q ą k.

Then `j`1 ą k, so k ă `j`1, as desired.

End of proof of Claim B.

Let t :“ s ˝ `.

By Claim B, t is a subsequence of s.

Want: t is semi-monotone. Want: t is strictly increasing.

Want: @j P N, tj ă tj`1. Given j P N. Want: tj ă tj`1.

Let k :“ `j. By Claim A, we have fpkq P Ak.

Let q :“ fpkq. Then q P Ak.

So, by definition of A, we get sk ă sq.

We have q “ fpkq “ fp`jq “ fpf j˝ pm` 1qq “ f j`1˝ pm` 1q “ `j`1.

Then tj “ ps ˝ `qj “ s`j “ sk ă sq “ s`j`1
“ ps ˝ `qj`1 “ tj`1.

End of Case (1).

Case (2):

Define A : NÑ 2N by Aj “ P X pj..8q.

Define f : N 99K N by fpjq “ minAj.

Claim C: @j P N, fpjq P Aj.

Proof of Claim C:

Given j P N. Want: fpjq P Aj.

Since P is infinite and r1..js is finite,

we conclude that P Ę r1..js.

So, since P Ď N “ r1..8q, we get P X pj..8q ‰ H.

Then Aj “ P X pj..8q ‰ H.

So, since Aj Ď N and since N is well-ordered,

we conclude that minAj ‰ /, and so minAj P Aj.

Then fpjq “ minAj P Aj, as desired.

End of proof of Claim C.

We have f : N 99K N.

Also, by Claim C, @j P pm..8q, fpjq ‰ /.

Then f : NÑ N.

Then: @j P N, f j˝ p1q P N.

Define ` P NN by `j “ f j˝ p1q.



128 SCOT ADAMS

Claim D: ` is strictly increasing.

Proof of Claim D:

Want: @j P N, `j ă `j`1.

Given j P N. Want: `j ă `j`1.

Let k :“ `j. Want: k ă `j`1.

We have fpkq “ fp`jq “ fpf j˝ pm` 1qq “ f j`1˝ pm` 1q “ `j`1.

By Claim C, we have fpkq P Ak.

Also, by defininition of A, we have Ak Ď pk..8q.

Then `j`1 “ fpkq P Ak Ď pk..8q ą k.

Then `j`1 ą k, so k ă `j`1, as desired.

End of proof of Claim D.

Let t :“ s ˝ `.

By Claim D, t is a subsequence of s.

Want: t is semi-monotone. Want: t is semi-decreasing.

Want: @j P N, tj ě tj`1. Given j P N. Want: tj ě tj`1.

Let k :“ `j and let i :“ f j´1˝ p1q.

Then k “ `j “ f j˝ p1q “ fpf j´1˝ p1qq “ fpiq.

By Claim C, fpiq P Ai.

Then k “ fpiq P Ai “ P X pi..8q Ď P , so k P P .

Let q :“ fpkq. Then q “ fpkq “ fp`jq “ fpf j˝ p1qq “ f j`1˝ p1q “ `j`1.

By Claim D, `j`1 ą `j. Then q “ `j`1 ą `j “ k, so q P pk..8q.

So, since k P P , by definition of P , we get: sk ě sq.

Then tj “ ps ˝ `qj “ s`j “ sk ě sq “ s`j`1
“ ps ˝ `qj`1 “ tj`1.

End of Case (2). �

THEOREM 58.14. @functions f and g, imrg ˝ f s Ď imrgs.

Proof. Unassigned HW. �

THEOREM 58.15. @sequence s, @subsequence t of s, imrts Ď imrss.

Proof. Given a sequence s and a subsequence t of s.

Want: imrts Ď imrss.

Since t is a subsequence of s,

choose a strictly increasing ` P NN s.t. t “ s ˝ `.

By Theorem 58.14, imrs ˝ `s Ď imrss.

Then imrts “ imrs ˝ `s Ď imrss, as desired. �
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THEOREM 58.16. Let X be a metric space and let s, t P XN.

Assume: p t is a subsequence of s q& p s is bounded in X q.

Then t is bounded in X.

Proof. Since s is bounded in X, we get: imrss is bounded in X.

Then choose B P BX s.t. imrss Ď B.

By Theorem 58.15, imrts Ď imrss.

Then imrts Ď imrss Ď B, so imrts Ď B.

So, since B P BX , we conclude that imrts is bounded in X.

Then t is bounded in X, as desired. �

THEOREM 58.17. R is a proper metric space.

Proof. Want: @ bounded s P RN, s is subconvergent in R.

Given a bounded s P RN. Want: s is subconvergent in R.

By Theorem 58.13, choose a subsequence t of s s.t. t is semi-monotone.

Since s is bounded in R and t is a subsequence of s,

it follows, from Theorem 58.16, that t is bounded in R.

Since t is semi-monotone and bounded in R, by Theorem 58.10,

we conclude that t is convergent in R.

So, since t is a subsequence of s,

we see that s is subconvergent in R, as desired. �

DEFINITION 58.18. Let X be a metric space, S Ď X, ε ą 0. Then

N ε
XpSq :“ t z P X | Dy P S s.t. dXpy, zq ă ε u

is called the ε-neighborhood of S.

We drew a coordinate plane with a short curve S, picked a small

distance ε and drew the ε-neighborhood of S.

THEOREM 58.19. Let X be a metric space, S Ď X, ε ą 0.

Then N ε
XpSq Ď X.

THEOREM 58.20. Let X be a metric space, S, T Ď X, δ, ε ą 0.

Assume S Ď T and δ ď ε.

Then N δ
XpSq Ď N ε

XpT q.

DEFINITION 58.21. Let X be a metric space, S Ď X, ε ą 0.

By S is ε-dense in X, we mean: N ε
XpSq “ X.

We noted that Z is almost 1{2-dense in R, but not quite. In fact,

we have: @a ą 1{2, Z is a-dense in R. Therefore: Z is 1-dense in R.

Similarly, p1{2q ¨ Z is p1{2q-dense in R. Generally:
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THEOREM 58.22. @j P N, p1{jq ¨ Z is p1{jq-dense in R.

THEOREM 58.23. @ε ą 0, Q is ε-dense in R.

Proof. Given ε ą 0. Want: Q is ε-dense in R. Want: N ε
RpQq “ R.

Since N ε
RpQq Ď R, we want: R Ď N ε

RpQq.
By the Archimedean Principle, choose j P N s.t. j ą 1{ε.

Since j ą 1{ε ą 0, we get 1{j ă ε.

So, since p1{jq ¨ Z Ď Q, we get N
1{j
R pp1{jq ¨ Zq Ď N ε

RpQq.
By Theorem 58.22, we have N

1{j
R pp1{jq ¨ Zq “ R.

Then R “ N
1{j
R pp1{jq ¨ Zq Ď N ε

RpQq, as desired. �

DEFINITION 58.24. Let X be a metric space and let S Ď X.

By S is dense in X, we mean: ClXS “ X.

THEOREM 58.25. Let X be a metric space and let S Ď X.

Assume: @ε ą 0, S is ε-dense in X.

Then: S is dense in X.

Proof. This is HW#12-1. �

THEOREM 58.26. Q is dense in R.

Proof. By Theorem 58.23, @ε ą 0, Q is ε-dense in R.

Then, by Theorem 58.25, Q is dense in R. �

DEFINITION 58.27. Let X be a metric space.

By X is complete, we mean: @s P XN,

p s is Cauchy in X q ñ p s is convergent in X q.

By HW#9-5, we know, for ANY metric space X, for any s P XN,

p s is convergent in X q ñ p s is Cauchy in X q.

A metric space that is not proper is said to be nonproper.

A metric space that is not complete is said to be incomplete.

The intuition behind completeness: Complete means “has no holes”,

or, equivalently, incomplete means “has holes”.

For example, define X :“ Rˆ0 . Then the “hole” at 0 allows us to con-

struct Cauchy sequences in X that are not convergent in X. For ex-

ample, the sequence

p 1 , 1{2 , 1{3 , 1{4 , . . . q

is Cauchy in X, but is not convergent in X. Consequently, X is an

incomplete metric space. The sequence

p 1 , 1.4 , 1.41 , 1.414 , . . . q
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of decimal approximations to
?

2 is Cauchy in Q, but not convergent

in Q. Consequently, Q is an incomplete metric space. Speaking intu-

itively, X is only slightly incomplete, because there is only one hole.

By contrast, Q is “very” incomplete, with a hole at every irrational.

THEOREM 58.28. Rˆ0 and Q are both incomplete.

Proof. Let s :“ p1, 1{2, 1{3, . . .q.

Then s is Cauchy in Rˆ0 , but not convergent in Rˆ0 ,

so Rˆ0 is incomplete. Want: Q is incomplete.

Let σ :“ p1, 1.4, 1.41, . . .q denote the sequence

of decimal approximations to
?

2.

Then σ is Cauchy in Q, but not convergent in Q,

so Q is incomplete, as desired. �

For any metric space X, we can “fill in all the holes”, and obtain

a complete metric space X:

THEOREM 58.29. Let X be a metric space.

Then there exists a metric space X s.t.

p X is complete q & p Xset Ď Xset q & p Xset is dense in X q.

Proof. Omitted. �

THEOREM 58.30. Let X be a proper metric space.

Then X is complete.

Proof. Want: @s P XN,

p s is Cauchy in X q ñ p s is convergent in X q.

Given s P XN. Want: p s is Cauchy in X q ñ p s is convergent in X q.

Assume s is Cauchy in X. Want: s is convergent in X.

Since s is Cauchy in X, by HW#11-4, we get: s is bounded in X.

So, since X is proper, we see that s is subconvergent in X.

So, since s is Cauchy in X, by HW#11-5,

we conclude that s is convergent in X, as desired. �

THEOREM 58.31. R is a complete metric space.

Proof. By Theorem 58.17, R is proper.

Then, by Theorem 58.30, R is complete, as desired. �

THEOREM 58.32. Rˆ0 and Q are nonproper metric spaces.

Proof. By Theorem 58.28, Rˆ0 and Q are both incomplete.

Then, by Theorem 58.30, Rˆ0 and Q are both nonproper, as desired. �
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By Theorem 58.30, proper implies complete. In the next section, we

address why the converse fails.

59. Complete does not imply proper

By Theorem 58.29, any metric space X has a “completion” X. For

example, one completion of Rˆ0 is R. Intuitively, we have “filled in the

hole at 0” to go from Rˆ0 to R. For another example, one completion

of Q is R. Intuitively, we have “filled in the all holes at all of the

irrationals” to go from Q to R. In some sense, a metric space with holes

is unnatural and, if we encounter such an object, we simply ignore it,

and focus on one of its completions.

With experience as my guide, any natural finite dimensional metric

space should not just be complete, but proper. For example, the metric

spaces R and R2 are both proper. On the other hand, with experience

as my guide, any natural infinite dimensional metric space is nonproper.

Based on this, since we seek a metric space that is complete but non-

proper, we should look for some “natural” infinite dimensional metric

space. This works, and there are many examples, but the problem is

that, in an undergraduate course, it is typical only to look at finite

dimenional examples, and to leave infinite dimensions to a graduate

course in an area of mathematics called “Functional Analysis”.

We therefore turn to “unnatural” finite dimensional metric spaces.

We will describe a metric space called Rď1, and, in Theorem 59.7 below,

we will argue that Rď1 is complete an nonproper.

Recall that the underlying set of a metric space X is denoted Xset.

We typically omit the subscript “set”, but sometimes keep it:

DEFINITION 59.1. Let X be a metric space.

Define d PMpXsetq by dpp, qq “ mintdpp, qq, 1u.

Then Xď1 :“ pXset, dq.

THEOREM 59.2. Let Y :“ Rď1.
Then dY p2.7, 2.8q “ 0.1 and dY p3, 5000q “ 1.

THEOREM 59.3. Let X be a metric space, Y :“ Xď1 and p P Y .

Then BY pp, 2q “ Y .

THEOREM 59.4. Let X be a nonempty metric space, Y :“ Xď1.

Then Y is geometrically bounded.
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THEOREM 59.5. Let X be a metric space, Y :“ Xď1, s P Y
N.

Then s is bounded.

THEOREM 59.6. Let X be a metric space and let s P XN.

Then: p s is subconvergent in X q ô p s is subconvergent in Xď1 q.

Proof. Proof of ñ:

Assume: s is subconvergent in X. Want: s is subconvergent in Xď1.

Since s is subconvergent in X,

choose a subsequence t of s s.t. t is convergent in X.

Then, by ñ of HW#12-3, we see that t is convergent in Xď1.

So, since t is a subsequence of s,

we see that s is subconvergent in Xď1, as desired.

End of proof of ñ.

Proof of ð:

Assume: s is subconvergent in Xď1. Want: s is subconvergent in X.

Since s is subconvergent in Xď1,

choose a subsequence t of s s.t. t is convergent in Xď1.

Then, by ð of HW#12-3, we see that t is convergent in X.

So, since t is a subsequence of s,

we see that s is subconvergent in X, as desired.

End of proof of ð. �

THEOREM 59.7. Rď1 is complete and nonproper.

Proof. This is HW#12-5. �

60. Properness and completeness of the plane

THEOREM 60.1. Let s, t and u be sequences.

Assume that s is a subsequence of t and that t is a subsequence of u.

Then s is a subsequence of u.

Proof. Since s is a subsequence of t,

choose a strictly increasing ` P NN s.t. s “ t ˝ `.

Since t is a subsequence of u,

choose a strictly increasing m P NN s.t. t “ u ˝m.

Then s “ t ˝ ` “ u ˝m ˝ `.

Since `,m P NN, we see that m ˝ ` P NN.

Since ` and m are strictly increasing,

we see that m ˝ ` is strictly increasing.
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So, since s “ u ˝m ˝ `,

we conclude that s is a subsequence of u, as desired. �

THEOREM 60.2. Let X be a metric space and let σ, s P XN.

Assume that σ is a subsequence of s and that σ is subconvergent in X.

Then s is subconvergent in X.

Proof. Since σ is subconvergent in X,

choose a subsequence t of σ s.t. t is convergent in X.

Since t is a subsequence of σ and since σ is a subsequence of s,

by Theorem 60.1, t is a subsequence of s.

So, since t is convergent in X,

we conclude that s is subconvergent in X, as desired. �

THEOREM 60.3. Let X be a metric space and let s P XN.

Assume that s is subconvergent in X.

Then Dstrictly increasing ` P NN s.t. s ˝ ` is convergent in X.

Proof. Since s is subconvergent in X,

choose a subsequence t of s s.t. t is convergent in X.

Since t is a subsequence of s,

choose a strictly increasing ` P NN s.t. t “ s ˝ `.

Want: s ˝ ` is convergent in X.

Since t is convergent in X and since t “ s ˝ `,

we conclude that s ˝ ` is convergent in X, as desired. �

THEOREM 60.4. Let X be a metric space and let s P XN.

Let t be a subsequence of s.

Assume: s is bounded in X.

Then: t is bounded in X.

Proof. This is Theorem 58.16. �

THEOREM 60.5. Let X be a metric space and let s P XN.

Let t be a subsequence of s.

Assume: s is convergent in X.

Then: t is convergent in X.

Proof. Since s is convergent in X, choose p P X s.t. s‚ Ñ p in X.

Then, by Theorem 51.12, we have: t‚ Ñ p in X.

Then t is convergent in X, as desired. �
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THEOREM 60.6. Let s P pR2qN.

Define p, q : R2 Ñ R by ppx, yq “ x and qpx, yq “ y.

Then: r p s is bounded in R2 q ô

p p ˝ s and q ˝ s are both bounded in R q s.

Proof. Proof of ñ:

Unassigned HW.

End of proof of ñ.

Proof of ð:

Assume that p ˝ s and q ˝ s are both bounded in R.

Want: s is bounded in R2. Want: imrss is bounded in R2.

Want: DC P BR2 s.t. imrss Ď C.

Since p ˝ s and q ˝ s are both bounded in R,

imrp ˝ ss and imrq ˝ ss are both bounded in R,

so choose A,B P BR s.t. imrp ˝ ss Ď A and imrq ˝ ss Ď B.

Since A P BR, choose a P R and α ą 0 s.t. A “ BRpa, αq.

Since B P BR, choose b P R and β ą 0 s.t. B “ BRpb, βq.

Let c :“ pa, bq and let γ :“
a

α2 ` β2.

Let C :“ BR2pc, γq. Then C P BR2 .

Want: imrss Ď C. Want: @z P imrss, z P C.

Given z P imrss. Want: z P C.

Choose x, y P R s.t. z “ px, yq. Then ppzq “ x and qpzq “ y.

Since z P imrss, choose j P N s.t. z “ sj.

Then pp ˝ sqj “ ppsjq “ ppzq “ x and pq ˝ sqj “ qpsjq “ qpzq “ y.

Then x “ pp ˝ sqj P imrp ˝ ss Ď A “ BRpa, αq, so dRpx, aq ă α.

Also, y “ pq ˝ sqj P imrq ˝ ss Ď B “ BRpb, βq, so dRpy, bq ă β.

Then |x´ a| “ dRpx, aq ă α and |y ´ b| “ dRpy, bq ă β.

Then 0 ď |x´ a| ă α and 0 ď |y ´ b| ă β,

so |x´ a|2 ă α2 and |y ´ b|2 ă β2.

We have |x´ a|2 “ |px´ aq2| “ px´ aq2

and |y ´ b|2 “ |py ´ bq2| “ py ´ bq2.

Then px´ aq2 ` py ´ bq2 “ |x´ a|2 ` |y ´ b|2 ă α2 ` β2.

Since 0 ă px´ aq2 ` py ´ bq2 ă α2 ` β2,

we get:
a

px´ aq2 ` py ´ bq2 ă
a

α2 ` β2.

Then dR2pz, cqq “ |z ´ c|2 “ |px´ a, y ´ bq|2
“
a

px´ aq2 ` py ´ bq2 ă
a

α2 ` β2 “ γ.

Then z P BR2pc, γq “ C, as desired. End of proof of ð. �
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THEOREM 60.7. Let s P pR2qN.

Define p, q : R2 Ñ R by ppx, yq “ x and qpx, yq “ y.

Then: r p s is convergent in R2 q ô

p p ˝ s and q ˝ s are both convergent in R q s.

Proof. Proof of ñ:

Unassigned HW.

End of proof of ñ.

Proof of ð:

This is Theorem 42.9.

End of proof of ð. �

THEOREM 60.8. R2 is a proper metric space.

Proof. Want: @s P pR2qN,

p s is bounded in R2 q ñ p s is subconvergent in R2 q.

Given s P pR2qN.

Want: p s is bounded in R2 q ñ p s is subconvergent in R2 q.

Assume s is bounded in R2. Want: s is subconvergent in R2.

By Theorem 58.17, R is proper.

Define p, q : R2 Ñ R by ppx, yq “ x and qpx, yq “ y.

Since s is bounded in R2, by ñ of Theorem 60.6,

p ˝ s and q ˝ s are both bounded in R.

Since p ˝ s is bounded in R and since R is proper,

p ˝ s is subconvergent in R.

Then, by Theorem 60.3, choose a strictly increasing ` P NN

s.t. p ˝ s ˝ ` is convergent in R.

Let σ :“ s ˝ `. Then p ˝ σ is convergent in R.

Since σ is a subsequence of s and since s is bounded in R2,

by Theorem 58.16, σ is bounded in R2.

By Theorem 60.2, it suffices to show: σ is subconvergent in R2.

Since σ is bounded in R2, by ñ of Theorem 60.6,

p ˝ σ and q ˝ σ are both bounded in R.

Since q ˝ σ is bounded in R and since R is proper,

q ˝ σ is subconvergent in R.

Then, by Theorem 60.3, choose a strictly increasing m P NN

s.t. q ˝ σ ˝m is convergent in R.

Since p ˝ σ is convergent in R
and since p ˝ σ ˝m is a subsequence of p ˝ σ,
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it follows, from Theorem 60.5, that p ˝ σ ˝m is convergent in R.

Since p ˝ σ ˝m and q ˝ σ ˝m are both convergent in R,

by ð of Theorem 60.7, σ ˝m is convergent in R2.

So, since σ ˝m is a subsequence of σ,

we see that σ is subconvergent in R2, as desired. �

THEOREM 60.9. R2 is a complete metric space.

Proof. By Theorem 60.8, R2 is proper.

Then, by Theorem 58.30, R2 is complete, as desired. �

THEOREM 60.10. @m P N, Rm is a proper metric space.

Proof. Unassigned HW. �

61. The Extreme Value Theorem

DEFINITION 61.1. @functional f ,

max f :“ maxpimrf sq and min f :“ minpimrf sq.

Theorem 61.2, below, is the Extreme Value Theorem.

THEOREM 61.2. Let X be a nonempty compact metric space.

Let f : X Ñ R. Assume f is continuous from X to R.

Then min f ‰ / ‰ max f .

Proof. Let A :“ imrf s. Want: minA ‰ / ‰ maxA.

By HW#12-2, we see that f is continuous from X to A.

So, since X is compact and since f : X Ñą A,

by Theorem 55.4, we conclude: A is compact.

Since X ‰ H and f : X Ñ A, we get: A ‰ H.

Then, by Theorem 58.6, minA ‰ / ‰ maxA, as desired. �

62. The Topological Inverse Function Theorem

THEOREM 62.1. Let X be a metric space, C P T 1X and t P CN.

Assume that t is convergent in X.

Then t is convergent in C.

Proof. Since t is convergent in X, choose q P X s.t. t‚ Ñ q in X.

Since t P CN, since t‚ Ñ q in X and since C P T 1X ,

it follows that q P C.

Then, by Theorem 44.12, t‚ Ñ q in C.

Then t is convergent in C, as desired. �
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THEOREM 62.2. Let X be a metric space, C P T 1X and s P CN.

Assume that s is subconvergent in X.

Then s is subconvergent in C.

Proof. Since s is subconvergent in X,

choose a subsequence t of s s.t. t is convergent in X.

By Theorem 62.1, t is convergent in C.

So, since t is a subsequence of s,

we conclude that s is subconvergent in C. �

THEOREM 62.3. Let X be a compact metric space and let C P T 1X .

Then C is compact.

Proof. Want: @s P CN, s is subconvergent in C.

Given s P CN. Want: s is subconvergent in C.

Since C P T 1X , we get C Ď X, and so CN Ď XN.

Since s P CN Ď XN and since X is compact,

s is subconvergent in X.

So, since C P T 1X , by Theorem 62.2,

we see that s is subconvergent in C. �

THEOREM 62.4. Let X and Y be metric spaces.

Let f : X Ñ Y , S Ď X, A :“ f˚pSq.

Assume that f is continuous from X to Y .

Then f |S is continuous from S to A.

Proof. Since imrf |Ss “ f˚pSq “ A, by HW#12-2,

it suffices to show: f |S is continuous from S to Y .

Want: @p P S, f |S is continuous at p from S to Y .

Since f is continuous from X to Y ,

it follows that f is continuous at p from X to Y .

Then, by Theorem 44.13, f is continuous at p from S to Y . �

THEOREM 62.5. Let X and Y be metric spaces.

Let f : X Ñ Y and let C Ď X.

Assume that f is continuous from X to Y .

Assume that C is compact. Then f˚pCq is compact.

Proof. Let A :“ f˚pCq. Then f |C : C Ñą A. Want: A is compact.

By Theorem 62.4, f |C is continuous from C to A.

So, since C is compact, by Theorem 55.4, A is compact. �
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THEOREM 62.6. Let X and Y be sets and let S Ď X.

Let f : X ãÑą Y . Then f˚pSq “ pf
´1q˚pSq.

Proof. Unassigned HW. �

Proof. Unassigned HW. �

THEOREM 62.7. Let X and Y be sets and let S Ď Y .

Let f : X ãÑą Y . Then f˚pSq “ pf´1q˚pSq.

Proof. Unassigned HW. �

THEOREM 62.8. Let X :“ r1; 2s Y p3; 4s and Y :“ r5; 7s.

Define f : X Ñ Y by fpxq “

#

x` 4, if 1 ď x ď 2

x` 3, if 3 ă x ď 4.
Then f : X ãÑą Y and f is continuous from X to Y .

Also, f´1 is not continuous at 6 from Y to X.

Proof. Unassigned HW. �

Theorem 62.8 presents us with a problem. Frequently, we will be

given a bijection f between metric spaces, and suppose we want to

show that f is a homeomorphism. Say f is given by some formula for

fpxq in terms of x. By using continuity of basic functions, together with

properties of continuity, we can often verify continuity of f . However,

in order to see continuity of f´1, we would need to compute a formula

for f´1pyq in terms of y, which may be very difficult.

For example, define f : r1; 2s Ñ r2; 10s by fpxq “ x` x3. Then it is

possible to show that f is a bijection from r1; 2s onto r2; 10s. Also, it is

not hard to show that f is continuous from r1; 2s to r2; 10s. However,

there is no obvious formula for f´1pyq in terms of y. Even computing

f´1p5q involves solving x`x3 “ 5 for x, which is difficult. However, the

next theorem guarantees that f´1 is continuous from r2; 10s to r1; 2s.

The next theorem is the Topological Inverse Function Theorem.

THEOREM 62.9. Let X and Y be metric spaces. Let f : X ãÑą Y .

Assume: f is continuous from X to Y and X is compact.

Then: f´1 is continuous from Y to X.

Proof. By Theorem 57.2, we want: @C P T 1X , pf´1q˚pCq P T 1Y .

Given C P T 1X . Want: pf´1q˚pCq P T 1Y .

By Theorem 62.6, f˚pCq “ pf
´1q˚pCq. Want: f˚pCq P T 1Y .

Since X is compact and C P T 1X , by Theorem 62.3,
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we see that C is compact.

Then, by Theorem 62.5, f˚pCq is compact.

Then, by Theorem 57.8, f˚pCq P T 1Y , as desired. �

63. Limits of functions

DEFINITION 63.1. Let Y be a metric space, p P Y and r ą 0.

Then BˆY pp, rq :“ rBY pp, rqs
ˆ
p .

DEFINITION 63.2. Let Y be a metric space and let p P Y .

Then BˆY ppq :“ tBˆY pp, rq | r ą 0u.

DEFINITION 63.3. Let Y be a metric space and let p P Y .

Then BˆY :“ tBˆY pp, rq | p P Y, r ą 0u.

DEFINITION 63.4. Let Y and Z be metric spaces.

Let f : Y 99K Z, let p P Y and let q P Z.

Then f Ñ q near p from Y to Z means:

adjqp f is continuous at p from Y to Z.

THEOREM 63.5. Let Y and Z be metric spaces.

Let f : Y 99K Z and let p P Y .

Then: r f is continuous at p from domrf s to Z s

ô r @ε ą 0, Dδ ą 0 s.t., @x P domrf s,

p dY px, pq ă δ q ñ p dZpfpxq, fppqq ă ε q s

ô r @B P BZpfppqq, DA P BY ppq s.t. f˚pAq Ď B, s

ô r @s P pdomrf sqN, p r s‚ Ñ p in Y s ñ r pf ˝sq‚ Ñ fppq in Z s q s.

Proof. Unassigned HW. �

THEOREM 63.6. Let Y and Z be metric spaces.

Let f : Y 99K Z, let p P Y and let q P Z.

Then: r f Ñ q near p from Y to Z s

ô r @ε ą 0, Dδ ą 0 s.t., @x P domrf s,

p 0 ă dY px, pq ă δ q ñ p dZpfpxq, qq ă ε q s

ô r @B P BZpqq, DA P BˆY ppq s.t. f˚pAq Ď B, s

ô r @s P ppdomrf sqˆp q
N, p r s‚ Ñ p in Y s ñ r pf ˝sq‚ Ñ q in Z s q s.

Proof. Unassigned HW. �

THEOREM 63.7. Let f be a function and let p P domrf s.

Then adjfppqp f “ f .

Proof. Unassigned HW. �
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THEOREM 63.8. Let X and Y be metric spaces.

Let f : X 99K Y and let p P domrf s.

Then: r f Ñ fppq near p from X to Y s

ô r f is continuous at p from domrf s to Y s.

Proof. Let g :“ adjfppqp f .

By Definition 63.4, we have:

r f Ñ fppq near p from X to Y s

ô r g is continuous at p from domrf s to Y s.

By Theorem 63.7, g “ f .

Then: r f Ñ fppq near p from X to Y s

ô r g is continuous at p from domrf s to Y s

ô r f is continuous at p from domrf s to Y s. �

64. Isolated points and limit points

DEFINITION 64.1. Let T be a metric space.

Then IsolT :“ tq P T | DB P BT pqq s.t. B “ tquu.

An element of IsolT is called an isolated point of T .

We drew a picture on the board of a subset T of the plane that had

two singleton connected components, and two uncountable connected

components, each a partial closure of a connected amoeba-like open

set. We computed IsolT as the union of the two singleton components.

THEOREM 64.2. Let T :“ r1; 2q Y t3, 4u. Then IsolT “ t3, 4u.

Proof. Unassigned HW. �

THEOREM 64.3. Let T :“ t1, 1{2, 1{3, . . .u. Then IsolT “ T .

Proof. Unassigned HW. �

THEOREM 64.4. Let A :“ t1, 1{2, 1{3, . . .u and let T :“ A`0 .

Then IsolT “ A.

Proof. Unassigned HW. �

DEFINITION 64.5. Let Y be a metric space and let T Ď Y .

Then LPY T :“ pClY T q z p IsolT q.

An element of LPY T is called a limit point in Y of T .

Note: In ClY T , we think of T as a subset of the metric space Y .

On the other hand, in IsolT , we think of T as a metric space with the

relative metric inherited from Y .
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We went back to the picture on the board of a subset T of the plane

that had two singleton connected components, and two uncountable

connected components, each a partial closure of a connected amoeba-

like open set. We computed LPR2T as the union of the closures of the

two singleton components.

THEOREM 64.6. Let T :“ r1; 2q Y t3, 4u. Then LPRT “ r1; 2s.

Proof. Unassigned HW. �

THEOREM 64.7. Let T :“ t1, 1{2, 1{3, . . .u. Then LPRT “ t0u.

Proof. Unassigned HW. �

THEOREM 64.8. Let A :“ t1, 1{2, 1{3, . . .u and let T :“ A`0 .

Then LPRT “ t0u.

Proof. Unassigned HW. �

THEOREM 64.9. Let Y be a metric space, T Ď Y and q P Y .

Then: r q P ClY T s

ô r @δ ą 0, p rBY pq, δqs X T ‰ Hq s

ô r @B P BY pqq, B X T ‰ H, s
ô r Ds P TN s.t. s‚ Ñ q in Y s.

Proof. Unassigned HW. �

THEOREM 64.10. Let Y be a metric space, T Ď Y and q P Y .

Then: r q P LPY T s

ô r @δ ą 0, p rBˆY pq, δqs X T ‰ Hq s

ô r @B P BˆY pqq, B X T ‰ H, s
ô r Ds P pTˆq q

N s.t. s‚ Ñ q in Y s.

Proof. Unassigned HW. �

DEFINITION 64.11. Let Y be a metric space, Z a set, f : Y 99K Z.

Then LPDY f :“ LPY pdomrf sq.

In Definition 64.11, LPD stands for “limit points of the domain”.

THEOREM 64.12. Let Y and Z be metric spaces.

Let f : Y 99K Z, q P Y and a, b P Z.

Assume f Ñ a and f Ñ b near q from Y to Z.

Then a “ b.
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Proof. Let D :“ domrf s.

Since q P LPYD, by Theorem 64.10,

choose s P pDˆq q
N s.t. s‚ Ñ q in Y .

Since Dˆq Ď D`q , it follows that pDˆq q
N Ď pD`q q

N.

Then s P pDˆq q
N Ď pD`q q

N.

So, since q P D`q and since s‚ Ñ q in Y ,

it follows that s‚ Ñ q in D`q .

Let g :“ adjaqf and h :“ adjbqf .

Then gpqq “ a and hpqq “ b.

Also, domrgs “ D`q “ domrhs.

We have: @j P N, sj ‰ q.

It follows that: @j P N, gpsjq “ fpsjq and hpsjq “ fpsjq.

That is, we have: @j P N, pg ˝ sqj “ pf ˝ sqj and ph ˝ sqj “ pf ˝ sqj.

Then g ˝ s “ f ˝ s and h ˝ s “ f ˝ s.

Since f Ñ a and f Ñ b near q from Y to Z, by Definition 63.4,

it follows that g and h are both continuous at q from D`q to Z.

So, since s‚ Ñ q in D`q ,

pg ˝ sq‚ Ñ gpqq and ph ˝ sq‚ Ñ hpqq in Z.

So, since g ˝ s “ f ˝ s and gpqq “ a and h ˝ s “ f ˝ s and hpqq “ b,

pf ˝ sq‚ Ñ a and pf ˝ sq‚ Ñ b in Z.

Then, by Theorem 39.12, a “ b, as desired. �

DEFINITION 64.13. Let φ and ψ be functions. Let S be a set.

Then, by φ “ ψ on S, we mean: @x P S, φpxq “ ψpxq.

THEOREM 64.14. Let Y and Z be metric spaces.

Let φ, ψ : Y 99K Z, p P Y and q P Z.

Assume DB P BˆY ppq s.t. φ “ ψ on B.

Assume φÑ q near p from Y to Z.

Then ψ Ñ q near p from Y to Z.

Proof. Unassigned HW. �

Let f be a functional and let k P N0. Define p : RÑ R by ppxq “ xk.

Recall that fk is defined to be p ˝ f .

Let f :“ 3 ¨ id7
R. Then, for all x P R, we have fpxq “ 3x7.

DEFINITION 64.15. The function | ‚ | : RÑ R is defined by

p| ‚ |qpxq “ |x|.

THEOREM 64.16. | ‚ | is continuous at 0 from R to R.
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Proof. Unassigned HW. �

THEOREM 64.17. | ‚ | Ñ 0 near 0 from R to R.

Proof. Unassigned HW. �

DEFINITION 64.18. Let f be a functional. Then |f | :“ p| ‚ |q ˝ f .

THEOREM 64.19. Let X be a metric space, f : X 99K R, p P X.

Then: r f Ñ 0 near p from X to R s
ô r |f | Ñ 0 near p from X to R s.

Proof. Unassigned HW. �

65. Some sets of functions

DEFINITION 65.1. Let f be a function, X a metric space and p P

X. By f is defined near p in X, we mean: DB P BXppq s.t. B P

domrf s.

NEXT YEAR, just define Oj as pCVZq ¨ p| ‚ |jq. See Theorem 68.9

DEFINITION 65.2. DNZ :“ tα : R 99K R |α is defined near 0 in Ru.

THEOREM 65.3. Both of the following are true:

(1) r @α, β P DNZ, α ` β, α ¨ β P DNZ s and

(2) r @c P R, @β P DNZ, c ¨ α P DNZ s.

Proof. Unassigned HW. �

DEFINITION 65.4. Define O : N0 Ñ 2DNZ by

Oj “

"

α P DNZ

ˇ

ˇ

ˇ

ˇ

pαp0q “ 0 q&
ˆ

α

| ‚ |j
Ñ 0 near 0 from R to R

˙ *

.

We argued that O0 Ě O1 Ě O2 Ě O3 Ě ¨ ¨ ¨ .

We argued (using HW#13-5) that id3
R P O2. We also argued that

id3
R R O3. This proves that O2 ‰ O3.

More generally, we have: @j P N, idjR P Oj´1 and idjR R Oj, and so

Oj´1 ‰ Oj. That is, O0 ‰ O1 ‰ O2 ‰ O3 ‰ ¨ ¨ ¨ .

Then O0 Ľ O1 Ľ O2 Ľ O3 Ľ ¨ ¨ ¨ .

THEOREM 65.5. All of the following are true:

(1) r @j P N, @α, β P Oj, α ` β P Oj s and

(2) r @j, k P N, @α P Oj, @β P Ok, α ¨ β P Oj`k s and

(3) r @j P N, @c P R, @α P Oj, c ¨ α P Oj s.
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Proof. Unassigned HW. �

DEFINITION 65.6. Let f and g be functions.

Let X be a metric space and let p P X.

Then f “ g near p in X means: DB P BXppq s.t. f “ g on B.

THEOREM 65.7. Let X and Y be metric spaces.

Let α, β : X 99K Y , p P X. Assume: α “ β near p in X.

Assume: α is continuous at p. Then β is continuous at p.

Proof. Unassigned HW. �

THEOREM 65.8. Let j P N0 and let α, β : RÑ R.

Assume α “ β near 0 in R. Assume α P Oj. Then β P Oj.

Proof. Unassigned HW. �

DEFINITION 65.9. Define H : N0 Ñ 2RR
by HJ “ ta ¨ id

j
R | a P Ru.

THEOREM 65.10. Define C,L,Q,K : RÑ R by

Cpxq “ 3, Lpxq “ 7x, Qpxq “ 4x2, Kpxq “ 9x3.

Then C “ 3 ¨ id0
R P H0 and L “ 7 ¨ id1

R P H1

and Q “ 4 ¨ id2
R P H2 and K “ 9 ¨ id3

R P H3.

Proof. Unassigned HW. �

THEOREM 65.11. @j P N0, @f P Hj, Da P R s.t.,

@x P R, fpxq “ axj.

Proof. Unassigned HW. �

DEFINITION 65.12. 0 :“ C0
R.

THEOREM 65.13. @j, k P N0, r p j ‰ k q ñ pHj XHk “ t0u q s.

Proof. Unassigned HW. �

THEOREM 65.14. All of the following are true:

(1) r @j P N, @α, β P Hj, α ` β P Hj s and

(2) r @j, k P N, @α P Hj, @β P Hk, α ¨ β P Hj`k s and

(3) r @j P N, @c P R, @α P Hj, c ¨ α P Hj s.

Proof. Unassigned HW. �

Proof. Unassigned HW. �
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DEFINITION 65.15. C :“ H0, L :“ H1, Q :“ H2, K :“ H3.

THEOREM 65.16. Define C,L,Q,K : RÑ R by

Cpxq “ 3, Lpxq “ 7x, Qpxq “ 4x2, Kpxq “ 9x3.

Then C P C and L P L and Q P Q and K P K
and C R O0 Ě O1 Ě O2 Ě ¨ ¨ ¨

and L P O0 and L R O1 Ě O2 Ě O3 Ě ¨ ¨ ¨

and Q P O1 Ď O0 and Q R O2 Ě O3 Ě O4 Ě ¨ ¨ ¨

and K P O2 Ď O1 Ď O0 and K R O3 Ě O4 Ě O5 Ě ¨ ¨ ¨

and C `Q` L`K R O0 Ě O1 Ě O2 Ě ¨ ¨ ¨

and C `Q` L R O0 Ě O1 Ě O2 Ě ¨ ¨ ¨

and L`Q`K P O0 and L`Q`K R O1 Ě O2 Ě O3 Ě ¨ ¨ ¨

and Q`K P O1 Ď O0 and Q`K R O2 Ě O3 Ě O4 Ě ¨ ¨ ¨ .

Proof. Unassigned HW. �

THEOREM 65.17. We have: C X O0 “ t0u

and L Ď O0 and LX O1 “ t0u

and Q Ď O1 and QX O2 “ t0u

and K Ď O2 and K X O3 “ t0u.

Proof. Unassigned HW. �

More generally:

THEOREM 65.18. We have: @j P N, Hj Ď Oj´1.

Also, we have: @j P N0, Hj X Oj “ t0u.

Proof. Unassigned HW. �

66. Translations, linearizations and derivatives of

functions

DEFINITION 66.1. Let S be a set, f : R 99K S, p P R.

Then fpp` ‚q : R 99K S is defined by:

pfpp` ‚qqphq “ fpp` hq.

The function fpp` ‚q is called the horizontal translate of f by p.

DEFINITION 66.2. Let f : R 99K R, p P R.

Then fTp : R 99K R is defined by:

fTp phq “ rfpp` hqs ´ rfppqs.

The function fTp is called the double translate of f based at p.

Note that, if p P Rzpdomrf sq, then fTp “ H is the empty function.
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DEFINITION 66.3. Let f be a function.

Then fp/` ‚q :“ / and fT/ “ /.

We drew the graph of a partial function f : R 99K R whose domain

was a half-open interval, and which had an interval of decrease, then

one of increase, then one of decrease. We picked a point p on the first

interval of decrease. We displayed graphs of fpp` ‚q and fTp .

THEOREM 66.4. Let f : R 99K R, p P domrf s. Then fTp p0q “ 0.

Proof. Unassigned HW. �

The analytic properties of f at/near p are preserved and reflected

in the analytic properties of fpp` ‚q and fTp at/near 0. For example:

THEOREM 66.5. Let f : RÑ R, p P R.

Then: p f is defined near p q

ô p fpp` ‚q is defined near 0 q

ô p fTp is defined near 0 q.

Also: p f is continuous at p q

ô p fpp` ‚q is continuous at 0 q

ô p fTp is continuous at 0 q.

Proof. Unassigned HW. �

DEFINITION 66.6. Let f : R 99K R and p P R.

Then LINSpf :“ tL P L | fTp ´ L P O1u.

An element of LINSpf is called a linearization of f at p. Note that,

if p P Rzpdomrf sq, then LINSpf “ H.

Let f : R 99K R, let p P domrf s and let L P LINSpf . Assume that

the graph of f has a tangent line at a point pp, fppqq. Note that the

graph of L is typically NOT tangent to the graph of f at pp, fppqq.

Instead, the graph of L is tangent to the graph of fTp at p0, 0q.

THEOREM 66.7. Define f : RÑ R by fpxq “ x2.

Define L P L by Lphq “ 6h. Then L P LINS3f .

Proof. Define Q P Q by Qphq “ h2.

We have: @h P R, fT3 phq “ rfp3` hqs ´ rfp3qs “ p3` hq
2 ´ 32

“ 9` 6h` h2 ´ 9 “ 6h` h2 “ rLphqs ` rQphqs “ pL`Qqphq.

Then fT3 “ L`Q. Also L´ L “ 0.

Then fT3 ´ L “ L`Q´ L “ 0`Q “ Q P Q Ď O1.

Since L P L and fT3 ´ L P O1, we get: L P LINS3f , as desired. �
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THEOREM 66.8. Let f : R 99K R and let p P R.

Then #pLINSpfq ď 1.

Proof. Want: @L,M P LINSpf , L “M .

Given L,M P LINSpf . Want: L “M .

Since L,M P LINSpf , we get fTp ´ L P O1 and fTp ´M P O1.

Then pfTp ´Mq ´ pf
T
p ´ Lq P O1.

Since fTp ´ L P O1 Ď DNZ, choose B P BRp0q s.t. B Ď domrfTp ´ Ls.

We have L,M P LINSpf Ď L.

Since L,M P L, we get domrLs “ R “ domrM s.

Since L,M P L, we get L´M P L.

Let D :“ domrfTp s.

Then, as domrLs “ R “ domrM s, we get:

domrfTp ´ Ls “ D “ domrfTp ´M s.

Then pfTp ´Mq ´ pf
T
p ´ Lq “ L´M on D.

So, since B Ď domrfTp ´ Ls “ D, it follows that:

pfTp ´Mq ´ pf
T
p ´ Lq “ L´M on B.

So, since B P BRp0q, we conclude that:

pfTp ´Mq ´ pf
T
p ´ Lq “ L´M near 0 in R.

So, since pfTp ´Mq ´ pf
T
p ´ Lq P O1,

by Theorem 65.8, we see that L´M P O1.

So, since L´M P L, we get L´M P LX O1 “ t0u.

Then L´M “ 0, so L “M , as desired. �

DEFINITION 66.9. Let L P L.

Then s`L :“ UEta P R |L “ a ¨ idRu.

NEXT YEAR: Easier to define s`L :“ Lp1q. Define s`/ “ /.

THEOREM 66.10. Define L P L by Lphq “ 6h. Then s`L “ 6.

Proof. Unassigned HW. �

DEFINITION 66.11. Let f : R 99K R.

Then f 1 : R 99K R is defined by: f 1ppq “ UEts`L |L P LINSpfu.

The function f 1 : R 99K R is called the derivative of f . Note that,

if p P Rzpdomrf sq, then f 1p “ /.

NEXT YEAR: Define Dpf :“ UEpLINSpfq and f 1p “ s`Dpf . Also,

note that, if p P Rzpdomrf sq, then Dpf “ /. Also, define s`/ :“ /.

THEOREM 66.12. Define f : RÑ R by fpxq “ x2. Then f 1p3q “ 6.
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Proof. Define L P L by Lphq “ 6h.

By Theorem 66.10, we have: s`L “ 6.

Let S :“ ts`M |M P LINS3fu.

By Definition 66.11, f 1p3q “ UES.

By Theorem 66.8, #pLINS3fq ď 1.

By Theorem 66.7, L P LINS3f .

Then LINS3f “ tLu.

Then S “ ts`M |M P tLuu “ ts`Lu “ t6u.

Then f 1p3q “ UES “ UE t6u “ 6, as desired. �

THEOREM 66.13. Let f : R 99K R, p P R, L P L.

Assume that fTp ´ L P O1. Then f 1ppq “ s`L.

Proof. Let S :“ ts`M |M P LINSpfu.

By Definition 66.11, f 1ppq “ UES.

By Theorem 66.8, #pLINSpfq ď 1.

By Definition 66.6, L P LINSpf .

Then LINSpf “ tLu.

Then S “ ts`M |M P tLuu “ ts`Lu.

Then f 1ppq “ UES “ UE ts`Lu “ s`L, as desired. �

THEOREM 66.14. Define f : RÑ R by fpxq “ x3.

Then f 1p2q “ 3 ¨ 22.

Proof. Define L P L, Q P Q, K P K by

Lphq “ 3 ¨ 22 ¨ h, Qphq “ 3 ¨ 2 ¨ h2, Kphq “ h3.

Then L “ 3 ¨ 22 ¨ idR, so s`L “ 3 ¨ 22.

Also, since Q P Q Ď O1 and since K P K Ď O2 Ď O1,

we conclude that Q`K P O1.

We have: @h P R, fT2 phq “ rfp2` hqs ´ rfp2qs “ p2` hq
3 ´ 23

“ 23 ` 3 ¨ 22 ¨ h` 3 ¨ 2 ¨ h2 ` h3 ´ 23

“ 3 ¨ 22 ¨ h` 3 ¨ 2 ¨ h2 ` h3

“ rLphqs ` rQphqs ` rKphqs

“ pL`Q`Kqphq.

Then fT2 “ L`Q`K. Also L´ L “ 0.

Then fT2 ´ L “ L`Q`K ´ L “ 0`Q`K “ Q`K P O1.

Then, by Theorem 66.13, we get: f 1p2q “ s`L.

Then f 1p2q “ s`L “ 3 ¨ 22, as desired. �

THEOREM 66.15. Define f : RÑ R by fpxq “ x3.

Then, @x P R, f 1pxq “ 3x2.
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Proof. Given x P R. Want: f 1pxq “ 3x2.

Define L P L, Q P Q, K P K by

Lphq “ 3x2h, Qphq “ 3xh2, Kphq “ h3.

Then L “ 3x2 ¨ idR, so s`L “ 3x2.

Also, since Q P Q Ď O1 and since K P K Ď O2 Ď O1,

we conclude that Q`K P O1.

We have: @h P R, fTx phq “ rfpx` hqs ´ rfpxqs “ px` hq
3 ´ x3

“ x3 ` 3x2h` 3xh2 ` h3 ´ x3

“ 3x2h` 3xh2 ` h3

“ rLphqs ` rQphqs ` rKphqs

“ pL`Q`Kqphq.

Then fTx “ L`Q`K. Also L´ L “ 0.

Then fTx ´ L “ L`Q`K ´ L “ 0`Q`K “ Q`K P O1.

Then, by Theorem 66.13, we get: f 1pxq “ s`L.

Then f 1pxq “ s`L “ 3x2, as desired. �

67. Basic facts about differentiation

THEOREM 67.1. @C P C, C 1 “ 0.

Proof. Unassigned HW. �

THEOREM 67.2. @L P L, L1 “ Cs`L
R .

Proof. Unassigned HW. �

DEFINITION 67.3. Let f : R 99K R, p P R.

By f is differentiable at p, we mean: p P domrf s.

THEOREM 67.4. Let f : R 99K R, p P domrf 1s.

Then DL P L, DR P O1 s.t. fTp “ L`R.

Proof. Let S :“ ts`L |L P LINSpfu.

Then f 1ppq “ UEpSq.

Since p P domrf 1s, we get / ‰ f 1ppq.

Then UEpSq “ f 1ppq ‰ / “ UEpHq, so S ‰ H.

By Theorem 66.8, #pLINSpfq ď 1.

Since ts`L |L P LINSpfu “ S ‰ H, we conclude that LINSp ‰ H.

Then #pLINSpfq “ 1.

Let L :“ UEpLINSpfq. Then LINSpf “ tLu. Then L P LINSpf .

Then L P LINSpf Ď L.

Since L P tLu “ LINSpf , we see that fTp ´ L P O1.
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Let R :“ fTp ´ L. Then R P O1.

Then L P L and R P O1. Want: fTp “ R ` L.

Since R “ fTp ´ L, we get: R ` L “ fTp ´ L` L “ fTp ` 0 “ fTp ,

and so fTp “ R ` L “ L`R, as desired. �

THEOREM 67.5. Let f : R 99K R, p P R, L P L, R P O1.

Assume that fTp “ L`R. Then f 1ppq “ s`L.

Proof. Since fTp ´ L “ R P O1, it follows, from Theorem 66.13,

that f 1ppq “ s`L, as desired. �

THEOREM 67.6. Let f : R 99K R, p P domrf 1s.

Then: p f is defined near p q& p f is continuous at p q.

Proof. By Theorem 67.4, choose L P L and R P O1 s.t. fTp “ L`R.

Since L and R are defined near 0, we get: L`R is defined near 0.

Then fTp is defined near 0.

Since L and R are continuous at 0, we get: L`R is continuous at 0.

Then fTp is continuous at 0.

Since fTp is defined near 0 and fTp is continuous at 0, by Theorem 66.5,

we get: p f is defined near p q& p f is continuous at p q. �

THEOREM 67.7. Let f : R 99K R. Then domrf 1s Ď domrf s.

Proof. Want: @p P domrf 1s, p P domrf s.

Given p P domrf 1s. Want: p P domrf s.

By Theorem 67.6, f is defined near p.

So, by Definition 65.1, choose B P BXppq s.t. B Ď domrf s.

Since B P BXppq, we get: p P B.

Then p P B Ď domrf s, as desired. �

DEFINITION 67.8. Let f : R 99K R and let p P R.

Then SSpf : R 99K R is defined by

pSSpf qphq “ pDQf qpp, p` hq.

We call SSpf the secant slope function of f based at p. The limit

of the secant slope is not always the value of the derivative:

THEOREM 67.9. Let A :“ t1, 1{2, 1{3, 1{4, . . .u Y t0u.

Let f :“ pid2
Rq|pA` 3q.

Then: f 1p3q “ / and SS3
f Ñ 6 near 0 from R to R.

Proof. Unassigned HW. �
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The limit of the secant slope is typically the value of the derivative:

THEOREM 67.10. Let f : R 99K R and let p,m P R.

Assume that f is defined near p.

Then: r f 1ppq “ m s ô r SSpf Ñ m near 0 from R to R s.

Proof. Omitted. �

THEOREM 67.11. Let a P R. Then | ‚ | ´ a ¨ ridRs R O1.

Proof. Let f :“ | ‚ | ´ a ¨ ridRs. Want: f R O1.

Assuume f P O1. Want: Contradiction.

Since f P O1, we get: f{r| ‚ |s Ñ 0 near 0 from R to R.

So, by Theorem 63.6, choose δ ą 0 s.t., @h P R,

p 0 ă dRph, 0q ă δ q ñ

ˆ

dR

ˆˆ

f

| ‚ |

˙

phq, 0

˙

ă 1

˙

.

Then, @h P R,

„

p 0 ă |h| ă δ q ñ

ˆ
ˇ

ˇ

ˇ

ˇ

ˆ

f

| ‚ |

˙

phq

ˇ

ˇ

ˇ

ˇ

ă 1

˙

.

At least one of the following must be true:

(1) a ě 0 or (2) a ď 0.

Case (1):

Let h :“ ´δ{2. Since h ă 0, we get |h| “ ´h.

Since |h| “ δ{2 and since 0 ă δ{2 ă δ, we get: 0 ă |h| ă δ.

Then, by the choice of δ, we have:

ˇ

ˇ

ˇ

ˇ

ˆ

f

| ‚ |

˙

phq

ˇ

ˇ

ˇ

ˇ

ă 1.

Let y :“

ˆ

f

| ‚ |

˙

phq. Then |y| ă 1. Then 1 ą |y|.

We calculate: y “

ˆ

f

| ‚ |

˙

phq “
fphq

|h|
“
|h| ´ ah

|h|

“
´h´ ah

´h
“
h` ah

h
“ 1` a.

Since a ě 0, we get: 1` a ě 1.

So, since y “ 1` a, we get: y ě 1.

Since y ě 1 ą 0, we conclude that y ą 0, and so |y| “ y.

Then 1 ą |y| “ y ě 1, so 1 ą 1. Contradiction.

End of Case (1).

Case (2):

Let h :“ δ{2. Since h ą 0, we get |h| “ h.

Since |h| “ δ{2 and since 0 ă δ{2 ă δ, we get: 0 ă |h| ă δ.
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Then, by the choice of δ, we have:

ˇ

ˇ

ˇ

ˇ

ˆ

f

| ‚ |

˙

phq

ˇ

ˇ

ˇ

ˇ

ă 1.

Let y :“

ˆ

f

| ‚ |

˙

phq. Then |y| ă 1. Then 1 ą |y|.

We calculate: y “

ˆ

f

| ‚ |

˙

phq “
fphq

|h|
“
|h| ´ ah

|h|
“
h´ ah

h
“ 1´ a.

Since a ď 0, we get: 1´ a ě 1.

So, since y “ 1´ a, we get: y ě 1.

Since y ě 1 ą 0, we conclude that y ą 0, and so |y| “ y.

Then 1 ą |y| “ y ě 1, so 1 ą 1. Contradiction.

End of Case (2). �

THEOREM 67.12. Let L P L and let a :“ s`L.

Then L “ a ¨ idR.

Proof. Unassigned HW. �

THEOREM 67.13. Let f : R 99K R.

Assume fp0q “ 0. Then fT0 “ f .

Proof. Unassigned HW. �

THEOREM 67.14. 0 R domr| ‚ |1s.

Proof. Assume 0 P domr| ‚ |1s. Want: Contradiction.

By Theorem 67.4, choose L P L and R P O1 s.t. | ‚ |T0 “ L`R.

By Theorem 67.13, we have: | ‚ |T0 “ | ‚ |.

Then | ‚ | ´ L “ | ‚ |T0 ´ L “ L`R ´ L “ R ` 0 “ R P O1.

Let a :“ s`L. By Theorem 67.12, we have: L “ a ¨ ridRs.

Then | ‚ | ´ a ¨ ridRs “ | ‚ | ´ L P O1. Then | ‚ | ´ a ¨ ridRs P O1.

However, by Theorem 67.11, we have: | ‚ | ´ a ¨ ridRs R O1.

Contradiction. �

THEOREM 67.15. Let α : R 99K R.

Assume that α “ 0 near 0 in R. Then: @j P N0, α P Oj.

Proof. Unassigned HW. �

THEOREM 67.16. p| ‚ |1qp2q “ 1.

Proof. Let m :“ 1. Let L :“ m ¨ ridRs. Then s`L “ m.

We calculate: @h P p´2; 2q,

p| ‚ |T2 ´ Lqphq “ |2` h| ´ |2| ´m ¨ h

“ 2` h´ 2´ 1 ¨ h “ 0 “ 0phq.
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Then | ‚ |T2 ´ L “ 0 on p´2; 2q.

Then | ‚ |T2 ´ L “ 0 near 0 in R.

Then, by Theorem 67.15, | ‚ |T2 ´ L P O1.

Then, by Theorem 66.13, p| ‚ |1qp2q “ s`L.

Then p| ‚ |1qp2q “ s`L “ m “ 1, as desired.

�

THEOREM 67.17. p| ‚ |1qp´2q “ ´1.

Proof. Let m :“ ´1. Let L :“ m ¨ ridRs. Then s`L “ m.

We calculate: @h P p´2; 2q,

p| ‚ |T´2 ´ Lqphq “ | ´ 2` h| ´ | ´ 2| ´m ¨ h

“ ´p´2` hq ´ 2´ p´1q ¨ h “ 0 “ 0phq.

Then | ‚ |T´2 ´ L “ 0 on p´2; 2q.

Then | ‚ |T´2 ´ L “ 0 near 0 in R.

Then, by Theorem 67.15, | ‚ |T´2 ´ L P O1.

Then, by Theorem 66.13, p| ‚ |1qp´2q “ s`L.

Then p| ‚ |1qp´2q “ s`L “ m “ ´1, as desired.

�

THEOREM 67.18. @x ą 0, p| ‚ |1qpxq “ 1.

Proof. Let m :“ 1. Let L :“ m ¨ ridRs. Then s`L “ m.

We calculate: @h P p´x;xq,

p| ‚ |Tx ´ Lqphq “ |x` h| ´ |x| ´m ¨ h

“ x` h´ x´ 1 ¨ h “ 0 “ 0phq.

Then | ‚ |Tx ´ L “ 0 on p´x;xq.

Then | ‚ |Tx ´ L “ 0 near 0 in R.

Then, by Theorem 67.15, | ‚ |Tx ´ L P O1.

Then, by Theorem 66.13, p| ‚ |1qpxq “ s`L.

Then p| ‚ |1qpxq “ s`L “ m “ 1, as desired.

�

THEOREM 67.19. @x ă 0, p| ‚ |1qpxq “ ´1.

Proof. Let m :“ ´1. Let L :“ m ¨ ridRs. Then s`L “ m.

We calculate: @h P px;´xq,

p| ‚ |Tx ´ Lqphq “ |x` h| ´ |x| ´m ¨ h

“ ´px` hq ´ p´xq ´ p´1q ¨ h “ 0 “ 0phq.

Then | ‚ |Tx ´ L “ 0 on px;´xq.

Then | ‚ |Tx ´ L “ 0 near 0 in R.
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Then, by Theorem 67.15, | ‚ |Tx ´ L P O1.

Then, by Theorem 66.13, p| ‚ |1qpxq “ s`L.

Then p| ‚ |1qpxq “ s`L “ m “ ´1, as desired.

�

Since domr| ‚ |s “ R, the next result follows from Theorem 67.14,

Theorem 67.18 and Theorem 67.20:

THEOREM 67.20. domr| ‚ |1s “ Rˆ0 Ĺ R “ domr| ‚ |s.

According to Theorem 67.7, @f : R 99K R, domrf 1s Ď domrf s.

By Theorem 67.20, we see that the inclusion is sometimes proper.

DEFINITION 67.21. Let f : R 99K R and let S Ď R.

Then f is differentiable on S means: S Ď domrf 1s.

DEFINITION 67.22. Let f : R 99K R.

Then f is differentiable means: domrf 1s “ domrf s.

Unassigned HW: @f, g : R 99K R, @p P R, pf ` gqTp “ rf
T
p s ` rg

T
p s.

Unassigned HW: @c P R, @f : R 99K R, @p P R, pc ¨ fqTp “ c ¨ rfTp s.

To express these last two unassigned HWs, we sometimes say,

“Double translation is linear.”

Unassigned HW: @L,M P L, s`L`M “ rs`Ls ` rs`M s.

Unassigned HW: @c P R, @L P L, s`c¨L “ c ¨ rs`Ls.

To express these last two unassigned HWs, we sometimes say,

“Computation of slope is linear.”

Unassigned HW: 01 “ 0.

We will sometimes use f 1p instead of f 1ppq.

According to Theorem 67.14, p| ‚ |q10 “ /.

Unassigned HW: p´| ‚ |q10 “ /.

Let f :“ | ‚ | and g :“ ´| ‚ |. Then we have: f 10 “ / and g10 “ /.

Also, f ` g “ 0. Then pf ` gq1 “ 0. It follows that pf ` gq10 “ 00 “ 0.

Also, rf 10s ` rg
1
0s “ /`/ “ /. Let p :“ 0. Then

pf ` gq1p “ pf ` gq
1
0 “ 0 ‰ / “ rf 10s ` rg

1
0s “ rf

1
ps ` rg

1
ps,

and so pf ` gq1p ‰ rf
1
ps ` rg

1
ps. On the other hand:

THEOREM 67.23. Let f, g : R 99K R and let p P R.

Then: pf ` gq1p “
˚ rf 1ps ` rg

1
ps.

Proof. Want: p rf 1ps ` rg
1
ps ‰ / q ñ p pf ` gq1p “ rf

1
ps ` rg

1
ps q.

Assume rf 1ps ` rg
1
ps ‰ /. Want: pf ` gq1p “ rf

1
ps ` rg

1
ps.
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Since rf 1ps ` rg
1
ps ‰ /, we conclude that f 1p ‰ / ‰ g1p.

Then p P domrf 1s and p P domrg1s.

Then, by Theorem 67.4, choose L,M P L and R, S P O1 s.t.

fTp “ L`R and gTp “M ` S.

By Theorem 67.5, we have: f 1p “ s`L and g1p “ s`M .

Since L,M P L, we get: L`M P L.

Since R, S P O1, we get: R ` S P O1.

Also, pf ` gqTp “ rf
T
p s` rg

T
p s “ rL`Rs` rM `Ss “ rL`M s` rR`Ss.

Then, by Theorem 67.5, pf ` gq1p “ s`L`M .

Then pf ` gq1p “ s`L`M “ rs`Ls ` rs`M s “ rf
1
ps ` rg

1
ps, as desired. �

THEOREM 67.24. Let c P R, let f : R 99K R and let p P R.

Then pc ¨ fq1p “
˚ c ¨ rf 1ps.

Proof. Unassigned HW. �

Unassigned HW: @a, b, p r p a “˚ b q& p b “˚ a q s ñ r a “ b s q.

Unassigned HW: @a, @b "P R, @c P R,

r a “˚ b s ñ r c ¨ a “˚ c ¨ b s.

THEOREM 67.25. Let c P Rˆ0 , let f : R 99K R and let p P R.

Then pc ¨ fq1p “ c ¨ rf 1ps.

Proof. By Theorem 67.24, pc ¨ fq1p “
˚ c ¨ rf 1ps.

Want: c ¨ rf 1ps “
˚ pc ¨ fq1p.

Let φ :“ c ¨ f and let γ :“ 1{c.

By Theorem 67.24, pγ ¨ φq1p “
˚ γ ¨ rφ1ps.

So, since γ ¨ φ “ f and since φ “ c ¨ f , this gives: f 1p “
˚ γ ¨ rpc ¨ fq1ps.

Multiplying by c, we get: c ¨ rf 1ps “
˚ c ¨ γ ¨ rpc ¨ fq1ps.

So, since c ¨ γ “ 1, we conclude: c ¨ rf 1ps “
˚ pc ¨ fq1p, as desired. �

68. Basic results about big O and little o

DEFINITION 68.1. @sets X and Y , PFXY :“
Ť

tY D |D Ď Xu.

THEOREM 68.2. @sets X and Y , @f ,

p f P PFXY q ô p f : X 99K Y q.

DEFINITION 68.3. @set X, @S, T Ď PFXR,

S ` T :“ tf ` g | f P S, g P T u and

S ¨ T :“ tf ¨ g | f P S, g P T u.
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DEFINITION 68.4. @set X, @f : X 99K R, @S Ď PFXR,

f ` S :“ tfu ` S “: S ` f and

f ¨ S :“ tfu ¨ S “: S ¨ f .

DEFINITION 68.5. @set X, @A Ď R, @S Ď PFXR,

A ¨ S :“ tc ¨ f | c P A, f P Su “: S ¨ A.

DEFINITION 68.6. @set X, @A Ď R, @f : X 99K R,

A ¨ f :“ A ¨ tfu “: f ¨ A.

DEFINITION 68.7. @set X, @a P R, @S Ď PFXR,

a ¨ S :“ tau ¨ S “: S ¨ a.

Recall Definition 65.2 and Definition 65.4.

DEFINITION 68.8.

CVZ :“ tα P DNZ | pα is continuous at 0 q& pαp0q “ 0 qu.

THEOREM 68.9. Let j P N0. Then Oj “ pCVZq ¨ p| ‚ |jq.

Proof. By HW#1-1, it suffices to show: Oj Ď pCVZq ¨ p| ‚ |jq.

Want: @α P Oj, α P pCVZq ¨ p| ‚ |jq.

Given α P Oj. Want: α P pCVZq ¨ p| ‚ |jq.

Let β :“ adj00

ˆ

α

| ‚ |j

˙

. Want: p β P CVZ q& pα “ β ¨ p| ‚ |jq q.

Since α P Oj, we know:

pα P DNZ q& pαp0q “ 0 q&

ˆ

α

| ‚ |j
Ñ 0 near 0 from R to R

˙

.

We have domrβs “ ppdomrαsqˆ0 q
`
0 Ě domrαs,

so, since α P DNZ, we get: β P DNZ.

Since
α

| ‚ |j
Ñ 0 near 0 from R to R, we see that β is continuous at 0.

So, since β P DNZ, it follows that β P CVZ.

Want: α “ β ¨ p| ‚ |jq.

Want: @x P R, αpxq “ pβ ¨ p| ‚ |jqqpxq.

Given x P R. Want: αpxq “ pβ ¨ p| ‚ |jqqpxq.

Want: rβpxqs ¨ r|x|js “ αpxq.

Exactly one of the following is true:

(1) x “ 0 or

(2) x ‰ 0.

Case (1):

We have αpxq “ αp0q “ 0.
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Then rβpxqs ¨ r|x|js “ rβp0qs ¨ r|0|js “ 0 ¨ 0j “ 0 “ αpxq, as desired.

End of Case (1).

Case (2):

We have rβpxqs ¨ r|x|js “

„ˆ

α

| ‚ |j

˙

pxq



¨ r|x|js

“

„

αpxq

|x|j



¨ r|x|js “ αpxq, as desired.

End of Case (2). �

THEOREM 68.10. O0 “ CVZ.

Proof. By Theorem 68.9, O0 “ pCVZq ¨ p| ‚ |0q.

So, as | ‚ |0 “ C1
R, we get O0 “ CVZ, as desired. �

NEXT YEAR, just define Oj as pCVZq ¨ p| ‚ |jq.

DEFINITION 68.11.

BNZ :“ tα P DNZ | DC P BRp0q s.t. α˚pCq is bounded in Ru.

We graphed x ÞÑ x´2 : R 99K R. This is in DNZ, but not in CVZ

and not in BNZ.

We graphed x ÞÑ px ´ 1q´2 : R 99K R. This is in DNZ and in BNZ,

but not in CVZ.

We graphed

˜

x ÞÑ

#

1, if x ă 0

x, if x ě 0

¸

: RÑ R. This is in DNZ and

in BNZ, but not in CVZ.

By definition of CVZ, we have DNZ Ď CVZ.

According to HW#1-2, we have CVZ Ď BNZ.

THEOREM 68.12. pCVZq ¨ pCVZq Ď CVZ.

Proof. By HW#1-2, CVZ Ď BNZ, so pCVZq ¨ pCVZq Ď pBNZq ¨ pCVZq.

According to HW#1-4, we have pBNZq ¨ pCVZq Ď CVZ.

Then pCVZq ¨ pCVZq Ď pBNZq ¨ pCVZq Ď CVZ, as desired. �

DEFINITION 68.13. Define pO : N0 Ñ 2DNZ by pOj “ pBNZqp| ‚ |jq.

THEOREM 68.14. pO0 “ BNZ.

Proof. By Theorem 68.13, pO0 “ pBNZq ¨ p| ‚ |0q.

So, as | ‚ |0 “ C1
R, we get pO0 “ BNZ, as desired. �
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THEOREM 68.15. @j P N0, R ¨ pOj Ď pOj.

Also, @j P N0, pOj ` pOj Ď pOj.

Also, @j, k P N0, pOj ¨ pOk Ď pOj`k.

Proof. Unassigned homework. �

THEOREM 68.16. Let j P N. Then pOj Ď Oj´1.

Proof. Since | ‚ | P CVZ,

we get pBNZq ¨ p| ‚ |q ¨ p| ¨ |j´1q P pBNZq ¨ pCVZq ¨ p| ¨ |j´1q.

By HW#1-4, we have pBNZq ¨ pCVZq Ď CVZ,

and so pBNZq ¨ pCVZq ¨ p| ‚ |j´1q Ď pCVZq ¨ p| ‚ |j´1q.

Then pOj “ pBNZq ¨ p| ‚ |jq

“ pBNZq ¨ p| ‚ |q ¨ p| ‚ |j´1q

P pBNZq ¨ pCVZq ¨ p| ‚ |j´1q

Ď pCVZq ¨ p| ‚ |j´1q “ Oj´1, as desired. �

We define 0.5 “ 1{2. For any f : R 99K R, for any j P N0, we define

fn`0.5 : R 99K R by fn`0.5pxq “ rfnpxqs ¨ r
a

fpxqs.

We displayed all the pOjs and all the Ojs in a chain:
pO0 Ě O0 Ě pO1 Ě O1 Ě pO2 Ě O2 Ě pO3 Ě O3 Ě pO4 Ě O4 Ě ¨ ¨ ¨ .

Elements of pO0 are said to have constant order.

Elements of O0 are said to be subconstant.

Elements of pO1 are said to have linear order.

Elements of O1 are said to be sublinear.

Elements of pO2 are said to have quadratic order.

Elements of O2 are said to be subquadratic.

Elements of pO3 are said to have cubic order.

Elements of O3 are said to be subcubic.

Elements of pO4 are said to have quartic order.

Elements of O4 are said to be subquartic.

We have: | ‚ |0 has constant order, but is not subconstant.

We have: | ‚ |0.5 is subconstant, but is not of linear order.

We have: | ‚ |1 has linear order, but is not sublinear.

We have: | ‚ |1.5 is sublinear, but is not of quadratic order.

We have: | ‚ |2 has quadratic order, but is not subquadratic.

We have: | ‚ |2.5 is subquadratic, but is not of cubic order.

We have: | ‚ |3 has cubic order, but is not subcubic.
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We have: | ‚ |3.5 is subcubic, but is not of quartic order.

We have: | ‚ |4 has quartic order, but is not subquartic.

THEOREM 68.17. Let j, k P N0. Then Ok ¨ pOj “ pOj ¨ Ok Ď Oj`k.

Proof. By commutativity of multiplication, Ok ¨ pOj “ pOj ¨ Ok.

It remains to show: pOj ¨ Ok Ď Oj`k.

By HW#1-4, we have pBNZq ¨ pCVZq Ď CVZ.

Then pOj ¨ Ok “ pBNZq ¨ p| ‚ |jq ¨ pCVZq ¨ p| ‚ |kq

Ď pCVZq ¨ p| ‚ |j`kq “ Oj`k, as desired. �

THEOREM 68.18. Let j, k P N0. Then Oj ¨ Ok Ď Oj`k.

Proof. By HW#1-5, we have Oj Ď pOj. Then Oj ¨ Ok Ď pOj ¨ Ok.

By Theorem 68.17, we have pOj ¨ Ok Ď Oj`k.

Then Oj ¨ Ok Ď pOj ¨ Ok Ď Oj`k, as desired. �

THEOREM 68.19. Let j, k P N0. Then pOj ¨ pOk Ď pOj`k.

Proof. By HW#1-3, we have pBNZq ¨ pBNZq Ď BNZ.

Then pOj ¨ pOk “ pBNZq ¨ p| ‚ |jq ¨ pBNZq ¨ p| ‚ |kq

Ď pBNZq ¨ p| ‚ |j`kq “ pOj`k, as desired. �

Recall: @j P N, @P P Hj, Dc P R s.t., @x P R, P pxq “ cxj.

Also, @j P N, elements of Hj are said to be homogeneous polynomials

of degree j.

Recall: C “ H0, L “ H1, Q “ H2, K “ H3.

Elements of C are said to be constant.

Elements of L are said to be (homogeneous) linear.

Elements of Q are said to be (homogeneous) quadratic.

Elements of K are said to be (homogeneous) cubic.

THEOREM 68.20. Let L P L. Then Lp1q “ s`L.

Proof. Since L P L, choose m P R s.t., @x P R, Lpxq “ mx.

Then s`L “ m. Then Lp1q “ m ¨ 1 “ m “ s`l, as desired. �

NOTE: Next year, we’ll just use Lp1q as the definition of s`L.

We recalled the definition of fTp , see Definition 66.2.

We recalled the definition of LINSpf , see Definition 66.6.

We recalled the definition of f 1, see Definition 66.11.

The next theorem asserts: “Any linear function R Ñ R has linear

order.”
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THEOREM 68.21. L Ď pO1.

Proof. Want: @L P L, L P pO1.

Given L P L. Want: L P pO1. Want: L P pBNZq ¨ p| ‚ |q.

Let γ :“ adjj0

ˆ

L

| ‚ |

˙

. Want: γ P BNZ and L “ γ ¨ p| ‚ |q.

Know: @x P Rˆ0 , γpxq “

ˆ

L

|‚

˙

pxq. Also, γp0q “ 0.

Also, domrγs “ ppdomrLsqˆ0 q
`
0 “ pRˆ0 q`0 “ R, so BRp0, 1q Ď domrγs, so

γ P DNZ.

Since L P L, choose m P R s.t., @x P R, Lpxq “ mx.

Let a :“ |m|. Then 0 ď a.

Know: @x P Rˆ0 , |γpxq| “

ˇ

ˇ

ˇ

ˇ

ˆ

L

| ‚ |

˙

pxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Lpxq

|x|

ˇ

ˇ

ˇ

ˇ

“
|Lpxq|

|x|

“
|m| ¨ |x|

|x|
“ |m| “ a.

So, since |γp0q| “ |0| “ 0 ď a, we conclude: @x P R, |γpxq| ď a.

Then, @x P R, we have: γpxq P r´a; as.

Then imrγs Ď r´a; as.

Since γ˚pBRp0, 1qq Ď imrγs Ď r´a; as,

and since r´a; as is bounded in R,

we conclude that γ˚pBRp0, 1qq is bounded in R.

So, since γ P DNZ, we get γ P BNZ.

Want: L “ γ ¨ p| ‚ |q. Want: @x P R, Lpxq “ pγ ¨ p| ‚ |qqpxq.

Given x P R. Want: Lpxq “ pγ ¨ p| ‚ |qqpxq.

Want: rγpxqs ¨ r|x|s “ Lpxq.

One of the following is true:

(1) x “ 0 or (2) x ‰ 0.

Case (1):

We have rγpxqs ¨ r|x|s “ rαp0qs ¨ r|0|s “ 0 ¨ 0 “ 0 “ m ¨ 0 “ Lp0q “ Lpxq.

End of Case (1).

Case (2):

We have rγpxqs ¨ r|x|s “

„ˆ

L

| ‚ |

˙

pxq



¨ r|x|s “
Lpxq

|x|
¨ |x| “ Lpxq.

End of Case (2). �

THEOREM 68.22. @k P N0, Hk Ď pOk.

Proof. Unassigned HW. �
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THEOREM 68.23. pC Ď pO0q & pL Ď pO1 Ď O0q

& pQ Ď pO2 Ď O1q & pK Ď pO3 Ď O2q

& p@k P N, Hk Ď pOk Ď Ok´1q.

Proof. Unassigned HW. �

We recalled Theorem 65.17.

To summarize the preceding discussion:

Any constant has constant order.

However, any nonzero constant is not subconstant.

Any linear function has linear order (hence is subconstant).

However, any nonzero linear function is not sublinear.

Any quadratic function has quadratic order (hence is sublinear).

However, any nonzero quadratic function is not subquadratic.

Any cubic function has cubic order (hence is subquadratic).

However, any nonzero cubic function is not subcubic.

Etc.

THEOREM 68.24. Let f : R 99K R, p P domrf 1s.

Then DL P LINSpf , DR P O1 s.t. pL`R “ fTp q& pf 1p “ s`Lq.

Proof. Since p P domrf 1s, we get f 1p ‰ /.

So, since f 1p “ UEts`M |M P LINSpfu, we get: LINSpf ‰ /.

Choose L P LINSpf . Then, by Theorem 66.8, LINSpf “ tLu.

Then f 1p “ UEts`Lu “ s`L. Want: L`R “ fTp .

Since L P L, we see that L´ L “ 0.

Then L`R “ L` fTp ´ L “ fTp ` 0 “ fTp , as desired. �

THEOREM 68.25. Let f : R 99K R, p P domrf 1s.

Then DL P LINSpf , DR P O1 s.t. r pL`R “ fTp q& p f 1p “ s`L q s.

Proof. Since p P domrf 1s, we get f 1p ‰ /.

Then UEts`M |M P LINSpfu “ f 1p ‰ /, and so LINSpf ‰ H.

Choose L P LINSpf . Let R :“ fTp ´ L.

Then, by definition of LINSpf , we have: R P O1.

Want: pL`R “ fTp q& p f 1p “ s`L q.

By Theorem 66.8, LINSpf “ tLu.

Then ts`M |M P LINSpfu “ ts`Lu.

Then f 1p “ UEts`M |M P LINSpfu “ UEts`Lu “ s`L.

Want: L`R “ fTp .
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Since L P LINSpf Ď L, we get L´ L “ 0.

Then L`R “ L` pfTp ´ Lq “ fTp ` 0 “ fTp , as desired. �

THEOREM 68.26. Let L P L. Then L is continuous.

Proof. Unassigned HW. �

THEOREM 68.27. Let k P N0, R P Ok. Then R is continuous

at 0.

Proof. By Theorem 68.10, O0 “ CVZ.

We have R P Ok Ď O0 “ CVZ,

and so R is continuous at 0. �

THEOREM 68.28. Let f : R 99K R, p P R. Then

p f is continuous at p q ô p fTp is continuous at 0 q.

Proof. Unassigned HW. �

THEOREM 68.29. Let f : R 99K R, p P domrf 1s. Then f is

continuous at p.

Proof. By Theorem 68.25, choose L P L and R P O1 s.t.

p fTp “ L`R q& p f 1p “ s`L q.

By Theorem 68.26, L is continuous at 0.

By Theorem 68.27, R is continuous at 0.

Then by Theorem 44.22, L`R is continuous at 0.

So, since fTp “ L`R, we conclude that fTp is continuous at 0.

Then, by ð of Theorem 68.28, f is continuous at p, as desired. �

THEOREM 68.30. Let f : RÑ R, p P R and L P LINSpf .

Then f 1p “ s`L.

Proof. By Theorem 39.12, LINSpf “ tLu.

Then f 1p “ UEts`M |M P LINSpfu “ UEts`Lu “ s`L. �

69. The Product and Chain Rules

THEOREM 69.1. Let L P L, b P R.

Then s`Lb “ ps`lq ¨ b.

Proof. We have s`Lb “ pLbqp1q “ rLp1qs ¨ b “ ps`lq ¨ b, as desired. �

THEOREM 69.2. Let L,M P L.

Then s`L`M “ ps`lq ` ps`Mq.
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Proof. We have s`L`M “ pL`Mqp1q.

“ rLp1qs ` rMp1qs “ ps`lq ` ps`Mq, as desired. �

Theorem 69.3, below, is the High School Product Rule.

THEOREM 69.3. Let a,A, b, B "P R.

Then AB ´ ab “ a ¨ rB ´ bs ` b ¨ rA´ as ` rA´ as ¨ rB ´ bs.

Proof. Unassigned HW. �

Theorem 69.4, below, is the Precalculus Product Rule.

THEOREM 69.4. Let f, g : R 99K R, p P R, a :“ fp, b :“ gp.

Then pfgqTp “ a ¨ rgTp s ` b ¨ rf
T
p s ` rf

T
p s ¨ rg

T
p s.

Proof. Want: @h P R,

pfgqTp phq “ ppf
T
p q ¨ pgpq ` pfpq ¨ pg

T
p q ` pf

T
p q ¨ pg

T
p qqphq.

Given h P R.

Want: pfgqTp phq “ ppf
T
p q ¨ pgpq ` pfpq ¨ pg

T
p q ` pf

T
p q ¨ pg

T
p qqphq.

Let A :“ fp`h, B :“ gp`h.

Then A´ a “ fp`h ´ fp “ fTp phq.

Also, B ´ b “ gp`h ´ gp “ gTp phq.

By Theorem 69.3, AB´ab “ a ¨ rB´bs ` b ¨ rA´as ` rA´as ¨ rB´bs.

Then pfgqTp phq “ rpfgqp`hs ´ rpfgqps “ fp`h ¨ gp`h ´ fp ¨ gp
“ AB ´ ab “ pA´ aqb` apB ´ bq ` pA´ aqpB ´ bq

“ rfTp phqs ¨ rgppqs ` rfppqs ¨ rg
T
p phqs ` rf

T
p phqs ¨ rg

T
p phqs

“ ppfTp q ¨ pgpq ` pfpq ¨ pg
T
p q ` pf

T
p q ¨ pg

T
p qqphq,

as desired. �

Theorem 69.5, below, is the Product Rule.

THEOREM 69.5. Let f, g P R 99K R, p P R.

Then pfgq1p “
˚ pf 1pq ¨ pgpq ` pfpq ¨ pg

1
pq.

Proof. Want: rpf 1pq¨pgpq`pfpq¨pg
1
pq‰/sñrpfgq1p“pf

1
pq¨pgpq`pfpq¨pg

1
pqs.

Assume: pf 1pq ¨ pgpq ` pfpq ¨ pg
1
pq ‰ /.

Want: pfgq1p “ pf
1
pq ¨ pgpq ` pfpq ¨ pg

1
pq.

Since rpf 1pq ¨ pgpq ` pfpq ¨ pg
1
pq ‰ /s,

we get: fp ‰ / ‰ gp and f 1p ‰ / ‰ g1p.

Since f 1p ‰ /, we see that p P domrf 1s.

Then, by Theorem 68.25, choose L P LINSpf and R P O1 s.t.

fTp “ L`R and f 1p “ s`L.

Since g1p ‰ /, we see that p P domrg1s.



CLASS NOTES 165

Then, by Theorem 68.25, choose M P LINSpf and S P O1 s.t.

gTp “M ` S and g1p “ s`M .

Let a :“ fp and b :“ gp.

By the Precalculus Product Rule (Theorem 69.4),

we have: pfgqTp “ a ¨ rgTp s ` b ¨ rf
T
p s ` rf

T
p s ¨ rg

T
p s.

Then pfgqTp “ a ¨ rM ` Ss ` b ¨ rL`Rs ` rL`Rs ¨ rM ` Ss

“ pb ¨ L` a ¨Mq ` pa ¨ S ` b ¨R ` rL`Rs ¨ rM ` Ssq.

We have b ¨L` a ¨M P L. Then pb ¨L` a ¨Mq ´ pb ¨L` a ¨Mq “ 0.

Then pfgqTp ´ pb ¨ L` a ¨Mq “ a ¨ S ` b ¨R ` rL`Rs ¨ rM ` Ss.

Since L`R,M ` S P L` O1 Ď pO1 ` pO1 Ď pO1,

we get: rL`Rs ¨ rM ` Ss P pO1 ¨ pO1 Ď pO2.

Then pfgqTp ´ pb ¨ L` a ¨Mq P R ¨ O1 ` R ¨ O1 ` pO2

Ď O1 ` O1 ` O1 Ď O1.

So, since b ¨ L` a ¨M P L, we see that b ¨ L` a ¨M P LINSppfgq.

Then: pfgq1p “ s`b¨L`a¨M “ b ¨ ps`Lq ` a ¨ ps`Mq

“ ps`Lq¨b`a ¨ps`Mq “ pf
1
pq¨pgpq`pfpq¨pg

1
pq, as desired. �

DEFINITION 69.6. Let X, Y and Z be sets.

Let S Ď PFXY , T Ď PFY Z. Then T ˝ S :“ tg ˝ f | g P T , f P Su.

DEFINITION 69.7. Let X, Y and Z be sets.

Let f P PFXY , T Ď PFY Z. Then T ˝ f :“ T ˝ ptfuq.

DEFINITION 69.8. Let X, Y and Z be sets.

Let S Ď PFXY , g P PFY Z. Then g ˝ S :“ ptguq ˝ S.

THEOREM 69.9. pCVZq ˝ pCVZq Ď CVZ

and pBNZq ˝ pCVZq Ď BNZ.

Proof. Unassigned HW: pCVZq ˝ pCVZq Ď CVZ.

Want: pBNZq ˝ pCVZq Ď BNZ.

By HW#2-2, pBNZq ˝ pCVZq Ď BNZ, as desired. �

DEFINITION 69.10. Let X be a set and let f : X 99K R.

Then |f | : X 99K R is defined by p|f |qpxq “ |fpxq|.

DEFINITION 69.11. Let X be a set and let S Ď PFXR.

Then |S| :“ t|f | s.t. f P Su.

THEOREM 69.12. |BNZ| Ď BNZ and |CVZ| Ď CVZ.

Proof. Unassigned HW: |BNZ| Ď BNZ.

Want: |CVZ| Ď CVZ.
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Unassigned HW: |‚| P CVZ. By Theorem 69.9, pCVZq˝pCVZq Ď CVZ.

Then |CVZ| “ p| ‚ |q ˝ pCVZq Ď pCVZq ˝ pCVZq Ď CVZ, as desired. �

THEOREM 69.13. Let ψ, ψ : R 99K R and let j, k P N0.

Let β :“ φ ¨ p| ‚ |jq and let γ :“ ψ ¨ p| ‚ |kq.

Then β ˝ γ “ pφ ˝ γq ¨ p|ψ|jq ¨ p| ‚ |jkq.

Proof. Want: @x P R, pβ ˝ γqpxq “ ppφ ˝ γq ¨ p|ψ|jq ¨ p| ‚ |jkqqpxq.

Given x P R. Want: pβ ˝ γqpxq “ ppφ ˝ γq ¨ p|ψ|jq ¨ p| ‚ |jkqqpxq.

We compute: pβ ˝ γqpxq “ pβpγpxqq “ pφ ¨ p| ‚ |jqqpγpxqq

“ rφpγpxqqs ¨ r| γpxq |js

“ rpφ ˝ γqpxqs ¨ r| pψ ¨ p| ‚ |kqqpxq |js

“ rpφ ˝ γqpxqs ¨ r| rψpxqs ¨ r|x|ks |js

“ rpφ ˝ γqpxqs ¨ r|ψpxq|s ¨ r|x|jks

“ ppφ ˝ γq ¨ p|ψ|jq ¨ p| ‚ |jkqqpxq, as desired. �

THEOREM 69.14. Let α P BNZ, j P N0. Then αj P BNZ.

Proof. Unassigned HW. �

THEOREM 69.15. Let α P CVZ, j P N. Then αj P CVZ.

Proof. Unassigned HW. �

THEOREM 69.16. Let j, k P N.

Then Oj ˝ pOk Ď Ojk.

Proof. Want: @α P Oj ˝ pOk, α P Ojk.

Given α P Oj ˝ pOk. Want: α P Ojk.

Since α P Oj ˝ pOk, choose β P Oj, γ P pOk s.t. α “ β ˝ γ.

Want: β ˝ γ P Ojk.

Since β P Oj “ pCVZq ¨ p| ‚ |jq, choose φ P CVZ s.t. β “ φ ¨ p| ‚ |jq.

Since γ P pOk “ pBNZq ¨ p| ‚ |kq, choose ψ P BNZ s.t. γ “ ψ ¨ p| ‚ |kq.

By Theorem 69.13, β ˝ γ “ pφ ˝ γq ¨ p|ψ|jq ¨ p| ‚ |jkq.

Want: β ˝ γ P pCVZq ¨ p| ‚ |jkq. Want: pφ ˝ γq ¨ p|ψ|jq P CVZ.

Since k P N, we get pOk Ď pO1. By Theorem 68.16, pO1 Ď O0.

By Theorem 68.10, O0 “ CVZ. Then γ P pOk Ď pO1 Ď O0 “ CVZ.

By Theorem 69.9, pCVZq ˝ pCVZq Ď CVZ.

Then φ ˝ γ P pCVZq ˝ pCVZq Ď CVZ.

Also, |ψ| P |BNZ| Ď BNZ, so, by Theorem 69.14, |ψ|j P BNZ.

By HW#1-4, pBNZq ¨ pCVZq Ď CVZ.

Then pφ ˝ γq ¨ p|ψ|jq P pCVZq ¨ pBNZq “ pBNZq ¨ pCVZq Ď BNZ. �
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THEOREM 69.17. Let j, k P N.

Then pOj ˝ Ok Ď Ojk.

Proof. Unassigned HW. �

THEOREM 69.18. Let j, k P N.

Then Oj ˝ Ok Ď Ojk.

Proof. By Theorem 69.16, Oj ˝ pOk Ď Ojk.

Also, Ok Ď pOk.

Then Oj ˝ Ok Ď Oj ˝ pOk Ď Ojk, as desired. �

THEOREM 69.19. Let j, k P N.

Then pOj ˝ pOk Ď pOjk.

Proof. Unassigned HW. �

Theorem 69.20, below, is the Precalculus Chain Rule.

THEOREM 69.20. Let f, g : R 99K R, p P R, q :“ fp.

Then pg ˝ fqTp “ pg
T
q q ˝ pf

T
p q.

Proof. Want: @h P R, ppg ˝ fqTp qphq “ ppg
T
q q ˝ pf

T
p qqphq.

Given h P R. Want: ppg ˝ fqTp qphq “ ppg
T
q q ˝ pf

T
p qqphq.

We compute ppg ˝ fqTp qphq “ rpg ˝ fqpp` hqs ´ rpg ˝ fqppqs

“ rgpfp`hqs ´ rgpfpqs “ rgpfp`hqs ´ rgpqqs.

Exactly one of the following is true:

(1) q “ / or (2) q ‰ /.

Case (1):

Since q “ /, we get:

both rgpfp`hqs ´ rgpqqs “ / and ppgTq q ˝ pf
T
p qqphq “ /.

Then ppg ˝ fqTp qphq “ rgpfp`hqs ´ rgpqqs “ / “ ppgTq q ˝ pf
T
p qqphq.

End of Case (1).

Case (2):

Since fp “ q ‰ /, we get fp P imrf s Ď R.

Then q “ fp P R, so q ´ q “ 0.

Let k :“ pfTp qphq. Then k “ fp`h ´ fp “ fp`h ´ q.

Then q ` k “ q ` pfp`h ´ qq “ fp`h ` pq ´ qq “ fp`h ` 0 “ fp`h.

Then ppg ˝ fqTp qphq “ rgpfp`hqs ´ rgpqqs “ rgpq ` kqs ´ rgpqqs

“ gTq pkq “ pg
T
q qppf

T
p qphqq “ ppg

T
q q ˝ pf

T
p qqphq,

as desired. End of Case (2). �
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THEOREM 69.21. Let M P L, x P R.

Then Mpxq “ ps`Mq ¨ x.

Proof. Since M P L, we get Mpx ¨ 1q “ x ¨ rMp1qs.

Then Mpxq “Mpx ¨ 1q “ x ¨ rMp1qs “ x ¨ ps`Mq “ ps`Mq ¨ x. �

THEOREM 69.22. Let L,M P L.

Then s`M˝L “ ps`Mq ¨ ps`Lq.

Proof. Let x :“ s`L. Then x “ Lp1q.

Also, by Theorem 69.21, we have Mpxq “ ps`Mq ¨ x.

Then s`M˝L “ pM ˝ Lqp1q “MpLp1qq

“Mpxq “ ps`Mq ¨ x “ ps`Mq ¨ ps`Lq, as desired. �

THEOREM 69.23. Let f and g be functionals and let h be a function.

Then pf ` gq ˝ h “ pf ˝ hq ` pg ˝ hq.

Proof. Want: @x, ppf ` gq ˝ hqpxq “ ppf ˝ hq ` pg ˝ hqqpxq.

Given x. Want: ppf ` gq ˝ hqpxq “ ppf ˝ hq ` pg ˝ hqqpxq.

We have ppf ` gq ˝ hqpxq “ pf ` gqphxq “ fphxq ` gphxq

“ rpf ˝ hqpxqs ` rpg ˝ hqpxqs “ ppf ˝ hq ` pg ˝ hqqpxq. �

Theorem 69.23 asserts: “˝ is additive on the left.”

WARNING: ˝ is not additive on the right.

Let f :“ idR, g :“ idR and h :“ pidRq
2.

Then h˝pf`gq “ pf`gq2 “ f 2`2fg`g2 ‰ f 2`g2 “ ph˝fq`ph˝gq.

However, if we replace h by a homogeneous linear function, then we

do get additivity on the right:

THEOREM 69.24. Let L P L. Let f and g be functionals.

Then L ˝ pf ` gq “ pL ˝ fq ` pL ˝ gq.

Proof. Want: @x, pL ˝ pf ` gqqpxq “ ppL ˝ fq ` pL ˝ gqqpxq.

Given x. Want: pL ˝ pf ` gqqpxq “ ppL ˝ fq ` pL ˝ gqqpxq.

Since L P L, we get: Lpfx ` gxq “ rLpfxqs ` rLpgxqs.

We have pL˝pf`gqqpxq “ Lppf`gqxq “ Lpfx`gxq “ rLpfxqs`rLpgxqs

“ rpL ˝ fqpxqs` rpL ˝ gqpxqs “ ppL ˝ fq` pL ˝ gqqpxq. �

Theorem 69.25, below, is the Chain Rule.

THEOREM 69.25. Let f, g : R 99K R, p P R, q :“ fp.

Then pg ˝ fq1p “
˚ pg1qq ¨ pf

1
pq.
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Proof. Want: rpg1qq ¨ pf
1
pq ‰ /s ñ rpg ˝ fq1p “ pg

1
qq ¨ pf

1
pqs.

Assume: pg1qq ¨ pf
1
pq ‰ /. Want: pg ˝ fq1p “ pg

1
qq ¨ pf

1
pq.

Since pg1qq ¨ pf
1
pq ‰ /, we see:

both g1q ‰ / and f 1p ‰ /.

Since f 1p ‰ /, we get p P domrf 1s.

Then, by Theorem 68.25, choose L P LINSpf and R P O1 s.t.

fTp “ L`R and f 1p “ s`L.

Since g1q ‰ /, we get q P domrg1s.

Then, by Theorem 68.25, choose M P LINSqg and S P O1 s.t.

gTq “M ` S and g1q “ s`M .

By the Precalculus Chain Rule (Theorem 69.20), pg˝fqTp “ pg
T
q q˝pf

T
p q.

Then pg ˝ fqTp “ pg
T
q q ˝ pf

T
p q “ pM ` Sq ˝ pL`Rq

“ rM ˝ pL`Rqs ` rS ˝ pL`Rqs

“ rM ˝ Ls ` rM ˝Rs ` rS ˝ pL`Rqs.

Since L,M P L, we get M ˝ L P L.

Then pM ˝ Lq ´ pM ˝ Lq “ 0.

Then pg ˝ fqTp ´ pM ˝ Lq “ rM ˝Rs ` rS ˝ pL`Rqs.

We have L`R P L` O1 Ď pO1 ` pO1 Ď pO1. Also, M P L Ď pO1.

Then pg ˝ fqTp ´ pM ˝ Lq P r pO1 ˝ O1s ` rO1 ˝ pO1s Ď O1 ` O1 Ď O1.

Then M ˝ L P LINSppg ˝ fq.

Then pg ˝ fq1p “ s`M˝L “ ps`Mq ¨ ps`Lq “ pg
1
qq ¨ pf

1
pq, as desired. �

70. The Quotient Rule

THEOREM 70.1. Define r : RÑ R by rx “ 1{x.

Then, @x P R, r1x “ ´1{px2q.

Proof. Unassigned HW. See HW#3-2. �

Theorem 70.2, below, is the Quotient Rule.

THEOREM 70.2. Let f, g : RÑ R and let x P R.

Then

ˆ

f

g

˙1

x

“
˚ pgxq ¨ pf

1
xq ´ pfxq ¨ pg

1
xq

pgxq2
.

Proof. Define r : RÑ R by rx “ 1{x. Let y :“ gx.

By Theorem 69.25, we have: pr ˝ gq1x “
˚ pr1yq ¨ pg

1
xq.

By Theorem 70.1, we have: r1y “ ´1{py2q.

Then

ˆ

1

g

˙1

x

“ pr ˝ gq1x “
˚
pr1yq ¨ pg

1
xq
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“

ˆ

´
1

y2

˙

¨ pg1xq “ ´
g1x
y2
“ ´

g1x
pgxq2

.

By Theorem 69.5,

ˆ

f ¨

ˆ

1

g

˙˙1

x

“
˚
pf 1xq ¨

ˆˆ

1

g

˙

x

˙

` pfxq ¨

ˆˆ

1

g

˙1

x

˙

.

Then

ˆ

f

g

˙1

x

“

ˆ

f ¨

ˆ

1

g

˙˙1

x

“
˚
pf 1xq ¨

ˆˆ

1

g

˙

x

˙

` pfxq ¨

ˆˆ

1

g

˙1

x

˙

“
˚ f 1x
gx
` pfxq ¨

ˆ

´
g1x
pgxq2

˙

“
pgxq ¨ pf

1
xq ´ pfxq ¨ pg

1
xq

pgxq2
. �

71. Fermat’s Theorem

DEFINITION 71.1. Let f and g be functionals and let S be a set.

Then f ă g on S means: @x P S, fpxq ă gpxq.

Also, f ď g on S means: @x P S, fpxq ď gpxq.

Then f ą g on S means: @x P S, fpxq ą gpxq.

Also, f ě g on S means: @x P S, fpxq ě gpxq.

Then f “ g on S means: @x P S, fpxq “ gpxq.

Keep in mind Axiom 10.25. From that axiom,

we get: @y,  p/ ă yq. Also, @y,  py ă /q.
Also, @y,  p/ ă yq. Also, @y,  p/ ą yq.

However, / “ /, so both / ď / and / ě /.

DEFINITION 71.2. Let f be a functional, a P R, S a set.

Then f ă a on S means: f ă Ca
S on S.

Also, f ď a on S means: f ď Ca
S on S.

Then f ą a on S means: f ą Ca
S on S.

Also, f ě a on S means: f ě Ca
S on S.

Also, f “ a on S means: f “ Ca
S on S.

Then a ă f on S means: Ca
S ă f on S.

Also, a ď f on S means: Ca
S ď f on S.

Then a ą f on S means: Ca
S ą f on S.

Also, a ě f on S means: Ca
S ě f on S.

Also, a “ f on S means: Ca
S “ f on S.

THEOREM 71.3. Let f : R 99K R and let a P Rˆ0 .

Then pafq1 “ a ¨ rf 1s.

Proof. Want: @p P R, pafq1p “ pa ¨ rf
1sqp.

Given p P R. Want: pafq1p “ pa ¨ rf
1sqp. Want: pafq1p “ a ¨ rf 1ps.
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By Theorem 67.24, we have: pafq1p “
˚ a ¨ rf 1ps.

It suffices to show: pafq1p
˚“ a ¨ rf 1ps.

Let g :“ af and b :“ 1{a. Then ba “ 1 and bg “ f .

By Theorem 67.24, we have: pbgq1p “
˚ b ¨ rg1ps.

Reversing this, we get: b ¨ rg1ps
˚“ pbgq1p.

Multiplying by a, we get: ab ¨ rg1ps
˚“ a ¨ rpbgq1ps.

So, since ab “ 1 and since bg “ f , we get: rg1ps
˚“ a ¨ rf 1ps.

So, since g “ af , we get: rpafq1ps
˚“ a ¨ rf 1ps, as desired.

�

THEOREM 71.4. Let f : R 99K R, p P domrf 1s. Assume f 1p ą 0.

Then Dδ ą 0 s.t. (1) f ą fp on pp; p` δq and

(2) f ă fp on pp´ δ; pq.

Proof. Since p P domrf 1s, by Theorem 68.25, choose L P LINSpf and

R P O1 s.t.

fTp “ L`R and f 1p “ s`L.

Since R P O1 and L{2 P L, by HW#2-5,

choose B P BRp0q s.t. |R| ď |L{2| on B.

Since B P BRp0q, choose δ ą 0 s.t. B “ BRp0, δq.

Want: (1) and (2).

Proof of (1):

By HW-2-1, Want: fTp ą 0 on p0; δq.

We have s`L “ f 1p ą 0.

Then, @x ą 0, we have Lpxq “ ps`Lq ¨ x ą 0.

That is, L ą 0 on p0;8q. Then L ą 0 on p0; δq.

Then L{2 ą 0 on p0; δq. Also, |L{2| “ L{2 on p0; δq.

Since p0; δq Ď p´δ; δq “ BRp0, δq “ B and since |R| ď |L{2| on B,

we get: |R| ď |L{2| on p0; δq.

So, as |L{2| “ L{2 on p0; δq, we conclude: |R| ď L{2 on p0; δq.

Then ´L{2 ď R ď L{2 on p0; δq.

Adding L, this yields: L{2 ď L`R ď 3L{2 on p0; δq.

So, since L`R “ fTp , we get: L{2 ď fTp ď 3L{2 on p0; δq.

Then fTp ě L{2 ą 0 on p0; δq, as desired. End of proof of (1).

Proof of (2): Unassigned HW. End of proof of (2). �
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THEOREM 71.5. Let f : R 99K R, p P domrf 1s. Assume f 1p ă 0.

Then Dδ ą 0 s.t. (1) f ă fp on pp; p` δq and

(2) f ą fp on pp´ δ; pq.

Proof. Let g :“ ´f . By Theorem 71.3, g1 “ ´f 1, so g1p “ ´f
1
p.

By Theorem 71.4, choose δ ą 0 s.t.

g ą gp on pp; p` δq and

g ă gp on pp´ δ; pq.

Want: (1) and (2).

From the choice of δ, we get:

´g ă ´gp on pp; p` δq and

´g ą ´gp on pp´ δ; pq.

So, since ´g “ f and ´gp “ fp, we get: (1) and (2), as desired. �

DEFINITION 71.6. Let X be a metric space.

Let f : X 99K R and let p P domrf s.

Then f has a local minimum at p in X means:

DB P BRppq s.t. f ě fp on B.

Also, f has a local maximum at p in X means:

DB P BRppq s.t. f ď fp on B.

THEOREM 71.7. Let X be a metric space.

Let f : X 99K R and let p P domrf s.

Then: p f has a local maximum at p in R q
ô p ´f has a local minimum at p in R q.

Also: p f has a local minimum at p in R q
ô p ´f has a local maximum at p in R q.

Proof. Unassigned HW. �

DEFINITION 71.8. Let X be a metric space.

Let f : X 99K R and let p P domrf s.

Then f has a local extremum at p in X means:

either f has a local minimum at p in X

or f has a local maximum at p in X.

THEOREM 71.9. Let X be a metric space.

Let f : X 99K R and let p P domrf s.

Assume that f has a local extremum at p in X.

Then Dg P tf,´fu s.t. g has a local maximum at p in X.
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Proof. Follows from Theorem 71.7. Unassigned HW. �

THEOREM 71.10. Let p P R, let δ ą 0 and let B P BRppq.

Then: B X pp´ δ; pq ‰ H ‰ B X pp; p` δq.

Proof. Since B P BRppq, choose r ą 0 s.t. B “ BRpp, rq.

Let α :“ mintr, δu. Then α ą 0.

Let y :“ p´ pα{2q and z :“ p` pα{2q.

Then y, z P BRpp, αq and y P pp´ α; pq and z P pp; p` αq.

Also, since α ă r, we have BRpp, αq Ď BRpp, rq.

Then y, z P BRpp, αq Ď BRpp, rq “ B.

Also, since α ă δ, we have pp´ α; pq Ď pp´ δ; pq.

Then y P pp´ α; pq Ď pp´ δ; pq.

Also, since α ă δ, we have pp; p` αq Ď pp; p` δq.

Then z P pp; p` αq Ď pp; p` δq.

Since y P B and y P pp´ δ; pq, we get y P B X pp´ δ; pq.

Then B X pp´ δ; pq ‰ H. Want: B X pp; p` δq ‰ H.

Since z P B and z P pp; p` δq, we get z P B X pp; p` δq.

Then B X pp, p` δq ‰ H, as desired. �

Theorem 71.11, below, is called Fermat’s Theorem.

THEOREM 71.11. Let f : R 99K R and let p P domrf 1s.

Assume that f has a local extremum at p in R. Then f 1p “ 0.

Proof. By Theorem 71.9, choose g P tf,´fu s.t.

g has a local maximum at p in R.

Since g P tf,´fu, it follows that f P tg,´gu.

Then, by Theorem 71.3, f 1 P tg1,´g1u.

Then f 1p P tg
1
p,´g

1
pu. Want: g1p “ 0.

Assume that g1p ‰ 0. Want: Contradiction.

Since g has a local maximum at p in R,

choose B P BRppq s.t. g ď gp on B.

Since g1p ‰ 0, exactly one of the following must be true:

(1) g1p ą 0 or (2) g1p ă 0.

Case (1):

By Theorem 71.4, choose δ ą 0 s.t.

g ą gp on pp; p` δq and

g ă gp on pp´ δ; pq.

By Theorem 71.10, B X pp; p` δq ‰ H.
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Choose x P B X pp; p` δq ‰ H. Then x P B and x P pp; p` δq.

Since x P B, by choice of B, we get gx ď gp.

Since x P pp; p` δq, by choice of δ, we get gx ą gp. Then gp ă gx.

Then gp ă gx ď gp, so gp ă gp. Contradiction.

End of Case (1).

Case (2): Unsassigned HW. End of Case (2). �

72. The Mean Value Theorem

DEFINITION 72.1. Let X be a metric space and let Y be a set.

Let λ, µ : X 99K Y and let p P X.

Then λ “ µ near p means: DB P BXppq s.t. λ “ µ on B.

Also, λ ă µ near p means: DB P BXppq s.t. λ ă µ on B.

Also, λ ď µ near p means: DB P BXppq s.t. λ ď µ on B.

Also, λ ą µ near p means: DB P BXppq s.t. λ ą µ on B.

Also, λ ě µ near p means: DB P BXppq s.t. λ ě µ on B.

THEOREM 72.2. Let λ, µ : R 99K R.

Assume µ P DNZ. Assume λ “ µ near 0.

Then λ P DNZ.

Proof. Unassigned HW. �

THEOREM 72.3. Let λ, µ : R 99K R.

Assume µ P BNZ. Assume λ “ µ near 0.

Then λ P BNZ.

Proof. Unassigned HW. �

THEOREM 72.4. Let λ, µ : R 99K R.

Assume µ P CVZ. Assume λ “ µ near 0.

Then λ P CVZ.

Proof. Unassigned HW. �

THEOREM 72.5. Let α : R 99K R, k P N0 and λ :“ adj00

ˆ

α

| ‚ |k

˙

.

Assume α0 “ 0. Then α “ λ ¨ p| ‚ |kq.

Proof. Want: @x P R, αx “ pλ ¨ p| ‚ |
kqqx.

Given x P R. Want: αx “ pλ ¨ p| ‚ |
kqqx. Want: αx “ pλxq ¨ p|x|

kq.
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Exactly one of the following is true:

(1) x “ 0 or (2) x ‰ 0.

Case (1):

We have λx “ λ0 “

ˆ

adj00

ˆ

α

| ‚ |k

˙˙

0

“ 0. Also, |x|k “ |0|k “ 0.

Then αx “ α0 “ 0 “ 0 ¨ 0 “ pλxq ¨ p|x|
kq, as desired.

End of Case (1).

Case (2):

We have λx “

ˆ

adj00

ˆ

α

| ‚ |k

˙˙

x

“

ˆ

α

| ‚ |k

˙

x

“
αx
|x|k

.

Then αx “

ˆ

αx
|x|k

˙

¨ p|x|kq “ pλxq ¨ p|x|
k
q, as desired. End of Case (2).

�

THEOREM 72.6. Let k P N0, α P DNZ and λ :“ adj00

ˆ

α

| ‚ |k

˙

.

Then: domrλs “ domrαs and λ P DNZ.

Proof. Since α P Ok Ď DNZ, we see that α P DNZ. Then 0 P domrαs.

It follows that ppdomrαsqˆ0 q
`
0 “ domrαs.

Then domrλs “

ˆ

dom

„

α

| ‚ |k

˙`

0

“ ppdomrαsqˆ0 q
`
0 “ domrαs.

It remains to show: λ P DNZ.

Since α P DNZ and since domrλs “ domrαs, we see that λ P DNZ, as

desired.

�

THEOREM 72.7. Let k P N0, α P Ok and λ :“ adj00

ˆ

α

| ‚ |k

˙

.

Then λ P CVZ.

Proof. By Theorem 72.6, we see that λ P DNZ.

Want: pλ0 “ 0q& pλ is continuous at 0q.

We have λ0 “

ˆ

adj00

ˆ

α

| ‚ |k

˙˙

0

“ 0. Want: λ is continuous at 0.

Since α P Ok, we see that
α

| ‚ |k
Ñ 0 near 0.

Then adj00

ˆ

α

| ‚ |k

˙

is continuous at 0.

Then λ is continuous at 0, as desired. �
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THEOREM 72.8. Let k P N0, α P pOk and λ :“ adj00

ˆ

α

| ‚ |k

˙

.

Then λ P BNZ.

Proof. This HW#4-1. �

THEOREM 72.9. Let α, β : R 99K R and let k P N0.

Assume: p β P Ok q& pα “ β near 0 q. Then α P Ok.

Proof. Since β P Ok Ď O0 “ CVZ, we get: β0 “ 0.

Since α “ β near 0, we get α0 “ β0.

Let λ :“ adj00

ˆ

α

| ‚ |k

˙

and µ :“ adj00

ˆ

β

| ‚ |k

˙

.

Since α “ β near 0, it follows that λ “ µ near 0.

Since α0 “ β0 “ 0, by Theorem 72.5, we see that α “ λ ¨ p| ‚ |kq.

Since β P Ok, by Theorem 72.7, we see that µ P CVZ.

So, since λ “ µ near 0, by Theorem 72.4, we see that λ P CVZ.

Then α “ λ ¨ p| ‚ |kq P pCVZq ¨ p| ‚ |kq “ Ok, as desired. �

DEFINITION 72.10. Let f : RÑ R and let S Ď domrf s.

Then f is constant on S means: @x, y P S, fx “ fy.

DEFINITION 72.11. Let f : R 99K R.

By f is constant, we mean:

f is constant on domrf s.

Recall Definition 48.1:

DEFINITION 72.12. Let f : R 99K R and let S Ď domrf s.

By f is strictly increasing on S, we mean:

@t, u P S, r p t ă u q ñ p fptq ă fpuq q s.

By f is strictly decreasing on S, we mean:

@t, u P S, r p t ă u q ñ p fptq ą fpuq q s.

By f is semi-increasing on S, we mean:

@t, u P S, r p t ď u q ñ p fptq ď fpuq q s.

By f is semi-decreasing on S, we mean:

@t, u P S, r p t ď u q ñ p fptq ě fpuq q s.

THEOREM 72.13. Let m P R. Define L P L by Lx “ mx.

Then L1 “ Cm
R .

Proof. Unassigned HW. See HW#3-3. �
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Let X be a metric space and let S Ď X. Recall:

IntXS “ tp P X | DB P BXppq s.t. B Ď Su

and ClXS “ tp P X | Dq P X
N s.t. q‚ Ñ p in Xu

and pS is open in X q ô p IntXS “ S q

and pS is closed in X q ô pClXS “ S q.

THEOREM 72.14. Let f : R 99K R, a P R, p P domrf s, S Ď R and

q :“ fp.

Show: p f “ a on S q ô p fTp “ a´ q on S ´ p q.

Proof. Unassigned HW. See HW#2-1. �

We drew a graph of a function on the board to show that, in the

next theorem, the assumption that S is open in R is needed.

THEOREM 72.15. Let f : R 99K R and let S Ď domrf s.

Assume: pS is open in R q& p f is constant on S q. Then f 1 “ 0 on S.

Proof. Want: @p P S, f 1p “ 0. Given p P S. Want: f 1p “ 0.

Since f is constant on S and p P S Ď domrf s, we get: f “ fp on S.

Let q :“ fp. Then f “ q on S.

Since S is open in R, we get: S “ IntRS.

Since p P S “ IntRS, choose B P BRppq s.t. B Ď S.

Since B P BRppq, we get: B ´ p P BRp0q.

Since f “ q on S and since B Ď S, we get: f “ q on B.

By Theorem 72.14, fTp “ q ´ q on B ´ p.

Then fTp “ 0 on B ´ p. Then fTp “ 0 on B ´ p.

So, since B ´ p P BRp0q, we get: fTp “ 0 near 0.

So, since 0 P O1, by Theorem 72.9, we get: fTp P O1.

Since fTp ´ 0 “ fTp P O1 and 0 P L, it follows that 0 P LINSpf .

Then, by Theorem 68.30, we conclude that f 1p “ s`0.

Then f 1p “ s`0 “ 0p1q “ 0, as desired. �

DEFINITION 72.16. Let f : R 99K R and let S Ď R.

Then f is c/d on S means:

p f is continuous on S q & p IntRS Ď domrf 1s q.

That is, f is c/d on S means:

f is continuous on S and differentiable on the interior of S.

Theorem 72.17, below, is called Rolle’s Theorem.
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THEOREM 72.17. Let a, b P R and let f : R 99K R.

Assume a ă b. Let I :“ pa; bq and let J :“ ra; bs.

Assume f is c/d on J and fa “ fb. Then Dc P I s.t. f 1c “ 0.

Proof. Let g :“ f |J . By Theorem 62.4, g is continuous.

Then, by the Extreme Value Theorem (Theorem 61.2),

min g ‰ / ‰ max g.

Let y :“ min g and z :“ max g. Then y ‰ / ‰ z.

Also, y ď f ď z on J .

Exactly one of the following is true:

(1) y “ z or (2) y ‰ z.

Case (1):

Let c :“ pa` bq{2. Since a ă b, we get c P pa; bq.

Then c P pa; bq “ I. Want: f 1c “ 0.

Since I “ IntRJ , it follows that I is open in R.

Since y ď f ď z on J and since y “ z,

it follows that f is constant on J .

So, since I “ pa; bq Ď ra; bs “ J , we see that f is constant on I.

So, since I is open in R, by Theorem 72.15, f 1 “ 0 on I.

So, since c P I, we get f 1c “ 0, as desired.

End of Case (1).

Case (2):

Let u :“ fa. Since y ‰ z, we get: pu ‰ y q _ pu ‰ z q.

Choose v P ty, zu s.t. u ‰ v. Let Q :“ imrgs.

Then y “ min g “ min Q and z “ max g “ max Q. Since min Q “

y ‰ /, we get min Q P Q.

Since max Q “ z ‰ /, we get max Q P Q.

Then y, z P Q. Then v P ty, zu Ď Q.

Since f is c/d on J , we see that f is continuous on J , and so J P domrf s.

So, since g “ f |J , we get domrgs “ J .

So, since v P Q “ imrgs, choose c P J s.t. v “ gc.

Since c P J , we get pf |Jqc “ fc. Then gc “ pf |Jqc “ fc.

Since fa “ u ‰ v “ fc, we get fa ‰ fc, and so a ‰ c.

Since fb “ fa ‰ fc, we get fb ‰ fc, and so b ‰ c.

Then c P Jzta, bu “ ra; bszta, bu “ pa; bq “ I. Want: f 1c “ 0.

By Fermat’s Theorem (Theorem 71.11),
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it suffices to show: f has a local extremum at c in R.

Since I is open in R, we have I “ IntRI.

Since c P I “ IntRI, choose S P BRpcq s.t. S Ď I.

Then S Ď I “ pa; bq Ď ra; bs “ J .

Recall that y ď f ď z on J .

So, since S Ď J , we see that y ď f ď z on S.

So, since v P ty, zu, at least one of the following must be true:

p v ď f ď z on S q or p y ď f ď v on S q.

So, since v “ fc, at least one of the following must be true:

p fc ď f ď z on S q or p y ď f ď fc on S q.

Then at least one of the following must be true:

p fc ď f on S q or p f ď fc on S q.

So, since S P BRpcq, at least one of the following must be true:

f has a local minimum at c in R or

f has a local maximum at c in R.

Then f has a local extremum at c in R, as desired. End of Case (2). �

Theorem 72.18, below, is called the Mean Value Theorem.

THEOREM 72.18. Let a, b P R and let f : R 99K R.

Assume a ă b. Let I :“ pa; bq and let J :“ ra; bs.

Assume f is c/d on J . Then Dc P I s.t. f 1c “ DQf pa, bq.

Proof. Let m :“ DQf pa, bq. Then m “
fb ´ fa
b´ a

, so m ¨ pb´aq “ fb´fa.

Define L P L by Lpxq “ mx. By Theorem 72.13, L1 “ Cm
R .

Then domrL1s “ domrCm
R s “ R. Then L is continuous on R.

Then L is continuous on J and I Ď domrL1s.

By assumption, f is c/d on J .

Then f is continuous on J and I Ď domrf 1s.

So, since L is continuous on J and I Ď domrL1s,

we see that f ´ L is continuous on J and that I Ď domrpf ´ Lq1s.

Let g :“ f ´ L. Then g is continuous on J and I Ď domrg1s.

It follows that g is c/d on J .

Also, gb “ fb ´ Lb “ fb ´mb and ga “ fa ´ La “ fa ´ma.

Then gb ´ ga “ pfb ´mbq ´ pfa ´maq “ pfb ´ faq ´m ¨ pb´ aq.

So, since m ¨ pb´ aq “ fb ´ fa, we see that gb ´ ga “ 0, and so ga “ gb.

So, since g is c/d on J , by Theorem 72.17, choose c P I s.t. g1c “ 0.

Want: f 1c “ DQf pa, bq. Since g “ f´L, we see that g1c “
˚ f 1c´L

1
c.

Since c P I Ď domrf 1s, we get: f 1c P imrf s Ď R.



180 SCOT ADAMS

So, as L1c “ Cm
R pcq “ m P R, we have f 1c ´ L

1
c P R, and so f 1c ´ L

1
c ‰ /.

Since g1c “
˚ f 1c ´ L

1
c ‰ /, we get: g1c “ f 1c ´ L

1
c.

Then 0 “ g1c “ f 1c ´ L
1
c, so f 1c “ L1c.

So, since L1c “ m “ DQf pa, bq, we get f 1c “ DQf pa, bq, as desired. �

Recall: @a, b P R, ra|bs “ ra; bs Y rb; as “ r minta, bu , maxta, bu s.

DEFINITION 72.19. Let J Ď R. By J is an interval, we mean:

@a, b P J , ra|bs Ď J .

The bounded intervals come in four flavors:

H, open bounded nonempty,

half-open bounded nonempty, closed bounded nonempty.

The unbounded intevals come in three flavors:

open nonclosed unbounded, closed nonopen unbounded, R.

The set of open bounded nonempty intervals is

tpa; bq | a, b P R, a ă bu.

The set of half-open bounded nonempty intervals is

tra; bq | a, b P R, a ă bu Y tpa; bs | a, b P R, a ă bu.

The set of closed bounded nonempty intervals is

tra; bs | a, b P R, a ď bu.

The set of open nonclosed unbounded intervals is

tpa,8q | a P Ru Y tp´8, bq | b P Ru.
The set of closed nonopen unbounded intervals is

tra,8q | a P Ru Y tp´8, bq | b P Ru.

THEOREM 72.20. Let f : R 99K R and a, b P R.

Then DQf pa, bq “ DQf pb, aq.

Proof. We have DQf pa, bq “
fb ´ fa
b´ a

“
fa ´ fb
a´ b

“ DQf pb, aq. �

THEOREM 72.21. Let f : R 99K R and a, b P R.

Let α :“ minta, bu and β :“ maxta, bu.

Then DQf pα, βq “ DQf pa, bq.

Proof. By Theorem 72.20, we have DQf pα, βq “ DQf pa, bq.

Then tDQf pa, bq , DQf pb, aq u “ tDQf pa, bq u.

As pα, βq P tpa, bq, pb, aqu, we get DQf pα, βq P tDQf pa, bq , DQf pb, aqu .

Then DQf pα, βq P tDQf pa, bq , DQf pb, aq u “ tDQf pa, bq u,

so DQf pα, βq “ DQf pa, bq, as desired. �
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THEOREM 72.22. Let f : R 99K R and let J be an interval.

Let a, b P J and let I :“ IntRJ .

Assume that a ‰ b and that f is c/d on J .

Then DQf pa, bq P f
1
˚pIq.

Proof. Since a, b P J and since J is an interval, we get: ra|bs Ď J .

Let α :“ minta, bu and β :“ maxta, bu. Then ra|bs “ rα; βs.

Since a ‰ b, we get α ă β.

Let P :“ pα; βq and Q :“ rα; βs. Then Q “ rα; βs “ ra|bs Ď J .

By HW#3-4, we see that P “ IntRQ.

By Theorem 72.21, we have: DQf pα, βq “ DQf pa, bq.

Since Q Ď J , we see that IntRQ Ď IntRJ , so P Ď I.

Since f is c/d on J , we get: f is continuous on J and I Ď domrf 1s.

So, since Q Ď J and P Ď I, we conclude:

f is continuous on Q and P Ď domrf 1s.

Then f is c/d on Q.

So, by the Mean Value Theorem (Theorem 72.18),

choose c P P s.t. f 1c “ DQf pα, βq.

As c P P Ď I Ď domrf 1s, we get c P domrf 1s and c P I, so f 1c P f
1
˚pIq.

Then DQf pa, bq “ DQf pα, βq “ f 1c P f
1
˚pIq, as desired. �

THEOREM 72.23. Let f : R 99K R and let J be an interval.

Assume f is c/d on J . Let I :“ IntRJ , T :“ f 1˚pIq. Then

(1) p 0 R T q ñ p f |J is 1´ 1 q

and (2) pT ą 0 q ñ p f is strictly increasing on J q

and (3) pT ă 0 q ñ p f is strictly decreasing on J q

and (4) pT “ t0u q ô p f is constant on J q

and (5) pT ě 0 q ô p f is semi-increasing on J q

and (6) pT ď 0 q ô p f is semi-decreasing on J q.

Proof. Proof of (1):

Assume 0 R T . Want: f |T is 1-1.

Want: @a, b P J , r p fa “ fb q ñ p a “ b q s.

Given a, b P J . Want: p fa “ fb q ñ p a “ b q.

Assume that fa “ fb. Want a “ b.

Assume a ‰ b. Want: Contradiction.

Since a ‰ b and fa “ fb, we get
fb ´ fa
b´ a

“ 0.

By Theorem 72.22, DQf pa, bq P f
1
˚pIq.
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Then 0 “
fb ´ fa
b´ a

“ DQf pa, bq P f
1
˚pIq “ T , so 0 P T .

However, by assumption, 0 R T . Contradiction.

End of proof of (1).

Proof of (2)-(6): Unassigned HW. End of proof of (2)-(6). �

73. Taylor’s Formula to order 2

THEOREM 73.1. Let X be a metric space. Then BX Ď TX .

Proof. Want: @B P BX , B P TX .

Given B P BX . Want: B P TX . Want: IntXB “ B.

Since IntXB Ď B, it suffices to prove: B Ď IntXB.

Want: @p P B, p P IntXB. Given p P B. Want: p P IntXB.

Want: DA P BXppq s.t. A Ď B.

By Theorem 38.16, DA P BXppq s.t. A Ď B, as desired. �

DEFINITION 73.2. Let X be a metric space and let f be a function.

Assume domrf s Ď X.

Then IntDXf :“ IntXpdomrf sq.

THEOREM 73.3. Let f : R 99K R and let p P domrf 1s.

Then 0 P IntDRpf
T
P q.

Proof. Want: 0 P IntRpdomrfTP sq.

Want: DB P BRp0q s.t. B Ď domrfTp s.

By Theorem 68.25, choose L P LINSpf and R P O1 s.t.

fTp “ L`R and f 1p “ s`L.

Since fTp “ L`R, we get: domrfTp s “ pdomrLsq X pdomrRsq.

Since R P O1 Ď DNZ, choose B P BRp0q s.t. B Ď domrRs.

Want: B Ď domrfTp s.

Since L P L, we have: domrLs “ R.

Since domrRs Ď R, we get RX pdomrRsq “ domrRs.

Then domrfTp s “ pdomrLsq X pdomrRsq “ RX pdomrRsq “ domrRs.

Then B Ď domrRs “ domrfTp s, as desired. �

THEOREM 73.4. Let f : R 99K R and let a, b P R.

Assume that ra|bs Ď domrf 1s.

Then Dc P ra|bs s.t. rf 1cs ¨ rb´ as “ fb ´ fa.
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Proof. Exactly one of the following is true:

(1) a “ b or (2) a ‰ b.

Case (1):

Let c :“ a. Then c P ra|bs.

Want: rf 1cs ¨ rb´ as “ fb ´ fa.

Since a “ b, we get b´ a “ 0 and fb ´ fa “ 0.

Since c P ra|bs Ď domrf 1s Ď domrf s, we get f 1c P imrf s.

Since f 1c P imrf s Ď R and since b´ a “ 0, we get rf 1cs ¨ rb´ as “ 0.

Then rf 1cs ¨ rb´ as “ 0 “ fb ´ fa, as desired..

End of Case (1).

Case (2):

Let α :“ minta, bu and β :“ maxta, bu. Then ra|bs “ rα; βs.

Then rα; βs “ ra|bs Ď domrf 1s. Then f is c/d on rα; βs.

By the MVT (Theorem 72.18), choose c P pα; βq s.t. f 1c “ DQf pα, βq.

Then c P pα; βq Ď rα; βs “ ra|bs. Want: rf 1cs ¨ rb´ as “ fb ´ fa.

By Theorem 72.21, DQf pα, βq “ DQf pa, bq.

Then f 1c “ DQf pα, βq “ DQf pa, bq “
fb ´ fa
b´ a

.

Then rf 1cs ¨ rb´ as “

„

fb ´ fa
b´ a



¨ rb´ as “ fb ´ fa, as desired.

End of Case (2). �

THEOREM 73.5. Let x P R and let w P r0|xs.

Then Dt P r0; 1s s.t. tx “ w.

Proof. Unassigned HW. �

THEOREM 73.6. Let B P BR. Then B is an interval.

Proof. Unassigned HW. �

Theorem 73.7, below, is called the Choice MVT.

THEOREM 73.7. Let f : R 99K R and let B P BRp0q.

Assume that f0 “ 0 and that B Ď domrf 1s.

Then Dα : B Ñ r0; 1s s.t., @x P B, fx “ rf 1pαx ¨ xqs ¨ x.

Proof. Define S : B Ñ 2r0;1s by Sx “ tt P r0; 1s | fx “ rf
1pαx ¨ xqs ¨ xu.

Claim: @x P B, Sx ‰ H.
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Proof of Claim:

Given x P B. Want: Sx ‰ H.

Since B is an interval and since 0, x P B, we get: r0|xs Ď B.

Then r0|xs Ď B Ď domrf 1s, so, by Theorem 73.4, choose w P r0|xs

s.t. rf 1ws ¨ rx´ 0s “ fx ´ f0.

Since w P r0|xs, choose t P r0; 1s s.t. tx “ w.

Since fx “ fx ´ f0 “ rf
1
ws ¨ rx´ 0s “ rf 1ptxqs ¨ x, we get: t P Sx.

Then Sx ‰ H, as desired.

End of proof of Claim.

Define α : B Ñ r0; 1s by αx “ CHpSxq.

Want: @x P B, fx “ rf 1pαx ¨ xqs ¨ x.

Given x P B. Want: fx “ rf 1pαx ¨ xqs ¨ x.

By the Claim, Sx ‰ H, and so CHpSxq P Sx.

Since αx “ CHpSxq P Sx, we get fx “ rf 1pαx ¨ xqs ¨ x, as desired. �

THEOREM 73.8. Let g : R 99K R. Assume 0 “ g0. Then gT0 “ g.

Proof. Want: @h P R, pgT0 qphq “ gphq.

Given h P R. Want: pgT0 qphq “ gphq.

We have pgT0 qphq “ g0`h ´ g0 “ gh ´ 0 “ gh, as desired. �

THEOREM 73.9. Let L P L. Assume s`L “ 0. Then L “ 0.

Proof. Want: @h P R, Lh “ 0h.

Given h P R. Want: Lh “ 0h.

We have Lh “ ps`Lq ¨ h “ 0 ¨ h “ 0 “ 0h, as desired. �

The next result asserts that any partial function R 99K R that van-

ishes to order one at 0 is necessarily sublinear.

THEOREM 73.10. Let g : R 99K R. Assume that 0 “ g0 “ g10.

Then g P O1.

Proof. Since g10 “ 0, we conclude that 0 P domrg1s.

By Theorem 68.25, choose L P LINS0g and R P O1 s.t.

gT0 “ L`R and g10 “ s`L.

By assumption, g10 “ 0. Then s`L “ g10 “ 0, and so L “ 0.

By assumption 0 “ g0. Then gT0 “ g.

Then g “ gT0 “ L`R “ 0`R “ R P O1, as desired. �

THEOREM 73.11. Let B P BRp0q, α : B Ñ r0; 1s. Then α P BNZ.
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Proof. Unassigned HW. �

The next result asserts that any partial function R 99K R that van-

ishes to order two at 0 is necessarily subquadratic.

It is an unassigned induction exercise to show: @k P N0, any partial

function R 99K R that vanishes to order k at 0 is necessarily “Ok”.

THEOREM 73.12. Let f : R 99K R. Assume 0 “ f0 “ f 10 “ f20 .

Then f P O2.

Proof. Let g :“ f 1. Then 0 “ g0 “ g10, so, by Theorem 73.10, g P O1.

Since 0 “ g0, we see that gT0 “ g.

Since g10 “ 0, we conclude that 0 P domrg1s.

Then, by Theorem 73.3, we get: 0 P IntDRg.

Since 0 P IntDRg “ IntRpdomrgsq, choose B P BRp0q s.t. B Ď domrgs.

Then by the Choice MVT (Theorem 73.7),

choose α : B Ñ r0; 1s s.t., @x P B, fx “ rf
1pαx ¨ xs ¨ x.

Let i :“ idR. Then i P L Ď pO1.

Since, @x P B, we have fx “ rf
1pαx ¨ xs ¨ x “ prf

1 ˝ pα ¨ is ¨ iqx,

it follows that f “ rf ˝ pα ¨ iqs ¨ i on B.

So, since B P BRp0q, we get: f “ rf ˝ pα ¨ iqs ¨ i near 0.

Since B P BRp0q and α : B Ñ r0; 1s, we see that α P BNZ.

Since α P BNZ “ pO0 and i P pO1, we see that α ¨ i P pO0 ¨ pO1.

Since α ¨ i P pO0 ¨ pO1 Ď pO0`1 “ pO1 and f 1 “ g P O1,

we see that f 1 ˝ pα ¨ iq P O1 ˝ pO1.

Since f 1 ˝ pα ¨ iq P O1 ˝ pO1 Ď O1¨1 “ O1 and i P pO1,

we see that rf ˝ pα ¨ iqs ¨ i P O1 ¨ pO1.

Then rf ˝ pα ¨ iqs ¨ i P O1 ¨ pO1 Ď O1`1 “ O2.

So, since f “ rf ˝ pα ¨ iqs ¨ i near 0, we get f P O2, as desired. �

THEOREM 73.13. Let L : RÑ R and let m P R.

Assume: @h P R, Lh “ mh.

Then, @h P R, L1h “ m. Also, @h P R, L2h “ 0.

Proof. Unassigned HW. �

THEOREM 73.14. Let Q : RÑ R and let a P R.

Assume: @h P R, Qh “ ah2{2.

Then, @h P R, Q1h “ ah. Also, @h P R, Q2h “ a.

Proof. Unassigned HW. �
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Theorem 73.15, below, is Taylor’s Theorem to order 2.

THEOREM 73.15. Let f : R 99K R and let p P domrf2s.

Let m :“ f 1p and let a :“ f2p .

Deinfe L P L and Q P Q by Lh “ mh and Qh “ ah2{2.

Let R :“ fTp ´ pL`Qq. Then R P O2.

Proof. By Theorem 73.12, it suffices to show: 0 “ R0 “ R10 “ R20.

We have: @h P R, Lh “ mh and Qh “ ah2{2.

Then, @h P R, L1h “ m and Q1h “ ah.

Also, @h P R, L2h “ 0 and Q2h “ a.

Then R0 “ fp ´ pa` 0q “ 0´ 0 “ 0.

Also, R10 “
˚ f 1p ´ pm` 0q “ m´m “ 0 ‰ /, so R10 “ 0.

Also, R20 “
˚ f2p ´ p0` aq “ a´ a “ 0 ‰ /, so R20 “ 0.

Then 0 “ R0 “ R10 “ R20, as desired. �

THEOREM 73.16. Let R P O2 and Q P Qzt0u.
Then DB P BRp0q s.t. |R| ď |Q| on B.

Proof. Since Q P Q, choose a P R s.t., @h P R, Qh “ ah2.

Since Q ‰ 0, we conclude that a ‰ 0.

Let ε :“ |a|. Then ε ą 0.

Since R P O2 “ pCVZq ¨ p| ‚ |2q, choose φ P CVZ s.t. R “ φ ¨ p| ‚ |2q.

Since φ P CVZ Ď DNZ, choose C P BRp0q s.t. C Ď domrφs.

Since φ P CVZ, we see that φ is continuous at 0,

so choose D P BRp0q s.t. φ˚pDq Ď BRpφ0, εq.

Since φ P CVZ, we get φ0 “ 0. Then φ˚pDq Ď BRpφ0, εq “ BRp0, εq.

Let B :“ C XD. Then B P tC,Du Ď BRp0q.

Want: |R| ď |Q| on B. Want: @h P B, |R|h ď |Q|h.

Given h P B. Want: |R|h ď |Q|h.

We have h P B “ C XD, so h P C and h P D.

By the choice of C, C Ď domrφs.

Since h P C Ď domrφs and since h P D, we get φh P φ˚pDq.

Since φh P φ˚pDq Ď BRp0, εq, we get dRpφh, 0q ă ε.

Then |φh| “ |φh ´ 0| “ dRpφh, 0q ă ε.

Since |φh| ă ε and h2 ě 0, we get |φh| ¨ h
2 ď ε ¨ h2.

Since |h|2 ě 0, it follows that | |h|2 | “ |h|2.

Since R “ φ ¨ p| ‚ |2q, we conclude that Rh “ pφhq ¨ p|h|
2q.

Then |R|h “ |Rh| “ | pφhq ¨ p|h|
2q | “ |φh| ¨ | |h|

2 | “ |φh| ¨ |h|
2

ď ε ¨ |h|2 “ |a| ¨ |h|2 “ |ah2| “ |Qh| “ |Q|h, as desired. �
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The logic of Theorem 73.16 shows: Any subquadratic is dominated,

near 0, by any nonzero quadratic polynomial, even inhomogeneous.

In the notation of Theorem 73.15, we showed that, @x P R,

fx “ fp ` pf
1
pq ¨ px´ pq ` pf

2
p {2q ¨ px´ pq

2 `Rx´p.

The remainder term Rx´p is subquadratic in x´ p.

Also, the rest, fp ` pf
1
pq ¨ px´ pq ` pf

2
p {2q ¨ px´ pq

2,

is a quadratic polynomial in x´ p.

Consequently, unless 0 “ fp “ f 1p “ f2p ,

the remainder is negligible (for x « p) compared to the rest.

74. The Second Derivative Test

THEOREM 74.1. Let f : R 99K R and let p P R.

Then: r pfTp q
1
0 “ f 1p s & r pfTp q

2
0 “ f2p s.

Proof. Let q :“ fp. Then fTp “ rfpp` ‚qs ´ rC
q
Rs.

Differentiating this, we get: pfTp q
1 “ prfpp` ‚qs ´ rCq

Rsq
1.

By HW#4-5, we have: prfpp` ‚qs ´ rCq
Rsq

1 “ pfpp` ‚qq1.

By HW#4-4, we have: pfpp` ‚qq1 “ f 1pp` ‚q.

Then pfTp q
1 “ prfpp` ‚qs ´ rCq

Rsq
1 “ pfpp` ‚qq1 “ f 1pp` ‚q.

Contracting this, we get: pfTp q
1 “ f 1pp` ‚q.

Evaluating this at 0, we get: pfTp q
1
0 “ pf

1pp` ‚qq0.

Then pfTp q
1
0 “ pf

1pp` ‚qq0 “ f 1pp` 0q “ f 1ppq “ f 1p.

It remains to show: pfTp q
2
0 “ f2p .

Differentiating pfTp q
1 “ f 1pp` ‚q, we get: pfTp q

2 “ pf 1pp` ‚qq1.

By HW#4-4 (with f replaced by f 1),

we have: pf 1pp` ‚qq1 “ f2pp` ‚q.

Then pfTp q
2 “ pf 1pp` ‚qq1 “ f2pp` ‚q.

Evaluating this at 0, we get: pfTp q
2
0 “ pf

2pp` ‚qq0.

Then pfTp q
2
0 “ pf

2pp` ‚qq0 “ f2pp` 0q “ f2ppq “ f2p , as desired. �

DEFINITION 74.2. Let X be a metric space.

Let f : X 99K R and let p P domrf s.

By f has a strict local minimum at p in X, we mean:

DB P BXppq s.t. f ą fp on Bˆp .

By f has a strict local maximum at p in X, we mean:

DB P BXppq s.t. f ă fp on Bˆp .

Recall Theorem 74.1.
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THEOREM 74.3. Let f : R 99K R and let p P R.

Assume f 1p “ 0 and f2p ą 0.

Then f has a strict local minimum at p in R.

Proof. By HW#4-5, it suffices to show:

fTp has a strict local minimum at 0 in R.

Let g :“ fTp . Want: g has a strict local minimum at 0 in R.

Want: DB P BRp0q s.t. g ą g0 on Bˆ0 .

By assumption f 1p “ 0 and f2p ą 0.

Let m :“ f 1p and let a :“ f2p . Then m “ 0 and a ą 0.

Define L P L and Q P Q by Lh “ mh and Qh “ ah2{2.

Then pL “ 0 q and pQ ą 0 on Rˆ0 q.
By Theorem 73.15, fTp ´ pL`Qq P O2. Let R :“ fTp ´ pL`Qq.

Then R P O2. Also, R “ fTp ´ pL`Qq “ g ´ p0`Qq “ g ´Q.

Since Q ą 0 on Rˆ0 , we get: Q{2 ą 0 on Rˆ0 .

Then Q{2 ‰ 0. So, as Q{2 P Q, we get: Q{2 P Qzt0u.
Then, by Theorem 73.16, choose B P BRp0q s.t. |R| ď |Q{2| on B.

Want: g ą g0 on Bˆ0 .

Since f 1p “ 0 ‰ /, we get: p P domrf 1s.

So, since domrf 1s Ď domrf s, we see that p P domrf s.

Then pfTp q0 “ 0. Then g0 “ pf
T
p q0 “ 0.

Want: g ą 0 on Bˆ0 .

Since Q P Q, we get: Q´Q “ 0.

Then Q`R “ Q` pg ´Qq “ g ` 0 “ g.

Want: Q`R ą 0 on Bˆ0 .

Since Q{2 ą 0 “ 0 on Rˆ0 , we get: Q{2 ą 0 on R.

We have pQ{2q0 “ Q0{2 “ pa ¨ 0
2{2q{2 “ 0.

Since Q{2 ą 0 on Rˆ0 and since pQ{2q0 “ 0,

we get: Q{2 ě 0 on R.

Then |Q{2| “ Q{2 on R. Then |R| ď |Q{2| “ Q{2 on B.

Since |R| ď Q{2 on B, we get: ´Q{2 ď R ď Q{2 on B.

Since R ě ´Q{2 on B, we get: Q`R ě Q´ pQ{2q on B.

So, since Q´ pQ{2q “ Q{2, we get: Q`R ě Q{2 on B.

So, since Bˆ0 Ď B, we get: Q`R ě Q{2 on Bˆ0 .

So, since Q{2 ą 0 on Bˆ0 , we get: Q`R ą 0 on Bˆ0 , as desired. �

Theorem 74.3 is the Second Derivative Test for Local Minima.
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THEOREM 74.4. Let f : R 99K R and let p P R.

Assume f 1p “ 0 and f2p ă 0.

Then f has a strict local maximum at p in R.

Proof. Unassigned HW. (Hint: Let g :“ ´f and use Theorem 74.3.)

�

Theorem 74.4 is the Second Derivative Test for Local Maxima.

75. Tensors, sets of tensors and tensor spaces

NOTE TO SELF:

Next year, define IR :“ tHu.

Keep in mind that R ‰ RIR ,

so we only have: @V P TNSR, V “ RIV ;

this does not extend to TNSR`.

Also, @x P R, define xH :“ x.

Also, define εRH :“ 1.

Also, define πR
H “ idR.

Also, @V P TNSR`, @f : R 99K V , define BRVH f “ f 1. Also, @σ P N,

@k P Nσ, define k}H :“ k and H}k :“ k.

Also, define H}H :“ H.

Recall: Let X be a set. Then, @m P N, we defined Xm “ X r1..ms,

so Xm denotes the set of all functions t1, . . . ,mu Ñ X.

Moreover, @a, b P X, pa, bq P X2 “ X r1..2s “ Xt1,2u,

pa, bq1 “ a and pa, bq2 “ b.

There are simliar definitions for pa, b, cq, etc.

DEFINITION 75.1. EUCL :“ tRm |m P Nu.

We have: EUCL :“ tR1,R2,R3, . . .u.

WARNING: p5q P R1 “ Rr1..1s “ Rt1u and p5q1 “ 5.

However, p5q ‰ 5 and, in fact, 5 R R1.

Thus, R ‰ R1, and, in fact, R R EUCL.

In Definition 75.2 below, any element of Nρ is called a ρ-shape.

Then m is a ρ-shape. Also, any element of rms is called a ρ-index.

DEFINITION 75.2. Let ρ P N and let m P Nρ.

Then rms :“ r1..m1s ˆ ¨ ¨ ¨ ˆ r1..mρs.

Also, we define m1 ˆ ¨ ¨ ¨ ˆmρ :“ m.
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Following Definition 75.2, we see, @ρ P N, @m P Nρ,

m1 ˆ ¨ ¨ ¨ ˆ mρ “ pm1 , . . . , mρ q.

THEOREM 75.3. We have 2ˆ 3 “ p2, 3q.

Also, r2ˆ 3s “ r1..2s ˆ r1..3s “ t1, 2u ˆ t1, 2, 3u.

Also, r2ˆ 3s “ tp1, 1q, p1, 2q, p1, 3q, p2, 1q, p2, 2q, p2, 3qu.

Here are some 2-shapes: 5ˆ 7, 6ˆ 4, 2ˆ 3, 1ˆ 9, 1ˆ 1.

Here are all of the p2ˆ 3q-indices:

p1, 1q , p1, 2q , p1, 3q , p2, 1q , p2, 2q , p2, 3q.

DEFINITION 75.4. Let X be a set, ρ P N, m P Nρ.

Then Xm :“ X rms.

In Definition 75.4, the elements of Xm are called

m-shaped ρ-tensors with entries in X. A 1-tensor is sometimes

called a tuple.

A 2-tensor is sometimes called a matrix.

THEOREM 75.5. @set X, we have

X2ˆ3 “ X r2ˆ3s “ Xtp1,1q,p1,2q,p1,3q,p2,1q,p2,2q,p2,3qu.

Some notation: Let X be a set and let a, b, c, d, e, f P X. Then
„

a b c

d e f



P X2ˆ3

is defined by
„

a b c

d e f



p1,1q

“ a,

„

a b c

d e f



p1,2q

“ b,

„

a b c

d e f



p1,3q

“ c,

„

a b c

d e f



p2,1q

“ d,

„

a b c

d e f



p2,2q

“ e,

„

a b c

d e f



p2,3q

“ f.

The index subscripts

p1, 1q , p1, 2q , p1, 3q , p2, 1q , p2, 2q , p2, 3q

are generally abbreviated: 11 , 12 , 13 , 21 , 22 , 23.

This notation is for p2ˆ 3q-shaped matrices, but, @p, q P N, we have a

similar notation for ppˆ qq-shaped matrices.

DEFINITION 75.6. Let X be a set, ρ P N, m P Nρ, Y :“ Xm,

j P rms.

Then πYj : Y Ñ X is defined by: πYj pzq “ zj.
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THEOREM 75.7. Let S :“ R2 and let z :“

„

1 2 3

4 5 6



.

Then πS22pzq “ z22 “ 5.

WARNING: R2ˆ3 ‰ R2 ˆ R3.

In fact, @a, b, c, d, e, f P R,

„

a b c

d e f



P R2ˆ3.

Also, @a, b, c, d, e P R, ppa, bq, pc, d, eqq P R2 ˆ R3.

Also, @a, b, c, d, e, f P R,

„

a b c

d e f



R R2 ˆ R3.

Also, @a, b, c, d, e P R, ppa, bq, pc, d, eqq R R2ˆ3.

WARNING: The sets

R, R1, R1ˆ1, R1ˆ1ˆ1, . . .

are all distinct; no two are equal. However, as vector spaces (if you

know what that means), they are all one-dimesional, and so are all vec-

tor space isomorphic to one another. Keep in mind, though, that R2ˆ3

and R2 ˆ R3 are not even vector space isomorphic; in fact, the vector

space R2ˆ3 is six dimensional, while R2 ˆ R3 is only five-dimensional.

THEOREM 75.8. We have R3 “ Rt1,2,3u.
Also, R1ˆ3ˆ1 “ Rtp1,1,1q,p1,2,1q,p1,3,1qu.

WARNING: Let m P N. Then

Rm,

R1ˆm, Rmˆ1,

R1ˆ1ˆm, R1ˆmˆ1, Rmˆ1ˆ1

are all distinct sets, but are all vector space isomorphic to one another.

DEFINITION 75.9. Let ρ P N and m P Nρ. Then

@j P N, j ˆm :“ pj,m1, . . . ,mρq and

mˆ j :“ pm1, . . . ,mρ, jq.

Also, @j, k P N, j ˆ k ˆm :“ pj, k,m1, . . . ,mρq and

j ˆmˆ k :“ pj,m1, . . . ,mρ, kq and

mˆ j ˆ k :“ pm1, . . . ,mρ, j, , kq.

WARNING: Let ρ P N and m P Nρ. Then

Rm,

R1ˆm, Rmˆ1,

R1ˆ1ˆm, R1ˆmˆ1, Rmˆ1ˆ1

are all distinct sets, but are all vector space isomorphic to one another.
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Let k, `,m P N. Then rpk, `,mqs “ r1..ks ˆ r1..`s ˆ r1..ms.

Let `,m P N. Then rp`,mqs “ r1..`s ˆ r1..ms.

Let m P N. Then rpmqs “ r1..ms. Also, we have

pmq P N1 “ Nt1u and pmq1 “ m.

While pmq ‰ m, in the next theorem, we will prove:

@set X, Xpmq “ Xm.

THEOREM 75.10. Let X be a set and let m P N. Then Xpmq “ Xm.

Proof. We have Xpmq “ X rpmqs “ X r1..ms “ Xm. �

DEFINITION 75.11. @ρ P N, TNSRρ :“ tRm |m P Nρu.

Also, TNSR :“ TNSR1 Y TNSR2 Y TNSR3 Y ¨ ¨ ¨ .

An element of TNSR will be called a tensor space.

For any ρ P N, an element of TNSRρ will be called a ρ-tensor space.

THEOREM 75.12. We have TNSR1 “ EUCL.

Proof. By Theorem 75.10,

Rp1q “ R1 and Rp2q “ R2 and Rp3q “ R3 and ¨ ¨ ¨ .

Then TNSR1 “ tRp1q,Rp2q,Rp3q, . . .u “ tR1,R2,R3, . . .u “ EUCL. �

We have R2ˆ3,R5ˆ7,R7ˆ9ˆ4,R2ˆ2ˆ2,R2ˆ2ˆ2ˆ2 P TNSR.

Also, @v P R2ˆ3, Da, b, c, d, e, f P R s.t. v “

„

a b c

d e f



.

That is, each element of R2ˆ3, as a 2-tensor,

is pictured as a 2-dimensional array, fitting nicely on the page.

Picturing elements of R5ˆ7 is slightly harder,

requiring room for a 5ˆ 7 array, but is still 2-dimensional.

By contrast, the elements of R7ˆ9ˆ4 are all 3-tensors,

and it’s hard to put a 3-dimensional array onto a page.

The tensor space R2ˆ2ˆ2 is only 8-dimensional,

but is still difficult to picture its elements on a page.

Nevertheless, we can at least imagine each element of R2ˆ2ˆ2,

because we live in a three-dimensional world.

By contrast, elements of R2ˆ2ˆ2ˆ2 are hard even to imagine,

without living in a four-dimensional space.

THEOREM 75.13. Let S P TNSR. Then

@v P S, v is a functional and

@v, w P S, v ` w P S and

@c P R, @v P S, cv P S.
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DEFINITION 75.14. Let X be a set, ρ P N, m P Nρ, Y :“ Xm.

Then IY :“ rms.

Following Definition 75.14, we have Y “ Xm “ X rms “ XIY .

THEOREM 75.15. Let S :“ R2ˆ3ˆ4.

Then IS “ r2ˆ 3ˆ 4s “ r1..2s ˆ r1..3s ˆ r1..4s

“ t1, 2u ˆ t1, 2, 3u ˆ t, 1, 2, 3, 4u.

Let S :“ R2ˆ3ˆ4. Then S “ Rr2ˆ3ˆ4s “ RIS . More generally:

THEOREM 75.16. Let S P TNSR. Then S “ RIS .

DEFINITION 75.17. Let S P TNSR. Then

@v, w P S, v ‚S w :“
ÿ

jPIS

vjwj.

Also, @v P S, |v|S :“
?
v ‚S v.

Following Definition 75.17, if S is obvious,

we may sometimes omit “S” from the subscript in v ‚S w,

and simply write v ‚ w.

Also, following Definition 75.17, if S is obvious,

we may sometimes omit “S” from the subscript in |v|S,

and simply write |v|.

THEOREM 75.18. We have

„

1 2 3

4 5 6



‚

„

7 8 9

10 11 12



“ 1 ¨ 7` 2 ¨ 8` 3 ¨ 9` 4 ¨ 10` 5 ¨ 11` 6 ¨ 12.

Also,

ˇ

ˇ

ˇ

ˇ

„

1 2 3

4 5 6

 ˇ

ˇ

ˇ

ˇ

“
?

12 ` 22 ` 32 ` 42 ` 52 ` 62.

DEFINITION 75.19. Let S P TNSR.

Define δ PMpSq by δpv, wq “ |w ´ v|S.

Then δ is called the standard metric on S.

Also, the metric space pS, δq is denoted S.

Let S P TNSR and let δ be the standard metric on S. Then dS “ δ.



194 SCOT ADAMS

THEOREM 75.20. Let S :“ R2ˆ3.

Then dS

ˆ„

1 2 3

4 5 6



,

„

0 1 3

9 8 2

˙

“

a

p1´ 0q2 ` p2´ 1q2 ` p3´ 3q2 ` p4´ 9q2 ` p5´ 8q2 ` p6´ 2q2.

DEFINITION 75.21. Let X be a set, ρ P N, m P Nρ, Y :“ Xm.

Then ΠY :“ tπYi | i P rmsu.

DEFINITION 75.22. We define ΠR :“ tidRu.

Let S P TNSR` and let p P ΠS.

Then p : S Ñ R is distance semi-decreasing, i.e., Lipschitz-1.

It follows that p is continuous from S to R.

THEOREM 75.23. Let S :“ R2ˆ3.

Then ΠS “ tπ
S
11, π

S
12, π

S
13, π

S
21, π

S
22, π

S
23u.

DEFINITION 75.24. We define: EUCL` :“ tRu Y EUCL.

We also define: TNSR` :“ tRu Y TNSR.

DEFINITION 75.25. Let S P TNSR`.

Then MS
0 :“ tC1

Su.

Also, @j P N, MS
j :“ tp1 ¨ ¨ ¨ pj | p1, . . . , pj P ΠSu.

For any S P TNSR`, for any j P N, the elements of MS
j are called

monomials of degree j on S. Note that, @j P N, MR
j “ tidjRu, so

there is only one monomial of degree j on R, namely idjR.

Since every projection is continuous, it follows that every monomial

is continuous.

DEFINITION 75.26. Let S P TNSR and let j P N.

Then HS
j :“ t a1µ1 ` ¨ ¨ ¨ ` a`µ` | ` P N,

a1, . . . , a` P R,

µ1, . . . , µ` PMS
j u.

For any S P TNSR`, for any j P N, the elements of HS
j are called

homogeneous polynomial functionals of degree j on S. Thus, a

homogeneous polynomial of degree j is a finite linear combination of

monomials, all of degree j. The word “homogeneous” expresses the

idea that the monomials being used all have the same degree.

Since every monomial is continuous, it follows that every homoge-

neous polynomial functional is continuous.

THEOREM 75.27. @j P N0, HR
j “ Hj.
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THEOREM 75.28. Let S :“ R2ˆ3. Define P,Q : S Ñ R by

P

ˆ„

a b c

d e f

˙

“ bcde and Q

ˆ„

a b c

d e f

˙

“ 4bcde´
?

2f 4.

Then P “ pπS12q ¨ pπ
S
13q ¨ pπ

S
21q ¨ pπ

S
22q PMS

4 Ď HS
4 . Also, Q P HS

4 .

DEFINITION 75.29. Let S, T P TNSR` and j P N0.

Then: HST
j :“ t f : S Ñ T | @p P ΠT , p ˝ f P HS

j u.

For any S, T P TNSR`, for any j P N, the elements of HST
j are called

homogeneous polynomials of degree j on S.

Let S, T P TNSR` and f : S Ñ T .

Then p f is continuous q ô p @p P ΠT , p ˝ f is continuous q.

So, since every homogeneous polynomial functional is continuous,

it follows that every homogeneous polynomial is continuous.

THEOREM 75.30. Let S P TNSR` and j P N0.

Then HSR
j “ HS

j .

DEFINITION 75.31. Let S, T P TNSR`.

Then CST :“ HST
0 and LST :“ HST

1 and QST :“ HST
2 and KST :“ HST

3 .

THEOREM 75.32. Let S P TNSR` and k P N0.

Then HSR
k “ HS

k .

THEOREM 75.33. Let k P N0. Then HRR
k “ Hk.

DEFINITION 75.34. Let S P TNSR.

Then 0S :“ C0
IS . Also 0S :“ C0

S.

In Definition 75.34, we have 0S P RIS “ S and 0S : S Ñ R.

DEFINITION 75.35. We define: 0R :“ 0 and 0R :“ 0.

DEFINITION 75.36. Let S P TNSR`.

Then | ‚ |S : S Ñ r0;8q is defined by |v|S “
?
v ‚ v.

In Definition 75.36, comparing with Definition 75.17, we see: @v P S,

we have |v|S “ |v|.

76. Some function spaces between tensor spaces

Let S P TNSR. Recall, from Definition 75.19, that, @v, w P S,

dSpv, wq “ |v ´ w|S “

d

ÿ

iPIs

pvi ´ wiq2.
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DEFINITION 76.1. Let S, T P TNSR`. Then

DNZST :“ tα : S 99K T |α is defined near 0u,

BNZST :“ tα P DNZST | DB P BSp0Sq s.t. α˚pBq is bounded in T u,

CVZST :“ tα P DNZST | rαp0Sq “ 0T s& rα is continuous at 0S su.

DEFINITION 76.2. Let X be a set, T P TNSR, f, g : X 99K T .

Then f ` g : X 99K T is defined by pf ` gqz “ pfzq ` pgzq.

DEFINITION 76.3. Let X be a set, T P TNSR, c P R, f : X 99K T .

Then c ¨ f : X 99K T is defined by pc ¨ fqz “ c ¨ pfzq.

DEFINITION 76.4. Let X be a set, T P TNSR.

Let f : X 99K R, g : X 99K T .

Then f ¨ g : X 99K T is defined by pf ¨ gqz “ pfzq ¨ pgzq.

Also, g ¨ f :“ f ¨ g.

DEFINITION 76.5. Let S, T P TNSR` and j P N0. Then:

OSTj :“

"

α P DNZ

ˇ

ˇ

ˇ

ˇ

r αp0Sq “ 0T s &

„

α

| ‚ |
j
S

Ñ 0T near 0S

*

and pOST
j :“ pBNZST q ¨ p| ‚ |

j
Sq.

THEOREM 76.6. Let S, T P TNSR` and let j P N0. Then

OSTj “ pCVZST q ¨ p| ‚ |
j
Sq.

THEOREM 76.7. We have: DNZRR “ DNZ,

BNZRR “ BNZ and CVZRR “ CVZ.

77. Basic properties of tensor spaces

DEFINITION 77.1. @x, y P R, x ‚R y :“ xy.

@x P R, |x|R :“ |x|.

Following Definition 77.1,

we may sometimes omit “R” from the subscript in x ‚R y,

and simply write x ‚ y.

THEOREM 77.2. Let S P TNSR`. Then

@v, w P S, |v ‚S w|R ď |v|S ¨ |w|S and

@v, w P S, |v ` w|S ď |v|S ` |w|S and

@v, w P S, | |v|S ´ |w|S |R ď | v ´ w |S.



CLASS NOTES 197

Let S P TNSR` and let v, w P S. Then

dRp|v|S, |w|Sq “ | |v|S ´ |w|S |R ď | v ´ w |S “ dSpv, wq.

That is, | ‚ |S : S Ñ R is distance-semidecreasing, i.e., Lipschitz-1.

It follows that | ‚ |S : S Ñ R is continuous.

THEOREM 77.3. Let S, T P TNSR`, f : S 99K T .

Then: p f P LST q ô p r @v, w P S, fv`w “ fv ` fw s

& r @c P R, @v P S, fcv “ c ¨ pfvq s q.

That is, f is linear iff f is “algebraically linear”.

DEFINITION 77.4. @S, T P TNSR`, 0ST :“ C0T
S .

THEOREM 77.5. Let S, T P TNSR`, let j P N0 and let f P HST
j .

Let c P R and v P S. Then fpcvq “ cj ¨ rfpvqs.

THEOREM 77.6. Let S, T P TNSR`.

Then: pQST Ď pOST
2 q& pQST X OST2 “ t0ST u q.

THEOREM 77.7. Let S, T P TNSR` and let j P N0.

Then: pHST
j Ď pOST

j q& pHST
j X OSTj “ t0ST u q.

THEOREM 77.8. @S, T P TNSR`, CVZST Ď BNZST .

THEOREM 77.9. Let S, T P TNSR` and let j P N0.

Then pOST
j`1 Ď OSTj Ď pOST

j .

Proof. We have: pOST
j`1 “ pBNZST q ¨ p| ‚ |

j`1
S q

“ pBNZST q ¨ p| ‚ |Sq ¨ p| ‚ |
j
Sq

Ď pBNZST q ¨ pCVZST q ¨ p| ‚ |
j
Sq

Ď pCVZST q ¨ p| ‚ |
j
Sq “ OSTj .

Want: OSTj Ď pOST
j .

We have: OSTj “ pCVZST q ¨ p| ‚ |
j
Sq Ď pBNZST q ¨ p| ‚ |

j
Sq “

pOST
j . �

THEOREM 77.10. @S P TNSR`, | ‚ |S P CVZ.

78. Double translation

DEFINITION 78.1. Let R, S P TNSR`, f : R 99K S.

Then, @p P R, RSf
T
p : R 99K S is defined by pRSf

T
p qphq “ fp`h ´ fp.

Also, RSf
T
/ :“ /.
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In Definition 78.1, we will almost always omit the pre-subscript RS,

and write fTp instead of RSf
T
p ,

and, also, fT/ instead of RSf
T
/.

We have: @R, S P TNSR, @f : R 99K S, @p P Rzpdomrf sq,

fTp “ H ‰ /.

DEFINITION 78.2. Let X be a set and let S P TNSR`. Then

@f, g : X 99K S, f ‚S g : X 99K R is defined

by pf ‚S gqp “ pfpq ‚S pgpq

and @v P S, @g : X 99K S, v ‚S g :“ pCv
Xq ‚S g

and @f : X 99K S, @w P S, f ‚S w :“ f ‚S pC
w
Xq.

DEFINITION 78.3. Let S, T P TNSR`, f : S 99K T and p P S.

Then LINSSTp :“ tL P LST | fTp ´ L P OST1 u

and DST
p f :“ UEpLINSSTp fq.

THEOREM 78.4. Let S, T P TNSR`, f : S 99K T and p P S.

Then #pLINSSTp q ď 1.

79. Tensor products of tensor spaces

DEFINITION 79.1. Let σ, τ P N, let m P Nσ and let n P Nτ .

Then m}n :“ pm1, . . . ,mσ, n1, . . . , nτ q.

DEFINITION 79.2. Let σ P N, let m P Nσ and let n P N.

Then m}n :“ m}pnq and n}m :“ pnq}m.

DEFINITION 79.3. @m,n P N, m}n :“ pmq}pnq.

DEFINITION 79.4. Let σ, τ P N, let m P Nσ and let n P Nτ .

Then Rm b Rn :“ Rm}n.

DEFINITION 79.5. @S P TNSR, S b R :“ S and Rb S :“ S.

DEFINITION 79.6. We define: Rb R :“ R.

Recall that R2ˆ3 ‰ R2 ˆ R3. On the other hand, we have:

THEOREM 79.7. R2 b R3 “ Rp2q b Rp3q “ Rp2,3q “ R2ˆ3.

THEOREM 79.8. We have:

R1 b R3ˆ5 “ R1ˆ3ˆ5 ‰ R3ˆ5 and

Rb R3ˆ5 “ R3ˆ5 and

R6ˆ8ˆ2 b R “ R6ˆ8ˆ2 and

R6ˆ8ˆ2 b R3ˆ5 “ R6ˆ8ˆ2ˆ3ˆ5.
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80. Slopes of linear maps between tensor spaces

Let S, T P TNSR. According to HW#5-5, @i P IS, @j P IT ,

we have i}j P ISbT .

Also, we have the following:

THEOREM 80.1. Let S, T P TNSR, k P ISbT .

Then D1 i P IS, D1 j P IT s.t. k “ i}j.

DEFINITION 80.2. Let σ, τ P N.

Let m P Nσ, n P Nτ . Let S :“ Rm, T :“ Rn. Let k P ISbT .

Then kS :“ pk1, . . . , kσq and kT :“ pkσ`1, . . . , kσ`τ q.

DEFINITION 80.3. Let S, T P TNSR and let L P LST .

Then s`STL P RITbS is defined by

ps`STL qk “ πTkT pL p ε
S
kS
q q.

We have: @S, T P TNSR, @L P LST , s`STL P RITbS “ T b S.

THEOREM 80.4. Let σ :“ 1, τ “ 1, m “ p3q, n “ p2q.

Let S :“ R3 and T :“ R2.

Define L P LST by

Lpx, y, zq “ p 3x´ 2y ` 4z ,

7x` y ´ 5z q.

Then: (1) ps`STL q21 “ 7 and (2) s`STL “

„

3 ´2 4

7 1 ´5



.

Proof. Proof of (1):

We calculate ps`STL q21 “ πT2 pLpε
S
1 qq “ πT2 pLp1, 0, 0qq “ πT2 p3, 7q “ 7.

End of proof of (1).

Proof of (2): Unassigned HW. End of proof of (2). �

DEFINITION 80.5. Let S P TNSR and let L P LSR.

Then s`SRL P RIS is defined by

ps`SRL qk “ L p εSk q.

We have: @S P TNSR, @L P LSR, s`SRL P RIS “ S “ Rb S.

DEFINITION 80.6. Let T P TNSR` and let L P LRT .

Then s`RTL :“ Lp1q.

We have: @T P TNSR, @L P LRT , s`RTL P T “ T b R.

Also, @L P L, both L P LRR and s`RRL “ s`L.
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THEOREM 80.7. Let S, T P TNSR` and let L P LST .

Then s`STL P T b S.

DEFINITION 80.8. Let S, T P TNSR`. Then s`ST/ “ /.

DEFINITION 80.9. Let S, T P TNSR`. Then s`ST‚ : LST Ñ TbS

is defined by ps`ST‚ qpLq “ s`STL .

DEFINITION 80.10. Let S, T P TNSR` and let f : S 99K T .

Then STf
1 : S 99K T b S is defined by STf

1
p “ s`ST‚ pD

ST
p fq.

In Definition 80.10, we will almost always omit the pre-subscript ST ,

and write f 1p instead of STf
1
p.

THEOREM 80.11. Let f : R3ˆ2 99K R5ˆ7.

Then f 1 : R3ˆ2 99K R5ˆ7ˆ3ˆ2 and

f2 : R3ˆ2 99K R5ˆ7ˆ3ˆ2ˆ3ˆ2 and

f3 : R3ˆ2 99K R5ˆ7ˆ3ˆ2ˆ3ˆ2ˆ3ˆ2.

THEOREM 80.12. Let f : R 99K R5ˆ7.

Then f 1 : R 99K R5ˆ7 and

f2 : R 99K R5ˆ7 and

f3 : R 99K R5ˆ7.

THEOREM 80.13. Let f : R1 99K R5ˆ7.

Then f 1 : R1 99K R5ˆ7ˆ1 and

f2 : R1 99K R5ˆ7ˆ1ˆ1 and

f3 : R1 99K R5ˆ7ˆ1ˆ1ˆ1.

THEOREM 80.14. Let f : R3ˆ2 99K R.

Then f 1 : R3ˆ2 99K R3ˆ2 and

f2 : R3ˆ2 99K R3ˆ2ˆ3ˆ2 and

f3 : R3ˆ2 99K R3ˆ2ˆ3ˆ2ˆ3ˆ2.

81. Linearity of multivariable differentiation

THEOREM 81.1. Let S, T P TNSR`, f, g : S 99K T and p P S.

Then DST
p pf ` gq “

˚ DST
p f ` DST

p g.

THEOREM 81.2. Let S, T P TNSR`, c P R, f : S 99K T and p P S.

Then DST
p pc ¨ fq “

˚ c ¨ DST
p f .

THEOREM 81.3. Let S, T P TNSR`, f, g : S 99K T and p P S.

Then pf ` gq1p “
˚ f 1p ` g1p.
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THEOREM 81.4. Let S, T P TNSR`, c P R, f : S 99K T and p P S.

Then pc ¨ fq1p “
˚ c ¨ f 1p.

82. The multivariable product rule

DEFINITION 82.1. Let X, Y and Z be sets. Let f : X ˆ Y 99K Z.

Then, @a P X, fpa, ‚q : Y 99K Z is defined by pfpa, ‚qqpbq “ fpa, bq.

Also, @b P Y , fp‚, bq : X 99K Z is defined by pfp‚, bqqpaq “ fpa, bq.

DEFINITION 82.2. Let S, T, U P TNSR`.

Then BUST :“ t B : S ˆ T Ñ U | p @v P S, Bpv, ‚q P LTU q
& p @w P T, Bp‚, wq P LSU q u.

Elements of BUST are called bilinear functions from S times T to U .

NOTE TO SELF: We need to establish that every bilinear is bounded,

which we plan to make HW#7-4. This is needed to prove pO ˚ pO Ď pO,

etc., which, in turn is needed for the Product Rule (Theorem 82.10).

DEFINITION 82.3. Let X, Y and Z be sets.

Let ˚ : X ˆ Y 99K Z, a P X and b P Y .

Then a ˚ b :“ ˚pa, bq.

Every dot product is bilinear:

THEOREM 82.4. Let S P TNSR`.

Define ˚ : S ˆ S Ñ R by v ˚ w “ v ‚S w. Then ˚ P BR
SS.

DEFINITION 82.5. Let R, S, T, U P TNSR` and let ˚ P BUST .

Then: @f : R 99K S, @g : R 99K T ,

f ˚ g : R 99K U is defined by pf ˚ gqp “ fp ˚ gp.

Also, @v P S, @g : R 99K T , v ˚ g :“ Cv
R ˚ g.

Also, @f : R 99K S, @w P T , f ˚ w :“ f ˚ Cw
R .

NOTE TO SELF: Need to define bilinear products of sets of func-

tions, and, also, compositions of sets of functions.

The following is proved in the same was as for functions R 99K R.

Needed: Boundedness of bilinear maps between tensor spaces, which

we plan to make HW#7-4.

THEOREM 82.6. Let U,W,X,Z P TNSR`, ˚ P BZWX , j, k P N0.

Then pOUW
j ˚ OUXk Ď OUZj`k.

Also, OUWj ˚ pOUX
k Ď OUZj`k.
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Also, pOUW
j ˚ pOUX

k Ď pOUZ
j`k.

The following is proved in the same was as for functions R 99K R.

THEOREM 82.7. Let V,W,X P TNSR`, j, k P N.

Then pOWX
j ˝ OVWk Ď OV Xjk .

Also, OWX
j ˝ pOVW

k Ď OV Xjk .

Also, pOWX
j ˝ pOVW

k Ď pOV X
jk .

Theorem 82.8, below, is called the Multivariable Precalculus

Product Rule.

THEOREM 82.8. Let R, S, T, U P TNSR` and let ˚ P BUST .

Let f : R 99K S, g : R 99K T and p P R.

Then pf ˚ gqTp “ pfTp q ˚ gp ` fp ˚ pg
T
p q ` pfTp q ˚ pg

T
p q.

Proof. It is an unassigned HW problem to modify the proof of Theo-

rem 69.4 to prove this theorem. �

THEOREM 82.9. Let R, S, T, U P TNSR` and let ˚ P BUST .

Then: @L P LRS, @w P T , L ˚ w P LRU .

Also, @v P S, @M P LRT , v ˚M P LRU .

Theorem 82.10, below, is called the Linearization Product Rule.

THEOREM 82.10. Let R, S, T, U P TNSR` and let ˚ P BUST .

Let f : R 99K S, g : R 99K T and p P R.

Then DRU
p pf ˚ gq “˚ pDRS

p fq ˚ gp ` fp ˚ pD
RT
p gq.

Proof. It is an unassigned HW problem to modify the proof of Theo-

rem 69.5 to prove this theorem. Needed: Boundedness of bilinear maps

between tensor spaces, which we plan to make HW#7-4. �

Theorem 82.11, below, is called the Tensorial Product Rule.

THEOREM 82.11. Let R, S, T, U P TNSR` and let ˚ P BUST .

Let f : R 99K S, g : R 99K T and p P R.

Let S 1 :“ S bR and T 1 :“ T bR and U 1 :“ U bR.

Define ˚L P BU
1

S1T by A ˚L b “ s`RU‚ pLinRSA ˚ bq.

Define ˚R P BU
1

ST 1 by a ˚R B “ s`RU‚ pa ˚ LinRSB q.

Then pf ˚ gq1p “˚ f 1p ˚L gp ` fp ˚R g1p.
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Proof. It is an unassigned HW problem to modify the proof of Theo-

rem 69.5 to prove this theorem. Needed: Boundedness of bilinear maps

between tensor spaces, which we plan to make HW#7-4. �

DEFINITION 82.12. Let S, T P TNSR`.

Then s`ST‚ : LST Ñ T b S is defined by ps`ST‚ qL “ s`STL .

THEOREM 82.13. Let S, T P TNSR`.

Then s`ST‚ : LST ãÑą T b S.

In fact, not only is s`ST‚ : LST Ñ T b S bijective, but, also, it is

algebraically linear, and its inverse is algebraically linear, too. We

discussed all this in class.

DEFINITION 82.14. Let S, T P TNSR`.

Then, @L P LST , rLsST :“ s`STL .

Also, @A P T b S, LinSTA :“ ps`ST‚ q
´1
A .

THEOREM 82.15. Let S, T P TNSR`.

Then, @A P T b S, rLinSTA sST “ A.

Also, @L P LST , LinSTrLsST “ L.

THEOREM 82.16. Let S, T P TNSR`.

Then, @L,M P LST , rL`M sST “ rLsST ` rM sST .

Also, @c P R, @L P LST , rc ¨ LsST “ c ¨ prLsST q.

Also, @A,B P T b S, LinA`B “ LinA ` LinB.

Also, @c P R, @A P T b S, Linc¨A “ c ¨ pLinAq.

DEFINITION 82.17. Let R, S, T, U P TNSR`, ˚ P BUST .

Then, @A P S bR, @y P T , A ˚ y :“ rLRSA ˚ ysRU .

Also, @x P S, @B P T bR, x ˚B :“ rx ˚ LRTB sRU .

THEOREM 82.18. Let R, S, T, U P TNSR`, ˚ P BUST .

Let f : R 99K S, g : R 99K T , p P R.

Then: f 1p “
˚ f 1p ˚ gp ` fp ˚ g

1
p.

83. The multivariable Chain Rule

Theorem 83.1, below, is called the Linearization Chain Rule.

THEOREM 83.1. Let S, T, U P TNSR`.

Let f : S 99K T , g : T 99K U , p P S, q :“ fp.

Then: DSU
p pg ˝ fq “˚ pDTU

q gq ˝ pDST
p fq.
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Proof. It is an unassigned HW problem to modify the proof of Theo-

rem 69.25 to prove this theorem. �

DEFINITION 83.2. Let S, T, U P TNSR`.

Then ˚STU P BUbSUbT , TbS is defined by

B ˚STU A “ r pLinTUB q ˝ pLinSTA q sSU .

Theorem 83.3, below, is called the Tensorial Chain Rule.

THEOREM 83.3. Let S, T, U P TNSR`.

Let f : S 99K T , g : T 99K U , p P S, q :“ fp.

Then: pg ˝ fq1p “˚ g1q ˚STU f 1p.

THEOREM 83.4. Let T P TNSR, v P T .

Then: v “
ÿ

jPIT

vjε
T
j .

Proof. This is HW#6-1. �

THEOREM 83.5. Let S, T, U P TNSR, A P T b S,

L :“ LinSTA , i P IS, j P IT .

Then Aj}i “ pLpε
S
i qqj.

Proof. Let k :“ j}i. Then kT “ j and kS “ i.

Since L “ LinSTA , we get: rLsST “ A. Then A “ rLsST “ s`STL .

Then Aj}i “ Ak “ ps`
ST
L qk “ πTkT pLpε

S
kS
qq “ πTj pLpε

S
i qq “ pLpε

S
i qqj. �

THEOREM 83.6. Let S, T, U P TNSR.

Let B P U b T , A P T b S, k P IU and i P IS.

Then: pB ˚STU Aqk}i “
ÿ

jPIT

pBk}j q ¨ pAj}i q.

Proof. Let L :“ LinSTA and let M :“ LinTUB .

Then L P LST and M P LTU , so M ˝ L P LSU . Let C :“ B ˚STU A.

Then, by Definition 83.2, we have C “ rM ˝ LsSU .

Let N :“ LinSUC . By Theorem 83.5, we have: Ck}i “ pNpε
S
i qqk.

Also, by Theorem 83.5, we have: @j P IT , Bk}j “ pMpε
T
j qqk.

By HW#6-2, we have: LpεSi q “
ÿ

jPIT

pAj}i q ¨ p ε
T
j q.

Since C “ rM ˝ LsSU , we get LinSUC “M ˝ L. Then N “M ˝ L.

Then pB ˚STU Aqk}i “ Ck}i “ pNpεSi qqk “ ppM ˝ LqpεSi qqk

“ pMpLpεSi qqqk “

˜

M

˜

ÿ

jPIT

pAj}i q ¨ p ε
T
j q

¸¸

k
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“

˜

ÿ

jPIT

pAj}i q ¨ rMpε
T
j q s

¸

k

“
ÿ

jPIT

pAj}i q ¨ r pMpε
T
j q qk s

“
ÿ

jPIT

pAj}i q ¨ pBk}j q “
ÿ

jPIT

pBk}j q ¨ pAj}i q,

as desired. �

THEOREM 83.7. Let `,m, n P N, B P Rnˆm, A P Rmˆ`,

S :“ R`, T :“ Rm, U :“ Rn.

Then B ˚STU A “ BA.

Proof. We have B ˚STU A , BA P Rr1..nsˆr1..`s.
Want: @k P r1..ns, @i P r1..`s, p B ˚STU A qki “ p BA qki.

Given k P r1..ns, i P r1..`s. Want: p B ˚STU A qki “ p BA qki.

We have T “ Rm “ Rpmq, so IT “ rpmqs “ r1..ms.
By Theorem 83.6, p B ˚STU A qki “

ÿ

jPIT

Bk}j ¨ Aj}i.

Then p B ˚STU A qki “
ÿ

jPIT

Bk}j ¨ Aj}i

“
ÿ

jPr1..ms

Bkj ¨ Aji “ p BA qki, as desired. �

THEOREM 83.8. Let `,m, n P N, f : R` Ñ Rm and g : Rm Ñ Rn.

Let p P R` and q :“ fp. Then pg ˝ fq1p “
˚ pg1qq ¨ pf

1
pq.

Proof. Let S :“ R`, T :“ Rm and U :“ Rn.

Want: p pg1qq ¨ pf
1
pq ‰ / q ñ p pg ˝ fq1p “ pg1qq ¨ pf

1
pq q.

Assume: pg1qq ¨ pf
1
pq ‰ / Want: pg ˝ fq1p “ pg1qq ¨ pf

1
pq.

Since pg1qq ¨ pf
1
pq ‰ /, we get g1q P Rnˆm and f 1p P Rmˆ`,

Then, by Theorem 83.7, pg1qq ˚STU pf 1pq “ pg1qq ¨ pf
1
pq.

By Theorem 83.3, we have pg ˝ fq1p “˚ g1q ˚STU f 1p.

So, since pg1qq ˚STU pf 1pq “ pg1qq ¨ pf
1
pq ‰ /,

we get: pg ˝ fq1p “ g1q ˚STU f 1p.

Then: pg ˝ fq1p “ g1q ˚STU f 1p “ pg1qq ¨ pf
1
pq. �

84. Basic results in tensor algebra

DEFINITION 84.1. Let S, T P TNSR`.

Then CTS :“ CST and

LTS :“ LST and

QT
S :“ QST and

KT
S :“ KST and
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0TS :“ 0ST and

@L P LST , rLsST :“ rLsST .

DEFINITION 84.2. Let X, Y and Z be sets.

Let f : X ˆ Y 99K Z.

Then fp‚, ‚q : X X Y 99K Z is defined by pfp‚, ‚qqpsq “ fps, sq.

DEFINITION 84.3. Let W , X, Y and Z be sets.

Let f : W ˆX ˆ Y 99K Z.

Then @a P W , @b P X, fpa, b, ‚q : Y 99K Z is defined by

pfpa, b, ‚qqpsq “ fpa, b, sq.

Also, @a P W , @c P Y , fpa, ‚, cq : X 99K Z is defined by

pfpa, ‚, cqqpsq “ fpa, s, cq.

Also, @b P X, @c P Y , fp‚, b, cq : W 99K Z is defined by

pfp‚, b, cqqpsq “ fps, b, cq.

Also, @a P W , fpa, ‚, ‚q : X X Y 99K Z is defined by

pfpa, ‚, ‚qqpsq “ fpa, s, sq.

Also, @a P W , fpa, ‚, ‚‚q : X ˆ Y 99K Z is defined by

pfpa, ‚, ‚‚qqps, tq “ fpa, s, tq.

Also, @b P X, fp‚, b, ‚q : W X Y 99K Z is defined by

pfp‚, b, ‚qqpsq “ fps, b, sq.

Also, @b P X, fp‚, b, ‚‚q : W ˆ Y 99K Z is defined by

pfp‚, b, ‚‚qqps, tq “ fps, b, tq.

Also, @c P Y , fp‚, ‚, cq : W XX 99K Z is defined by

pfp‚, ‚, cqqpsq “ fps, s, cq.

Also, @c P Y , fp‚, ‚‚, cq : W ˆX 99K Z is defined by

pfp‚, ‚‚, cqqps, tq “ fps, t, cq.

Also, fp‚, ‚, ‚q : W XX X Y 99K Z is defined by

pfp‚, ‚, ‚qqpsq “ fps, s, sq.

Recall, from Definition 82.2, that BVTU denotes the set of bilinear

maps TˆU Ñ V . We next introduce a notation for the set of symmetric

bilinear maps U ˆ U Ñ V , as follows:

DEFINITION 84.4. Let U, V P TNSR`.

Then SBVU :“ tF P BVUU | @a, b P U, F pa, bq “ F pb, aqu.

We next introduce trilinear and symmetric trilinear notation:

DEFINITION 84.5. Let V,W,X, Y P TNSR`.

Then T Y
VWX :“ t F : V ˆW ˆX Ñ Y |
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@a P V, @b P W, fpa, b, ‚q P LYX and

@a P V, @c P X, fpa, ‚, cq P LYW and

@b P W, @c P X, fp‚, b, cq P LYV u.

DEFINITION 84.6. Let X, Y P TNSR`.

Then ST Y
X :“ t F P T Y

XXX | @a, b, c P X,

F pa, b, cq “ F pa, c, bq “ F pb, a, cq

“ F pb, c, aq “ F pc, a, bq “ F pc, b, aq u.

THEOREM 84.7. Let V,W P TNSR` and let B P BWV V .

Then, @x P V, Bpx, ‚q , Bp‚, xq P LWV . Also, Bp‚, ‚q P QW
V .

THEOREM 84.8. Let V,W P TNSR` and let T P T W
V V V .

Then, @x, y P V, T px, y, ‚q , T px, ‚, yq , T p‚, x, yq P LWV .

Also, @x P V, T px, ‚, ‚q , T p‚, x, ‚q , T p‚, ‚, xq P QW
V .

Also, @x P V, T px, ‚, ‚‚q , T p‚, x, ‚‚q , T p‚, ‚‚, xq P BWV V .

Also, T p‚, ‚, ‚q P KW
V .

THEOREM 84.9. Let V,W P TNSR`, K P KW
V and F P ST W

V .

Assume K “ F p‚, ‚, ‚q. Then, @x P V , DVW
x K “ 3¨pF px, x, ‚qq.

Proof. Given x P V . Want: DxK “ 3 ¨ pF px, x, ‚qq.

We have: @h P S,

KT
x phq “ pKpx` hqq ´ pKpxqq

“ pF px` h, x` h, x` hqq ´ pF px, x, xqq

“ pF px, x, xqq`3 ¨ pF px, x, hqq`3 ¨ pF px, h, hqq`pF ph, h, hqq

´pF px, x, xqq

“ 3 ¨ pF px, x, hqq ` 3 ¨ pF px, h, hqq ` pF ph, h, hqq.

Then KT
x “ 3 ¨ pF px, x, ‚qq ` 3 ¨ pF px, ‚, ‚qq ` ¨pF p‚, ‚, ‚qq.

Let L :“ 3 ¨ pF px, x, ‚qq and let R :“ 3 ¨ pF px, ‚, ‚qq ` ¨pF p‚, ‚, ‚qq.

Then KT
x “ L`R and L P LWV .

We have F px, ‚, ‚q P QW
V Ď pOVW

2 Ď OVW1 .

Also, F p‚, ‚, ‚q P KW
V Ď pOVW

3 Ď OVW2 Ď OVW1 .

Then R “ 3 ¨ pF px, ‚, ‚qq ` ¨pF p‚, ‚, ‚qq P OVW1 .

Then KT
x ´ L “ L`R ´ L “ R ` 0WV “ R P OVW1 .

Then L P LINSpK, and so DVW
p K “ L.

Then DVW
p K “ L “ 3 ¨ pF px, x, ‚qq, as desired. �

THEOREM 84.10. Let V,W P TNSR, L P LWV , A :“ rLsWV , x P V .

Then Lpxq “
ÿ

iPIV

ÿ

jPIW

Aj}i ¨ xi ¨ ε
W
j .
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Proof. By HW#6-2, we have: @i P IV , LpεVi q “
ÿ

jPIW

Aj}i ¨ ε
W
j .

We compute:

Lpxq “ L

˜

ÿ

iPIV

xiε
V
i

¸

“
ÿ

iPIV

xi ¨ pLpε
V
i qq

“
ÿ

iPIV

xi ¨

˜

ÿ

jPIW

Aj}i ¨ ε
W
j

¸

“
ÿ

iPIV

ÿ

jPIW

xi ¨ Aj}i ¨ ε
W
j

“
ÿ

iPIV

ÿ

jPIW

Aj}i ¨ xi ¨ ε
W
j , as desired. �

The following theorem is the Cauchy-Schwarz inequality:

THEOREM 84.11. Let I be a finite set and let x, y P RI .

Then
ÿ

jPI

xjyj ď

d

ÿ

jPI

x2j ¨

d

ÿ

jPI

y2j .

Proof. Let a :“

d

ÿ

jPI

x2j and let b :“

d

ÿ

jPI

y2j .

Then a2 “
ÿ

jPI

x2j and b2 “
ÿ

jPI

y2j . Want:
ÿ

jPI

xjyj ď ab.

At least one of the following must be true:

(1) a “ 0 or (2) b “ 0 or (3) a ‰ 0 ‰ b.

Case (1):

We have:
ÿ

jPI

x2j “ a2 “ 02
“ 0. Then: @j P I, xj “ 0.

Then
ÿ

jPI

xjyj “
ÿ

jPI

0 ¨ yj “ 0 ď 0 “ 0 ¨ b “ ab, as desired.

End of Case (1).

Case (2):

We have
ÿ

jPI

y2j “ b2 “ 02
“ 0. Then: @j P I, yj “ 0.

Then
ÿ

jPI

xjyj “
ÿ

jPI

xj ¨ 0 “ 0 ď 0 “ a ¨ 0 “ ab, as desired.

End of Case (2).

Case (3):
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Let u :“
x

a
and v :“

y

b
.

Then, @j P I, uj “
xj
a

and vj “
yj
b

.

Then, @j P I, auj “ xj and bvj “ yj.

We have: @t P R, 0 ď t2.

Then @j P I, 0 ď puj ´ vjq
2, and so 0 ď

ÿ

jPI

puj ´ vjq
2.

Then 0 ď
ÿ

jPI

puj ´ vjq
2
“

ÿ

jPI

pu2j ´ 2ujvj ` v
2
j q

“

˜

ÿ

jPI

u2j

¸

´ 2 ¨

˜

ÿ

jPI

ujvj

¸

`

˜

ÿ

jPI

v2j

¸

.

Then 2 ¨

˜

ÿ

jPI

ujvj

¸

ď

˜

ÿ

jPI

u2j

¸

`

˜

ÿ

jPI

v2j

¸

“

˜

ÿ

jPI

´xj
a

¯2

¸

`

˜

ÿ

jPI

´yj
b

¯2

¸

“

˜

ÿ

jPI

x2i
a2

¸

`

˜

ÿ

jPI

y2j
b2

¸

“

ˆ

1

a2

˙

¨

˜

ÿ

jPI

x2i

¸

`

ˆ

1

b2

˙

¨

˜

ÿ

jPI

y2j

¸

“

ˆ

1

a2

˙

¨ a2 `

ˆ

1

b2

˙

¨ b2 “ 1 ` 1 “ 2.

Mulitplying this by
ab

2
, we get: ab ¨

ÿ

jPI

ujvj ď ab.

Then
ÿ

jPI

xjyj “
ÿ

jPI

paujq ¨ pbvjq “ ab ¨
ÿ

jPI

ujvj ď ab, as desired.

End of Case (3). �

THEOREM 84.12. Let U, V,W,X P TNSR and let T P T X
UVW .

Then DC ě 0 s.t., @p P U , @q P V , @r P W ,

|T pp, q, rq|X ď C ¨ |p|U ¨ |q|V ¨ |r|W .

Proof. Unassigned HW, modeled on HW#7-4. �

THEOREM 84.13. Let U, V P TNSR and let L P LVU .

Then DC ě 0 s.t., @p P U ,

|Lppq|V ď C ¨ |p|U .

Proof. Unassigned HW, modeled on HW#7-4. �
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DEFINITION 84.14. Let V,W,X P TNSR and let B P BXVW .

Then rBsXVW P X b V bW is defined by:

@i P IV , @j P IW , @k P IX
prBsXVW qk}i}j “ πXk pBpε

V
i , ε

W
j q q.

Unassigned HW: Extend Definition 84.14 to V,W,X P TNSR`.

For example: Let V,X P TNSR, W :“ R and let B P BXVW . Then

rBsXVW P X b V is defined by:

@i P IV , @k P IX
prBsXVW qk}j “ πXk pBpε

V
i , 1q q.

Note that rBsXVW P X b V “ X b V b R “ X b V bW .

DEFINITION 84.15. Let U, V,W,X P TNSR and let T P T X
UVW .

Then rT sXUVW P X bU bV bW is defined by:

@i P IU , @j P IV , @k P IW , @` P IX
prT sXUVW q`}i}j}k “ πX` pT pε

U
i , ε

V
j , ε

W
k q q.

Unassigned HW: Extend Definition 84.15 to U, V,W,X P TNSR`.

For example: Let U, V,W P TNSR, X :“ R and let T P T X
UVW . Then

rT sXUVW P U b V bW is defined by:

@i P IU , @j P IV , @k P IW ,

prT sXUVW qi}j}k “ T pεUi , ε
V
j , ε

W
k q.

Note that rT sXUVW P U bV bW “ RbU bV bW “ X bU bV bW .

NOTE TO SELF:

Next year, define IR :“ tHu.

Keep in mind that R ‰ RIR ,

so we only have: @V P TNSR, V “ RIV ;

this does not extend to TNSR`.

Also, @x P R, define xH :“ x.

Also, define εRH :“ 1.

Also, define πR
H “ idR.

Also, @V P TNSR`, @f : R 99K V , define BRVH f “ f 1. Also, @σ P N,

@k P Nσ, define k}H :“ k and H}k :“ k.

Also, define H}H :“ H.

85. Derivatives of homogeneous cubics

NOTE: The second midterm in Spring 2019 will cover everything up

to and including (2) of the next result, Theorem 85.1.
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THEOREM 85.1. Let V,W P TNSR, K P KW
V , F P ST W

V .

Assume: @x P V , Kpxq “ F px, x, xq.

Define Q P QWbV
V , L P LWbVbVV , C P CWbVbVbVV by:

Qx “ rF px, x, ‚qs
W
V , Lx “ rF px, ‚, ‚‚qs

W
V V , Cx “ rF s

W
V V V .

Then: (1) K 1 “ 3Q, (2) K2 “ 6L, (3) K3 “ 6C.

Proof. Proof of (1):

Want: @x P V , K 1
x “ 3 ¨Qx.

Given x P V . Want: K 1
x “ 3 ¨Qx.

By Theorem 84.9, we have: DxK “ 3 ¨ pF px, x, ‚qq.

Then K 1
x “ rDxKs

W
V “ 3 ¨ rF px, x, ‚qsWV “ 3 ¨Qx, as desired.

End of proof of (1).

Proof of (2):

Want: @x P V , K2
x “ 6 ¨ Lx.

Given x P V . Want: K2
x “ 6 ¨ Lx.

By (1) of Theorem 85.1, we have: K 1 “ 3 ¨Q.

Then, by Theorem 81.4, we get: K2
x “˚ 3 ¨Q1x.

Want: 3 ¨Q1x “ 6 ¨ Lx.

Define B P SBWbVV by Bpx, yq “ rF px, y, ‚qsWV .

Then Q “ Bp‚, ‚q, so, by HW#6-5, we have: DVW
x Q “ 2 ¨ pBpx, ‚qq.

Since DVW
x Q “ 2 ¨ pBpx, ‚qq P LWV ,

we get: Q1x “ 2 ¨ rBpx, ‚qsWV P W b V b V .

Also, by definition of L, we have: Lx “ rF px, ‚, ‚‚qs
W
V V .

Then Lx “ rF px, ‚, ‚‚qs
W
V V P W b V b V .

Want: 3 ¨ 2 ¨ rBpx, ‚qsWV “ 6 ¨ rF px, ‚, ‚‚qsWV V .

Want: rBpx, ‚qsWV “ rF px, ‚, ‚‚qsWV V .

Want: @k P IW , @i, j P IV , p rBpx, ‚qsWV qk}i}j “ p rF px, ‚, ‚‚qsWV V qk}i}j.

Given k P IW , i, j P IV .

Want: p rBpx, ‚qsWV qk}i}j “ p rF px, ‚, ‚‚qsWV V qk}i}j.

We have p rF px, ‚, ‚‚qsWV V qk}i}j “ πWk pF px, ε
V
i , ε

V
j qq.

Also, p rBpx, ‚qsWV qk}i}j “ πWbVk}i pBpx, εVj qq.

Also, p rF px, εj, ‚qs
W
V qk}i “ πWk pF px, ε

V
j , ε

V
i qq.

By definition of B, we have: Bpx, εVj q “ rF px, εj, ‚qs
W
V .

By symmetry of F , we have: F px, εVj , ε
V
i q “ F px, εVi , ε

V
j q.

Then p rBpx, ‚qsWV qk}i}j “ πWbVk}i pBpx, εVj qq “ pBpx, εVj qqk}i
“ p rF px, εj, ‚qs

W
V qk}i “ πWk pF px, ε

V
j , ε

V
i qq

“ πWk pF px, ε
V
i , ε

V
j qq “ p rF px, ‚, ‚‚qsWV V qk}i}j, as desired.
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End of proof of (2).

Proof of (3):

Want: @x P V , K3
x “ 6 ¨ Cx.

Given x P V . Want: K3
x “ 6 ¨ Cx.

By (1) of Theorem 85.1, we have: K2 “ 6 ¨ L.

Then, by Theorem 81.4, we get: K3
x “˚ 6 ¨ L1x.

Want: 6 ¨ L1x “ 6 ¨ Cx. Want: L1x “ Cx.

By HW#6-4, we have DxL “ L.

Since DxL “ L P LWbVbVV ,

we get: L1x “ rLs
WbVbV
V P W b V b V b V .

Also, by definition of C, we have: Cx “ rF s
W
V V V .

Then Cx “ rF s
W
V V V P W b V b V b V .

Want: rLsWbVbVV “ rF sWV V V .

Want: @i, j, k P IV , @` P IW , p rLsWbVbVV q`}i}j}k “ p rF sWV V V q`}i}j}k.

Given i, j, k P IV , ` P IW .

Want: p rLsWbVbVV q`}i}j}k “ p rF sWV V V q`}i}j}k.

We have: p rF sWV V V q`}i}j}k “ πW` pF pε
V
i , ε

V
j , ε

V
k q q.

Also, p rLsWbVbVV q`}i}j}k “ πW`}i}jpLpε
V
k q q.

Also, p rF pεVk , ‚, ‚‚q s
W
V V q`}i}j “ πW` pF pε

V
k , ε

V
i , ε

V
j q q.

By definition of L, we have LpεVk q “ rF pεVk , ‚, ‚‚q s
W
V V .

By symmetry of F , we have F pεVk , ε
V
i , ε

V
j q “ F pεVi , ε

V
j , ε

V
k q.

Then p rLsWbVbVV q`}i}j}k “ πW`}i}jpLpε
V
k q q “ pLpεVk q q`}i}j

“ p rF pεVk , ‚, ‚‚q s
W
V V q`}i}j “ πW` pF pε

V
k , ε

V
i , ε

V
j q q

“ πW` pF pε
V
i , ε

V
j , ε

V
k q q “ p rF sWV V V q`}i}j}k, as desired.

End of proof of (3). �

THEOREM 85.2. Let S P TNSR`, v P S, t P R, M :“ LinRS
v .

Then Mt “ tv.

Proof. Since LinRS
‚ and r‚sRS are inverses, we get: rLinRS

v sRS “ v.

By Definition 80.6, we have s`RSM “Mp1q.

Then Mp1q “ s`RSM “ rM sRS “ rLinRS
v sRS “ v.

Then Mt “Mptq “Mpt ¨ 1q “ t ¨ pMp1qq “ tv, as desired. �

THEOREM 85.3. Let v P R and L :“ LinRR
x .

Then L1 “ v.

Proof. Replace S by R and t by 1 in Theorem 85.2. �
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THEOREM 85.4. Let S P TNSR`, v P S, t P R.

Then v ˚RRS t “ tv.

Proof. Let L :“ LinRR
t and M :“ LinRS

v .

By Theorem 85.3 (with v replaced by t), we have L1 “ t.

By Theorem 85.2, we have Mt “ tv.

By Definition 83.2, we have v ˚RRS t “ rM ˝ LsRS.

By Definition 80.6, we have s`RSL˝M “ pL ˝Mqp1q.

Then v ˚RRS t “ rM ˝ LsRS “ s`RSM˝L “ pM ˝ Lqp1q

“ MpL1q “ Mptq “ Mt “ tv, as desired. �

THEOREM 85.5. Let x, y P R.

Then x ˚RRR y “ xy.

Proof. Replacing S by R and v by x and t by y, we get: x ˚RRR y “ yx.

Then x ˚RRR y “ yx “ xy, as desired.

�

Recall: Let L P L, m :“ s`L, x P R. Then Lx “ mx.

Then next result is the tensor analogue for that statement:

THEOREM 85.6. Let S, T P TNSR`, L P LTS , A :“ s`STL , x P S.

Then Lpxq “ A ˚RST x.

Proof. Let F :“ LinRS
x and G :“ LinSTA .

By Definition 83.2, we have A ˚RST x “ rG ˝ F sRT .

By Definition 80.6, we have s`RTG˝F “ pG ˝ F qp1q.

Then A ˚RST x “ rG ˝ F sRT “ s`RTG˝F “ pG ˝ F qp1q “ GpF1q.

By Theorem 85.2, @t P R, Ft “ tx. Then F1 “ 1 ¨ x “ x.

We have A “ s`STL “ rLsST .

So, since LinST‚ and r‚sST are inverses, we get: LinSTA “ L.

Then G “ LinSTA “ L.

Then Lpxq “ Gpxq “ GpF1q “ A ˚RST x, as desired. �

86. Tensor products of tensors

DEFINITION 86.1. Let V,W P TNSR`, x P V , y P W .

Then y b x :“ y ˚V RW x.

THEOREM 86.2. . Let V,W P TNSR`, x P V , y P W .

Let i P IV , j P IW . Then πWbVj}i py b xq “ yjxi.
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Proof. Let L :“ LinV R
x and let M :“ LinRW

y .

Then y b x “ rM ˝ LsVW . Also rLsV R “ x.

Then πWbVj}i py b xq “ πWbVj}i prM ˝ LsVW q “ πWj ppM ˝ LqpεVi qq.

By Definition 80.5, ps`V R
L qi “ L p εVi q.

Then xi “ prLsV Rqi “ ps`
V R
L qi “ L p εVi q.

Then pM ˝ LqpεVi q “MpLpεVi qq “Mpxiq.

By Theorem 85.2, we have: @t P R, Mt “ ty.

Then Mpxiq “Mxi “ xiy, so πWj pMpxiqq “ xi ¨ pπ
W
j pyqq “ xiyj.

Then πWbVj}i pybxq “ πWj ppM˝Lqpε
V
i qq “ πWj pMpxiqq “ xiyj “ yjxi. �

THEOREM 86.3. Let V :“ R3, W :“ R2.

Let x :“ p2, 3, 4q, y :“ p10, 20q. Then y b x “

„

20 30 40

40 60 80



.

Proof. This follows from Theorem 86.2. �

87. Polarizing polynomials and linearizing multilinears

In the next result, students provided the coefficients on Q, and, after

hearing them, I found the coefficients on F .

THEOREM 87.1. Let V :“ R2 and X :“ R.

Define Q P QX
V by Qpt, uq “ 8t2` 3tu` 4u2.

Define F P BXV V by F ppr, sq, pt, uqq “ 8rt` p3{2qru` p3{2qst` 4su.

Then F p‚, ‚q “ Q.

Proof. Want: @t, u P R, F ppt, uq, pt, uqq “ Qpt, uq.

Given t, u P R. Want: F ppt, uq, pt, uqq “ Qpt, uq.

We have F ppt, uq, pt, uqq “ 8tt` p3{2qtu` p3{2qut` 4uu

“ 8t2 ` 3tu` 4u2 “ Qpx, yq, as desired. �

The technique of going from Q to F generalizes, yielding:

THEOREM 87.2. Let V,W P TNSR`, Q P QW
V .

Then D1F P SBWV s.t. F p‚, ‚q “ Q.

Proof. Unassigned HW. �

THEOREM 87.3. Let V,X P TNSR`.

Define ∆ : BXV V Ñ QX
V by ∆pBq “ Bp‚, ‚q. Let Φ :“ ∆|pSBXV q.

Then ∆ : BXV V Ñą QX
V and Φ : SBXV ãÑą QX

V .

Proof. The existence part of Theorem 87.2 shows: Φ : SBXV Ñą QX
V .

It follows that: ∆ : BXV V Ñą QX
V . Want: Φ : SBXV ãÑą QX

V .
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The uniqueness part of Theorem 87.2 shows: Φ : SBXV ãÑ QX
V .

Then Φ : SBXV ãÑą QX
V , as desired. �

THEOREM 87.4. Let V,W,X P TNSR`.

Define Ψ : BXVW Ñ X b V bW by ΨpBq “ rBsXVW .

Then Ψ : BXVW ãÑą X b V bW .

Proof. Unassigned HW. �

DEFINITION 87.5. Let V,W,X P TNSR`, A P X b V bW .

Define Ψ : BXVW ãÑą X b V bW by ΨpBq “ rBsXVW .

Then BilinVWX
A :“ Ψ´1pAq.

THEOREM 87.6. Let U, V,W,X P TNSR`.

Define Ψ : T X
UVW Ñ X b U b V bW by ΨpT q “ rT sXUVW .

Then Ψ : T X
UVW ãÑą X b U b V bW .

Proof. Unassigned HW. �

DEFINITION 87.7. Let U, V,W,X P TNSR`.

Define Ψ : T X
UVW ãÑą X b U b V bW by ΨpT q “ rT sXUVW .

Then TrilinUVWX
A :“ Ψ´1pAq.

Let U, V,W P TNSR` and let B P BWUV .

Then rBsWUV P W b U b V .

So, since LWUbV ãÑą W b U b V ,

we can choose L P LWUbV s.t. rLsWUbV “ rBs
W
UV .

We “tensorize” B to get rBsWUV ,

and then “linearize” rBsWUV to get L.

In this way,

any bilinear map can be converted into a linear map,

and so “bilinear algebra” is simply a part of linear algebra.

Let U, V,W,X P TNSR` and let T P BXUVW .

Then rT sXUVW P X b U b V bW .

So, since LXUbVbW ãÑą X b U b V bW ,

we can choose L P LXUbVbW s.t. rLsXUbVbW “ rT sXUVW .

We “tensorize” T to get rT sXUVW ,

and then “linearize” rT sXUVW to get L.

In this way,

any trilinear map can be converted into a linear map,

and so “trilinear algebra” is simply a part of linear algebra.
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Let V,W P TNSR` and let Q P QW
V .

Then, since SBWV ãÑą QW
V ,

we can choose B P SBWV s.t. Q “ Bp‚, ‚q.

Then rBsWV V P W b V b V .

So, since LWVbV ãÑą W b V b V ,

we can choose L P LWVbV s.t. rLsWVbV “ rBs
W
V V .

We “polarize” Q to get B,

“tensorize” B to get rBsWV V ,

and then “linearize” rBsWV V to get L.

In this way,

any homogeneous quadratic can be converted into a linear map,

and so “quadratic algebra” is simply a part of linear algebra.

Let V,W P TNSR` and let K P KW
V .

Then, since ST W
V ãÑą KW

V ,

we can choose T P ST W
V s.t. K “ T p‚, ‚, ‚q.

Then rT sWV V V P W b V b V b V .

So, since LWVbVbV ãÑą W b V b V b V ,

we can choose L P LWVbVbV s.t. rLsWVbVbV “ rT s
W
V V V .

We “polarize” K to get T ,

“tensorize” T to get rT sWV V V ,

and then “linearize” rT sWV V V to get L.

In this way,

any homogeneous cubic can be converted into a linear map,

and so “cubic algebra” is simply a part of linear algebra.

In Theorem 89.1 below, we will see that, with some hypotheses,

any function can be approximated by a polynomial.

Any polynomial can be broken up into homogeneous parts,

and each part can then be converted into a linear map.

So linear algebra is the study of EVERYTHING!

88. Computing multilinear from the tensor

THEOREM 88.1. Let V,W P TNSR`, A P U b V .

Then, @x P U , LinVWA pxq “ A ˚RVW x.

Proof. This is a restatement of Theorem 85.6. �
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THEOREM 88.2. Let U, V,W P TNSR`, A P W b U b V .

Let S :“ U b V . Then, @x P U , @y P V ,

BilinUVWA px, yq “ A ˚RSW pxb yq.

Proof. Unassigned HW. Similar to proof of Theorem 85.6. �

THEOREM 88.3. Let T, U, V,W P TNSR`, A P W b T b U b V .

Let S :“ T b U b V . Then, @x P T , @y P U , @z P V ,

TrilinTUVWA px, yq “ A ˚RSW pxbybzq.

Proof. Unassigned HW. Similar to proof of Theorem 85.6. �

89. The cubic approximation theorem

THEOREM 89.1. Let S, Z P TNSR`, f : S 99K Z, p P domrf3s.

Let L :“ LinSZf 1p , Q :“ BilinSSZf2p
p‚, ‚q, K :“ TrilinSSSZf3p

p‚, ‚, ‚q.

Then: p fTp q ´

ˆ

L `
Q

2!
`
K

3!

˙

P OSZ3 .

Proof. This proof is deferred until later. �

Let S,Z P TNSR`, f : S 99K Z, p P domrf3s, h P S.

Let T :“ S b S, U :“ S b S b S.

Then f 1 : S 99K Z b S and f2 : S 99K Z b T and f3 : S 99K Z b U .

Then fp P Z, f 1p P Z b S and f2p P Z b T and f3p P Z b U .

The idea of Theorem 89.1 is:

Up to a subcubic error (in h), we have:

fp`h ´ fp « Lh `
Qh

2!
`
Kh

3!
,

so

fp`h « fp ` LinSZf 1p phq `
BilinSSZf2p

ph, hq

2!
`

TrilinSSSZf3p
ph, h, hq

3!
,

so

fp`h « fp ` r pf 1pq ˚RSZ h s

`
pf2p q ˚RTZ phb hq

2!
`

pf3p q ˚RUZ phb hb hq

3!
.

DEFINITION 89.2. Let S P TNSR`.

Then Sb0 :“ R and Sb1 :“ S and Sb2 :“ SbS and Sb3 :“ SbSbS.

Also, @h P S, hb0 :“ 1 and hb1 :“ h and hb2 :“ hb h

and hb3 :“ hb hb h.
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Let S,Z P TNSR`, f : S 99K Z, p P domrf3s, x P S.

Let T :“ Sb2, U :“ Sb3.

Then f 1 : S 99K Z b S and f2 : S 99K Z b T and f3 : S 99K Z b U .

Then fp P Z, f 1p P Z b S and f2p P Z b T and f3p P Z b U .

The idea of Theorem 89.1 is:

Up to a subcubic error (in x´ p), we have:

fx « fp ` r pf 1pq ˚RSZ px´ pq s

`
pf2p q ˚RTZ ppx´ pqb2q

2!
`

pf3p q ˚RUZ ppx´ pqb3q

3!
.

90. Directional and partial derivatives

THEOREM 90.1. Let S, T P TNSR`, f : S 99K T , p P S.

Then LinSTf 1p “ DST
p f .

Proof. Since f 1p “ ps`ST‚ qpD
ST
p fq, we get ps`ST‚ q

´1pf 1pq “ DST
p f .

Then LinSTf 1p “ ps`ST‚ q
´1pf 1pq “ DST

p f , as desired. �

THEOREM 90.2. Let S, T P TNSR`, f : S 99K T , p P domrf 1s.

Then fTp ´ pD
ST
p fq P OST1 .

Proof. Since p P domrf 1s, we get f 1p ‰ /.

We have ps`‚qpD
ST
p fq “ f 1p ‰ /, so DST

p f ‰ /.

Since / ‰ DST
p f “ UEpLINSpfq, we get DST

p f P LINSpf .

Then fTp ´ pD
ST
p fq P OST1 , as desired. �

THEOREM 90.3. Let S, T P TNSR`, f : S 99K T .

Assume f0S “ 0T . Then fT0S “ f .

Proof. Want: @h P S, fT0Sphq “ fphq.

Given h P S. Want: fT0Sphq “ fphq.

We have fT0Sphq “ f0S`h ´ f0S “ fh ´ 0T “ fh “ fphq, as desired. �

THEOREM 90.4. Let S, T P TNSR`, f : S 99K T , p, q P S.

Then DST
q pfpp` ‚qq “ DST

p`qf .

Proof. Want: LINSSTq pfpp` ‚qq “ LINSSTp`qf .

Want: @L P LTS , r p L P LINSSTq pfpp`‚qq q ô p L P LINSSTp`qf q s.

Given L P LTS . Want: p L P LINSSTq pfpp`‚qq q ô p L P LINSSTp`qf q.

We have: p L P LINSSTq pfpp` ‚qq q ô p pfpp` ‚qqTq ´ L P OST1 q.
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Also, we have: p L P LINSSTp`qf q ô p fTp`q ´ L P OST1 q.

Want: p fpp` ‚q qTq “ fTp`q.

Want: @h P S, p fpp` ‚q qTq phq “ fTp`qphq.

Given h P S. Want: p fpp` ‚q qTq phq “ fTp`qphq.

We have p fpp` ‚q qTq phq “ p pfpp` ‚qqq`h q ´ p pfpp` ‚qqq q

“ p fpp`q`hq q ´ p fpp`q q “ fTp`qphq. �

THEOREM 90.5. Let S P TNSR`, u, v P S.

Then u ˚RSR v “ u ‚S v.

Proof. By Theorem 83.6, u ˚RSR v “
ÿ

jPIS

ujvj.

By Definition 75.17, u ‚S v “
ÿ

jPIS

ujvj.

Then u ˚RSR v “
ÿ

jPIS

ujvj “ u ‚S v. �

DEFINITION 90.6. Let S P TNSR`, p, v P S.

Then ivp : RÑ S is defined by ıvpptq “ p` vt.

DEFINITION 90.7. Let S P TNSR`, v P S, f : S 99K T .

Then BSTv f : S 99K T is defined by pBSTv fqp “ pf ˝ pi
v
pqq

1
0.

THEOREM 90.8. Let S P TNSR`, f : S 99K R, p, v P S.

Then pBSTv fqp “
˚ pf 1pq ‚S v.

Proof. By HW#8-4, pBSTv fqp “
˚ pDST

p fqv.

By Theorem 90.1, pDST
p fqpvq “ pLinSTf 1p qpvq.

By Theorem 88.1, pLinSTf 1p qpvq “ f 1p ˚RSR v.

By Theorem 90.5, f 1p ˚RSR v “ pf 1pq ‚S v.

Then pBSTv fqp “
˚ pDST

p fqv “ pDST
p fqpvq “ pLinSTf 1p qpvq

“ f 1p ˚RSR v “ pf 1pq ‚S v. �

DEFINITION 90.9. Let S P TNSR, T P TNSR`.

Let f : S 99K T , j P IS. Then BSTj f :“ BST
εSj
f .

THEOREM 90.10. Let S P TNSR, v P S, j P IS.

Then v ‚S ε
S
j “ vj.

Proof. Unassigned HW. �

DEFINITION 90.11. Let S be a set, W P TNSR`.

Let f : S 99K W , p, q P S.

Then f |qp :“ fq ´ fp.a
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THEOREM 90.12. Let f : R 99K R and let a, b P R.

Assume that ra|bs Ď domrf 1s.

Then Dc P ra|bs s.t. f |ba “ pf 1cq ¨ pb´ aq.

Proof. This is a restatement of Theorem 73.4. �

THEOREM 90.13. Let V :“ R2, W :“ R, R : V 99K W .

Let δ ą 0, J :“ p´δ; δq, x, y P J . Assume J2 Ď domrR1s.

Then Dβ P r0|ys s.t. R|
px,yq
px,0q “ p pBVW2 Rqpx, βq q ¨ y.

Proof. Let i :“ i
p0,1q
px,0q. By HW#8-3, we have: i1 “ C

p0,1q
R .

Also, we have: @t P R, it “ px, 0q ` t ¨ p0, 1q “ px, tq.

Let f :“ R ˝ i.

Claim: @t P J , pBVW2 Rqit “ f 1t ‰ /.

Proof of Claim:

Given t P J . Want: pBVW2 Rqit “ f 1t ‰ /.

Since f “ R ˝ i, by the Chain Rule,

we have: DRW
t f “˚ pDVW

it Rq ˝ pDRV
t iq.

We have it “ px, tq P J
2 Ď domrR1s. Then DVW

it R P LWV .

We have t P R “ domri1s. Then DRV
t i P LVR .

It follows that pDVW
it Rq ˝ pDRV

t iq P LWR ,

and so pDVW
it Rq ˝ pDRV

t iq ‰ /.

Since DRW
t f “˚ pDVW

it Rq ˝ pDRV
t iq ‰ /,

we get: DRW
t f “ pDVW

it Rq ˝ pDRV
t iq.

Since DRW
t f “ pDVW

it Rq ˝ pDRV
t iq P LWR , we get pDRW

t fqp1q P W .

Also, f 1t “ s`RW‚ pDRW
t fq “ pDRW

t fqp1q, so f 1t “ pDRW
t fqp1q.

Then f 1t “ pDRW
t fqp1q P W .

Then f 1t ‰ /. Want: pBVW2 Rqit “
˚ f 1t .

By HW#8-4, pBVW
εV2

Rqit “
˚ pDVW

it RqεV2 .

So, since pBVW2 Rqit “ pBVW
εV2

Rqit , we get pBVW2 Rqit “
˚ pDVW

it RqεV2 .

Want: f 1t “ pDVW
it RqεV2 .

We have i1t “ s`RV‚ pDRV
t iq “ pDRV

t iqp1q.

Since DRW
t f “ pDVW

it Rq ˝ pDRV
t iq and since pDRV

t iqp1q “ i1t,

we get pDRW
t fqp1q “ pDVW

it Rqpi1tq.

Recall that f 1t “ pDRW
t fqp1q.

Also, i1t “ i1ptq “ pC
p0,1q
R qptq “ p0, 1q “ εV2 .

Then f 1t “ pDRW
t fqp1q “ pDVW

it Rqpi1tq

“ pDVW
it RqpεV2 q “ pDVW

it RqεV2 , as desired.
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End of proof of Claim.

By the Claim, J Ď domrf 1s.

Since 0, y P J and since J is an interval, we get r0|ys Ď J .

Then r0|ys Ď J Ď domrf 1s.

So, by Theorem 90.12, choose β P r0|ys s.t. f |y0 “ pf 1βq ¨ py ´ 0q.

Want: R|
px,yq
px,0q “ p pBVW2 Rqpx, βq q ¨ y.

We have fy “ pR ˝ iqy “ Rpiyq “ Rpx, yq.

Also, f0 “ pR ˝ iq0 “ Rpi0q “ Rpx, 0q.

Then f |y0 “ fy ´ f0 “ rRpx, yqs ´ rRpx, 0qs “ R|
px,yq
px,0q.

By the Claim, pBVW2 Rqiβ “ f 1β. Also, iβ “ px, βq.

Then f 1β “ pB
VW
2 Rqiβ “ pB

VW
2 Rqpiβq “ pB

VW
2 Rqpx, βq.

Then R|
px,yq
px,0q “ f |y0 “ pf 1βq ¨ py ´ 0q

“ pf 1βq ¨ y “ pBVW2 Rqpx, βq, as desired. �

THEOREM 90.14. Let V :“ R2 and W :“ R. Define f : V Ñ W by

fpx, yq “

#

1, if px “ 0q _ py “ 0q

0, if x ‰ 0 ‰ y.

Then 02 P domrB1f s, 02 P domrB2f s, and f is not continuous at 02.

Proof. Unassigned HW. �

THEOREM 90.15. Let f and g be functions. Then:

p g Ě f q ô p p domrgs Ě domrf s q & p g|pdomrf sq “ f q q

ô p @p, gp “
˚ fp q.

Proof. Unassigned HW. �

THEOREM 90.16. Let f and g be functions and let S be a set.

Assume that S Ě domrf s. Then:

p g Ě f q ô p @p P S, gp “
˚ fp q.

Proof. Unassigned HW. �

On the board, we graphed two partial functions f, g : R 99K R
s.t. g Ě f , and discussed Theorem 90.15 and Theorem 90.16 in the

context of those two functions.

THEOREM 90.17. Let S, T P TNSR` and let f, g : S 99K T .

Assume that g Ě f . Then:

(1) p f P DNZTS q ñ p g P DNZTS q and

(2) p f P O1 q ñ p g P O1 q and
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(3) @p P S, r gTp Ě fTp and

LINSSTp g Ě LINSSTp f and

DST
p g “˚ DST

p f and

g1p “
˚ f 1p s and

(4) g1 Ě f 1 and

(5) @v P S, BSTv g Ě BSTv f .

Proof. Unassigned HW. �

THEOREM 90.18. Let S, T P TNSR` and let f, g : S 99K T .

Then pf ` gq1 Ě f 1 ` g1.

Proof. This follows from Theorem 81.3. �

THEOREM 90.19. Let S, T P TNSR`, let c P R and let f : S 99K T .

Then pc ¨ fq1 Ě c ¨ f 1.

Proof. This follows from Theorem 81.4. �

Let S and T be tensor spaces, let f : S 99K T and let k P N0. Then

the kth derivative of f is denoted f pkq. Then f pkq : S 99K T b pSbkq.
Let S and T be tensor spaces and let f : S 99K T . Then f p1q “ f 1

and f p2q “ f2 and f p3q “ f2. By convention, f p0q “ f .

THEOREM 90.20. Let S, T P TNSR`, f, g : S 99K T , q P S, ` P N0.

Assume q P domrf p`qs and q P domrgp`qs. Then q P domrpf ` gqp`qs.

Proof. Unassigned HW. �

THEOREM 90.21. Let S, T P TNSR`, ` P N0, f : S 99K T , q P S.

Let c P R. Assume q P domrf p`qs. Then q P domrpc ¨ fqp`qs.

Proof. Unassigned HW. �

THEOREM 90.22. Let R, S, T, U P TNSR`, ˚ P BUST ,

f : R 99K S and g : R 99K T .

Then: pf ˚ gq1 Ě pf 1 ˚ gq ` pf ˚ g1q and

pf ˚ gq2 Ě pf2 ˚ gq ` 2 ¨ pf 1 ˚ g1q ` pf ˚ g2q.

Proof. This follows from Theorem 82.11, but requires careful definitions

of the various bilinear multiplications, all of which are called ˚. �

We will not require Theorem 90.22, so we have not carefully defined

all the multiplications appearing in it, and we omit a detailed proof.

Instead, more important to us is:
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THEOREM 90.23. Let R, S, T, U P TNSR`, ˚ P BUST ,

f : R 99K S, g : R 99K T , p P R and k P N0.

Assume that p P domrf pkqs and that p P domrgpkqs.

Then p P domrpf ˚ gqpkqs.

Proof. We have: p P p domrf pkqs q X p domrgpkqs q.

Want: p domrf pkqs q X p domrgpkqs q Ď domrpf ˚ gqpkqs.

Let I denote the set of all ` P N0 s.t.

@V,W,X, Y P TNSR`, @d P BYWX ,

@φ : V 99K W , @ψ : V 99K X,

p domrφp`qs q X p domrψp`qs q Ď domrpφd ψqp`qs.

Want: k P I. Want: I “ N0.

We have: @V,W,X, Y P TNSR`, @d P BYWX ,

@φ : V 99K W , @ψ : V 99K X,

p domrφs q X p domrψs q “ domrφd ψs.

It follows that 0 P I. Want: @` P I, `` 1 P I.

Given ` P I. Want: `` 1 P I.

Know: @V,W,X, Y P TNSR`, @d P BYWX ,

@φ : V 99K W , @ψ : V 99K X,

p domrφp`qs q X p domrψp`qs q Ď domrpφd ψqp`qs.

Want: @V,W,X, Y P TNSR`, @d P BYWX ,

@φ : V 99K W , @ψ : V 99K X,

p domrφp``1qs qX p domrψp``1qs q Ď domrpφdψqp``1qs.

Given V,W,X, Y P TNSR`, d P BYWX , φ : V 99K W , ψ : V 99K X.

Want: p domrφp``1qs q X p domrψp``1qs q Ď domrpφd ψqp``1qs.

Want: @q P p domrφp``1qs q X p domrψp``1qs q, q P domrpφd ψqp``1qs.

Given q P p domrφp``1qs q X p domrψp``1qs q.

Want: q P domrpφd ψqp``1qs.

Let S 1 :“ S bR, T 1 :“ T bR, U 1 :“ U bR.

Define dL : S 1 ˆ T Ñ U 1 by AdL b “ s`RT‚ ppLinRSA q d bq.

Define dR : S ˆ T 1 Ñ U 1 by adR B “ s`RT‚ pad pLinRSB qq.

Then, by Theorem 82.11, pφd ψq1 Ě pφ1 dL ψq ` pφdR ψ
1q.

Then: p pφd ψq1 qp`q Ě p pφ1 dL ψq ` pφdR ψ
1q qp`q.

So, since p pφd ψq1 qp`q “ pφd ψqp``1q, we see that:

pφd ψqp``1q Ě p pφ1 dL ψq ` pφdR ψ
1q qp`q.

Then: domr pφd ψqp``1q s Ě domr p pφ1 dL ψq ` pφdR ψ
1q qp`q s.

We have q P domrφp``1qs and φp``1q “ pφ1qp`q, so q P domrpφ1qp`qs.

Also, q P domrψp``1qs Ď domrψp`qs, so q P domrψp`qs.
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Since q P domrpφ1qp`qs, since q P domrψp`qs,

and since ` P I, we get: q P domrpφ1 dL ψq
p`qs.

We have q P domrφp``1qs Ď domrφp`qs, so q P domrφp`qs.

Also, q P domrψp``1qs and ψp``1q “ pψ1qp`q, so q P domrpψ1qp`qs.

Since q P domrφp`qs, since q P domrpψ1qp`qs,

and since ` P I, we get: q P domrpφdR ψ
1qp`qs.

Since q P domrpφ1 dL ψq
p`qs and q P domrpφdR ψ

1qp`qs,

by Theorem 90.21, we get: q P domrpφ1 dL ψ ` φdR ψ
1qp`qs.

Then: q P domr p pφ1 dL ψq ` pφdR ψ
1q qp`q s

Ď domr pφd ψqp``1q s, as desired. �

Theorem 90.23 above is called the Product Derivatives Domain

Theorem.

THEOREM 90.24. Let S, T, U P TNSR`, f : S 99K T , g : T 99K U .

Then: pg ˝ fq1 Ě pg1 ˝ fq ˚ f 1 and

pg ˝ fq2 Ě ppg2 ˝ fq ˚ f 1q ˚ f 1 ` pg1 ˝ fq ˚ f2.

Proof. This follows from Theorem 83.3, but requires careful definitions

of the various bilinear multiplications, all of which are called ˚. �

We will not require Theorem 90.24, so we have not carefully defined

all the multiplications appearing in it, and we omit a detailed proof.

Instead, more important to us is:

THEOREM 90.25. Let S, T, U P TNSR`, f : S 99K T , g : T 99K U .

Assume that p P domrf pkqs and that fp P domrgpkqs.

Then p P domrpg ˝ fqpkqs.

Proof. We have: p P p domrf pkqs q X p f˚p domrgpkqs q q.

Want: p domrf pkqs q X p f˚pdomrgpkqs q q Ď domrpg ˝ fqpkqs.

Let I denote the set of all ` P N0 s.t.

@V,W,X P TNSR`, @φ : V 99K W , @ψ : W 99K X,

p domrφp`qs q X pφ˚p domrψp`qs q q Ď domrpψ ˝ φqp`qs.

Want: k P I. Want: I “ N0.

We have: @V,W,X P TNSR`, @φ : V 99K W , @ψ : W 99K X,

p domrφs q X pφ˚p domrψs q q “ domrψ ˝ φs.

It follows that 0 P I. Want: @` P I, `` 1 P I.

Given ` P I. Want: `` 1 P I.

Know: @V,W,X P TNSR`, @φ : V 99K W , @ψ : W 99K X,

p domrφp`qs q X pφ˚p domrψp`qs q q Ď domrpψ ˝ φqp`qs.
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Want: @V,W,X P TNSR`, @φ : V 99K W , @ψ : W 99K X,

p domrφp``1qs qX pφ˚p domrψp``1qs q q Ď domrpψ˝φqp``1qs.

Given V,W,X P TNSR`, φ : V 99K W , ψ : W 99K X.

Want: p domrφp``1qs q X pφ˚p domrψp``1qs q q Ď domrpψ ˝ φqp``1qs.

Want: @q P p domrφp``1qs q X pφ˚p domrψp``1qs q q,

q P domrpψ ˝ φqp``1qs.

Given q P p domrφp``1qs q X pφ˚p domrψp``1qs q q,

Want: q P domrpψ ˝ φqp``1qs.

By Theorem 83.3, pψ ˝ φq1 Ě pψ1 ˝ φq ˚VWX φ1.

Then p pψ ˝ φq1 qp`q Ě p pψ1 ˝ φq ˚VWX φ1 qp`q.

So, since p pψ ˝ φq1 qp`q “ pψ ˝ φqp``1q, we see that:

pψ ˝ φqp``1q Ě p pψ1 ˝ φq ˚VWX φ1 qp`q.

Then: domr pψ ˝ φqp``1q s Ě domr p pψ1 ˝ φq ˚VWX φ1 qp`q s.

We have q P domrφp``1qs and φp``1q “ pφ1qp`q, so q P domrpφ1qp`qs.

Also, q P domrψp``1qs Ď domrψp`qs, so q P domrψp`qs.

Since q P domrpφ1qp`qs, since q P domrψp`qs,

and since ` P I, we get: q P domrpψ1 ˝ φqp`qs.

We have q P domrψp``1qs and ψp``1q “ pψ1qp`q, so q P domrpψ1qp`qs.

Since q P domrpψ1 ˝ φqp`qs and q P domrpψ1qp`qs,

by Theorem 90.23, we get: q P domr p pψ1 ˝ φq ˚VWX φ1 qp`q s.

Then: q P domr p pψ1 ˝ φq ˚VWX φ1 qp`q s

Ď domr pψ ˝ φqp``1q s, as desired. �

Theorem 90.25 above is called the Composition Deriviatives Do-

main Theorem.

91. An infintely directionally differentiable function

that is not continuous

You are expected to know the definition of “infinitely directionally

differentiable”, and the fact that there is an infinitely directionally

differentiable function that is not continuous. You are neither expected

to know the proof of that fact nor expected to know the other facts

covered in this section.

Let V :“ R2. For all k P N, for all s P V k, for all φ : V 99K R, let

Bsφ :“ Bs1 ¨ ¨ ¨ Bskφ. Let S :“ V Y V 2 Y V 3 Y ¨ ¨ ¨ . We will say that a

function φ : V Ñ R is infinitely directionally differentiable if, for

all s P S, we have domrBsφs “ V .
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Choose an infinitely differentiable function g : R Ñ R such that

( g “ 0 on p´8, 1s Y r3,8q ) and ( gp2q “ 1 ) and ( imrgs Ď r0, 1s ).

Define f : V Ñ R by fpx, yq “

#

gpy{x2q, if x ‰ 0;

0, if x “ 0.

FACT 91.1. The function f : V Ñ R is infinitely directionally differ-

entiable, and is discontinuous at 02.

Proof. We define

U :“ tpx, yq P V |x2 ă y ă 3x2u and

U :“ tpx, yq P V |x2 ď y ď 3x2u.

Then 0V “ p0, 0q P U . Also, U is the interior in V of U , so V zU is the

closure in V of V zU . Let Φ be the set of all φ : V Ñ R such that

‚ φ “ 0 on V zU and

‚ for all s P S, Bsφ is continuous on V zt0V u.

Claim 1: f P Φ. Proof of Claim 1: By construction, f “ 0 on V zU .

Let s P S be given. We wish to show that Bsφ is continuous on V zt0V u.

By the Multivariable Chain Rule (to be proved later), @x, y P R, we

have: if x ‰ 0, then Bsf is continuous at px, yq. Let Y :“ tp0, yq|y P Ru
denote the y-axis. Then Bsf is continuous on V zY . It therefore suffices

to show that Bsφ is continuous on Y zt0V u. Let v P Y zt0V u be given.

We wish to show: Bsφ is continuous at v.

Let V0 :“ V zU . We have v P Y zt0V u Ď V zU “ V0. So, since V0 is

open in V , we see that V0 is an open nbd in V of v. Since V0 Ď V zU

and since f “ 0 on V zU , we see that f “ 0 on V0. So, since V0 is open

in V , it follows that Bsφ “ 0 on V0. So, since V0 is an open nbd in V

of v, it follows that Bsφ is continuous at v. End of proof of Claim 1.

Claim 2: Let φ P Φ and let v P V . Then we have pBvφqp0V q “ 0.

Proof of Claim 2: Let L :“ Rv Ď V denote the line through v in V ,

and give L the relative topology inherited from V . Choose a nbd L0

of 0V in L such that L0 Ď V zU . Since φ “ 0 on V zU , we conclude that

φ “ 0 on L0. Then pBvφqp0V q “ 0, as desired. End of proof of Claim 2.

Claim 3: Let φ P Φ, let v P V and let s P S. Then BsBvφ is continuous

on V zt0V u. Proof of Claim 3: Because s P S “ V Y V 2 Y V 3 Y ¨ ¨ ¨ ,

choose k P N such that s P V k. Let t :“ ps1, . . . , sk, vq. Then we

have t P V k`1 Ď S and Btφ “ BsBvφ. Since φ P Φ, we see that Btφ is

continuous on V zt0V u. Then BsBvφ is continuous on V zt0V u, as desired.

End of proof of Claim 3.
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Claim 4: Let φ P Φ and let v P V . Then we have Bvφ P Φ. Proof

of Claim 4: By Claim 3, it suffices to show that Bvφ “ 0 on V zU . Since

φ P Φ, we know that φ “ 0 on V zU . So, since V zU Ď V zU , it follows

that φ “ 0 on V zU . So since V zU is open in V , we see that Bvφ “ 0

on V zU . By Claim 2, pBvφqp0V q “ 0. Let U˚ :“ UzpU Y t0V uq. It

remains to show that Bvφ “ 0 on U˚. Let x P U˚ be given. We wish

to show that pBvφqpxq “ 0.

As φ P Φ and v P V Ď S, we know that Bvφ is continuous on V zt0V u.

We have x P U˚ Ď V zt0V u. Then Bvφ is continuous at x. Also,

x P UzU Ď V zU , and V zU is the closure in V of V zU . Then x is an

element of the closure in V of V zU , so, since Bvφ “ 0 on V zU and since

Bvφ is continuous at x, we get pBvφqpxq “ 0. End of proof of Claim 4.

Claim 5: Let φ P Φ. Then we have: @k P N, @s P V k, Bsφ P Φ.

Proof of Claim 5: We argue by induction on k. By Claim 4, we have:

@s P V , Bsφ P Φ, proving the base case. Let k P N be given and

make the induction assumption: @s P V k, Bsφ P Φ. We wish to show:

@s P V k`1, Bsφ P Φ. Let s P V k`1 be given. We wish to show: Bsφ P Φ.

Let r :“ ps2, . . . , sk`1q P V
k and ψ “ Brφ. Then Bsφ “ Bs1Brφ “ Bs1ψ.

By the induction assumption, Brφ P Φ. That is, we have ψ P Φ. Then,

by Claim 4, Bs1ψ P Φ. Then Bsφ “ Bs1ψ P Φ. End of proof of Claim 5.

Let C :“ tpx, yq P V | y “ 2x2u. By construction, know both that

f “ 1 on Czt0V u and that fp0V q “ 0. Thus f is discontinuous at 0V .

It remains to show that f is infinitely directionally differentiable. Let

s P S be given. We wish to show that domrBsφs “ V .

Since s P S “ V Y V 2 Y V 3 Y ¨ ¨ ¨ , choose k P N such that s P V k.

By Claim 1, we have f P Φ. Then, by Claim 5, we have Bsφ P Φ. Then,

by definition of Φ, we see that domrBsφs “ V , as desired. �

We say a function φ : V Ñ R is directionally differentiable if, for

all v P V , domrBvφs “ V . Recall: f : V Ñ R is defined by

fpvq “

#

gpy{x2q, if x ‰ 0;

0, if x “ 0.

Let σ : V Ñ R be an infinitely differentiable function satisfying σ “ 0

on V zpBp02, 1qq and σp02q “ 1 and imrσs Ď r0, 1s. For all ε ą 0, define

σε : V Ñ R by σεpxq “ ε ¨ rσpx{εqs; then σε “ 0 on V zpBp02, εqq and

σεp02q “ ε and imrσεs Ď r0, εs. For all ε ą 0, for all p P V , we define

fp,ε : V Ñ R by fp,εpxq “ rσεpx´ pqsrfpx´ pqs; then
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‚ fp,ε “ 0 on V zpBpp, εqq,

‚ imrfp,εs Ď r0, εs,

‚ fp,ε is infinitely directionally differentiable and

‚ fp,ε is discontinuous at p.

For any sequence p1, p2, . . . of distinct points in V , there is a sequence

ε1, ε2, . . . of positive real numbers s.t. fp1,ε1 ` fp2,ε2 ` ¨ ¨ ¨ is both direc-

tionally differentiable and discontinuous at each point of tp1, p2, . . .u.

In particular, there is a directionally differentiable g : V Ñ R such that

g is discontinuous at each point of Q2.

A subset S of a topological space X is said to be interior-free in X

if the interior in X of S is empty. A subset S of a topological space X is

said to be meager in X if S is a subset of a countable union of closed

interior-free subsets of X. A subset S of a topological space X is said

to be comeager in X if XzS is meager in X. By the Baire Category

Theorem, for any n P N, any comeager subset of Rn is to be dense

in Rn; in particular, a comeager subset of Rn is nonempty.

For any φ : V Ñ R, define Cφ :“ tx P V |φ is continuous at xu, and

let Dφ :“ V zCφ be the set of points of discontinuity of φ.

FACT 91.2. Let φ : V Ñ R and assume: @i P t1, 2u, domrBiφs “ V .

Then Cφ is comeager in V .

Proof. For all x P R, the maps φpx, ‚q : RÑ R and φp‚, xq : RÑ R are

both differentiable, hence continuous. Then, by e.g., Namioka, Sepa-

rate continuity and joint continuity, Pacific Journal of Mathematics,

Volume 51, Number 2, 1974, we see that Cφ is comeager in V . �

FACT 91.3. Let φ : V Ñ R. Assume: @i, j P t1, 2u, domrBiBjφs “ V .

Then Cφ contains a dense open subset of V .

Proof. Since Dφ “ V zCφ, we wish to show that Dφ is nowhere dense

in V . Let D be the closure in V of Dφ. Let U be the interior in V of D.

We wish to show: U “ H. Assume, for a contradiction, that U ‰ H.

For all j P t1, 2u, let ψj :“ Bjφ. For all i P t1, 2u, domrBiψ1s “ V ,

so, by Fact 91.2, we see that Cψ1 is comeager in V . For all i P t1, 2u,

domrBiψ2s “ V , so, by Fact 91.2, we see that Cψ2 is comeager in V .

Let C :“ Cψ1 X Cψ2 . Then C is comeager in V , so, by the Baire

Category Theorem, C is dense in V . So, as U is a nonempty open

subset of V , we conclude that C X U ‰ H. Choose x P C X U . Since

x P C “ Cψ1 X Cψ2 , we see that ψ1 and ψ2 are both continuous at x.
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For all j P t1, 2u, choose an open neighborhood Uj in U of x such that

ψj is bounded on Uj. Then U1XU2 is an open neighborhood in U of x,

so choose open intervals I, J Ď R such that x P I ˆ J Ď U1XU2. Then

ψ1 and ψ2 are bounded on I ˆ J . That is, B1φ and B2φ are bounded

on IˆJ . Then, by the Mean Value Theorem, φ is continuous on IˆJ .

Let W :“ I ˆ J . Then W Ď Cφ, so W XDφ “ H.

We have both x P I ˆ J “ W and W “ I ˆ J Ď U1 X U2. Also,

U1 Ď U and U2 Ď U . Also, by definition of U , we have U Ď D. Then

x P W Ď U1 XU2 Ď U Ď D. Since I and J are open intervals in R and

since W “ I ˆ J , it follows that W is an open subset of V . So, since

x P W , we see that W is an open neighborhood in V of x. So, since

x P D and sinceD is the closure in V ofDφ, it follows thatWXDφ ‰ H.

However, we showed that W XDφ “ H. Contradiction. �

92. A tensor computation

DEFINITION 92.1. Let IR :“ tHu.

@x P R, let xH :“ x. Let πR
H :“ idR and let εRH :“ 1.

@σ P N, @m P Nσ, let m}H :“ m and H}m :“ m.

Define H}H :“ H.

Note: R ‰ RtHu “ RIR . We therefore cannot extend the statement

@S P TNSR, S “ RIS

to TNSR`. On the other hand, we do have a quantified equivalence

for equality of tensors:

THEOREM 92.2. @S P TNSR`, @v, w P S, we have:

p v “ w q ô p @j P IS, vj “ wj q.

THEOREM 92.3. Let V,W,X P TNSR`, A P W b V , B P X bW .

Let i P IV , k P IW . Then: pB ˚VWX Aqk}i “
ÿ

jPIW

pBk}jq ¨ pAj}iq.

Proof. Unassigned HW. �

THEOREM 92.4. Let V,W P TNSR`, A P W b V .

Let i P IV and j P IW . Then: pA ˚RVW εVi q ˚RWR εWj “ Aj}i.

Proof. Let x :“ A ˚RVW εVi . Want: x ˚RWR εWj “ Aj}i. We have:

x ˚RWR εWj “ px ˚RWR εWj qH}H “
ÿ

kPIW

pxH}kq ¨ pε
W
j qk}H

“
ÿ

kPIW

xk ¨ pε
W
j qk “ pxj ¨ pε

W
j qj q ` 0 “ xj “ xj}H
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“ pA ˚RVW εVi qj}H “
ÿ

`PIV

pAj}` q ¨ p pε
V
i q`}H q

“
ÿ

`PIV

pAj}` q ¨ p pε
V
i q` q “ p pAj}i q ¨ p pε

V
i qi q q ` 0

“ Aj}i, as desired. �

We reviewed Theorem 85.6.

THEOREM 92.5. Let S, T P TNSR`, f : S 99K T , v P S.

Define L P LTTbS by: LA “ A ˚RST v. Then BSTv f Ě L ˝ pf 1q.

Proof. Want: @x P S, pBSTv fqx “
˚ pL ˝ pf 1qqx.

Given x P S. Want: pBSTv fqx “
˚ pL ˝ pf 1qqx.

By HW#9-2, pBSTv fqx “
˚ pf 1xq ˚RST v.

Then pBSTv fqx “
˚ pf 1xq ˚RST v “ Lpf 1xq “ pL˝pf 1qqx, as desired. �

THEOREM 92.6. Let S, T P TNSR`, f : S 99K T , v P S.

Then domrf 1s Ď domrBSTv f s.

Proof. We have imrf 1s Ď T bS “ domrLs, so domrL ˝ pf 1qs “ domrf 1s.

By Theorem 92.5, BSTv f Ě L ˝ pf 1q, so domrBSTv f s Ě domrL ˝ pf 1qs.

Then domrf 1s “ domrL ˝ pf 1qs Ď domrBSTv f s, as desired. �

THEOREM 92.7. Let V,W P TNSR`, L P LWV .

Then V “ domrL1s.

Proof. Since L : V Ñ W we get L : V 99K WbV , and so domrL1s Ď V .

Want: V Ď domrL1s. Want: @x P V , x P domrL1s.

Given x P V . Want x P domrL1s.

Since L P LWV , we get s`VWL P W b V .

By HW#6-4, DxL “ L, and so L1x “ s`VWL .

Then L1x “ s`VWL P W b V , and so L1x ‰ /, and so x P domrL1s. �

THEOREM 92.8. Let S, T P TNSR`, v P S, f : S 99K T .

Then domrf2s Ď domrpBSTv fq1s.

Proof. Define L P LTTbS by: LA “ A ˚RST v.

By Theorem 92.5, BSTv f Ě L ˝ pf 1q.

Let g :“ f 1. Then BSTv f Ě L ˝ g.

Then pBSTv fq1 Ě pL ˝ gq1, so domrpBSTv fq1s Ě domrpL ˝ gq1s.

Want: @x P domrf2s, x P domrpBSTv fq1s.

Given x P domrf2s. Want: x P domrpBSTv fq1s.

Since domrpL ˝ gq1s Ď domrpBSTv fq1s,
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it suffices to show: x P domrpL ˝ gq1s.

By Theorem 90.25, it suffices to show: p x P domrg1s q & p gx P domrL1s q.

We have x P domrf2s “ domrg1s. Want: gx P domrL1s.

Since x P domrg1s Ď domrgs, we get gx P imrgs.

Since f : S 99K T , we see that f 1 : S 99K T bS, and so imrf 1s Ď T bS.

Since L P LTTbS, we conclude, by Theorem 92.7, that domrL1s “ T bS.

Then gx P imrgs “ imrf 1s Ď T b S “ domrL1s, as desired. �

93. Some basic properties of directional derivatives

THEOREM 93.1. Let V,W P TNSR`, f, g : V 99K W , u P V .

Then BVWu pf ` gq Ě pBVWu fq ` pBVWu gq.

Proof. Want: @x P V , pBVWu pf ` gqqx “
˚ ppBVWu fq ` pBVWu gqqx.

Given x P V . Want: pBVWu pf ` gqqx “
˚ ppBVWu fq ` pBVWu gqqx.

Let φ :“ f ˝ piuxq and let ψ :“ g ˝ piuxq.

Then φ10 “ pB
VW
u fqx and ψ10 “ pB

VW
u gqx.

Also, since φ` ψ “ pf ˝ piuxqq ` pg ˝ pi
u
xqq “ pf ` gq ˝ pi

u
xq,

we get pφ` ψq10 “ pB
VW
u pf ` gqqx.

By Theorem 81.3, we have pφ` ψq10 “
˚ φ10 ` ψ10.

Then pBVWu pf ` gqqx “ pφ` ψq10 “
˚ φ10 ` ψ10

“ ppBVWu fq ` pBVWu gqqx, as desired. �

THEOREM 93.2. Let V,W P TNSR`, c P R, f : V 99K W , u P V .

Then BVWu pc ¨ fq Ě c ¨ pBVWu fq.

Proof. Unassigned HW. �

THEOREM 93.3. Let V :“ R2, W :“ R, C P CWV .

Then: BVW1 C “ BVW2 C “ 0WV .

Proof. Unassigned HW. �

THEOREM 93.4. Let V :“ R2, W :“ R, λ, µ P R.

Define L P LWV by Lpx, yq “ pλ, µq ‚V px, yq.

Then: p BVW1 L “ Cλ
V q & p BVW2 L “ Cµ

V q.

Proof. Unassigned HW. �

THEOREM 93.5. Let V :“ R2, W :“ R, α, γ, δ P R.

Define Q P QW
V by Qpx, yq “

„

α γ

γ δ



‚VbV ppx, yqb2q.

Then, @x, y P R, we have:
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pBVW1 Qqpx, yq “ 2αx ` 2γy and

pBVW2 Qqpx, yq “ 2γx ` 2δy.

Proof. Unassigned HW. �

DEFINITION 93.6. Let V P TNSR`, f : RÑ V .

Then BRVH f :“ f 1.

We paraphrase HW#9-2:

Let V,W P TNSR`, f : V 99K W , u P V .

Then: BVWu f Ě f 1 ˚RVW u,

i.e., @p P V , pBVWu fqp “
˚ f 1p ˚RVW u.

THEOREM 93.7. Let V,W,Z P TNSR`.

Let A P Z b V bW , x P V , y P W .

Then: BilinVWZ
A px, yq “ A ˚R,VbW,Z pxb yq.

Proof. Let B :“ BilinVWZ
A . Then B P BZVW and rBsZVW “ A.

Let ˚ :“ ˚R,VbW,Z . Then ˚ P BZZbVbW,VbW .

We have: @i P IV , @j P IW , @k P IZ ,

Ak}i}j “ prBs
Z
VW qk}i}j “ πZk pBpε

V
i , ε

W
j qq “ pBpε

V
i , ε

W
j qqk.

Want: BilinVWZ
A px, yq “ A ˚ pxb yq.

Want: @k P IZ , pBilinVWZ
A px, yq qk “ pA ˚ pxb yq qk.

Given k P IZ . Want: pBilinVWZ
A px, yq qk “ pA ˚R,VbW,Z pxb yq qk.

We calculate: BilinVWZ
A px, yq “ Bpx, yq

“ B

˜

ÿ

iPIV

xiεi ,
ÿ

iPIV

xiεi

¸

“
ÿ

iPIV

ÿ

iPIV

xi ¨ yj ¨ pBpε
V
i , ε

W
j qq

Then: pBilinVWZ
A px, yq qk “

ÿ

iPIV

ÿ

iPIV

xi ¨ yj cdot pBpε
V
i , ε

W
j q qk.

We compute: pA ˚ pxb yq qk “ pA ˚ xb yq qk}H

“
ÿ

`PIVbW

Ak}` ˚ pxb yq`}H

“
ÿ

`PIVbW

Ak}` ¨ pxb yq`

“
ÿ

iPIV

ÿ

jPIW

Ak}i}j ¨ pxb yqi}j

“
ÿ

iPIV

ÿ

jPIW

Ak}i}j ¨ xi ¨ yj

Then pBilinVWZ
A px, yq qk “

ÿ

iPIV

ÿ

iPIV

xi ¨ yj ¨ pBpε
V
i , ε

W
j q qk
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“
ÿ

iPIV

ÿ

iPIV

xi ¨ yj ¨ Ak}i}j

“
ÿ

iPIV

ÿ

iPIV

Ak}i}j ¨ xi ¨ yj

“ pA ˚ pxb yq qk, as desired. �

THEOREM 93.8. Let h : R2 99K R and let p P domrh1s.

Then (1) ph1pq1 “ pB1hqp and (2) ph1pq2 “ pB2hqp.

Proof. Proof of (1):

Let V :“ R2.

We have pB1hqp “
˚ h1p ˚RV R εV1 “ h1p ‚V εV1 “ ph1pq1 ‰ /.

Then ph1pq1 “ pB1hqp, as desired.

End of proof of (1).

Proof of (2):

Unassigned HW.

End of proof of (2). �

THEOREM 93.9. Let V :“ R2 and let W :“ R.

Let R : V 99K W and let z :“ 02. Assume z P domrR2s.

Assume pB1B1Rqz “ pB1B2Rqz “ pB2B2Rqz “ pB1Rqz “ pB2Rqz “ Rz “ 0.

Then R P OVW2 .

Proof. Since z P domrR2s, it follows that R1 is defined near z,

so choose B P BV pzq s.t. B Ď domrR1s.

Since B P BV pzq, choose r ą 0 s.t. B “ BV pz, rq.

Let δ :“ r{
?

2, J :“ p´δ, δq. Then J2 Ď BV pz, rq.

Then J2 Ď BV pz, rq “ B Ď domrR1s.

Let g :“ B1R, h :“ B2R, i :“ i
εV1
z .

By HW#9-3, choose σ P pOWW
1 and τ P pOV V

1 s.t.

f “ pg ˝ i ˝ σ ˝ πV1 q ¨ π
V
1 ` ph ˝ τq ¨ πV2 near z.

Define ˚ P BWWW by a ˚ b “ ab.

Then f “ pg ˝ i ˝ σ ˝ πV1 q ˚ π
V
1 ` ph ˝ τq ˚ πV2 near z.

By HW#10-5, we have: g ˝ i P OWW
1 .

Then g ˝ i ˝ σ ˝ πV1 P OWW
1 ˝ pOWW

1 ˝ pOVW
1 Ď OVW1 .

Then pg ˝ i ˝ σ ˝ πV1 q ˚ π
V
1 P OVW1 ˚ pOVW

1 Ď OVW2 .

By Theorem 92.8, domrR2s Ď domrpB2Rq
1s.

Then z P domrR2s Ď domrpB2Rq
1s “ domrh1s.

By Theorem 93.8, ph1zq1 “ pB1hqz and ph1zq2 “ pB2hqz.
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So, since pB1hqz “ pB1B2Rqz “ 0 and pB2hqz “ pB2B2Rqz “ 0,

we conclude that ph1zq1 “ 0 and ph1zq2 “ 0.

Also, we have W b V “ Rb R2 “ R2.

Then h1z “ p ph
1
zq1 , ph

1
zq2 q “ p0, 0q “ 0R2 “ 0WbV .

So, since hz “ pB2Rqz “ 0 “ 0W , by HW#8-1, we get: h P OVW1 .

Then h ˝ τ P OVW1 ˝ pOV V
1 Ď OVW1 .

Also, ph ˝ τq ˚ πV2 P OVW1 ˚ pOVW
1 Ď OVW2 .

So, since pg ˝ i ˝ σ ˝ πV1 q ˚ π
V
1 P OVW2 ,

we get: pg ˝ i ˝ σ ˝ πV1 q ˚ π
V
1 ` ph ˝ τq ˚ πV2 P OVW2 .

So, since f “ pg ˝ i ˝ σ ˝ πV1 q ˚ π
V
1 ` ph ˝ τq ˚ πV2 near z,

we conclude that f P OVW2 , as desired. �

THEOREM 93.10. Let V :“ R2 and let W :“ R.

Let S : V 99K W and let z :“ 02. Assume z P domrS2s.

Assume pB1B1Sqz “ pB2B1Sqz “ pB2B2Sqz “ pB1Sqz “ pB2Sqz “ Sz “ 0.

Then S P OVW2 .

Proof. Define L P LVV by Lpx, yq “ py, xq Then L ˝ L “ idV .

Let R :“ S ˝ L. Then, for all x, y P R, we have Rpx, yq “ Spy, xq.

Unassigned HW: Show:

pB1B1Rqz “ pB1B2Rqz “ pB2B2Rqz “ pB1Rqz “ pB2Rqz “ rz “ 0.

Then, by Theorem 93.9, we have R P OVW2 .

Also, R ˝ L “ S ˝ L ˝ L “ S ˝ idV “ S and L P LVV Ď pOV V
1 .

Then S “ R ˝ L P OVW2 ˝ pOV V
1 “ OVW2 , as desired. �

94. Directional derivatives commute with one another

THEOREM 94.1. Let V :“ R2, W :“ R, f : V 99K W , z :“ 02.

Assume z P domrf2s. Then pB1B2fqz “ pB2B1fqz.

Proof. Let α :“ pB1B1fqz, β :“ pB1B2fqz.

Let γ :“ pB2B1fqz, δ :“ pB2B2fqz.

Want: β “ γ. Let λ :“ pB1fqz, µ :“ pB2fqz, ρ :“ fz.

Define C P CWV , L P LWV , P,Q P QW
V by:

Cpx, yq “ ρ,

Lpx, yq “ pλ, µq ‚V px, yq,

P px, yq “

„

α β

β δ



‚VbV ppx, yqb2q.

Qpx, yq “

„

α γ

γ δ



‚VbV ppx, yqb2q.
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Let R :“ f ´

ˆ

C ` L`
P

2!

˙

and S :“ f ´

ˆ

C ` L`
Q

2!

˙

.

By HW#9-5, we have:

pB1B1Rqz “ pB1B2Rqz “ pB2B2Rqz “ pB1Rqz “ pB2Rqz “ Rz “ 0.

Then, by Theorem 93.9, R P OVW2 .

Unassigned HW:

pB1B1Sqz “ pB2B1Sqz “ pB2B2Sqz “ pB1Sqz “ pB2Sqz “ Sz “ 0.

Then, by Theorem 93.10, S P OVW2 .

Since z P domrf2s Ď domrf 1s, we conclude that f is defined near z.

Then f ´ f “ 0WV near z. Then R ´ S “ ´
P

2
`
Q

2
near z.

Then 2 ¨ pR ´ Sq “ Q´ P near z.

Since R, S P OVW2 , we conclude that 2 ¨ pR ´ Sq P OVW2 .

Then Q´ P P OVW2 . Since Q,P P QW
V , we get Q´ P P QW

V .

Then Q´ P P pOVW2 q X pQW
V q.

So, since pOVW2 q X pQW
V q “ t0

W
V u, it follows that Q´ P “ 0WV .

Then P “ Q, so P p1, 1q “ Qp1, 1q.

Then α ` 2β ` δ “ P p1, 1q “ Qp1, 1q “ α ` 2γ ` δ.

Then 2β “ 2γ, and so β “ γ, as desired. �

THEOREM 94.2. Let X,Z P TNSR`, φ : R 99K X.

Let L P LZX , t P domrφ1s. Then pL ˝ φq1t “ Lpφ1tq.

Proof. We have pL ˝ φq1t “ pDtpL ˝ φqqp1q “
˚ ppDφtLq ˝ pDtφqqp1q

“ pL˝pDtφqqp1q “ LppDtφqp1qq “ Lpφ1tq ‰ /.

Then pL ˝ φq1t “ Lpφ1tq, as desired. �

THEOREM 94.3. Let V,X,Z P TNSR`.

Let f : V 99K X, L P LZX , u P V .

Then: BupL ˝ fq Ě L ˝ pBufq.

Proof. Want: @q P V , pBupL ˝ fqqq “
˚ pL ˝ pBufqqq.

Given q P V . Want: pBupL ˝ fqqq “
˚ pL ˝ pBufqqq.

Want: p pL ˝ pBufqqq ‰ / q ñ p pBupL ˝ fqqq “ pL ˝ pBufqqq q.

Assume pL ˝ pBufqqq ‰ /. Want: pBupL ˝ fqqq “ pL ˝ pBufqqq.

Let i :“ iuq , φ : f ˝ i.

Then pBupL ˝ fqqq “ pL ˝ f ˝ piuq qq
1
0 “ pL ˝ f ˝ iq10 “ pL ˝ φq10.

Also, pBufqq “ pf ˝ piuq qq
1
0 “ pf ˝ iq10 “ φ10. Then φ10 “ pBufqq.

Because pL ˝ pBufqqq ‰ /, it follows that pBufqq ‰ /.

Then φ10 “ pBufqq ‰ /, and so 0 P domrφ1s.

Then, by Theorem 94.2, we have : pL ˝ φq10 “ Lpφ10q.
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Then pBupL ˝ fqqq “ pL ˝ φq10 “ Lpφ10q

“ LppBufqqq “ pL ˝ pBufqqq, as desired. �

THEOREM 94.4. Let S, T P TNSR`, f : S 99K T , u P S.

Then (1) domrf2s Ď domrpBufq
1s and

(2) domrf 1s Ď domrBuf s.

Proof. By Theorem 92.8, (1) holds. By Theorem 92.6, (2) holds.

Then both (1) and (2) hold, as desired. �

THEOREM 94.5. Let S, T P TNSR`, f : S 99K T , u, v P S.

Then domrf2s Ď domrpBuBvfq
1s.

Proof. Let g :“ Bvf . By (2) of Theorem 94.4, domrg1s Ď domrBugs.

By (1) of Theorem 94.4, domrf2s Ď domrpBvfq
1s.

Then domrf2s Ď domrpBvfq
1s “ domrg1s

Ď domrBugs “ domrBuBvf s, as desired. �

THEOREM 94.6. Let V :“ R2, X P TNSR`, f : V 99K X, z :“ 02.

Assume z P domrf2s. Then pB1B2fqz “ pB2B1fqz.

Proof. Want: @j P IX , p pB1B2fqz qj “ p pB2B1fqz qj.

Given j P IX . Want: p pB1B2fqz qj “ p pB2B1fqz qj.

Want: πXj ppB1B2fqzq “ πXj ppB2B1fqzq.

Let L :“ πXj . Want: LppB1B2fqzq “ LppB2B1fqzq.

Claim 1: pB1B2pL ˝ fqqz “ LppB1B2fqzq.

Proof of Claim 1:

By two applications of Theorem 94.3, we get: B1B2pL˝fq Ě L˝pB1B2fq.

Then pB1B2pL ˝ fqqz “
˚ pL ˝ pB1B2fqqz.

By Theorem 94.5, we get domrf2s Ď domrB1B2f s.

Then z P domrf2s Ď domrB1B2f s,

so pB1B2fqz ‰ /, so LppB1B2fqzq ‰ /.

Then pB1B2pL ˝ fqqz “
˚ pL ˝ pB1B2fqqz “ LppB1B2fqzq ‰ /.

Then pB1B2pL ˝ fqqz “ LppB1B2fqzq.

End of proof of Claim 1.

Claim 2: pB2B1pL ˝ fqqz “ LppB2B1fqzq.

Proof of Claim 2:

By two applications of Theorem 94.3, we get: B2B1pL˝fq Ě L˝pB2B1fq.

Then pB2B1pL ˝ fqqz “
˚ pL ˝ pB2B1fqqz.
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By Theorem 94.5, we get domrf2s Ď domrB2B1f s.

Then z P domrf2s Ď domrB2B1f s,

so pB2B1fqz ‰ /, so LppB2B1fqzq ‰ /.

Then pB2B1pL ˝ fqqz “
˚ pL ˝ pB2B1fqqz “ LppB2B1fqzq ‰ /.

Then pB2B1pL ˝ fqqz “ LppB2B1fqzq.

End of proof of Claim 2.

Since L P LR
Z , we see that domrL2s “ X.

Since z P domrf2s Ď domrf s, we get fz P imrf s.

Since z P domrf2s and since fz P imrf s Ď X “ domrL2s,

we conclude, by Theorem 90.25, that z P domrpL ˝ fq2s.

Then, by Theorem 94.1, we have pB1B2pL ˝ fqqz “ pB2B1pL ˝ fqqz.

By Claim 1, pB1B2pL ˝ fqqz “ LppB1B2fqzq.

By Claim 2, LppB2B1fqzq “ pB2B1pL ˝ fqqz.

Then LppB1B2fqzq “ pB1B2pL ˝ fqqz “ pB2B1pL ˝ fqqz “ LppB2B1fqzq. �

DEFINITION 94.7. Let S P TNSR`, q, v, w P S.

Then jvwq : R2 Ñ S is defined by jvwq pa, bq “ q ` av ` bw.

Unassigned HW: S P TNSR`, q, v, w P S.

Show: R2 “ domrjs “ domrj1s “ domrj2s.

THEOREM 94.8. Let S,X P TNSR`, f : S 99K X.

Let q, v, w P S, j :“ jvwq .

Then: (1) B1pf ˝ jq “ pBvfq ˝ j and

(2) B2pf ˝ jq “ pBwfq ˝ j.

Proof. Proof of (1):

Unassigned HW.

End of proof of (1).

Proof of (2):

Want: @y P R2, pB2pf ˝ jqqy “ ppBwfq ˝ jqy.

Given y P R2. Want: pB2pf ˝ jqqy “ ppBwfq ˝ jqy.

Let p :“ jpyq and e :“ εV2 . Want: pBepf ˝ jqqy “ pBwfqp.

Want: pf ˝ j ˝ pieyqq
1
0 “ pf ˝ pi

w
p qq

1
0.

Want: j ˝ pieyq “ iwp .

Want: @t P R, pj ˝ pieyqqptq “ pi
w
p qptq.

Given t P R. Want: pj ˝ pieyqqptq “ pi
w
p qptq.
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We compute ieyptq “ y` te “ y` tεV2 “ py1, y2q` t ¨ p0, 1q “ py1, y2` tq.

We compute piwp qptq “ p`tw and p “ jpyq “ jvwq py1, y2q “ q`y1v`y2w.

Then pj ˝ pieyqqptq “ jppieyqptqq “ jpy1, y2 ` tq

“ q ` y1v ` py2 ` tqw

“ q ` y1v ` y2w ` tw

“ p` tw “ piwp qptq, as desired.

End of proof of (2). �

THEOREM 94.9. Let S,X P TNSR`, f : S 99K X.

Let q, v, w P S, j :“ jvwq .

Then: (1) B1B2pf ˝ jq “ pBvBwfq ˝ j and

(2) B2B1pf ˝ jq “ pBwBvfq ˝ j.

Proof. Proof of (1):

By (2) of Theorem 94.8, B2pf ˝ jq “ pBwfq ˝ j.

Let g :“ Bwf . Then B2pf ˝ jq “ g ˝ j.

By (1) of Theorem 94.8, B1pg ˝ jq “ pBvgq ˝ j.

Then B1B2pf ˝ jq “ B1pg ˝ jq “ pBvgq ˝ j “ pBvBwgq ˝ j.

End of proof of (1).

Proof of (2):

Unassigned HW.

End of proof of (2). �

THEOREM 94.10. Let S,X P TNSR`, f : S 99K X.

Let q P domrf2s, v, w P S.

Then pBvBwfqq “ pBwBvfqq.

Proof. Let j :“ jvwq , z :“ 02.

We have jz “ j02 “ jp0,0q “ q ` 0 ¨ v ` 0 ¨ w “ q.

Want: ppBvBwfq ˝ jqz “ ppBwBvfq ˝ jqz.

Since z P R2 “ domrj2s and jz “ q P domrf2s,

it follows, from Theorem 90.25, that z P domrpf ˝ jq2s.

Then, by Theorem 94.6, we get: pB1B2pf ˝ jqqz “ pB2B1pf ˝ jqqz.

By Theorem 94.9, we have:

B1B2pf ˝ jq “ pBvBwq ˝ j and B2B1pf ˝ jq “ pBwBvq ˝ j.

Then ppBvBwfq ˝ jqz “ pB1B2pf ˝ jqqz
“ pB2B1pf ˝jqqz “ ppBwBvfq˝jqz, as desired. �

THEOREM 94.11. Let V :“ R2, W :“ R, z :“ 02.

Then there exists f : V Ñ W s.t.
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(1) domrf 1s “ V , (2) @k P Nˆ1 , domrf pkqs “ V ˆz ,

(3) pB1B2fqz “ 0 and (4) pB2B1fqz “ 1.

Proof. Let X :“ πV1 and Y :“ πV2 .

Let S :“ t px, yq P R2 s.t. 2 ¨ |x| ď |y| u.

Let T : “ t px, yq P R2 s.t. 2 ¨ |y| ď |x| u.

Choose f : V Ñ W s.t.

(A) domrf 1s “ V , (B) @k P Nˆ1 , domrf pkqs “ V ˆz ,

(C) f “ XY on S and (D) f “ 0WV on T .

By (A) and (B), we have (1) and (2). Want: (3) and (4).

Since B2f “ 0WV on Rˆ t0u, we get pB1B2fqz “ 0, verifying (3).

Since B1f “ Y on t0u ˆ R, we get pB2B1fqz “ 1, verifying (4).

Then (3) and (4) hold, as desired. �

95. A higher order Chain Rule

THEOREM 95.1. Let f, g : RÑ R.

Then pg ˝ fq1 Ě pg1 ˝ fq ¨ pf 1q and

pg ˝ fq2 Ě pg2 ˝ fq ¨ ppf 1qb2q ` pg1 ˝ fq ¨ pf2q.

Proof. Unassigned HW. Follows from: Chain and Product Rules. �

THEOREM 95.2. Let V :“ R2, S :“ V bV , f : RÑ V , g : V Ñ R.

Then pg ˝ fq1 Ě pg1 ˝ fq ‚V pf
1q and

pg ˝ fq2 Ě pg2 ˝ fq ‚S ppf
1qb2q ` pg1 ˝ fq ‚V pf

2q.

Proof. Unassigned HW. Follows from: Chain and Product Rules, to-

gether with some tensor algebra. �

Let V :“ R2, S :“ V b V , f : RÑ V , g : V Ñ R and p P V .

Assume that p P domrf2s and that fp P domrg2s.

Assume that g has a “critical point” at fp, i.e., assume that g1fp “ 0.

Then, according to Theorem 95.2, pg ˝ fq2p “ pg2fpq ‚S ppf
1
pq
b2q.

In this situation, pg ˝ fq2p does not depend on f2p , only on g2fp and f 1p.

96. Positive definite criterion

DEFINITION 96.1. Let n P N, A P Rnˆn, m P r1..ns.

Then: PSmpAq :“ A | pr1..ms2q.

In Definition 96.1, PSmpAq is called the mth principal submatrix

of A. Its determinant is called the the mth principal minor of A.
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THEOREM 96.2. Let A :“

»

–

1 2 3

4 5 6

7 8 9

fi

fl.

Then PS1pAq “ r1s and PS2pAq “

„

1 2

4 5



and PS3pAq “ A.

THEOREM 96.3. Let n P N, V :“ Rn, S :“ V b V , z :“ 0n.

Let A P S. Assume that A is symmetric.

Then: p @u P V ˆz , BilinV V R
A pu, uq ą 0 q

ô p @u P V ˆz , A ‚S pu
b2q ą 0 q

ô p @m P r1..ns, detpPSmpAqq ą 0 q.

That is: a symmetric matrix is positive definite iff

all of its principal minors are positive.

There is a similar criterion for negative definite. However, for positive

and negative semidefinite, the criteria are slightly more complicated.

97. The second total derivative is symmetric

THEOREM 97.1. Let V,W P TNSR`, A P W b V , i P IV , j P IW .

Then Aj}i “ pA ˚RVW εVi qj.

Proof. Unassigned HW. �

THEOREM 97.2. Let V,W P TNSR` and let f : V 99K W .

Let u P V and let W 1 :“ W b V .

Then Buf : V 99K W and pBufq
1 : V 99K W 1 and

f 1 : V 99K W and Bupf
1q : V 99K W 1.

Proof. Unassigned HW. �

THEOREM 97.3. Let V,W P TNSR`, f : V 99K W .

Let p P domrf2s, u P V .

Then: pBupf
1qqp “ pBufq

1
p.

Proof. Let g :“ f 1, h :“ Buf . Want: pBugqp “ h1p.

Let W 1 :“ W b V . We have: g : V 99K W 1 and Bug : V 99K W 1.

Since p P domrf2s “ domrg1s Ď domrBugs, we get pBugqp P imrBugs.

Then pBugqp P imrBugs Ď W 1.

We have: h : V 99K W and h1 : V 99K W 1.

Since p P domrf2s Ď domrpBufq
1s “ domrh1s, we get h1p P imrh1s.



CLASS NOTES 241

Then h1p P imrh1s Ď W 1.

Want: @k P IW 1 , ppBugqpqk “ ph
1
pqk.

Given k P IW 1 . Want: ppBugqpqk “ ph
1
pqk.

Let L :“ πW
1

k . Want: LppBugqpq “ Lph1pq.

Want: pL ˝ pBugqqp “ pL ˝ ph
1qqp.

Since domrLs “ W 1, we get:

domrBugs “ domrL ˝ pBugqs and domrh1s “ domrL ˝ ph1qs.

We have p P domrBugs “ domrL ˝ pBugqs.

Also, p P domrh1s “ domrL ˝ ph1qs.

Then pL ˝ pBugqqp ‰ / ‰ pL ˝ ph1qqp.

Since k P IW 1 “ IWbV , choose i P IV and j P IW s.t. k “ j}i.

Then L “ πW
1

j}i . Let M :“ πWj .

By HW#10-5, both L ˝ ph1q ĎM ˝ pBihq and L ˝ pf 1q ĎM ˝ pBifq.

By Theorem 94.3, L ˝ pBugq Ď BupL ˝ gq.

By Theorem 94.3, M ˝ pBifq Ď BipM ˝ fq,

and so BupM ˝ pBifqq Ď BuBipM ˝ fq.

Since L ˝ pf 1q ĎM ˝ pBifq, we get BupL ˝ pf
1qq Ď BupM ˝ pBifqq.

Then L˝pBugq Ď BupL˝gq “ BupL˝pf
1qq Ď BupM ˝pBifqq Ď BuBipM ˝fq,

and so L ˝ pBugq Ď BuBipM ˝ fq,

and so pL ˝ pBugqqp
˚“ pBuBipM ˝ fqqp.

So, since / ‰ pL ˝ pBugqqp,

we see that: pL ˝ pBugqqp “ pBuBipM ˝ fqqp.

By Theorem 94.3, M ˝ pBihq Ď BipM ˝ hq.

By Theorem 94.3, M ˝ pBufq Ď BupM ˝ fq,

and so BipM ˝ pBufqq Ď BiBupM ˝ fq.

Then L ˝ ph1q ĎM ˝ pBihq Ď BipM ˝ hq “ BipM ˝ pBufqq Ď BuBupM ˝ fq,

and so L ˝ ph1q Ď BuBupM ˝ fq,

and so pL ˝ ph1qqp
˚“ pBuBipM ˝ fqqp.

So, since / ‰ pL ˝ ph1qqp,

we see that: pL ˝ ph1qqp “ pBiBupM ˝ fqqp.

Sicne M P LR
W , we get domrM2s “ W .

Since p P domrf2s Ď domrf s, we get fp P imrf s.

Then fp P imrf s Ď W “ domrM2s.

Since p P domrf2s and fp P domrM2s,

it follows, by Theorem 90.25, that: p P domrpM ˝ fq2s.

Then, by Theorem 94.10, we get: pBuBipM ˝ fqqp “ pBiBupM ˝ fqqp.

Then pL ˝ pBugqqp “ pBuBipM ˝ fqqp “ pBiBupM ˝ fqqp “ pL ˝ ph
1qqp. �
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THEOREM 97.4. Let V :“ R2, W :“ R. Then Df, g : V Ñ W s.t.

Bqpf
1q Ę pB1fq

1 and pB1gq
1 Ę B1pg

1q.

Proof. Define f, g : V Ñ W by fpx, yq “ y2 ¨ |x| and gpx, yq “ |y|.

Want: Bqpf
1q Ę pB1fq

1 and pB1gq
1 Ę B1pg

1q.

We have: @x ą 0, @y P R, fpx, yq “ xy2.

Then: @x ą 0, @y P R, p pB1fqpx, yq , pB2fqpx, yq q “ p y2 , 2xy q.

Then: @x ą 0, @y P R, f 1px, yq “ py2, 2xyq.

Then: @x ą 0, f 1px, 0q “ p0, 0q.

We have: @x ă 0, @y P R, fpx, yq “ ´xy2.

Then: @x ă 0, @y P R, p pB1fqpx, yq , pB2fqpx, yq q “ p´y2 , ´2xy q.

Then: @x ă 0, @y P R, f 1px, yq “ p´y2,´2xyq.

Then: @x ă 0, f 1px, 0q “ p0, 0q.

We have f “ pπV2 q
2 ¨ |πV1 | Ď

pOVW
2 ¨ pOVW

1 Ď pOVW
3 Ď OVW2 Ď OVW1 ,

and so f 1p0, 0q “ p0, 0q.

We conclude: @x P R, f 1px, 0q “ p0, 0q.

Then pB1pf
1qqp0, 0q “ p0, 0q, so p0, 0q P domrB1pf

1qs.

We have: @y P Rˆ0 , pB1fqp0, yq “ /,

and so  p B1f is defined near p0, 0q q,

and so pB1fq
1p0, 0q “ /,

and so p0, 0q R domrpB1fq
1s.

Since p0, 0q P domrB1pf
1qs and p0, 0q R domrpB1fq

1s,

we conclude that domrB1pf
1qs Ę domrpB1fq

1s.

Then B1pf
1q Ę pB1fq

1. Want: pB1gq
1 Ę B1pg

1q.

We have: @x, y P R, pB1gqpx, yq “ 0.

Then: @x, y P R, p pB1B1gqpx, yq , pB2B1gqpx, yq q “ p 0 , 0 q.

Then: @x, y P R, pB1gq
1px, yq “ p0, 0q.

Then: pB1gq
1p0, 0q “ p0, 0q, and so p0, 0q P domrpB1gq

1s.

We have: @x P R, pB2gqpx, 0q “ /.

Then: pB2gq
1p0, 0q “ /, and so p0, 0q R domrB2gs.

So, since domrB1pg
1qs Ď domrg1s Ď domrB2gs,

we get: p0, 0q R domrB1pg
1qs.

Since p0, 0q P domrpB1gq
1s and p0, 0q R domrB1pg

1qs,

we conclude that domrpB1gq
1s Ę domrB1pg

1qs.

Then pB1gq
1 Ę B1pg

1q, as desired. �

You are not required to read through the proof of the next theorem.

You should be aware, however, that it is true.
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THEOREM 97.5. Let V :“ R2, W :“ R, z :“ 02.

Then Dh : V Ñ W s.t. h is infinitely differentiable on V ˆz ,

and s.t. pB1ph
1qqz “ p0, 0q and pB1hq

1 “ p0, 1q.

Proof. Choose ψ : RÑ R infinitely differentiable s.t.

0 ď ψ ď 1 on R,

ψ “ 1 on r´1; 1s,

ψ “ 0 on Rzp´2; 2q and

|ψ1| ă 2 on R.

Define h : V Ñ W by:

hpx, yq “

$

’

’

&

’

’

%

`

ψ
`

x{
?
y
˘˘

¨ xy, if y ą 0,

0, if y “ 0,

pψ px{
?
´yqq ¨ xy, if y ă 0.

Want: h is infinitely differentiable on V ˆz ,

and pB1ph
1qqz “ p0, 0q and pB1hq

1
z “ p0, 1q.

Let S :“ tpx, yq s.t. |y| ă x2u.

Then h “ 0 on S, so h is infinitely differentiable on S.

Let X :“ πV1 and Y :“ πV2 . @x, y P R, Xpx, yq “ x and Y px, yq “ y.

Let T :“ tpx, yq P R2 | y ą 0u.

Then
?
Y is infinitely differentiable on T .

So, since h “ pψ ˝ pX{
?
Y qq ¨XY on T ,

we see that h is infinitely differentiable on T .

Let U :“ tpx, yq P R2 | y ă 0u.

Then
?
´Y is infinitely differentiable on U .

So, since h “ pψ ˝ pX{
?
´Y qq ¨XY on U ,

we see that h is infinitely differentiable on U .

Since h is infinitely differentiable on S, on T and on U ,

and since S Y T Y U “ V ˆz ,

we conclude that h is infinitely differentiable on V ˆz .

Want: pB1ph
1qqz “ p0, 0q and pB1hq

1
z “ p0, 1q.

Since h P pOVW
2 Ď OVW1 , we see that h1pzq “ p0, 0q.

Let R :“ tpx, 0q |x P Rˆ0 u. Then R Ď S.

Since h “ 0 on S, we conclude that h1 “ p0, 0q on S.

So, since R Ď S, we conclude that h1 “ p0, 0q on R.

So since h1p0, 0q “ h1pzq “ p0, 0q,

we conclude: @x P R, h1px, 0q “ p0, 0q.

Then pB1ph
1qqz “ p0, 0q. Want: pB1hq

1
z “ p0, 1q.

Since s`VWY “ p0, 1q, it suffices to show: pB1hq
T
z ´ Y P OVW1 .
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We have: @x P R, hpx, 0q “ 0.

Then: @x P R, pB1hqpx, 0q “ 0.

Then pB1hqz “ 0. It follows that pB1hq
T
z “ B1h.

Want: B1h´ Y P OVW1 .

We have: @x P R, @y ą 0,

pB1hqpx, yq “
`

ψ1
`

x{
?
y
˘˘

¨
`

1{
?
y
˘

¨ xy `
`

ψ
`

x{
?
y
˘˘

¨ y.

Recall: @x P R, pB1hqpx, 0q “ 0.

We have: @x P R, @y ă 0,

pB1hqpx, yq “ pψ
1 px{

?
´yqq ¨ p1{

?
´yq ¨ xy ` pψ px{

?
´yqq ¨ y.

Let η :“ B1h´ Y . Want: η P OVW1 .

Want: @x, y P R, |ηpx, yq| ď 2 ¨ |x| ¨
a

|y| ` x2.

Recall: @x P R, pB1hqpx, 0q “ 0. Also, @x P R, Y px, 0q “ 0.

Then: @x P R, ηpx, 0q “ 0´ 0 “ 0.

Then: @x P R, |ηpx, 0q| “ 0 “ 2 ¨ |x| ¨
a

|0| ` x2.

Want: @x P R, @y P Rˆ0 , |ηpx, yq| ď 2 ¨ |x| ¨
a

|y| ` x2.

Given x P R, y P Rˆ0 . Want: |ηpx, yq| ď 2 ¨ |x| ¨
a

|y| ` x2.

Let χ :“ ψ ´ C1
V .

Since 0 ď ψ ď 1 on R, we conclude: ´1 ď χ ď 0 on R.

Then |χ| ď 1 on R.

We have: If y ą 0, then

ηpx, yq “
`

ψ1
`

x{
?
y
˘˘

¨ x ¨
?
y `

`

χ
`

x{
?
y
˘˘

¨ y.

We have: If y ă 0, then

ηpx, yq “ ´ pψ1 px{
?
´yqq ¨ x ¨

?
´y ` pχ px{

?
´yqq ¨ y.

Then |ηpx, yq| ď |ψ1px, yq| ¨ |x| ¨
a

|y| ` |χpx{
a

|y|q| ¨ |y|.

Recall: |ψ1| ď 2 on R.

Then |ηpx, yq| ď 2 ¨ |x| ¨
a

|y| ` |χpx{
a

|y|q| ¨ |y|.

Want: |χpx{
a

|y|q| ¨ |y| ď x2.

Since |χ| ď 1 on R, we see that |χpx{
a

|y|q| ď 1.

We have: If |y| ď x2, then |χpx{
a

|y|q| ¨ |y| ď 1 ¨ |y| “ |y| ď x2.

Also, if |y| ą x2, then
a

|y| ą |x|, so |x{
a

|y| | ă 1, so ψpx{
a

|y|q “ 1,

so χpx{
a

|y|q “ 0, so |χpx{
a

|y|q| ¨ |y| “ 0 ď x2.

Then |χpx{
a

|y|q| ¨ |y| ď x2, as desired. �

THEOREM 97.6. Let V,W P TNSR`.

Let f : V 99K W , p P domrf2s, u, v P V .

Then: BilinV VWf2p
pu, vq “ pBuBvfqp.

Proof. Since p P domrf2s, we see that f2p P W b V b V .

Then Bilinf2p P BWV V , so Bilinf2p pu, vq P W , so Bilinf2p pu, vq ‰ /.
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By Theorem 97.3, pBvpf
1qqp “ pBvfq

1
p.

Let g :“ f 1, h :“ Bvf and A :“ f2p .

Then A “ g1p and pBvgqp “ pBvpf
1qqp “ pBvfq

1
p “ h1p.

By Theorem 93.7, BilinV VWA pu, vq “ A ˚R,VbV,W pub vq.

By HW#10-3, A ˚R,VbV,W pub vq “ pA ˚R,V,WbV vq ˚RVW u

By HW#9-2, pg1pq ˚R,V,WbV v ˚“ pBvgqp.

By HW#9-2, ph1pq ˚RVW u ˚“ pBuhqp.

We have: BilinV VWf2p
pu, vq “ BilinV VWA pu, vq

“ A ˚R,VbV,W pub vq

“ pA ˚R,V,WbV vq ˚RVW u

“ ppg1pq ˚R,V,WbV vq ˚RVW u
˚“ pBvgqp ˚RVW u

“ ph1pq ˚RVW u
˚“ pBuhqp
“ pBuBvfqp.

So, since / ‰ BilinV VWf2p
pu, vq, we conclude that

BilinV VWf2p
pu, vq “ pBuBvfqp, as desired. �

THEOREM 97.7. Let V,W P TNSR`, f : V 99K W , p P domrf2s.

Then BilinV VWf2p
P SBWV .

Proof. Since p P domrf2s, we get f2p P W b V b V , so Bilinf2p P BWV V .

Want: @u, v P V , BilinV VWf2p
pu, vq “ BilinV VWf2p

pv, uq.

Given u, v P V . Want: BilinV VWf2p
pu, vq “ BilinV VWf2p

pv, uq.

By Theorem 97.6, BilinV VWf2p
pu, vq “ pBuBvfqp

and BilinV VWf2p
pv, uq “ pBvBufqp.

By Theorem 94.10, pBuBvfqp “ pBvBufqp.

Then BilinV VWf2p
pu, vq “ pBuBvfqp

“ pBvBufqp “ BilinV VWf2p
pv, uq, as desired. �

98. Multivariable Choice Mean Value Theorem

THEOREM 98.1. Let m P N, U :“ Rm, W :“ R, φ : U 99K W .

Let δ :“ 0, J :“ p´δ; δq, A :“ Jm. Assume φ0V “ 0W .

Assume: @i P IU , A Ď domrBiφs.

Then: Dα : IU Ñ pOUU
1 s.t. φ “

ÿ

iPIU

ppBiφq ˝ αiq ¨ π
U
i on A.

Proof. Define S : IU ˆ AÑ 2R by:

Spi,xq “ t c P r0|xis s.t.
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pφpx1, . . . , xi´1, xi , 0, ¨ ¨ ¨ , 0qq

´ pφpx1, . . . , xi´1, 0 , 0, ¨ ¨ ¨ , 0qq

“ ppBiφqpx1, . . . , xi´1, c , 0, ¨ ¨ ¨ , 0qq ¨ xi u.

By the one-variable Mean Value Theorem, we have:

@i P IU , @x P A, Spi,xq ‰ H.

It follows that: @i P IU , @x P A, CHpSpi,xqq P Spi,xq.

Also, by definition of A, we have:

@i P IU , @x P A, xi P J .

So, since J is an interval and since 0 P J , we get:

@i P IU , @x P A, r0|xis Ď J .

By definition of S, we have: @i P IU , @x P A, Spi,xq Ď r0|xis.

Then: @i P IU , @x P A, CHpSpi,xqq P Spi,xq Ď r0|xis Ď J .

Define α : IU Ñ AA by:

αipxq “ px1, . . . , xi´1, CHpSpi,xqq , 0, . . . , 0q.

We have: @i P IU , @x P A, pαipxqqi “ CHpSpi,xqq P r0|xis,

so |pαipxqqi| ď |xi|, so ppαipxqqiq
2 ď x2i .

Then, @i P IU , @x P A, |αipxq|
2
U ď |x|2U .

Then, @i P IU , @x P A, |αipxq|U ď |x|U .

Then, by HW#9-1, we have: @i P IU , αi P pOUU
1 .

Then α : IU Ñ pOUU
1 . Want: φ “

ÿ

iPIU

ppBiφq ˝ αiq ¨ π
U
i on A.

Want: @x P A, φx “

˜

ÿ

iPIU

ppBiφq ˝ αiq ¨ π
U
i

¸

x

.

Given x P A. Want: φx “

˜

ÿ

iPIU

ppBiφq ˝ αiq ¨ π
U
i

¸

x

.

Want: φx “
ÿ

iPIU

ppBiφqpαipxqqq ¨ xi.

We compute: φx “ φx ´ 0W “ φx ´ φ0U “ pφpxqq ´ pφp0Uq

“ pφpx1, . . . , xmq ´ pφp0, . . . , 0qq

“
ÿ

iPIU

ˆ

pφpx1, . . . , xi´1, xi , 0, . . . , 0qq

´ pφpx1, . . . , xi´1, 0 , 0, . . . , 0qq

˙

“
ÿ

iPIU

ˆ

ppBiφqpx1, . . . , xi´1,CHpSpi,xqq, 0, . . . , 0qq ¨ xi

˙

“
ÿ

iPIU

ppBiφqpαipxqqq ¨ xi, as desired. �
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DEFINITION 98.2. Let U, V P TNSR`, λ : IU Ñ IV .

Then pλ P LVU is defined by pλpxq “
ÿ

iPIV

xiε
V
i .

THEOREM 98.3. Let U :“ R6 and V :“ R2ˆ3.

Let λ :“

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 ÞÑ p1, 1q

2 ÞÑ p1, 2q

3 ÞÑ p1, 3q

4 ÞÑ p2, 1q

5 ÞÑ p2, 2q

6 ÞÑ p2, 3q

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Then, @u, v, w, x, y, z P R, we have: pλpu, v, w, x, y, zq “

„

u v w

x y z



.

THEOREM 98.4. Let U :“ R6 and V :“ R2ˆ3.

Let λ :“

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 ÞÑ p1, 1q

2 ÞÑ p2, 1q

3 ÞÑ p1, 2q

4 ÞÑ p2, 2q

5 ÞÑ p1, 3q

6 ÞÑ p2, 3q

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Then, @u, v, w, x, y, z P R, we have: pλpu, v, w, x, y, zq “

„

u w y

v x z



.

THEOREM 98.5. Let U, V,W P TNSR`, λ : Iu Ñ IV , µ : IV Ñ IW .

Then zµ ˝ λ “ pµ ˝ pλ.

Proof. Unassigned HW. �

THEOREM 98.6. Let U P TNSR`, λ :“ idIU . Then pλ “ idU .

Proof. Unassigned HW. �

THEOREM 98.7. Let U, V P TNSR`, λ : IU Ñ IV .

Assume that λ : IU ãÑą IV .

Then pλ : U ãÑą V and ppλq´1 “ zpλ´1q.

Proof. Unassigned HW. �

THEOREM 98.8. Let U, V P TNSR`, λ : IU Ñ IV , i P IU .

Then pλpεUi q “ εVλpiq. Also, @x P U , πVλpiqp
pλpxqq “ πUi pxq.

Proof. Unassigned HW. �
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THEOREM 98.9. Let U, V,W P TNSR`.

Let L P LVU , f : V 99K W , x P U .

Then Bxpf ˝ Lq “ pBLpxqfq ˝ L.

Proof. Want: @p P U , pBxpf ˝ Lqqp “ ppBLpxqfq ˝ Lqp.

Given p P U . Want: pBxpf ˝ Lqqp “ ppBLpxqfq ˝ Lqp.

We have: pBxpf ˝ Lqqp “ pf ˝ L ˝ pixpqq
1
0.

Let y :“ Lpxq and let q :“ Lppq.

Then ppBLpxqfq ˝ Lqp “ ppByfq ˝ Lqp “ pByfqLppq
“ pByfqq “ pf ˝ piyqqq

1
0.

Want: pf ˝ L ˝ pixpqq
1
0 “ pf ˝ piyqqq

1
0.

Want: L ˝ pixpq “ iyq .

Want: @t P R, pL ˝ pixpqqptq “ piyqqptq.

Given t P R. Want: pL ˝ pixpqqptq “ piyqqptq.

We compute: pL ˝ pixpqqptq “ Lppixpqptqq “ Lpp` txq

“ pLppqq ` t ¨ pLpxqq

“ q ` ty “ piyqqptq, as desired. �

The following is another Choice MVT:

THEOREM 98.10. Let V P TNSR`, W :“ R, f : V 99K W .

Assume f0V “ 0W .

Assume: @j P IV , Bjf is defined near 0V .

Then: Dβ : IV Ñ OV V1 s.t. f “
ÿ

jPIV

ppBjfq ˝ βjq ¨ π
V
j near 0V .

Proof. Let m :“ #IV , U :“ Rm. Then IU “ r1..ms, so #IU “ m.

Since #IU “ m “ #IV , choose λ : IU ãÑą IV . Let φ :“ f ˝ pλ.

We have: @i P IU , pλpεUi q “ ελpiq.

Then: @i P IU , Biφ “ BεUi
pf ˝ pλq “ pB

pλpεUi q
fq ˝ pλ

“ pBεU
λpiq
fq ˝ pλ “ pBλpiqfq ˝ pλ.

Then: @i P IU , Biφ “ pBλifq ˝ λ.

Choose D P BV p0V q, s.t., @j P IV , D Ď domrBjf s.

Choose C P BUp0Uq s.t. pλ˚pCq Ď D.

Then, @i P IU , C Ď domrpBλifq ˝ λs “ domrBiφs.

Choose r ą 0 s.t. C “ BUp0U , rq.

Let δ :“ r{
?
m. Then BUp0U , δq Ď pδ; δq

m Ď BUp0U , rq.

Let J :“ p´δ; δq, A :“ Jm. Then BUp0U , δq Ď A Ď BUp0U , rq.

Then A Ď BUp0U , rq “ A Ď C.

Then, @i P IU , A Ď C Ď domrBiφs.
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By Theorem 98.1, choose α : IU Ñ pOUU
1 s.t.

φ “
ÿ

iPIU

ppBiφq ˝ αiq ¨ π
U
i on A.

Since λ : IU ãÑą IV , we see that pλ : U ãÑą V . Let κ :“ λ´1.

Then κ : IV ãÑą IU and pκ : V ãÑą U and pλ´1 “ pκ.

We have pκ P LUV Ď pOV U
1 and pλ P LVU Ď pOUV

1 .

Also, @i P IU , we have: αi P pOUU
1 .

Then, @i P IU , we have: pλ ˝ αi ˝ pκ P pOV V
1 .

Define β : IV Ñ OV V1 by: βj “ pλ ˝ ακj ˝ pκ.

Then, @i P IU , we have: βλi “
pλ ˝ αi ˝ pκ.

Want: f “
ÿ

jPIV

ppBjfq ˝ βjq ¨ π
V
j near 0V .

Choose B P BV p0V q s.t. pκ˚pBq Ď BUp0U , δq.

Want: f “
ÿ

jPIV

ppBjfq ˝ βjq ¨ π
V
j on B.

Want: @y P B, fy “

˜

ÿ

jPIV

ppBjfq ˝ βjq ¨ π
V
j

¸

y

.

Given y P B. Want: fy “

˜

ÿ

jPIV

ppBjfq ˝ βjq ¨ π
V
j

¸

y

.

Let x :“ pκy. Then pλx “ y. Then fy “ fppλxq “ pf ˝ λqx “ φx.

Want: φx “

˜

ÿ

jPIV

ppBjfq ˝ βjq ¨ π
V
j

¸

pλx

.

Recall that λ : IU ãÑą IV .

Want: φx “

˜

ÿ

iPIU

ppBλifq ˝ βλiq ¨ π
V
λi

¸

pλx

.

Recall: @i P IU , βλi “
pλ ˝ αi ˝ pκ.

Want: φx “

˜

ÿ

iPIU

ppBλifq ˝
pλ ˝ αi ˝ pκq ¨ π

V
λi

¸

pλx

.

Recall: @i P IU , Biφ “ pBλifq ˝ λ.

Want: φx “

˜

ÿ

iPIU

ppBiφq ˝ αi ˝ pκq ¨ π
V
λi

¸

pλx

.

We have pκppλxq “ x. Also, @i P IU , πVλip
pλxq “ πUi pxq “ pπ

U
i qx.

Want: φx “
ÿ

iPIU

ppBiφq ˝ αiqx ¨ pπ
U
i qx.

Since y P B Ď V “ domrpκs, we get: y P B X pdomrpκsq, so pκy P pκ˚pBq.
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Recall: x “ pκy and BUp0U , δq Ď A, and pκ˚pBq Ď BUp0U , δq.

Then x “ pκy P pκ˚pBq Ď BUp0U , δq Ď A.

Then, by choice of α, φx “

˜

ÿ

iPIU

ppBiφq ˝ αiq ¨ π
U
i

¸

x

.

Then: φx “
ÿ

iPIU

ppBiφ ˝ αiqx ¨ pπ
U
i qx, as desired. �

99. Functions with small derivatives are small

THEOREM 99.1. Let V,W P TNSR`, f : V 99K W , p P V .

Then: p p @m P IW , πWm ˝ f is continuous at p q

ô p f is continuous at p q q

Proof. Unassigned HW. �

THEOREM 99.2. Let V,W P TNSR`, α : V 99K W .

Then: p @q P V, |αq ´ α0V |
2
W “

ÿ

mPIW

|pπWm ˝ αqq ´ pπ
W
m ˝ αq0V |

2
q

and p p @m P IW , πWm ˝ α is continuous at 0V q

ô p α is continuous at 0V q q

and p @m P IW , domrπWm ˝ αs “ domrαs q

and p p @m P IW , πWm ˝ α P DNZR
V q ô p α P DNZWV q q

and p p @m P IW , pπWm ˝ αq0V “ 0 q ô p α0V “ 0W q q

and p p @m P IW , πWm ˝ α P CVZR
V q p α P CVZWV q q

and p p @m P IW , πWm ˝ α P BNZR
V q p α P BNZWV q q.

Proof. Unassigned HW. �

THEOREM 99.3. Let V,W P TNSR`, f : V 99K W , k P N0.

Then: p p @m P IW , πWm ˝ f P OV R
k q ô p f P OVWk q q

and p p @m P IW , πWm ˝ f P pOV R
k q ô p f P pOVW

k q q.

Proof. Unassigned HW. �

DEFINITION 99.4. Let V,W P TNSR`, f : V 99K W , S Ď V .

Then f is infinitely differentiable on S means:

@k P N, S Ď domrf pkqs.

THEOREM 99.5. Df : RÑ R2 s.t.

p f is infinitely differentiable on R q
& p f´1 “ f1 q & p Ec P p´1; 1q s.t. f 1c “ 02 q.
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Proof. Define g, h : RÑ R by gt “ t2, ht “ t3 ´ t.

Define f : RÑ R2 by ft “ pgt, htq.

Want: p f is infinitely differentiable on R q
& p f´1 “ f1 q & p Ec P p´1; 1q s.t. f 1c “ 02 q.

We compute f´1 “ pg´1, h´1q “ p1, 0q “ pg1, h1q “ f1.

Also, @t P R, f 1t “ p2t, 3t
2 ´ 1q.

Also, @t P R, f2t “ p2, 6tq.

Also, @t P R, f3t “ p0, 6q.

Also, @t P R, @k P r4..8q, f
pkq
t “ p0, 0q.

Then f is infinitely differentiable.

Want: Ec P p´1; 1q s.t. f 1c “ 02.

Assume: Dc P p´1; 1q s.t. f 1c “ 02. Want: Contradiction.

Choose c P p´1; 1q s.t. f 1c “ 02.

Then p2c, 3c2 ´ 1q “ f 1c “ 02 “ p0, 0q, so 2c “ 0 and 3c2 ´ 1 “ 0.

Since 2c “ 0, we conclude that c “ 0 and so 3c2 ´ 1 “ 3 ¨ 02 ´ 1 “ ´1.

Then 0 “ 3c2 ´ 1 “ ´1, so 0 “ ´1.

However, 0 ‰ ´1. Contradiction. �

THEOREM 99.6. Let V,W,X P TNSR`.

Let f : V 99K W , L P LXW , j P IV .

Then: BjpL ˝ fq Ě L ˝ pBjfq.

Proof. Let u :“ εVj . Then BjpL ˝ fq “ BupL ˝ fq and Bjf “ Buf .

By Theorem 94.3, we have BupL ˝ fq Ě L ˝ pBufq.

Then BjpL ˝ fq “ BupL ˝ fq Ě L ˝ pBufq “ L ˝ pBjfq. �

THEOREM 99.7. Let V,W P TNSR`, f : V 99K W , k P N0.

Assume f0V “ 0W . Assume: @j P IV , Bjf P OVWk . Then f P OVWk`1.

Proof. By Theorem 99.3, it suffices to show: @m P IW , πWm ˝ f P OV R
k`1.

Given m P IW . Want: πWm ˝ f P OV R
k`1.

Let g :“ πWm ˝ f . Want: g P OV R
k`1.

By Theorem 98.10, choose β : IV Ñ pOV V
1 s.t.

g “
ÿ

jPIV

ppBjgq ˝ βjq ¨ π
V
j near 0V .

Want: @j P IV , ppBjgq ˝ βjq ¨ π
V
j P OV R

k`1.

Given j P IV . Want: ppBjgq ˝ βjq ¨ π
V
j P OV R

k`1.

Since πVj P LWV Ď pOV R
1 , it suffices to show: pBjgq ˝ βj P OV R

k .

So, since βj P pOV V
1 , it suffices to show: Bjg P OV R

k .

So, since Bjg “ Bjppπ
W
m q ˝ fq Ě πWm ˝ pBjfq,



252 SCOT ADAMS

it suffices to show: πWm ˝ pBjfq P OV R
k .

By assumption, Bjf P OVWk .

So, by Theorem 99.3, we have πWm ˝ pBjfq P OV R
k , as desired. �

THEOREM 99.8. Let V,W P TNSR`, f : V 99K W , k P N0.

Assume f0V “ 0W . Assume: @j P IV , pBjfq0V “ 0W .

Assume: @i, j P IV , BiBjf P OVWk . Then f P OVWk`2.

Proof. Since f0V “ 0W , by Theorem 99.7,

it suffices to show: @j P IV , Bjf P OVWk`1 .

Given j P IV . Want: Bjf P OVWk`1 .

Let g :“ Bjf . Want: g P OVWk`1 .

Since g0V “ pBjfq0V “ 0W , by Theorem 99.7,

it suffices to show: @i P IV , Big P OVWk .

Given i P IV . Want: Big P OVWk .

We have Big “ BiBjf P OVWk , as desired. �

100. Properties of partials imply properties of function

THEOREM 100.1. Let V,W P TNSR`, f : V 99K W , p P V .

Then: (1) Bjpfpp` ‚qq “ pBjfqpp` ‚q

and (2) p p P domrf s q ñ

p p pBjpf
T
p q “ pBjfqpp`‚q q & p pfTp q

1 “ f 1pp`‚q q q

and (3) p f is defined near p q ñ p fpp` ‚q is defined near 0V q

and (4) p f is continuous at p q ñ p fpp`‚q is continuous at 0V q.

Proof. Unassigned HW. �

THEOREM 100.2. Let V,W P TNSR`, f : V 99K W , p P V .

Assume: @j P IV , Bjf is defined near p and continuous at p.

Then p P domrf 1s.

Proof. Choose i P IV . Then p P domrBif s Ď domrf s. Let g :“ fTp .

Then g0V “ 0W and g1 “ f 1pp` ‚q. Then domrf 1s “ pdomrg1sq ` p.

It suffices to show: 0V P domrg1s.

By HW#12-5, it suffices to show:

@j P IV , Bjg is defined near 0V and continuous at 0V .

Given j P IV . Want: Bjg is defined near 0V and continuous at 0V .

Since p P domrf s and g “ fTp , we get Bjg “ pBjfqpp` ‚q.

Then domrBjgs “ pdomrBjf sq ´ p.

So, since Bjf is defined near p,

we see that Bjg is defined near 0V .
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Want: Bjg is continuous at 0V .

Since Bjg “ pBjfqpp` ‚q and since Bjf is continuous at p,

we see that Bjg is continuous at 0V , as desired. �

DEFINITION 100.3. Let X and Y be metric spaces.

Let f : X 99K Y and let p P X.

Then f is continuous near p (from X to Y ) means:

DB P BXppq s.t. f is continuous on B from X to Y .

THEOREM 100.4. Let V,W P TNSR`, f : V 99K W , p P V .

Assume: f 1 is continuous near p.

Then: @j P IV , Bjf is continuous near p.

Proof. Given j P IV . Want: Bjf is continuous near p.

Since f 1 is continuous near p,

choose B P BV ppq s.t. f 1 is continuous on B.

Want: Bjf is continuous on B.

Want: @q P B, Bjf is continuous at q.

Given q P B. Want: Bjf is continuous at q.

Define L P LWWbV by Lpxq “ x ˚RVW εVj . Then L is continuous.

Also, imrf 1s Ď W b V “ domrLs, so imrf 1s Ď domrLs.

We have Bjf Ě f 1 ˚RVW εVj “ L ˝ pf 1q, so Bjf Ě L ˝ pf 1q.

Since f 1 is continuous on B, we get: B Ď domrf 1s.

So, since imrf 1s Ď domrLs, we conclude: B Ď domrL ˝ pf 1qs.

So, since Bjf Ě L ˝ pf 1q, we conclude: Bjf “ L ˝ pf 1q on B.

So, since q P B, by the Recentering Lemma,

we conclude that: Bjf “ L ˝ pf 1q near q.

It therefore suffices to show: L ˝ pf 1q is continuous at q.

Since q P B and since f 1 is continuous on B,

it follows that: f 1 is continuous at q.

We have q P B Ď domrf 1s, so f 1q P imrf 1s.

Since f 1q P imrf 1s Ď domrLs and since L is continuous,

we see that: L is continuous at f 1q.

So, since f 1 is continuous at q,

we get: L ˝ pf 1q is continuous at q, as desired. �

101. Defined at total derivatives of each partial

derivative

You are not expected to know the result or the proof in this section.
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It shows that definedness of the total derivative of each partial does

not guarantee definedness of the second total derivative.

THEOREM 101.1. Let V :“ R2, W :“ R, z :“ 02.

Then: Df : V Ñ W s.t. z P domrpB1fq
1s, z P domrpB2fq

1s, z R domrf2s.

Proof. Choose an infinitely differentiable function λ : RÑ R s.t.

0 ď λ ď 1 on R and |λ1| ď 100 on R and

λ “ 0 on p´8; 1{2s Y r3{2;8q and λ1 “ 1.

Choose an infinitely differentiable function ρ : RÑ R s.t.

0 ď ρ ď 1 on R and |ρ1| ď 100 on R and

ρ “ 1 on p´8; 2s and ρ “ 0 on r4;8q.

Define η : R2 Ñ R by

ηpx, yq “

#

ppλpy{xqq ¨ pρpx2 ` y2qq ¨ x, if x ‰ 0

0, if x “ 0.

Then: @x, y P R, px2 ` y2 ě 4 q ñ p ηpx, yq “ 0 q.

Also: @x P r´1; 1s, ηpx, xq “ x.

Then: pBp1,1qηqp0, 0q “ 1.

Also: @x, y P R, p y R r x{2 | 3x{2 s q ñ p ηpx, yq “ 0 q.

Also: @y P Rˆ0 , because η “ 0 near p0, yq,

we conclude: pB1ηqpx, yq “ 0 and pB2ηqpx, yq “ 0.

Also, because η “ 0 on Rˆ t0u, we conclude: pB1ηqp0, 0q “ 0.

Also, because η “ 0 on t0u ˆ R, we conclude: pB2ηqp0, 0q “ 0.

Since pB1ηqp0, 0q “ 0 and pB2ηqp0, 0q “ 0 and pBp1,1qηqp0, 0q “ 1,

it follows that η1pzq “ /, i.e., that z ‰ domrη1s.

We compute: @x P Rˆ0 , @y P R,

pB1ηqpx, yq “ pλ1py{xqq ¨ pρpx2 ` y2qq ¨ p´y{xq

` pλpy{xqq ¨ pρ1px2 ` y2qq ¨ p2x2q

` pλpy{xqq ¨ pρpx2 ` y2qq ¨ p1q and

pB2ηqpx, yq “ pλ1py{xqq ¨ pρpx2 ` y2qq ¨ p1q

` pλpy{xqq ¨ pρ1px2 ` y2qq ¨ p2xyq.

Also: @x P Rˆ0 , @y P R, p |y{x| ą 3{2 q ñ pλpy{xq “ 0 q.

Then: @x P Rˆ0 , @y P R, p |y{x| ą 3{2 q ñ p ηpx, yq “ 0 q.

Then: @x P Rˆ0 , @y P R,

p |y{x| ą 3{2 q ñ p pB1ηqpx, yq “ pB2ηqpx, yq “ 0 q.

Also: @x P Rˆ0 , @y P R, px ą 2 q ñ p ρpx2 ` y2q “ 0 q.

Then: @x P Rˆ0 , @y P R, px ą 2 q ñ p ηpx, yq “ 0 q.

Then: @x P Rˆ0 , @y P R,

px ą 2 q ñ p pB1ηqpx, yq “ pB2ηqpx, yq “ 0 q.
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Also: @x P Rˆ0 , @y P R, p y ą 2 q ñ p ρpx2 ` y2q “ 0 q.

Then: @x P Rˆ0 , @y P R, p y ą 2 q ñ p ηpx, yq “ 0 q.

Then: @x P Rˆ0 , @y P R,

p y ą 2 q ñ p pB1ηqpx, yq “ pB2ηqpx, yq “ 0 q.

It follows that: @x P Rˆ0 , @y P R,

|pB1ηqpx, yq| ď 100¨1¨p3{2q ` 1¨100¨2¨22 ` 1¨1¨1 “ 953.

It also follows that: @x P Rˆ0 , @y P R,

|pB2ηqpx, yq| ď 100 ¨ 1 ¨ 1 ` 1 ¨ 100 ¨ 2 ¨ 2 ¨ 2 “ 900.

So, since B1η “ B2η “ 0 on t0u ˆ R, we get:

@x, y P R, |pB1ηqpx, yq| ď 1000 and |pB2ηqpx, yq| ď 1000.

Define q, c P RN by qi “ p1{2q
i and ci “ p1{100qi.

@i P N, define gi : V Ñ W by gipx, yq “ c2i ¨

ˆ

η

ˆ

x´ qi
ci

,
y

ci

˙˙

.

Then: @i P N, pqi, 0q R domrg1is.

Also: @i P N, @x, y P R,

|pB1gqpx, yq| ď pc2i q ¨

ˆ

1

ci

˙

¨ 1000 “ 1000 ¨ ci and

|pB2gqpx, yq| ď pc2i q ¨

ˆ

1

ci

˙

¨ 1000 “ 1000 ¨ ci.

We have: @x, y P R,

px ă ´2 q ñ p ηpx, yq “ 0 q.

Then: @i P N, @x, y P R,

px ă qi ´ 2ci q ñ p gipx, yq “ 0 q.

Then: @i P N, @x, y P R,

px ă qi ´ 2ci q ñ p pB1giqpx, yq “ pB2giqpx, yq “ 0 q.

We have: @i P N, qi`1 “ 1{p2i`1q ă p1{2qi ´ 2 ¨ p1{100qi “ qi ´ 2ci.

Then: @i P N, @x, y P R,

p |x| ă qi`1 q ñ px ă qi`1 q ñ px ă qi ´ 2ci q

ñ p pB1giqpx, yq “ pB2giqpx, yq “ 0 q

ñ p p |pB1giqpx, yq| ď 1000 ¨ ci ¨ px{qi`1q
2 q &

p |pB2giqpx, yq| ď 1000 ¨ ci ¨ px{qi`1q
2 q q.

Also: @i P N, @x, y P R,

p |x| ě qi`1 q ñ p px{qi`1q
2 ě 1 q

ñ p p |pB1giqpx, yq| ď 1000 ¨ ci ¨ px{qi`1q
2 q &

p |pB2giqpx, yq| ď 1000 ¨ ci ¨ px{qi`1q
2 q q.

We conclude: @i P N, @x, y P R,

p p |pB1giqpx, yq| ď 1000 ¨ ci ¨ px{qi`1q
2 q &

p |pB2giqpx, yq| ď 1000 ¨ ci ¨ px{qi`1q
2 q q.
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We have: @i P N, ci ¨ p1{qi`1q
2 “ p1{100qi ¨ p2iq2 “ p4{100qi ă 1.

We conclude: @i P N, @x, y P R,

p p |pB1giqpx, yq| ď 1000x2 q &

p |pB2giqpx, yq| ď 1000x2 q q.

We have: @i P N, qi`1 ` 2ci`1 “ p1{2q
i`1 ` 2 ¨ p1{100qi`1

ă p1{2qi ´ 2 ¨ p1{100qi “ qi ´ 2ci.

@i P N, let Ti :“ tpx, yq | qi ´ 2ci ď x ď qi ` 2ciu.

Then: @i, j P N, p i ‰ j q ñ pTi X Tj “ Hq.

We have: @x, y P R,

p |x| ą 2 q ñ p ηpx, yq “ 0 q.

Then: @i P N, @x, y P R,

p |x´ qi| ą 2ci q ñ p gipx, yq “ 0 q.

Then: @i P N, @x, y P R,

p gipx, yq ‰ 0 q ñ p |x´ qi| ď 2ci q ñ px P Ti q.

@i P N, let Si :“ tpx, yq | gipx, yq ‰ 0u.

Then: @i P N, Si Ď Ti.

Recall: @i, j P N, p i ‰ j q ñ pTi X Tj “ Hq.

Let f :“ g1 ` g2 ` ¨ ¨ ¨ .

Then, @p P R2, Di P N s.t.: f “ gi near p.

Then, @p P R2, Di P N s.t.

p f 1ppq “ g1ippq q& p pB1fqppq “ pB1giqppq q& p pB2fqppq “ pB2giqppq q.

Then: @x, y P R,

p p |pB1fqpx, yq| ď 1000x2 q &

p |pB2fqpx, yq| ď 1000x2 q q.

Then B1f, B2f P pOVW
2 .

Since B1f, B2f P pOVW
2 Ď OVW1 , we get: pB1fq

1 “ z “ pB2fq
1.

Then z P domrpB1fq
1s and z P domrpB2fq

1s. Want: z R domrf2s.

Recall: @i P N, pqi, 0q R domrg1is.

Also: @i P N, f “ gi near pqi, 0q.

Then: @i P N, pqi, 0q R domrf 1s.

So, since q‚ Ñ 0 in R, we see that f 1 is not defined near z.

Then z R domrf2s, as desired. �

102. Partial derivative properties to total derivative

properties

THEOREM 102.1. Let V,W P TNSR`, f : V 99K W .

Let p P V , j P IV , k P IW .

Then: πk ˝ pBjfq Ě πk}j ˝ pf
1q.
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Proof. Want: @p P V , pπk ˝ pBjfqq “
˚ pπk}j ˝ pf

1qqp.

Given p P V . Want: pπk ˝ pBjfqq “
˚ pπk}j ˝ pf

1qqp.

Want: p pπk}j ˝ pf
1qqp ‰ / q ñ p pπk ˝ pBjfqq “ pπk}j ˝ pf

1qqp q.

Assume: pπk}j ˝ pf
1qqp ‰ /. Want: pπk ˝ pBjfqq “ pπk}j ˝ pf

1qqp.

Let ˚ :“ ˚RVW . By HW#9-2, pBjfqp “
˚ pf 1pq ˚ pε

V
j q.

As πk}jpf
1
pq “ pπk}j ˝ pf

1qqp ‰ /, we conclude that f 1p ‰ /.

Then f 1p P imrf 1s Ď W b V , so pf 1pq ˚ pε
V
j q P W , so pf 1pq ˚ pε

V
j q ‰ /.

Then pBjfqp “
˚ pf 1pq ˚ pε

V
j q ‰ /, so pBjfqp “ pf

1
pq ˚ pε

V
j q.

Then pπk ˝ pBjfqq “ BkppBjfqpq “ πkppf
1
pq ˚ pε

V
j qq “ ppf 1pq ˚ pε

V
j qqk

“ ppf 1pq ˚ pε
V
j qqk}H “

ÿ

iPIV

ppf 1pqk}iq ¨ ppε
V
j qi}Hq

“
ÿ

iPIV

ppf 1pqk}iq ¨ ppε
V
j qiq

“
`

ppf 1pqk}jq ¨ ppε
V
j qjq

˘

`

¨

˝

ÿ

iPIV ztju

ppf 1pqk}iq ¨ ppε
V
j qiq

˛

‚

“
`

ppf 1pqk}jq ¨ 1
˘

`

¨

˝

ÿ

iPIV ztju

ppf 1pqk}iq ¨ 0

˛

‚

“ pf 1pqk}j “ πk}jpf
1
pq “ pπk}j ˝ pf

1qqp. �

DEFINITION 102.2. Let X and Y be metric spaces.

Let f : X 99K Y , p P X.

Then f is bounded near p (from X to Y ) means:

DB P BXppq s.t. f˚pBq is bounded in Y .

THEOREM 102.3. Let X and Y be metric spaces.

Let f : X 99K Y , p P X.

Assume: f is continuous at p from X to Y .

Then: f is bounded near p from X to Y .

Proof. Want: DB P BXppq s.t. f˚pBq is bounded in Y .

Let C :“ BY pfp, 1q. Then C P BY pfpq.
So, since f is continuous at p from X to Y ,

choose B P BXppq s.t. f˚pBq Ď C.

Want: f˚pBq is bounded in Y .

Since C “ BY pfp, 1q P BY and since f˚pBq Ď C,

it follows that f˚pBq is bounded in Y , as desired. �
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THEOREM 102.4. . Let V,W P TNSR`, f : V 99K W , p P V .

Then: p f 1 is continuous near p q

ô p @j P IV , Bjf is continuous near p q.

Proof. Proof of ñ: This is Theorem 100.4. End of proof of ñ.

Proof of ð:

Assume: @j P IV , Bjf is continuous near p.

Want: f 1 is continuous near p.

Choose B P BV ppq s.t. @j P IV , Bjf is continuous on B.

Want: f 1 is continuous on B. Want: @q P B, f 1 is continuous at q.

Given q P B. Want: f 1 is continuous at q.

By Theorem 99.1,

we wish to show: @` P IWbV , π` ˝ pf
1q is continuous at q.

Given ` P IWbV . Want: π` ˝ pf
1q is continuous at q.

Since ` P IWbV , choose j P IV , k P IW s.t. ` “ k}j.

Want: πk}j ˝ pf
1q is continuous at q.

Since Bjf is continuous on B and q P B,

we conclude that Bjf is continuous at q.

Then, by Theorem 99.1, πk ˝ pBjfq is continuous at q.

Also, by Theorem 102.1, we have: πk ˝ pBjfq Ď πk}j ˝ pf
1q.

So, by Theorem 44.13,

we wish to show: q P domrπk}j ˝ pf
1qs.

Since imrf 1s Ď W bV “ domrπk}js, we get: domrf 1s “ domrπk}j ˝pf
1qs.

We therefore wish to show: q P domrf 1s.

By Theorem 100.2, it suffices to show:

@i P IV , Bif is defined near q and continuous at q.

Given i P IV . Want: Bif is defined near q and continuous at q.

Since Bif is continuous on B and q P B,

we see that Bif is continuous at q.

Want: Bif is defined near q.

Since q P B P BV , by the Recentering Lemma (Theorem 38.16),

choose A P BV pqq s.t. A Ď B.

By the choice of B, we know that Bif is continuous on B,

so B Ď domrBif s.

Since A P BV pqq and A Ď B Ď domrBif s,

it follows that Bif is defined near q, as desired.

End of proof of ð. �
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THEOREM 102.5. Let V,W P TNSR`, f : V 99K W , p P V .

Assume: @j P IV , Bjf is defined near p and bounded near p.

Then f is continuous near p.

Proof. Choose B P BV ppq s.t., @j P IV ,

B Ď domrBjf s and pBjfq˚pBq is bounded in W .

Want: f is continuous on B. Want: @y P B, f is continuous at y.

Given y P B. Want: f is continuous at y. Let g :“ fTy .

Want: g is continuous at 0V . Want: g P CVZWV .

Since pOVW
1 Ď OVW0 “ CVZWV , it suffices to show: g P pOVW

1 .

Then, by HW#12-3, we wish to prove: @j P IV , Bjg P pOVW
0 .

Given j P IV . Want: Bjg P pOVW
0 .

We have Bjg “ Bjpf
T
y q “ pBjfqpy ` ‚q.

Then domrBjgs “ pdomrBjf sq ´ y. Recall: B Ď domrBjf s.

Then B ´ y Ď pdomrBjf sq ´ y “ domrBjgs.

Because Bjg “ pBjfqpy ` ‚q,

we conclude that pBjgq˚pB ´ yq “ pBjfq˚pBq,

so, since pBjfq˚pBq is bounded in W ,

it follows that pBjgq˚pB ´ yq is bounded in W .

Since B P BV , we get: B ´ y P BV . Also, 0V “ y ´ y P B ´ y.

As 0V P B ´ y P BV , by the Recentering Lemma (Theorem 38.16),

choose A P BV p0V q s.t. A Ď B.

Then A Ď B ´ y Ď domrBjgs.

So, as A P BV p0V q, we see that Bjg is defined near 0V .

That is, Bjg P DNZWV .

Also, pBjgq˚pAq Ď pBjgq˚pB ´ yq,

so, since pBjgq˚pB ´ yq is bounded in W ,

we conclude that pBjgq˚pAq is bounded in W .

So, since A P BV p0V q and since Bjg P DNZWV ,

we see that Bjg P BNZWV .

Then Bjg P BNZWV “ pOVW
0 , as desired. �

THEOREM 102.6. Let V,W P TNSR`, f : V 99K W , p, u P V .

Assume: @k P IW , Bupπ
W
k ˝ fq is defined near p.

Then Buf is defined near p.

Proof. Choose B P BV ppq s.t., @k P IW , B Ď domrBupπ
W
k ˝ fqs.

Want: B Ď domrBuf s. Want: @q P B, q P domrBuf s.

Given q P B. Want: q P domrBuf s.
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We have: @k P IW , q P B Ď domrBupπ
W
k ˝ fqs.

Then, by HW#13-2, we get: q P domrBuf s, as desired. �

Let X and Y be metric spaces, f : X 99K Y , p P X.

Recall: If f is continuous at p, the p P domrf s.

Let X and Y be metric spaces, f : X 99K Y , S Ď X.

Assue f is continuous on S. Then S Ď domrf s.

THEOREM 102.7. Let V,W P TNSR`, f : V 99K W , p P V .

Assume: @j P IV , Bjf is defined near p and continuous at p.

Then f 1 is continuous at p.

Proof. By Theorem 100.2, we get: p P domrf 1s.

Since f : V 99K W , we get f 1 : V 99K W b V .

By Theorem 99.1, we wish to show:

@` P IW b V , π` ˝ pf
1q is continuous at p.

Given ` P IW b V . Want: π` ˝ pf
1q is continuous at p.

Since ` P IW b V , choose j P IV , k P IW s.t. ` “ k}j.

Since Bjf is continuous at p, by Theorem 99.1,

we see that πk ˝ pBjfq is continuous at p.

Also, p P domrf 1s Ď domrπ` ˝ pf
1qs.

By Theorem 102.1, we get: π` ˝ pf
1q Ď πk ˝ pBjfq.

So, since p P domrπ` ˝ pf
1qs and since πk ˝ pBjfq is continuous at p,

by Theorem 44.13, we get: π` ˝ pf
1q is continuous at p. �

THEOREM 102.8. Let X and Y be metric spaces.

Let f : X 99K Y , B P BX , p P B. Assume: f is continuous on B.

Then f is defined near p and continuous at p.

Proof. Since f is continuous on B and p P B,

we conclude that f is continuous at p.

Want: f is defined near p.

By the Recentering Lemma (Theorem 38.16),

choose A P BV ppq s.t. A Ď B. Want: A Ď domrf s.

Since f is continuous on B, we get: B Ď domrf s.

Then A Ď B Ď domrf s, as desired. �

See Theorem 100.4 for the converse to the next result, Theorem 102.9:
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THEOREM 102.9. Let V,W P TNSR`, f : V 99K W , q P V .

Assume: @j P IV , Bjf is continuous near q.

Then: f 1 is continuous near q.

Proof. Choose B P BV pqq s.t., @j P IV , Bjf is continuous on B.

Want: f 1 is continuous on B. Want: @p P B, f 1 is continuous at p.

Given p P B. Want: f 1 is continuous at p.

By Theorem 102.8, it suffices to show:

@j P IV , Bjf is defined near p and continuous at p.

Given j P IV . Want: Bjf is defined near p and continuous at p.

By the choice of B, we know that Bjf is continuous on B.

Then, by Theorem 102.8, Bjf is defined near p and continuous at p. �

The next result is the order two version of Theorem 102.5.

THEOREM 102.10. Let V,W P TNSR`, f : V 99K W , p P V .

Assume: @i, j P IV , BiBjf is defined near p and bounded near p.

Then f 1 is continuous near p.

Proof. By Theorem 102.9, it suffices to show:

@j P IV , Bjf is continuous near p.

Given j P IV . Want: Bjf is continuous near p.

Let g :“ Bjf . Want: g is continuous near p.

By Theorem 102.5, it suffices to show:

@i P IV , Big is defined near p and bounded near p.

Given i P IV . Want: Big is defined near p and bounded near p.

By assumption, BiBjf is defined near p and bounded near p.

So since Big “ BiBjf , we get:

Big is defined near p and bounded near p, as desired. �

Recall Theorem 99.6.

THEOREM 102.11. Let X be a metric space, Y a set.

Let f, g : X 99K Y , p P X.

Assume that f Ď g and that f is defined near p.

Then f “ g near p.

Proof. Unassigned HW. �

THEOREM 102.12. Let X be a metric space, Y a set.

Let f, g : X 99K Y , p P X.

Assume that f “ g near p and that f is defined near p.

Then g is defined near p.
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Proof. Unassigned HW. �

THEOREM 102.13. Let X and Y be metric spaces.

Let f, g : X 99K Y , p P X.

Assume that f “ g near p and that f is continuous at p.

Then g is continuous at p.

Proof. Unassigned HW. �

THEOREM 102.14. Let V,W P TNSR`.

Let f, g : V 99K W , p P V , j P IV .

Assume that f “ g near p. Then Bjf “ Bjg near p.

Proof. Unassigned HW. �

THEOREM 102.15. Let V,W P TNSR`.

Let f, g : V 99K W , p P V .

Assume that f “ g near p. Then f 1 “ g1 near p.

Proof. Unassigned HW. �

THEOREM 102.16. Let V,W P TNSR`, f, g : V 99K W , p P V .

Assume: @i, j P IV , BiBjf is defined near p and continuous at p.

Then f2 is continuous at p.

Proof. By Theorem 102.3, @i, j P IV , BiBjf is bounded near p.

Also, by assumption, @i, j P IV , BiBjf is defined near p.

Then, by Theorem 102.10, f 1 is continuous near p.

Then: f 1 is continuous at p and f 1 is defined near p.

Claim: Let i, j P IV , k P IW .

Then: Bipπk}j ˝ pf
1qq “ πk ˝ pBiBjfq near p.

Proof of Claim:

Since f 1 is defined near p, and since imrf 1s Ď W b V “ domrπk}js,

we see that πk}j ˝ pf
1q is defined near p.

By Theorem 102.1, πk ˝ pBjfq Ě πk}j ˝ pf
1q.

Then: πk}j ˝ pf
1q Ď πk ˝ pBjfq.

So, since πk}j ˝ pf
1q is defined near p, it follows that:

πk}j ˝ pf
1q “ πk ˝ pBjfq near p.

Then: Bipπk}j ˝ pf
1qq “ Bipπk ˝ pBjfqq near p.

Want: Bipπk ˝ pBjfqq “ πk ˝ pBiBjfq near p.

By assumption, BiBjf is defined near p.
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So, since imrBiBjf s Ď W “ domrπks,

we see that πk ˝ pBiBjfq is defined near p.

By Theorem 94.3, Bipπk ˝ pBjfqq Ě πk ˝ pBiBjfq.

So, since πk ˝ pBiBjfq is defined near p, it follows that:

Bipπk ˝ pBjfqq “ πk ˝ pBiBjfq near p, as desired.

End of proof of Claim.

Let g :“ f 1. Want: g1 is continuous at p.

Since f : V 99K W and g “ f 1, we get g : V 99K W b V .

By Theorem 102.7, it suffices to show:

@i P IV , Big is defined near p and continuous at p.

Given i P IV . Want: (A) Big is defined near p and

(B) Big is continuous at p.

Proof of (A):

By HW#13-2, it suffices to show:

@` P IWbV , Bipπ` ˝ gq is defined near p.

Given ` P IWbV . Want: Bipπ` ˝ gq is defined near p.

Since ` P IWbV , choose j P IV and k P IW s.t. ` “ k}j.

By assumption, BiBjf is defined near p.

So, since imrBiBjf s Ď W “ domrπks,

we see that πk ˝ pBiBjfq is defined near p.

By the claim: Bipπk}j ˝ pf
1qq “ πk ˝ pBiBjfq near p.

So, since ` “ k}j and g “ f 1, we see that:

Bipπ` ˝ gq “ πk ˝ pBiBjfq near p.

So, since πk ˝ pBiBjfq is defined near p, we conclude:

Bipπ` ˝ gq is defined near p, as desired.

End of proof of (A).

Proof of (B):

By Theorem 99.1, it suffices to show:

@` P IWbV , π` ˝ pBigq is continuous at p.

Given ` P IWbV . Want: π` ˝ pBigq is continuous at p.

By (A), Big is defined near p. Then p P domrBigs.

So, since imrBigs Ď W b V “ domrπ`s,

we see that p P domrπ` ˝ pBigqs.

By Theorem 94.3, Bipπ` ˝ gq Ě π` ˝ pBigq.

Then, by Theorem 44.13, it suffices to show:
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Bipπ` ˝ gq is continuous at p.

Since ` P IWbV , choose j P IV and k P IW s.t. ` “ k}j.

By assumption, BiBjf is continuous at p.

Then, by Theorem 99.1,

we see that πk ˝ pBiBjfq is continuous at p.

By the claim, Bipπk}j ˝ pf
1qq “ πk ˝ pBiBjfq near p.

So, since ` “ k}j and g “ f 1, we see that:

Bipπ` ˝ gq “ πk ˝ pBiBjfq near p.

So, since πk ˝ pBiBjfq is continuous at p, by Theorem 65.7, we have:

Bipπ` ˝ gq is continuous at p, as desired.

End of proof of (B). �

THEOREM 102.17. Let V,W P TNSR`, f : V 99K W .

Let i, j P IV , k P IW . Then πk ˝ pBiBjfq Ě πk}i}j ˝ pf
2q.

Proof. Want: @p P V , pπk ˝ pBiBjfqqp “
˚ pπk}i}j ˝ pf

2qqp.

Given p P V . Want: pπk ˝ pBiBjfqqp “
˚ pπk}i}j ˝ pf

2qqp.

Want: p pπk}i}j ˝ pf
2qqp ‰ / q ñ p pπk ˝ pBiBjfqqp “ pπk}i}j ˝ pf

2qqp q.

Assume: pπk}i}j ˝ pf
2qqp ‰ /. Want: pπk ˝ pBiBjfqqp “ pπk}i}j ˝ pf

2qqp.

Since pπk}i}j ˝ pf
2qqp ‰ /, we get f2p ‰ /, and so p P domrf2s.

By Theorem 97.6, we have: BilinV VWf2p
pεi, εjq “ pBiBjfqp.

Let A :“ f2p and B :“ BilinV VWA . Then Bpεi, εjq “ pBiBjfqp.

Since BilinV VWA “ B, get A “ rBsWV V , and so Ak}i}j “ πkpBpεi, εjqq.

We have pπk}i}j ˝ pf
2qqp “ πk}i}jpf

2
p q “ πk}i}jpAq “ Ak}i}j.

Then pπk ˝ pBiBjfqqp “ πkppBiBjfqpq “ πkpBpεi, εjqq

“ Ak}i}j “ pπk}i}j ˝ pf
2qqp, as desired. �

THEOREM 102.18. Let V,W P TNSR`, f : V 99K W , q P V .

Assume: f2 is continuous near q.

Then: @i, j P IV , BiBjf is continuous near q.

Proof. This is HW#13-3. �

THEOREM 102.19. Let V,W P TNSR`, f : V 99K W .

Let h, i, j P IV , k P IW . Then πk ˝ pBhBiBjfq Ě πk}h}i}j ˝ pf
2q.

Proof. Unassigned HW. �

THEOREM 102.20. Let V,W P TNSR`, f : V 99K W , q P V .

Assume: f3 is continuous near q.

Then: @h, i, j P IV , BhBiBjf is continuous near q.
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Proof. Unassigned HW. �

THEOREM 102.21. Let V,W P TNSR`, f : V 99K W , q P V .

Assume: @i, j P IV , BiBjf is continuous near q.

Then: f2 is continuous near q.

Proof. Choose B P BV pqq s.t., @i, j P IV , BiBjf is continuous on B.

Want: f2 is continuous on B. Want: @p P B, f2 is continuous at p.

Given p P B. Want: f2 is continuous at p.

By Theorem 102.16, it suffices to show:

@i, j P IV , BiBjf is defined near p and continuous at p.

Given i, j P IV . Want: BiBjf is defined near p and continuous at p.

By the choice of B, we know that BiBjf is continuous on B.

Then, by Theorem 102.8,

BiBjf is defined near p and continuous at p, as desired. �

THEOREM 102.22. Let V,W P TNSR`, f : V 99K W , q P V .

Assume: @h, i, j P IV , BhBiBjf is continuous near q.

Then: f3 is continuous near q.

Proof. Choose B P BV pqq s.t., @h, i, j P IV , BhBiBjf is continuous on B.

Want: f3 is continuous on B. Want: @p P B, f3 is continuous at p.

Given p P B. Want: f3 is continuous at p.

By HW#13-5, it suffices to show:

@h, i, j P IV , BhBiBjf is defined near p and continuous at p.

Given h, i, j P IV . Want: BhBiBjf is defined near p and continuous at p.

By the choice of B, we know that BhBiBjf is continuous on B.

Then, by Theorem 102.8,

BhBiBjf is defined near p and continuous at p, as desired. �

Recall Theorem 99.7.

THEOREM 102.23. Let V,W P TNSR`, f : V 99K W .

Assume f0V “ 0W and f 10V “ 0WbV . Then f P OVW1 .

Proof. Let L :“ D0V f . Since f 10V “ 0WbV , we get: L “ 0WV .

Then L ‰ /, and so fT0V ´ L P OVW1 .

Since f0V “ 0W , we get fT0V “ f .

Then f “ f ´ 0WV “ fT0V ´ L P OVW1 , as desired. �

THEOREM 102.24. Let V,W P TNSR`, f : V 99K W , q P domrf 1s.

Then: p f 1q “ 0WbV q ô p @j P IV , pBjfqq “ 0 q.
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Proof. Since q P domrf 1s, we get f 1q P imrf 1s.

Then f 1q P imrf 1s Ď W b V “ domrπk}js, so πk}jpf
1
qq ‰ /.

Since pπk}j ˝ pf
1qqq “ πk}jpf

1
qq ‰ /,

by Theorem 102.1, we get: pπk ˝ pBjfqqq “ pπk}j ˝ pf
1qqq.

It follows that: p f 1q “ 0WbV q

ô p @j P IV , @k P IW , pπk}j ˝ pf 1qqq “ 0 q

ô p @j P IV , @k P IW , pπk ˝ pBjfqqq “ 0 q

ô p @j P IV , pBjfqq “ 0W q, as desired. �

THEOREM 102.25. Let V,W P TNSR`, f : V 99K W , q P domrf2s.

Then: p f2q “ 0WbVbV q ô p @i, j P IV , pBiBjfqq “ 0 q.

Proof. Unassigned HW. �

103. Second order Taylor theorem

THEOREM 103.1. Let V,W P TNSR`, f : V 99K W .

Assume f0V “ 0W , f 10V “ 0WbV and f20V “ 0WbVbV . Then f P OVW2 .

Proof. By Theorem 99.7, it suffices to show:

@j P IV , Bjf P OVW1 .

Given j P IV . Want: Bjf P OVW1 .

Let g :“ Bjf . Want: g P OVW1 .

Since f : V 99K W and g “ Bjf , we get g : V 99K W .

Since f 10V “ 0WbV , by Theorem 102.24, we get pBjfq0V “ 0W .

Then g0V “ pBjfq0V “ 0W .

Then, by Theorem 102.23, it suffices to show: g10V “ 0WbV .

By Theorem 94.5, we have domrf2s Ď domrpBjfq
1s.

Then 0V P domrf2s Ď domrpBjfq
1s “ domrg1s.

Then, by Theorem 102.24, we wish to show: @i P IV , pBigq0V “ 0W .

Given i P IV . Want: pBigq0V “ 0W .

By assumption, we have: f20V “ 0WbVbV .

Then, by Theorem 102.25, we get: pBiBjfq0V “ 0W .

Then: pBigq0V “ pBiBjfq0V “ 0W , as desired. �

THEOREM 103.2. Let V,W P TNSR`, L P LWV , x, u P V .

Then pBuLqx “ Lpuq.

Proof. Let i :“ iux. Then pBuLqx “ pL ˝ iq
1
0.

We calculate: @t P R,

pL ˝ iqt “ Lpitq “ Lpx` tuq “ pLpxqq ` t ¨ pLpuqq.

Define M P LWR by Mphq “ h ¨ pLpuqq.
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Then s`RWM “Mp1q “ 1 ¨ pLpuqq “ Lpuq.

We calculate: @h P R,

pL ˝ iqTh “ pL ˝ iq0`h ´ pL ˝ iq0
“ pL ˝ iqh ´ pL ˝ iq0
“ p pLpxqq ` h ¨ pLpuqq q

´ p pLpxqq ` 0 ¨ pLpuqq q

“ h ¨ pLpuqq “ Mh.

Then pL ˝ iqT0 “M . Then pL ˝ iqT0 ´M “ 0WR P ORW
1 .

Then D0pL ˝ iq “M , so pL ˝ iq10 “ s`RWM .

Then pBuLqx “ pL ˝ iq
1
0 “ s`RWM “ Lpuq, as desired. �

THEOREM 103.3. Let V,W P TNSR`, L P LWV , x, u, v P V .

Then pBuBvLqx “ 0W .

Proof. Let C :“ C
Lpvq
V . Then pBuCqx “ 0W .

By Theorem 103.2, we have: @y P V , pBvLqy “ Lpvq.

Then: @y P V , pBvLqy “ Lpvq “ Cy.

Then BvL “ C. Then pBuBvLqx “ pBuCqx “ 0W , as desired. �

THEOREM 103.4. Let V,W P TNSR`, B P SBWV , Q :“ Bp‚, ‚q.

Let x, u P V . Then pBuQqx “ 2 ¨ pBpx, uqq.

Proof. Let i :“ iux. Then pBuQqx “ pQ ˝ iq
1
0.

We calculate: @t P R,

pQ ˝ iqt “ Qpitq “ Bpit, itq.

“ Bpx` tu, x` tuq.

“ pBpx, xqq ` p2tq ¨ pBpx, uqq ` pt2q ¨ pBpu, uqq.

“ pQpxqq ` p2tq ¨ pBpx, uqq ` pt2q ¨ pQpuqq.

Define M P LWR by Mphq “ p2hq ¨ pBpx, uqq.

Then s`RWM “Mp1q “ p2 ¨ 1q ¨ pBpx, uqq “ 2 ¨ pBpx, uqq.

Define P P QW
R by P phq “ ph2q ¨ pQpuqq.

We calculate: @h P R,

pQ ˝ iqTh “ pQ ˝ iq0`h ´ pQ ˝ iq0
“ pQ ˝ iqh ´ pQ ˝ iq0
“ p pQpxqq ` p2hq ¨ pBpx, uqq ` ph2q ¨ pQpuqq q

´ p pQpxqq ` p2 ¨ 0q ¨ pBpx, uqq ` p02q ¨ pQpuqq q

“ p2hq ¨ pBpx, uqq ` ph2q ¨ pQpuqq

“ Mh ` Ph.

Then pQ ˝ iqT0 “M ` P .

Then pQ ˝ iqT0 ´M “ P P QW
R Ď pORW

2 Ď ORW
1 .
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Then D0pQ ˝ iq “M , so pQ ˝ iq10 “ s`RWM .

Then pBuQqx “ pQ ˝ iq
1
0 “ s`RWM “ 2 ¨ pBpx, uqq, as desired. �

THEOREM 103.5. Let V,W P TNSR`, B P SBWV , Q :“ Bp‚, ‚q.

Let x, u, v P V . Then pBuBvQqx “ 2 ¨ pBpu, vqq.

Proof. Let L :“ 2 ¨ pBp‚, vqq. Then L P LWV .

By Theorem 103.4, we have: @y P V , pBvQqy “ 2 ¨ pBpy, vqq.

Then: @y P V , pBvQqy “ 2 ¨ pBpy, vqq “ Ly. Then BvQ “ L.

By Theorem 103.2, pBuLqx “ Lpuq.

Then pBuBvQqx “ pBuLqx “ Lpuq “ 2 ¨ pBpu, vqq, as desired. �

The following theorem is the Second Order Taylor Theorem:

THEOREM 103.6. Let V,W P TNSR`, f : V 99K W , x P domrf2s.

Let L :“ Linf 1x and Q :“ pp1{2q ¨ pBilinf2x qqp‚, ‚q.

Let R :“ fTx ´ L´Q. Then R P OVW2 .

Proof. Since x P domrf2s Ď domrf 1s Ď domrf s, we get fTx p0V q “ 0W .

Let B :“ p1{2q ¨ pBilinf2x q. Then Q “ Bp‚, ‚q.

Since L P LWV , we get domrL2s “ V and L0V “ 0W .

Since Q P QW
V , we get domrQ2s “ V and Q0V “ 0W .

We have pfTx q
1 “ f 1px` ‚q and pfTx q

2 “ pf 1px` ‚qq1 “ f2px` ‚q.

Also, R1 “ ppfTx q ´ L´Qq
1 Ě pfTx q

1 ´ L1 ´Q1.

Then R2 Ě ppfTx q
1 ´ L1 ´Q1q1 Ě pfTx q

2 ´ L2 ´Q2.

Then R1 Ě pf 1px` ‚qq ´ L1 ´Q1 and R2 Ě pf2px` ‚qq ´ L2 ´Q2.

Then domrR2s Ě domrpf2px` ‚qq ´ L2 ´Q2s.

Since x P domrf2s, we get 0V P domrf2px` ‚qs.

So, since 0V P V “ domrL2s and 0V P V “ domrQ2s,

we conclude: 0V P domrpf2px` ‚qq ´ L2 ´Q2s.

Then 0V P domrpf2px` ‚qq ´ L2 ´Q2s Ď domrR2s.

Also, R0V “ pf
T
x ´ L´Qq0V “ 0W ´ 0W ´ 0W “ 0W .

Then, by Theorem 103.1, it suffices to show:

both R10V “ 0WbV and R20V “ 0WbVbV .

Proof of (1):

We have 0V P domrR2s Ď domrR1s.

By Theorem 102.24, it suffices to show: @j P IV , pBjRq0V “ 0W .

Given j P IV . Want: pBjRq0V “ 0W .

Let u :“ εVj . Then BjR “ BuR.

By Theorem 103.2, pBuLq0V “ Lpuq.
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By Theorem 103.4, pBuQq0V “ Bp0V , uq.

Since B P BWV V , we get Bp0V , uq “ 0W .

Since L “ Linf 1x , we get Lpuq “ Linf 1xpuq.

By HW#8-4, pBufqpxq “
˚ pDxfqpuq.

By Theorem 90.1, pDxfqpuq “ Linf 1xpuq.

Then ppBufqpx` ‚qq0V “ pBufqpxq “
˚ pDxfqpuq “ Linf 1xpuq.

Since x P domrf2s Ď domrf 1s, we get f 1x P imrf 1s Ď W b V .

Then Linf 1x P LWV . Then Linf 1xpuq P W .

Then pLinf 1xpuqq ´ pLinf 1xpuqq ´ p0W q “ 0W .

Then pBjRq0V “ pBuRq0V
“ pBupf

T
x ´ L´Qqq0V

“˚ pBupf
T
x qq0V ´ pBuLq0V ´ pBuQq0V

“ ppBufqpx` ‚qq0V ´ pLpuqq ´ pBp0V , uqq

“˚ pLinf 1xpuqq ´ pLinf 1xpuqq ´ p0W q.

“ 0W ‰ /.

Then pBjRq0V “ 0W , as desired.

End of proof of (1).

Proof of (2):

We have 0V P domrR2s.

By Theorem 102.25, it suffices to show: @i, j P IV , pBiBjRq0V “ 0W .

Given i, j P IV . Want: pBiBjRq0V “ 0W .

Let u :“ εVi and let v :“ εVj . Then BiBjR “ BuBvR.

By Theorem 103.3, pBuBvLq0V “ 0W .

By Theorem 103.5, pBuBvQq0V “ 2 ¨ pBpu, vqq.

Since x P domrf2s, by Theorem 97.6,

we get: Bilinf2x pu, vq “ pBuBvfqx.

Then ppBuBvfqpx` ‚qq0V “ pBuBvfqpxq “ Bilinf2x pu, vq.

Since B :“ p1{2q ¨ pBilinf2x q, we get 2 ¨ pBpu, vqq “ Bilinf2x pu, vq.

Since x P domrf2s, we get f2x P imrf2s Ď W b V b V .

Then Bilinf2x P BWV V . Then Bilinf2x pu, vq P W .

Then pBilinf2x pu, vqq ´ p0W q ´ pBilinf2x pu, vqq “ 0W .

Then pBiBjRq0V “ pBuBvRq0V
“ pBuBvpf

T
x ´ L´Qqq0V

“˚ pBuBvpf
T
x qq0V ´ pBuBvLq0V ´ pBuBvQq0V

“ ppBuBvfqpx` ‚qq0V ´ p0W q ´ 2 ¨ pBpu, vqq

“ pBilinf 1xpuqq ´ p0W q ´ pBilinf2x pu, vqq.

“ 0W ‰ /.
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Then pBiBjRq0V “ 0W , as desired.

End of proof of (2). �

104. Second Derivative Theorem

THEOREM 104.1. Let V P TNSR`.

Then pV, dV q is a proper metric space.

Proof. Let W :“ Rm.

By Theorem 60.10, pW,dW q is a proper metric space.

Let m :“ #IV . Then #IV “ m “ #r1..ms.

Choose λ : IV ãÑą r1..ms.

Then pλ : V ãÑą W is an isometry from pV, dV q to pW,dW q.

Then pV, dV q is a proper metric space. �

THEOREM 104.2. Let V P TNSR`, Q P QR
V .

Assume: Q ą 0 on V ˆ0V . Then: Dε ą 0 s.t. Q ě ε ¨ p| ‚ |2V q on V .

Proof. Let S :“ tx P V s.t. |x|V “ 1u.

Since Q P QR
V , it follows that Q is continuous from V to R.

Then Q|S is continuous from S to R.

Since S “ p| ‚ |V q
˚pt1uq and since | ‚ |V : V Ñ R is continuous

and since t1u is closed in R, we get: S is closed in V .

Moreover, as S Ď BV p0V , 2q, we see that S is bounded in V .

Since S is closed and bounded in V ,

and since (by Theorem 104.1), pV, dV q is proper,

we see that S is compact.

So, since Q|S is continuous from S to R,

it follows, from the Extreme Value Theorem (Theorem 61.2),

that minpimrQ|Ssq ‰ /.

Let ε :“ minpimrQ|Ssq. Then ε P imrQ|Ss and imrQ|Ss ě ε.

Since S Ď V ˆ0V and since Q ą 0 on V ˆ0V , we get: imrQ|Ss ą 0.

Then ε P imrQ|Ss ą 0, so ε ą 0.

Want: Q ě ε ¨ p| ‚ |2V q on V .

Since Q P QR
V , we see that Q0V “ 0.

Then Q0V “ 0 “ ε ¨ 02 “ ε ¨ p|0V |
2
V q “ pε ¨ p| ‚ |

2
V qq0V .

Want: Q ě ε ¨ p| ‚ |2V q on V ˆ0V .

Want: @x P V ˆ0V , Qx ě pε ¨ p| ‚ |
2
V qqx.

Given x P V ˆ0V . Want: Qx ě pε ¨ p| ‚ |
2
V qqx.

Let a :“ |x|V . As x P V ˆ0V , we get: a ą 0.
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Let u :“ x{a. Then x “ au.

Also, |u|V “ |x|V {a “ a{a “ 1, so u P S.

Then Qu P imrQ|Ss ě ε, so Qu ě ε.

Since Qu ě ε and since a2 ě 0, we get a2 ¨Qu ě a2 ¨ ε.

Since Q P QR
V , we get Qau “ a2 ¨Qu. Recall: a “ |x|V .

Then Qx “ Qau “ a2 ¨Qu ě a2 ¨ ε “ ε ¨ p|x|2V q “ pε ¨ p| ‚ |
2
V qqx. �

THEOREM 104.3. Let V,W P TNSR`, α P CVZWV , ε ą 0.

Then DB P BV p0V q s.t. |α|W ď ε on B.

Proof. Since α P CVZWV , we get: α0V “ 0W .

Since α P CVZWV Ď DNZWV , choose C P BV p0V q s.t. C Ď domrαs.

Since α P CVZWV , we know that α is continuous at 0V from V to W .

Choose D P BV p0V q s.t. α˚pDq Ď BW pα0V , εq.

Let B :“ C XD. Then B P BV p0V q.
Want: |α|W ď ε on B.

Want: @x P B, p|α|W qx ď ε.

Given x P B. Want: p|α|W qx ď ε.

Since x P B Ď C Ď domrαs and since x P B Ď D,

it follows that αx P α˚pDq.

Since αx P α˚pDq Ď BW pα0V , εq, we get: |αx ´ α0V | ă ε.

Since α0V “ 0W , we get: αx ´ α0V “ αx.

Since p|α|W qx “ |αx|W “ |αx ´ α0V |W ă ε,

we get p|α|W qx ă ε, and so p|α|W qx ď ε, as desired. �

THEOREM 104.4. Let V P TNSR`, f : V 99K R, x P domrf2s.

Let L :“ Linf 1x and B :“ Bilinf2x .

Assume that L “ 0 on V and that Bp‚, ‚q ą 0 on V ˆ0V .

Then f has a strict local minimum at x.

Proof. Since x P domrf2s Ď domrf s, we get: pfTx q0V “ 0.

Want: fTx has a strict local minimum at 0V .

Let g :“ fTx . Then g0V “ 0.

Want: g has a strict local minimum at 0V .

Want: DU P BV p0V q s.t. g ą g0V on Uˆ0V .

Let Q :“ pp1{2q ¨Bqp‚, ‚q. Then Q “ p1{2q ¨ pBp‚, ‚qq.

So, since Bp‚, ‚q ą 0 on V ˆ0V , we see that Q ą 0 on V ˆ0V .

Also, Q “ pp1{2q ¨ Bilinf2x qp‚, ‚q.

Let R :“ fTx ´ L´Q. By Theorem 103.6, R P OV R
2 .

Since R P OV R
2 “ pCVZR

V q ¨ p| ‚ |
2
V q,
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choose α P CVZR
V s.t. R “ α ¨ p| ‚ |2V q.

Since L “ 0 on V , we conclude that L “ 0R
V .

Then g ´Q “ g ´ 0R
V ´Q “ fTx ´ L´Q “ R.

By Theorem 104.2, choose ε ą 0 s.t. Q ě ε ¨ p| ‚ |2V q on V .

By Theorem 104.3, choose U P BV p0V q s.t. |α| ď ε{2 on U .

Want: g ą g0V on Uˆ0V . Want: @y P Uˆ0V , gy ą g0V .

Given y P Uˆ0V . Want: gy ą g0V .

Since y P Uˆ0V Ď V ˆ0V and since Q ą 0 on V ˆ0V ,

we conclude that Qy ą 0. Then Qy{2 ą 0.

Since y P Uˆ0V Ď U and since Q ě ε ¨ p| ‚ |2V q on U ,

we conclude that Qy ě ε ¨ |y|2V . Then ε ¨ |y|2V ď Qy.

Since y P Uˆ0V Ď U and since |α| ď ε{2 on U ,

we conclude that |αy| ď ε{2.

We have g ´Q “ R “ α ¨ p| ‚ |2V q, so pg ´Qqy “ pα ¨ p| ‚ |
2
V qqy.

Then gy ´Qy “ pg ´Qqy “ pα ¨ p| ‚ |
2
V qqy “ αy ¨ p|y|

2
V q,

and so gy ´Qy “ αy ¨ p|y|
2
V q, and so |gy ´Qy| “ |αy| ¨ |y|

2
V .

Recall: |αy| ď ε{2 and ε ¨ |y|2V ď Qy.

Then |gy ´Qy| “ |αy| ¨ |y|
2
V ď pε{2q ¨ |y|2V “ pε ¨ |y|2V q{2 ď Qy{2.

Since |gy´Qy| ď Qy{2, we get: Qy´pQy{2q ď gy ď Qy`pQy{2q.

Then gy ě Qy ´ pQy{2q. Recall: Qy{2 ą 0 and g0V “ 0.

Then gy ě Qy´pQy{2q “ Qyp1´p1{2qq “ Qy{2 ą 0 “ g0V . �

105. Partitions

DEFINITION 105.1. Let P be a set of sets.

Then P is a partition means:

@P,Q P P, p pP “ Q q _ pP XQ “ Hq q.

DEFINITION 105.2. Let X be a set and let P be a set of sets.

Then P is a partition of X means:

p pP is a partition q & p
Ť

P “ X q q.

DEFINITION 105.3. We define: @j P N0,

Ij :“

" „

m

2j
,
m` 1

2j

˙ ˇ

ˇ

ˇ

ˇ

m P Z
*

and

Sj :“ t I ˆ J | I, J P Ij u.

We often refer to elements of a partition P as “legos” or “P-legos”.

Let D :“ BR2p02,
?

2q and let j :“ 10100.
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As you can assemble a Star Wars Death Star out of legos,

so, too, you can build a good approximation to D out of Sj-legos.

THEOREM 105.4. We have: @j P N0,

Ij is a partition of R and Sj is a partition of R2.

DEFINITION 105.5. Let P be a partition.

Then pP :“ t
Ť

A | A Ď P u.

Note: H,
Ť

P P pP and P Ď pP .

We often refer to elements of pP as “assemblies” or “P-assemblies”.

Let D :“ BR2p02,
?

2q and let j :“ 10100.

As you can assemble a Star Wars Death Star out of legos,

so, too, you can find sets in pSj that approximate D.

DEFINITION 105.6. Let P and Q be partitions.

Then P ăă Q means: both P Ď pQ and
Ť

P “
Ť

Q.

THEOREM 105.7. Let P and Q be partitions.

Assume P ăă Q. Then pP Ď pQ.

THEOREM 105.8. We have:

both I0 ăă I1 ăă I2 ăă ¨ ¨ ¨ and S0 ăă S1 ăă S2 ăă ¨ ¨ ¨ .

106. Partition measures

DEFINITION 106.1. Let µ be a function.

Then µ is a partition measure means:

both domrµs is a partition and imrµs Ď r0;8s.

DEFINITION 106.2. Let µ be a partition measure.

Then we define: Pµ :“ domrµs and Xµ :“
Ť

Pµ.

DEFINITION 106.3. @j P N0, define αj : Sj Ñ r0;8s by αjS “ 4´j.

THEOREM 106.4. @j P N0, we have:

αj is a partition measure and Pαj “ Sj and Xαj “ R2.

DEFINITION 106.5. Let X be a set and let µ be a function.

Then µ is a partition measure on X means:

both µ is a partition measure and Xµ “ X.

THEOREM 106.6. @j P N0, αj is a partition measure on R2.
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DEFINITION 106.7. Let µ be a partition measure.

Then we define pµ : xPµ Ñ r0;8s by: pµB “
ÿ

PPPµX2B
µP .

We call pµ the assembly measure of µ.

Note: H, Xµ P domrpµs and µ Ď pµ.

THEOREM 106.8. Let µ be a partition measure and let S, T P xPµ.

Then pµSYT ď pµS ` pµT .

DEFINITION 106.9. Let µ and ν be partition measures.

Then µ ăă ν means: both µ Ď pν and Xµ “ Xν.

THEOREM 106.10. Let µ and ν be partition measures.

Assume µ ăă ν. Then pµ Ď pν.

THEOREM 106.11. We have: α0 ăă α1 ăă α2 ăă ¨ ¨ ¨ .

107. Approximating sets

DEFINITION 107.1. Let P be a partition, B Ď
Ť

P.

Then B´P :“
Ť

tP P P |P Ď Bu and B`P :“
Ť

tP P P |P XB ‰ Hu.

We call B´P the inner assembly or inner P-assembly of B.

We call B`P the outer assembly or outer P-assembly of B.

Let D :“ BR2p02,
?

2q.

We drew a picture of D.

We added each of the four squares in tS P S0 |S Ď Du.

Note that D´S0
is the union of those four squares.

Adding five more squares, we displayed

all of the 13 squares in tS P S0 |S XD ‰ Hu.

Note that D`S0
is the union of those 13 squares. squares.

Let D :“ BR2p02,
?

2q, A :“ D XQ2.

We discussed how to picture A.

We noted that tS P S0 |S Ď Au “ H.

Therefore, A´S0
“ H.

We noted that tS P S0 |S X A ‰ Hu “ tS P S0 |S XD ‰ Hu.

Those nine squares from before are tS P S0 |S X A ‰ Hu.

Note that A`S0
is the union of those nine squares.
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Let D :“ BR2p02,
?

2q, A :“ D XQ2, j “ 10100.

We discussed why

D´Sj and D`Sj are both indistinguishable from D on the board.

We discussed why

A´Sj “ H, while A`Sj is indistinguishable from D on the board.

THEOREM 107.2. Let P be a partition, B Ď
Ť

P.

Then: B´P Ď B Ď B`P .

THEOREM 107.3. Let X be a set, B Ď X.

Let P and Q be partitions of X. Assume: P ăă Q.

Then: B´P Ď B´Q Ď B Ď B`Q Ď B`P .

108. Approximating measures of sets

DEFINITION 108.1. Let µ be a partition measure.

Then µ´, µ` : 2Xµ Ñ r0;8s are defined by:

µ´pBq “ pµpB´Pµq and µ`pBq “ pµpB`Pµq.

We call µ´ the inner measure of µ.

We call µ` the outer measure of µ.

THEOREM 108.2. Let D :“ BR2p02,
?

2q.

Then pα0q´pDq “ 4 and pα0q`pDq “ 13.

It has been known since antiquity that the area of D is 2π.

Note that pα0q´pDq “ 4 ă 2π ă 9 “ pα0q`pDq.

If we approximate D by S0-assemblies (from the inside and outside),

we don’t get such a good approximation to the correct area.

THEOREM 108.3. Let D :“ BR2p02,
?

2q, j :“ 10100.

Then: 2π ´ 0.1 ă pαjq´pDq ă 2π ă pαjq`pDq ă 2π ` 0.1.

If we approximate D by Sj-assemblies (from the inside and outside),

we get a good approximation to the correct area.

THEOREM 108.4. Let µ be a partition measure and let S, T Ď Xµ.

Then both µ´SYT ě µ´S ` µ
´
T and µ`SYT ď µ`S ` µ

`
T .

THEOREM 108.5. Let µ be a partition measure.

Then: µ´ “ pµ “ µ` on xPµ
and µ´ ď µ` on 2X .
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THEOREM 108.6. Let X be a set.

Let µ and ν be a partition measures on X.

Then: µ´ ď ν´ ď ν` ď µ` on 2X .

THEOREM 108.7. pα0q´ ď pα1q´ ď pα2q´ ď ¨ ¨ ¨

ď

¨ ¨ ¨ ď pα2q` ď pα1q` ď pα0q`

on 2R2
.

109. The definition of area

DEFINITION 109.1. Define α`, α´ : 2R2
Ñ r0;8s by

α´pBq “ suptpαjq´pBq | j P N0u

and α`pBq “ inftpαjq`pBq | j P N0u.

We call α´pBq the inner area of B.

We call α`pBq the outer area of B.

THEOREM 109.2. Let S, T PM.

Then both α´SYT ě α´S ` α
´
T and α`SYT ď α`S ` α

`
T .

THEOREM 109.3. Define F : R2 Ñ R2 by F px, yq “ py, xq. Let

S PM.

Then both α´pF˚pSqq “ α´pSq and α`pF˚pSqq “ α`pSq.

THEOREM 109.4. Let D :“ BR2p02,
?

2q.

Then α´pDq “ 2π “ α`pDq.

Also, α´pD XQ2q “ 0 ‰ 2π “ α`pD XQ2q.

DEFINITION 109.5. We define:

M :“ t B Ď R2 | pB is bounded in R2 q & pα´B “ α`B q u.

That is, M is the collection of

bounded subsets of R2 whose inner and outer areas agree.

A subset B of R2 is Jordan measurable if B PM.

Let D :“ BR2p02,
?

2q. Then D PM and D XQ2 RM.

THEOREM 109.6. Let S, T PM. Then S Y T PM.

THEOREM 109.7. Define F : R2 Ñ R2 by F px, yq “ py, xq.

Let S PM. Then F˚pSq PM.
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Note that α´|M “ α`|M.

DEFINITION 109.8. α :“ α´|M.

Note: @B Ď R2, p pB is bounded in R2 q ñ pα´B ď α`B ă 8q q.

Also, @B PM, B is bounded in R2.

It follows that imrαs Ď r0;8q. Then α : MÑ r0;8q.

The function α : MÑ r0;8q is called Jordan area.

Note: @B Ď R2, pB is Jordan measurable q ô pαB ‰ / q.

THEOREM 109.9. Let S, T PM. Then αSYT ď αS ` αT .

THEOREM 109.10. Define F : R2 Ñ R2 by F px, yq “ py, xq.

Let S PM. Then αpF˚pSqq “ αpSq.

110. Jordan/Riemann Integration

In this section, we develop an integration theory that is often called

Riemann integration. It is closely tied to Jordan area, and so might

also be called Jordan integration.

DEFINITION 110.1. Let f : R 99K R.

We define Gf :“ tpx, yq P R2 | y “ fpxqu,

and Of :“ tpx, yq P R2 | 0 ă y ă fpxqu.

In Definition 110.1, Gf is called the graph of f ,

and Of is called the ordinate set of f .

DEFINITION 110.2. Let f : R 99K R.

We define

ż

R
f :“ pαpOf qq ´ pαpO´f qq.

Note that αpOf q is the Jordan area of the region under f .

Note that αpO´f q is equal to the Jordan area of the region over f .

Thus, the integral of f is the area under f minus the area over f .

DEFINITION 110.3. Let f : R 99K R.

Then f is Jordan integrable means:

ż

R
f ‰ /.

THEOREM 110.4. Let f : R 99K R.

Then: p f is Jordan integrable q ô pOf ,O´f PM q.
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That is, f is Jordan integrable iff the regions under and over f are both

Jordan measurable.

Define φ : RÑ R by φpxq “ 1{p1` x2q.

Then Oφ is not bounded in R2, so Oφ RM.

Then φ is not Jordan integrable.

Also, the characteristic function χ
r0;1s
r0;1sXQ is not Jordan integrable.

DEFINITION 110.5. Let f : R 99K R and let a, b P R.

Assume that ra|bs Ď domrf s. Let I :“

ż

R
pf |ra|bsq.

Then we define:

ż b

a

f :“

$

’

’

&

’

’

%

I, if a ă b

0, if a “ b

´I, if a ą b.

Also, we define: ´

ż b

a

f :“

ˆ

1

b´ a

˙

¨

ˆ
ż b

a

f

˙

.

Note: @f : R 99K R, @a P domrf s, both

ż a

a

f “ 0 and ´

ż a

a

f “ /.

111. Continuity on a compact implies uniform continuity

THEOREM 111.1. Let X be a compact metric space. Let p, q P XN.

Then Dstrictly increasing m P NN s.t.

p ˝m and q ˝m are both convergent in X.

Proof. Since X is compact, p is subconvergent in X.

Choose a strictly increasing k P NN s.t. p ˝ k is convergent in X.

Since X is compact, q ˝ k is subconvergent in X.

Choose a strictly increasing ` P NN s.t. q ˝ k ˝ ` is convergent in X.

Let m :“ k ˝ `. Then q ˝m is convergent in X.

Want: p ˝m is convergent in X.

Since p ˝m “ p ˝ k ˝ `, it follows that p ˝m is a subsequence of p ˝ k.

Since p ˝ k is convergent in X and since p ˝m is a subsequence of X,

we conclude that p ˝m is convergent in X, as desired. �

THEOREM 111.2. Let X and Y be metric spaces.

Let f : X Ñ Y be continuous and let ε ą 0.

Assume that X is compact.
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Then: Dδ ą 0 s.t., @p, q P X,

p dXpp, qq ă δ q ñ p dY pfp, fqq ă ε q.

Proof. Assume: @δ ą 0, Dp, q P X s.t.

p dXpp, qq ă δ q & p dY pfp, fqq ě ε q.

Want: Contradiction.

By the Axiom of Choice, choose p, q P XN s.t., @j P N,

p dXppj, qjq ă 1{j q & p dY pfpj , fqjq ě ε q.

By Theorem 111.1,choose a strictly increasing m P NN s.t.

p ˝m and q ˝m are both convergent in X.

Let a :“ p ˝m, b :“ q ˝m. Then a and b are both convergent in X.

Choose α, β P X s.t. both a‚ Ñ α and b‚ Ñ β in X.

Then pdXpa, bqq‚ Ñ dXpα, βq in R.

By our choice of p and q, we have: @j P N, dXppj, qjq ď 1{j.

Then: @j P N, 0 ď pdXpp, qqqj ď 1{j.

Then, by the Squeeze Theorem, pdXpp, qqq‚ Ñ 0 in R.

Also, dXpa, bq “ pdXpp, qqq ˝m, so dXpa, bq is a subsequence of dXpp, qq.

Then pdXpa, bqq‚ Ñ 0 in R.

So, since pdXpa, bqq‚ Ñ dXpα, βq in R,

we conclude that 0 “ dXpα, βq. Then α “ β.

Since f is continuous, since a‚ Ñ α in X and since b‚ Ñ β P X,

it follows that both pf ˝ aq‚ Ñ fα and pf ˝ bq‚ Ñ fβ in Y .

Then pdY pf ˝ a, f ˝ bqq‚ Ñ dY pfα, fβq in R.

Since α “ β, it follows that dY pfα, fβq “ 0.

Then pdY pf ˝ a, f ˝ bqq‚ Ñ 0 in R.

Choose K P N s.t., @i P N,

p i ě K q ñ p pdY pf ˝ a, f ˝ bqqi ă ε q.

Then we have: pdY pf ˝ a, f ˝ bqqK ă ε.

Let j :“ mK . Then pj “ pp ˝mqK “ aK and qj “ pq ˝mqK “ bK .

By our choice of p and q, we have dY pfpj , fqjq ě ε, so ε ď dY pfpj , fqjq.

Then ε ď dY pfpj , fqjq “ dY pfaK , fbK q “ pdY pf ˝ a, f ˝ bqqK ă ε.

Then ε ă ε. Contradiction. �

THEOREM 111.3. Let a, b P R. Assume a ă b.

Let f : ra; bs Ñ R be continuous. Then αpGf q “ 0.

Proof. Unassigned HW. �

THEOREM 111.4. Let C :“ SR2p02,
?

2q. Then αpCq “ 0.
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Proof. Since αpCq ě 0, it suffices to show: αpCq ď 0.

Define f : r´
?

2,
?

2s Ñ R by fpxq “
?

2´ x2.

Since C “ Gf YG´f , we get: αpCq ď pαpGf qq ` pαpG´f qq.

By Theorem 111.3, we have both αpGf q “ 0 and αpG´f q “ 0.

Then αpCq ď pαpGf qq ` pαpG´f qq “ 0` 0 “ 0, as desired. �

DEFINITION 111.5. Let p, q P R2.

Then: rp|qs :“ t p1´ tqp` tq | t P r0; 1s u.

The set rp|qs is called the closed line segment from p to q.

THEOREM 111.6. Let p, q P R2. Then αprp|qsq “ 0.

Proof. We have p “ pp1, p2q and q “ pq1, q2q

Exactly one of the following is true:

(1) p1 “ q1 or (2) p1 ‰ q1.

Case (1):

Define F : R2 Ñ R2 by F px, yq “ py, xq.

Define h : rp2|q2s Ñ R by hptq “ p1. Then rp|qs “ F˚pGhq.

By Theorem 111.3, αpGhq “ 0.

By Theorem 109.10, αpF˚pGhqq “ αpGhq.

Then αprp|qsq “ αpF˚pGf qq “ αpGf q “ 0, as desired.

End of Case (1).

Case (2):

Define f : rp1|q1s Ñ R by fptq “ p1´ tqp2 ` tq2. Then rp|qs “ Gf .

By Theorem 111.3, αpGf q “ 0.

Then αprp|qsq “ αpGf q “ 0, as desired.

End of Case (2). �

112. Bounding sets and Jordan measurability

DEFINITION 112.1. Let P be a partition and let B, V Ď
Ť

P.

Then B P-bounds V means: @P P P,

p P X V ‰ H ‰ P zV q ñ p P XB ‰ H q.

THEOREM 112.2. Let C :“ SR2p02,
?

2q, D :“ BR2p02,
?

2q, j P N0.

Then C Sj-bounds D.

Proof. Unassigned HW. �
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THEOREM 112.3. Let P be a partition, B, V Ď
Ť

P.

Assume: B P-bounds V . Then: V `P zV
´
P Ď B`P .

Proof. Unassigned HW. �

THEOREM 112.4. Let µ be a partition measure, B, V Ď Xµ.

Assume: B Pµ-bounds V . Then: µ`V ´ µ´V ď µ`B.

Proof. Unassigned HW. �

THEOREM 112.5. Let B, V Ď R2. Assume: αB “ 0.

Assume: @j P N0, B Sj-bounds V . Then: V PM.

Proof. Want: α´V “ α`V .

Since α´V ď α`V , it suffices to show: α`V ď α´V .

Want: α`V ´ α
´
V ď 0. Want: @ε ą 0, α`V ´ α

´
V ă ε.

Given ε ą 0. Want: α`V ´ α
´
V ă ε.

Let S :“ tpαjq`B | j P N0u. Then α`B :“ inf S.

By assumption, we have: α`B “ 0.

As inf S “ α`B “ 0 ă ε, we get  p ε ď S q. Choose t P S s.t. t ă ε.

Since t P S “ tpαjq`B | j P N0u, choose k P N0 s.t. t “ pαkq`B.

We have α`V “ inftpαjq`V | j P N0u, so α`V ď tpα
jq
`
V | j P N0u,

and so α`V ď pα
kq
`
V .

Also, α´V “ suptpαjq´V | j P N0u, so α´V ě tpα
jq
´
V | j P N0u,

and so α´V ě pα
kq
´
V .

Since α`V ď pα
kq
`
V and α´V ě pα

kq
´
V ,

we get: α`V ´ α
´
V ď pα

kq
`
V ´ pα

kq
´
V .

By Theorem 112.4, we have: pαkq`V ´ pα
kq
´
V ď pα

kq
`
B.

Then α`V ´ α
´
V ď pα

kq
`
V ´ pα

kq
´
V ď pα

kq
`
B “ t ă ε, as desired. �

THEOREM 112.6. Let D :“ BR2p02,
?

2q. Then D PM.

Proof. Let C :“ SR2p02,
?

2q. By Theorem 111.4, αC “ 0.

By Theorem 112.2, we have: @j P N0, C Sj-bounds D.

Then, by Theorem 112.5, D PM, as desired. �

THEOREM 112.7. Let a, b P R. Assume a ď b.

Let f : ra; bs Ñ r0;8q be continuous. Then Of PM.

Proof. Let V :“ Of . Want: V PM.

Let p :“ pa, 0q, q :“ pa, faq, r :“ pb, 0q, s :“ pb, fbq.

Let C :“ rp|qs, D :“ rr|ss, E :“ rp|rs.

Let B :“ C YD Y E YGf .
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Then αpBq ď pαpCqq ` pαpDqq ` pαpEqq ` pαpGf qq.

Unassigned HW: Show, @j P N0, B Sj-bounds V .

By Theorem 111.6, we have: αpCq “ αpDq “ αpEq “ 0.

By Theorem 111.3, we have: αpGf q “ 0.

Then αpBq ď pαpCqq` pαpDqq` pαpEqq` pαpGf qq “ 0` 0` 0` 0 “ 0.

So, since αpBq ě 0, we get: αpBq “ 0.

Then, by Theorem 112.5, we have: V PM, as desired. �

THEOREM 112.8. Let a, b P R.

Let f : ra|bs Ñ R be continuous. Then Of PM.

Proof. Let α :“ minta, bu and β :“ maxta, bu.

Then α ď β and f : rα; βs Ñ R.

Define g :“ pf ` |f |q{2. Then g is continuous.

Also, @x P rα; βs, we have gx “ pfx ` |fx|q{2 “ maxtfx, 0u.

Then Of “ Og. Also, g : rα; βs Ñ r0;8q.

By Theorem 112.7, we have: Og PM.

Then Of “ Og PM, as desired. �

113. Basic properties of integration

THEOREM 113.1. Let f : R 99K r0;8s, a ě 0.

Then

ż

R
pa ¨ fq “˚ a ¨

ˆ
ż

R
f

˙

.

THEOREM 113.2. Let f : R 99K R, a P R.

Then

ż

R
pa ¨ fq “˚ a ¨

ˆ
ż

R
f

˙

.

THEOREM 113.3. Let D Ď R, f, g : D Ñ r0;8s.

Then

ż

R
pf ` gq “˚

ˆ
ż

R
f

˙

`

ˆ
ż

R
g

˙

.

THEOREM 113.4. Let D Ď R, f, g : D Ñ R.

Then

ż

R
pf ` gq “˚

ˆ
ż

R
f

˙

`

ˆ
ż

R
g

˙

.

THEOREM 113.5. Let D Ď R. Let f, g : D Ñ R.

Assume that f and g are both Jordan integrable.

Assume that f ď g on D. Then

ż

R
f ď

ż

R
g.

THEOREM 113.6. Let a, b, u P R. Assume a ă b. Let D :“ ra, bs.

Then

ż

R
Cu
D “ u ¨ pb´ aq.



CLASS NOTES 283

114. The Fundamental Theorem of Calculus

THEOREM 114.1. Let a, b P R. Assume a ‰ b. Let D :“ ra|bs.

Let f : R 99K R. Assume that f is continuous on D.

Then: minpf˚pDqq ď ´

ż b

a

f ď maxpf˚pDqq.

Proof. Let α :“ minta, bu and let β :“ maxta, bu.

Then: α ă β and D “ rα; βs and ´

ż b

a

f “ ´

ż β

α

f .

Let y :“ minpf˚pDqq and let z :“ maxpf˚pDqq.

Since f is continuous on D, it follows that D Ď domrf s.

Then y ď f ď z on D. Let φ :“ f |D. Then Cy
D ď φ ď Cz

D.

Since φ “ f |D “ f |rα; βs, we get:

ż β

α

f “

ż

R
φ.

Want: y ď
1

β ´ α

ż β

α

f ď z.

Want: y ď
1

β ´ α

ż

R
φ ď z.

Want: y ¨ pβ ´ αq ď

ż

R
φ ď z ¨ pβ ´ αq.

By Theorem 113.6, we get:

both

ż

R
Cy
D “ y ¨ pβ ´ αq and

ż

R
Cz
D “ z ¨ pβ ´ αq.

Since Cy
D ď φ ď Cz

D, by Theorem 113.5,

we see that

ż

R
Cy
D ď

ż

R
φ ď

ż

R
Cz
D.

Then: y ¨ pβ ´ αq ď

ż

R
φ ď z ¨ pβ ´ αq, as desired. �

The following theorem is the Fundamental Theorem of Calculus:

THEOREM 114.2. Let a, b P R. Assume that a ă b.

Let f : ra; bs Ñ R be continuous.

Define g : ra; bs Ñ R by: gpxq “

ż x

a

f .

Let p P pa; bq. Then g1p “ fp.

Proof. Let m :“ fp. Want: g1p “ m.

Define L P LR
R by Lh “ mh. Then s`RRL “ m.

Want: g1p “ s`RRL . Want: Dpg “ L. Want gTp ´ L P ORR
1 .

Let α :“ adj00

˜

gTp ´ L

idR

¸

. Then gTp ´ L “ α ¨ idR.
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Since idR P pORR
1 , it suffices to prove: α P ORR

0 .

Since ORR
0 “ CVZR

R, it suffices to prove: α P CVZR
R.

We have α P DNZR
R and α0 “ 0.

It remains to show: α is continuous at 0.

Want: @ε ą 0, DU P BRp0q s.t. α˚pUq Ď p´ε; εq.

Given ε ą 0. Want: DU P BRp0q s.t. α˚pUq Ď p´ε; εq.

Since f is continuous, f is continuous at p. Recall: fp “ m.

Since p P pa; bq, choose V P BRp0q s.t. p` V Ď pa; bq.

Choose U P BRp0q s.t. U Ď V and f˚pp` Uq Ď pm´ ε;m` εq.

Want: α˚pUq Ď p´ε; εq. We have α0 “ 0 P p´ε; εq.

Want: α˚pU
ˆ
0 q Ď p´ε; εq. Want: @y P α˚pU

ˆ
0 q, y P p´ε, εq.

Given y P α˚pU
ˆ
0 q. Want: y P p´ε, εq. Want: ´ε ă y ă ε.

Since y P α˚pU
ˆ
0 q, choose h P Uˆ0 X pdomrαsq s.t. y “ αphq.

Since U P BRp0q, it follows that U is an interval, so p`U is an interval.

Since 0, h P U , we get p, p` h P p` U .

So, since p` U is an interval, we get rp|p` hs Ď p` U .

We have U Ď V , so p` U Ď p` V .

Then p` U Ď p` V Ď pa; bq Ď ra; bs “ domrf s.

So, since f˚pp` Uq Ď pm´ ε;m` εq,

we conclude that: m´ ε ă f ă m` ε on p` U .

Then: ´ε ă f ´ Cm
R ă ε on p` U .

So, since rp|p` hs Ď p`U , we get: ´ε ă f ´Cm
R ă ε on rp|p` hs.

Then, by Theorem 114.1, ´ε ă ´

ż p`h

p

pf ´ Cm
R q ă ε.

It therefore suffices to show: y “ ´

ż p`h

p

pf ´ Cm
R q.

We have: both gTp phq “

ż p`h

p

f and Lphq “

ż p`h

p

Cm
R .

Then: pgTp ´ Lqphq “

ż p`h

p

pf ´ Cm
R q.

Since h P Uˆ0 Ď Rˆ0 and α “ adj00

˜

gTp ´ L

idR

¸

,

we get: αphq “
pgTp ´ Lqphq

h
.
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Then: y “ αphq “
pgTp ´ Lqphq

h
“

1

h
¨ ppgTp ´ Lqphqq

“
1

h
¨

ż p`h

p

pf ´ Cm
R q “ ´

ż p`h

p

pf ´ Cm
R q. �
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empty set, 16

existential quantifier, 5

extended integers, 34
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Extreme Value Theorem, 137

Fermat’s Theorem, 173

filled, 69
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formal axiom, 11

formal proof, 12
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formal statement, 10
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formal theorem, 12

free, 38

function, 49

functional, 73

Fundamental Theorem of

Calculus, 283

GCH, 71
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Hypothesis, 71
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graph, 277

Hausdorff property, 79
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homeomorphism, 106

homogeneous polynomial
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homogeneous polynomials, 195
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identity function, 55
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inference algorithm, 11

inference ready, 11
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infinitely differentiable, 250

injective, 53
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inner assembly, 274
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interior, 116

Intermediate Value Theorem,

105

interval, 180

isolated point, 141

isometric, 106
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Jordan area, 277

Jordan integrable, 277

Jordan integration, 277

Jordan measurable, 276

limit point, 141

linear order, 159

linearization, 147

Linearization Chain Rule, 203

Linearization Product Rule,

202

local extremum, 172

local maximum, 172

local minimum, 172
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matrix, 190

Mean Value Theorem, 179

metric, 77

metric on a metric space, 77

metric space, 77
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null true, 41
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open, 116
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partition of X, 272

pidgin axioms, 12

pidgin proofs, 12

pidgin sentences, 12

pidgin statement, 12

pidgin theorems, 12
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power set, 57
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Theorem, 224
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202

Product Rule, Tensorial, 202

proper, 109
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quadratic order, 159
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quartic order, 159

Quotient Rule, 169

rational numbers, 34
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Recentering Lemma, Superset,

80

relation, 48

relative metric, 89

Reverse Archimedean

Principle, 67

Riemann integration, 277

Rolle’s Theorem, 177
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268

semi-decreasing, 100, 176

semi-increasing, 99, 100, 176

semi-monotone, 124

semi-negative, 31
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sequence, 80, 81
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set-valued, 51

shape, 189

singleton, 19

small, 101

special characters, 7

specification triple, 32

sphere, 107

square norm, 86

standard metric, 193

standard metric on R, 77
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standard norm on R, 75

standard norm on Rk, 75

starter statements, 7

strict local maximum, 187

strict local minimum, 187

strictly decreasing, 99, 100, 176

strictly increasing, 99, 100, 176

strictly monotone, 124

structuring the proof, 39

subconstant, 159

subconvergent, 108

subcubic, 159

sublinear, 159

subquadratic, 159

subquartic, 159

subsequence, 108

subset, 14

Subset Recentering Lemma, 80

successor closed, 63

superdomain, 53

superimage, 54

superset, 15

Superset Recentering Lemma,

80

target, 54

Taylor’s Theorem to order 2,

186

tensor index, 189

tensor shape, 189

tensor space, 192

Tensorial Chain Rule, 204

Tensorial Product Rule, 202

tensors, 190

Topological Inverse Function

Theorem, 139

topologically bounded, 107

topology, 116

transitivity of inherited

metrics, 94

tuple, 190

uncountable, 70

underlying set of a metric

space, 77

universal quantifier, 5

valued, 81
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vertical line test, 50
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