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CLASS NOTES 5
1. WHAT 1S MATHEMATICS?

What is mathematics? What distinguishes it from the many subjects
that use mathematics? Answer: Mathematics is the study of absolute
truth. Following Antis Pilate, we ask: What is truth? In the view
of the pure mathematician, to distinguish truth from falsehood, we
need to have a precise formal language and a set of formal rules for
identifying which statements are mathematical statements. Then we
need another set of formal rules for proceeding from a collection of
assumed statements, called axioms, to a collection of statements, called
theorems.

In this section, we will outline one way of formalizing the meaning
of a mathematical statement. It is not necessarily the easiest formalism
to use, but it is relatively easy to describe, and is tailored to the needs
of a real analysis course like this one. In what follows, by a logic
purist, I will mean someone who is ONLY willing to consider the
highly restrictive formalism described in this section.

We will be using the following abbreviations:

vV | forall (or, sometimes, for any)

there exists (or, sometimes, there exist)

there exists a unique
s.t. | such that

— | not

& | and

v | or
therefore

= | implies
< | if and only if
iff | if and only if

€ | is an element of
® | undefined

The symbols “V” and “J” are called quantifiers. The first one, “V”,
is called the universal quantifier, and the second one, “3”, is called
the existential quantifier. The symbol “€” is NOT the Greek letter
epsilon, written “c”. Our use of ® is unconventional. We will use it
to indicate that some particular computation cannot be completed in

a conventional manner. So, for example, in this course, 1/0 = ®.
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Now let’s start with a mathematical sounding statement:
Every real number is not an integer.

This sentence is quite ambiguous. It may mean that there are real
numbers that are not integers, or it may mean that no real number
is ever an integer. Ambiguity is one of the many enemies of truth,
and so we need to know which kinds of statements we even consider
worth trying to prove, and which statements are so poorly worded that
it’s a waste of time to even try to understand them. The statement
above would likely lose you some points, if you write it on homework
or an exam. Written in a more precise way, it would come out as:

— (Vreal z, x an integer)

For our course, this statment will be considered close enough to a formal
mathematical statement that it will be acceptable. However, once we
give our exact definition of a formal statement, we will see that, to be
perfectly correct, we need to say:

= ((Vx)((z is a real number) = (x is an integer) ) )

To describe which streams of symbols are formal statements, we
begin by deciding which symbols we will use to build such statements.
In this course, our symbols will come in three types:

First, alphabetic characters:

lowercase Roman letters: a,b,c,....z ;
uppercase Roman letters: A,B,C,....Z :
a blank space to separate words.

Later, we may add more (like period and comma) as needed.
Second, variables. We will use:

lowercase italic Roman letters:  a.,b,c,...,z ;
uppercase italic Roman letters: A,B.C,....7Z ;
uppercase script letters:  ABC,...,Z :

lowercase Greek letters:  «,5,7,...,w ;

some uppercase Greek letters: T'A O A =113 &V Q).

Some uppercase Greek letters look exactly like uppercase Roman let-
ters, e.g., a capital i is H. They are not exactly omitted from our list
of variables; they are just not listed twice. This completes our list
of variables. The Roman alphabet has 26 letters. The Greek alphabet
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has 24 letters. We compute 26 + 26 + 26 + 24 + 10 = 112. We therefore
have 112 variables to start. Later, we may add more, as needed.
Third, various special characters:
=, <, =

v73’(’)7+7_7.7e7_|7&7v7 ) ) )
©0,®,0,1,2,3,4,5,6,7,8,9

Later, we may add more, as needed.
Using our characters, we form our list of constants:

©0,—0,®,0,1,2,3,4,5,6,7,8,9

Note that most constants are single characters, but character streams,
like “—o0” are okay, too. Later, we may add more constants, as needed.

Next, we have our list of ten starter statements. Keep in mind
that every formal mathematical statement has a list of free variables,
abbreviated “F'V”. In each of our ten starter statements, every variable
is free. We will get to more complicated statements later, and you will
see how some variables can fail to be free. Here are our ten starter
statements, together with the list free variables in each:

Statement H FV ‘

x is a real number || =

j 1s an integer J

S is a set S
a=> a,b
aesS a,S
<y x,y
r+y==z x,Y, 2
r-oy==z T, 2
UE(S) =a S, a
CH(S) =a S,a

These ten character streams are simply declared to be formal state-
ments. We may add more starter statements, as needed.

If we pick a starter statement, and then replace the variables by vari-
ables or constants, we end up with a atomic statement. Sometimes,
more than one variable is replaced by the same variable, e.g., “x < y”
becomes “z < z”, on replacing both “z” and “y” by “z”. Sometimes,
more than one variable is replaced by the same constant, e.g., “x < y”
becomes “1 < 1”7, on replacing both “x” and “y” by “1”. All of the
following are “atomic statements”:
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Statement H FV ‘
a is an integer a

b is a real number || b

o0 is a real number

q=4q q
AeB AB
—00 = 0

3 <4

4<3

3<z z
r+y== Y
p-g=1 psq
p-p=Dp p
3-4=5

3+4=5

As you can see, some atomic statements are simply untrue. Since there
are (currently) 112 variables and 13 constants, the starter statement
“r is an integer” yields 125 atomic statements. Similarly, “x + y = 2”
yields 125% = 1,953,125 atomic statements. Continuing, we see that
there are only finitely many atomic statements. It would not be difficult
to write computer code that would print them all out.

There are two general methods by which we can take known state-
ments and develop them into new statements:

(1) Quantification development and
(2) Construction development

First, quantification development. This kind of development
comes in two types: J-quantification and V-quantification. To illus-
trate d-quantification, we will start with:

’ Statement H FV ‘

’T:z Hr,z

We select one of its free variables, say “z”. We then surround the
statement by parentheses. We then place “(3z)” in front. We then
remove “z” from the list of free variables, obtaining;:

’ Statement H FV ‘
’ (3z)(r = 2) H r ‘
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Next, to illustrate V-quantification, we will select the only remaining

[199%)]

free variable, “r”, and then apply (Vr)-quantification, obtaining:
’ Statement H FV ‘
(@ =2) |
Note that there are now no free variables remaining, so we cannot apply

quantification to this statement.
Second, construction devleopment. This comes in four types:

—-construction ,
&-construction ,
v-construction and
=--construction.
To illustrate —-construction, we will start with the statement
’ Statement H FV ‘
laeB  [a,B]

We now surround the statement by parentheses. We then place the

2

in front. The list of free variables is unchanged:
’ Statement H FV ‘
’ —(a € B) H a, B ‘

To illustrate &-construction, we start with two statements:

’ Statement H FV ‘

aeB a, B
s<t s, t

symbol “—

We now surround each by parentheses, and concatenate them, but with
“&” in bewteen. The free variables are also concatenated:
’ Statement H FV ‘

’ (ae B)& (s <t) H a,B,s,t‘
As you might expect, v-construction and =--construction work simi-
larly. Start again with the two statements:
’ Statement H FV ‘

a€eB a, B
s<t s, t

If we apply v-construction and =--construction, we obtain:
’ Statement H FV

(ae B) v (s<t)|a,B,s,t

(ae B)=(s<t)| aB,s,t
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By a formal statement, we mean a finite sequence of characters
(from the character list) that can be developed from

the collection of all atomic statements

via repeated quantification and construction. Example:

(Vp)(p < @) = (¢ = »)
To get this formal statement, start with the atomic statement “p < ¢”,

W

then use (Vp)-quantification on it, to get “(Vp)(p < ¢q)”. Then, using

the =-construction, combine that with the atomic statement “g = o0”.

We will generally leave it as work for the reader to think about how a

particular formal statement is developed, and about what free variables
[wh]

it has. In “((Vp)(p < q)) = (¢ = ©)” the only free variable is “q”.
Applying (3¢)-quantification, we get

B9 ((Yp)(p < q)) = (¢ = >)) ,

which is a formal statement that has no free variables.
Unassigned homework: Write code that would take a string as input
and, after analyzing it, would ouput either
“the string is not a formal statement” or
“the string is a formal statement, with free variables:” ,
followed by a list of
all of the free variables in the formal statement
This code implements an algorithm that we will call the formal state-
ment algorithm. Once this code is written, a more precise definition
of a formal sentence would simply be a string that, if input into the
formal sentence algorithm, yields “the string is a formal statement,
By a formal sentence, we mean a formal statement that has no
free variables. Example: “(3¢)(((¥p)(p < q)) = (¢ = ©))”. The logic
purist would be aghast, but we sometimes replace some parentheses
by brackets, for readability, e.g.: “(3¢)([(Vp)(p < q¢)] = [¢ = «©])”.
Unassigned homework: Write code that would take a string as input
and, after analyzing it, would ouput either
“the string is not a formal sentence” or
“the string is a formal sentence”
This code implements an algorithm that we Wlll call the formal sen-
tence algorithm. Once this code is written, a more precise definition
of a formal sentence would simply be a string that, if input into the
formal sentence algorithm, yields “the string is a formal sentence”.
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A formal axiom means: a formal sentence that is accepted as true
without proof. In the first few weeks of this course, we will be describ-
ing various formal sentences as axioms. Unassigned homework: After
those few weeks are over, write code that would take a string as input
and, after analyzing it, would output either

“the string is not an axiom” or

“the string is an axiom” :
This code implements an algorithm that we will call the axiom algo-
rithm. Once this code is written, a more precise definition of an axiom
would simply be a string that, if input into the axiom algorithm, yields
“the string is an axiom”.

Let’s say that two strings are inference ready if the first
is a finite sequence of formal sentences,
separated by commas ,

and the second

is a single formal sentence
Unassigned homework: After studying truth tables and logical rules
of inference, write code that would take as input two strings and, after
analyzing them, would output

“the two strings are not infrence ready” or

“the single sentence follows from the sequence of sentences” or

“the single sentence does not follow

from the sequence of sentences”

This code implements an algorithm that we will call the inference al-
gorithm. Once this code is written, if P and Q are two strings, then,
by P = Q, we mean: if you input P and Q into the inference algo-
rithm, the output will be “the single sentence follows from the sequence
of sentences”. If this code is written correctly, then, for example,

(24+2=5)v (2+2=4), -(2+2=5) E 2+2=14
In fact, part of the coding should enable the inference algorithm to know
that, for any two formal sentences S and T,

8) v(T), =(8) = T
Another part of the coding should enable the inference algorithm to know
that, for any two formal sentences S and T,

(S)=(T),S = T
There are a few other logical inferences that will need to be coded into
the inference algorithm. In this course, we will not take the time to
write them all out. However, if you have ever learned to compute truth
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tables, then you know enough logic to write the code for the inference
algorithm. Keep in mind that
(24+42=5)v (2+2=4), ~(2+2=5) Kk 1+1=2
The inference algorithm should not know how to add, and should
not know any mathematics except for the basics of propositional logic
(i.e., the logic of truth tables).
A formal proof is a finite sequence of formal sentences, separated
by commas, such that each one either
is an axiom or follows from earlier sentences according
to the inference algorithm . In this course, we will not write down
any completely formal proofs. We WILL develop standards of proof,
but not be at the level required to please the logic purist. By a formal
theorem, we mean the last formal sentence in a formal proof.
In this course, we relax standards from “formal” to “pidgin”. That
is, we usually use pidgin statements, pidgin sentences, pidgin axioms,
pidgin theorems, pidgin proofs. By a pidgin statement, we mean

a finite sequence of characters

that can be rewritten as a formal statement. As the course goes on,
you should come to understand, better and better, how this rewrit-
ing process is done. In pidgin statements, we will allow a few extra
characters, like comma and period.

There are simliar meanings for pidgin sentences, pidgin axioms,
pidgin theorems and pidgin proofs. Since we will not be developing
formal proofs, we will not describe how to rewrite a pidgin proof into
a formal proof. However, you should be aware that such rewriting is
always possible, and it is this formalism that makes mathematics rigor-
ous, even if it only operates in the background. For more information
on formal proofs, read up on the foundations of mathematics.

Our first axiom expresses the idea that

Everything is equal to itself.

As written, such a statement is not sufficiently formalized to be accept-
able in this course. If it were to appear in homework or exams, would
result in loss of points. In pidgin form, it becomes acceptable:

AXIOM 1.1. Vz, Tr=1x.

The logic purist would say “tsk!” and insist on a formal statement:
(Vz)(z = z)
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We will look at more and more pidgin statements, and rewrite them
into formal statements. Our first theorem:

THEOREM 1.2. Vz,y, [(z=y) = (y=2)].
Proof. See Theorem 29.1. O

Our main focus now is not on proofs, but on converting from pidgin
to formal. To rewrite Theorem 1.2 as a formal sentence, we start with:

(Vo) (Vy)([z = y] = [y = 2])
To be completely pure, we need to change brackets to parentheses.

Also, following our rules for quantification development, we should sur-
round “(Vy)((z = y) = (y = x))” by parentheses, obtaining:

(Vo) (Vy)((z = y) = (y = 7))
Our next theorem:
THEOREM 1.3. Vz,y,z, [(z=y=2) = (xv=2)].
Proof. See Theorem 29.2. U

To rewrite this as a formal sentence, we start with

(Vo) (Vy)(V2)(z =y = 2) = (z = 2))
We should change “z =y = 2" to “(z = y) & (y = z)”. Also, because
of the rules of quantification development, we need more parentheses:

(V) (V) (V2)(((z = y) & (y = 2)) = (2 = 2))))

Our first definition:
DEFINITION 1.4. Ya,b, by a # b we mean: —(a = b).

In our formalism, the logic purist does not tolerate definitions. The
logic purist would ask that we remove this definition, and that we

e extend our character list to by adding: “#” ,

e add a new starter statement: “a # b” and

e put in a new axiom:  (Va)((Vd)([a # b] < [—(a = b)]))
This would be followed replacement of brackets by parentheses. Also,
the “<" needs to be broken into two implications, yielding:

(Va)((V0)(((a # b) = (—(a = b)) & ((—(a = b)) = (a # b))))
But who can read such dense code?
Finally, let’s look at:

THEOREM 1.5. Ve >0, 30 > 0 s.t. 02 +d < e.
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By convention, in this course, “Ve > 0”7 means “Vreal ¢ > 07. Also,
“4d > 0”7 means “dreal § > 0. The logic purist would prefer:

(Ve) ([ (e is a real number )& (e >0)] = |
(30) ([ (6 is a real number )& (0 > 0) J& |
P 4+<e

D1

The logic purist would replace the text “62 + 6 < &” by something like:

dreal a, L is a real number s.t.

((6-d=a)& (a+0=L))&((L<e)v (L=c¢))
After a bit more “tsk!”ing, we get to

(Ve) ([ (e is a real number )& (e >0)] = |
(30) ([ (6 is a real number )& (0 > 0) J& [
(Ja) ([ a is a real number | & |
(3L) ([ L is a real number | & [
((6-0=a)&(a+6=L))&((L<e)v (L=¢))
IDEDADAD:

Finally, change brackets to parentheses and write this all on one line.
Life ain’t easy for the logic purist.

2. SOME SET THEORY

DEFINITION 2.1. VS, T, S < T means:
(S and T are sets) and (VxeS,xzeT).

Logic purist: Introduce a new special character “c”, then introduce
a new starter statement “S < 7”7, then introduce a new axiom:

(V9)(
(VT)(
[ScT] <
[((Sisaset)& (T isaset))&

. ((Va)([zeS]=[zeT])) ]

The logic purist would ask us to change brackets to parentheses, break
the “<” into two implications, and to put all of this on one line.
The text “S < T is read “S is a subset of T7.

DEFINITION 2.2. VST, T > S means: ScT.
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Logic purist: Introduce a new special character “2”, then introduce
a new starter statement “7" 2 57, then introduce a new axiom:

(VS)(
(VT')(
(T25<(ScT)
))
The logic purist would ask us to break the “<” into two implications,
and to put all of this on one line.
The text “S 2 T” is read “S is a superset of 77.
The following is sometimes called the Axiom of Extensionality.
It is a quantified equivalence for equality of sets.

AXIOM 2.3. Vsets S,T, [ (S=T) < ([ScT]&[T<S])].

Logic purist:
(VS)([S is a set] = [
(VI)([T is a set] = |
(S=T)<= ([ScT]|&[T < 9]
D
The logic purist would ask us to change brackets to parentheses, break
the “<” into two implications, and to put all of this on one line.

DEFINITION 2.4. Ya, Vset S, by a ¢ S, we mean —(a € S).

Logic purist: Introduce a new special character “¢”, then introduce
a new starter statement “a ¢ S”, then introduce a new axiom:
(Va)(
(VS)([S is a set] = |
(a¢S) < (—(ae b))
1)
The logic purist would ask us to change brackets to parentheses, break
the “<” into two implications, and to put all of this on one line.
The preceding remarks about Definition 2.4 apply, mutatis mutandis,
to the following two definitions.

DEFINITION 2.5. Vsets S, T, by S € T, we mean —(S < T).
DEFINITION 2.6. Vsets S, T, by S 2 T, we mean —(S 2T).

We sometimes put a definition within an axiom or a theorem, e.g.:
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AXIOM 2.7. d1set S, denoted J, s.t. Vx, x ¢ S.
We will say a few words about “denoted ¢#”. A logic purist would
insist that, instead of Axiom 2.7, we add

a new special character: & ,
a new constant: ¢J ,
a new axiom: (J is a set and

anew axiom: Vset S, [(Vz,z¢S) < (S=g)].
Exercise: Formalize these two axioms. The set (J is called the empty
set. The symbol “@” is NOT the Greek letter phi, written “¢”.
AXIOM 2.8. ¥Ya,S, [(a€eS) = (S isa set)].
Logic purist:

(Va)(
(V.5)(
(aeS) = (Sisaset)

)

Can there be a set that is an element of itself? It would have to be
a pretty weird set, and, in fact, we will not allow such a set to exist:

AXIOM 2.9. Ya, a ¢ a.
Logic purist:

(Va)(

a¢a
)

The next axiom states that @ “lives outside of set theory”:
AXIOM 2.10. (® is not a set) & (Vset S, ® ¢ S).
Logic purist: [—~(®@ isaset) ]| &[(VS)([Sisaset] = [@¢S])].

The logic purist would then ask us to change brackets to parentheses.
It follows that ® has no elements:

THEOREM 2.11. Ya, a¢®.

Proof. Given a. Want: a ¢ @.

Assume a € ®. Want: Contradiction.

By Axiom 2.8, ® is a set.

By Axiom 2.10, @ is not a set.

Contradiction. O

The logic purist would prefer: (Va)(a ¢ ®).
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3. SETS OF UP TO NINE OBJECTS

We will use “V—a, ...... 7 to mean “(Va)([a# @] = [...... 1)”.
Similar conventions are adopted for all the 112 variables, not just “a”.

AXIOM 3.1. Y—a, J1set S, denoted {a}, s.t.
Yz, [(zeS)e (z=a)]

Logic purist: Introduce two new special characters “{” and }, then
a new starter statement “{a} = S”, then two new axioms:

V—a, dset S s.t. {a} =5 and
V—a, Vset S, [({a} =5) < (Vz, [(z€S) < (z=a)])] .

Exercise: Formalize these two axioms.
We have similar axioms for {a,b} and {a,b, c}:

AXIOM 3.2. Y—a,V—b, I1set S, denoted {a,b}, s.t.
Vo, [(zelS)e ([x=a]v][r=0])]

AXIOM 3.3. Y—a, V—b,V—c, I1set S, denoted {a,b,c}, s.t.

Va, [(zeS)e([r=a]lv]zr=0bv]r=C])]

There are more of these axioms, ending with:
AXIOM 3.4. Y—a,...,V—i, I1set S, denoted {a, ..., i}, s.t.
Va, [(zelS)e([r=a]v ---v]z=1)]

AXIOM 3.5. {©} = ©.
AXIOM 3.6. Va, [ ({a,®} ={®,a} =0) ].

AXIOM 3.7. Va, Vb,
[ ({a,b,0} ={a,®,b} = {®,a,b} = @) |.

This continues until:

AXIOM 3.8. Va,...,Vh,
[({a,....h,®} = ={®,a,....h} = @) ].

13

In Axiom 3.4 and Axiom 3.8, the use of an ellipsis (“:--”) causes the
logic purist great pain, but we think you can fill in those blanks. Also,
we leave it to you to fill and formalize the missing axioms between
Axiom 3.3 and Axiom 3.4, as well as the missing axioms beween Ax-
iom 3.7 and Axiom 3.8. We could continue with sets of ten elements,

but nine should be enough.
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Axiom 3.5 through Axiom 3.8 are part of a general understanding
that @ is “infective”. That is, if an expression has @ inside, then it
equals ®.

THEOREM 3.9. {1,2} = {2,1}.

More formally:
3L, 3R s.t.
[ ({12} = L] & [{2,1} = R] & [L = R]
A simpler way to formalize Theorem 3.9:
@39)(({1,2} = 5)&({2,1} = 5))
THEOREM 3.10. {3,3} = {3}.

More formally:
3L, 3R s.t.
({33} =L]&[{3} = R] & [L = R]

THEOREM 3.11. {{3},{3,3}} = {{3},{3}} = {{3}}.
More formally:

(
35, 37, 3L, 3R s.t.
(3} =] & [{3,3) = T] & [{S.T} = L] &
[{S,S} =R]&[L=R]
) &
35, 3L, IR s.t.
| [{8) = S] &[(S. S} = L] &[{S) = R] &[ L = R]

A simpler way to formalize Theorem 3.11:
@FS)(EAT)( [({3,3} =5)& ({3} =9)] &
[({5, S} =T)&({S}=T)] ))
THEOREM 3.12. 3 ¢ {{3}}.
More formally:

3L, 38, IR s.t.
[3=L]&[{3}=S]&[{S}=R]&[L=R]

THEOREM 3.13. 3 € {3} € {{3}}.
More formally:

(
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3L, 3R s.t.
[3=L][{3} =R][LeR]
) & (
3S, 3L, 3R s.t.
| ({3} =L][{3}=S][{S}=R][LeR]

A simpler way to formalize Theorem 3.13:
ESH(ET)( [(BY=5)&({S}=T)] &
[((3e5)&(S5eT)] ))

Unassigned homework: Formalize the next four theorems.
THEOREM 3.14. (1¢ {{1,2}})& (2 ¢ {{1,2}}).
THEOREM 3.15. 1,2 € {1,2} € {{1,2}}.

THEOREM 3.16. {1,®,3,4,5} = ®.
THEOREM 3.17. {1,{®,3,4,5}} = {1,0} = ©.

4. PICKING AN ELEMENT FROM A SET

We will use “I—a, ...... 7 to mean “(3a)([a # O|&[...... 1)".
Similar conventions are adopted for all the 112 variables, not just “a”.

DEFINITION 4.1. VS, by S is a singleton, we mean:
(S isaset)& (F—ast S={a} ).

The logic purist would prefer to introduce a new starter statement,
“S'is a singleton” | and to make Definition 4.1 into an axiom:
VS, [ (S is a singleton ) <
((Sisaset)&(Jast. [a#O|&[{a}=5])].
THEOREM 4.2. J is not a singleton, {1} is a singleton,
{1,2} is not a singleton and {{1,2}} is a singleton.
Recall the starter statement:
’ Statement H FV ‘
’ UE(S) = a H S, a ‘
AXIOM 4.3. Vsingleton S, Va, [ (UE(S) =a) < (ac€ S)].

So, for any singleton S, UE(S) is the unique element of S.
We are sometimes sloppy and leave off parentheses, writing CH S.
We can write Axiom 4.3 in a more “pure” way:
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(VS)([S is a singleton] = |

(Va)(
[(VE(S) =a) = (a€$)]

1)

We insist that, when S is not a singleton, then S has no unique
element, and therefore we should have UE(S) = ®:

AXIOM 4.4. VS, [ (S is not a singleton) = (UE(S) = ®)]

As always, there is lots to “tsk!” about. More formally:
(VS)(
(—[S is a singleton ] ) = (UE(S) = @)
)

If you are feeling energetic, change the brackets to parentheses, and
then write this entire stream of symbols on one line.

THEOREM 4.5. UE Qg = 6.
Recall the starter statement:
’ Statement H FV ‘
’ CH(S) =a H S, a ‘
We next state the Axiom of Choice:

AXIOM 4.6. Ynonempty set S, Ja e S s.t. CH(S) = a.

So, for any nonempty set S, CH(S) is some element of S. So CH
chooses, from every nonempty set, one of its elements.
We are sometimes sloppy and leave off parentheses, writing CH S.
We can write Axiom 4.6 in a more formal way:
(VS)([(Sisaset)&(S#T)] = |
(Ja)([ae S| &][
CH(S) =a
Dl
If you are feeling energetic, change the brackets to parentheses, and
then write this entire stream of symbols on one line.
Sad to say, the set ¢J has no element to choose:

AXIOM 4.7. CHZ = @.
THEOREM 4.8.  UE{1} = 1.
THEOREM 4.9.  UE{2} = 2.



CLASS NOTES 21

THEOREM 4.10.  UE{{1,2}} = {1,2}.

THEOREM 4.11.  UE{1,2} = @.
THEOREM 4.12.  CH{1} = 1.
THEOREM 4.13.  CH{2} = 2.

THEOREM 4.14.  CH{{1,2}} = {1,2}.
THEOREM 4.15.  CH{1,2} e {1,2}.
THEOREM 4.16.  CH{1,2} » ® = UE{1,2}.
AXIOM 4.17. UE(®) = @ = CH(®).

5. FORMALISM AND INTUITION

Logic purity really takes it out of a fellow. The point is not that
we SHOULD rewrite every pidgin statement as a formal statement,
only that it CAN be done, if the need for extra precision should arise.
There are many reasons why we do not want to obsess about formalism.
For one thing, it requires a great deal of effort, and produces results that
are very difficult to read. More importantly, if we focus on formalism
to the complete exclusion of intuition, then we have lost a crucial aspect
of the mathematical experience.

Intuition and formalism are yin and yang. At first blush, they may
seem in competition, but, in fact, each reinforces the other, and each
depends on the other. For example, intuition depends on formalism:
Each person’s intuition is based on their own experiences, so rigor
and formal writing provides a basis for resolving differences of opinion.
Conversely, I find that formal writing almost always starts as vague
intuitive ideas, refined repeatedly to increasing levels of formality. I
cannot imagine proving any complicated theorem without having some
intuitive insight driving my thinking.

From the purist’s point of view, certain streams of symbols are state-
ments, and others are just the ramblings of someone who has learned
to speak the English language, and accepts all the lack of clarity that
comes with it. From this purist point of view, a proof is a sequence
of formal statements each of which follows, by precise rules, from ear-
lier statements, or from a list of axioms. So we could feed a proof
into a computer, and the computer can check its validity.
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We, however, are not computers. When we see
(Vz)(x = z)

we want it to have some intuitive meaning; otherwise, mathematics
becomes a subject fit only for code-monkeys. Reading

(Vz)(x = z)
or the less formal version, “Vz, x = 27, one might interpret it to mean
for any mathematical object x, we have: © =z

but this begs the question: Which objects are mathematial objects?

The answer actually varies from subject to subject, from mathe-
matician to mathematician. Logicians someimes refer to the collection
of all mathematical objects as the “domain of discourse”, and so, we
are asking: What is the domain of discourse in this particular course,
i.e., what is our mathematical universe? For us, it consists of

real numbers , sets ,
0 , —00 and ®

These terms are intuitive. We will not, in this course, try to define
a real number or set, or any of the other three objects. Also, at the
moment, we have not given a name to any real number, so, while can
talk about all of them at once, we cannot yet talk about any particular
real number. So, for example, the statement

1 is a real number

is just a stream of symbols that, according to our rules, is a formal
statement. We do not yet have the axiomatic framework to determine
whether or not it is a theorem. However, we rely on your intuition and
earlier learning to know that we should eventually set up our axioms
in such a way that that statement IS a formal theorem.

Similarly, “c0” is not just a sideways “8”. If you see “o0” used, you
do not need to turn your head to understand it. We hope you have
some intuitive sense of the infinite, and the formal theorems that we

will prove later on should dovetail with that intuition.

6. A DOUBLY QUANTIFIED THEOREM
In §14, we will explain how to prove:

THEOREM 6.1. Ve >0, 30 > 0 s.t. 62+ < .
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In this section, we only attempt to understand, at an intuitive level,
why the Theorem 6.1 is true. It is very difficult to prove a theorem
until you believe in your heart that it is valid.

Imagine the following game, which is based on Theorem 6.1:

You move first: You choose a real € > 0, and reveal it to me.
My move: I choose a real § > 0, and reveal it to you.
We check to see if 62 +§ < ¢.

If so, then I win.

If not, then you win.

Let’s play: Say you choose ¢ = 100. I will laugh at your poor play,
and choose 6 = 1. We check that 12 + 1 < 100 is true, so I win.
We play again. You try € = 1000. I laugh even harder, and choose
d = 1 again. We check that 12 + 1 < 1000 is true, so I win again.
You begin to see that making ¢ large is not in your interest. However,
by the rules, you cannot make it negative or zero. You try € = 0.001.
Now I have to concentrate. I choose 6 = 0.00001. We check that
0.000012 + 0.00001 < 0.001 is true, so I win again. You begin to think
the game is rigged. Saying that the game is rigged against you is the
same as saying that you believe that Theorem 6.1 is true, and that is
really the first step in proving it.

Theorem 6.1 is “doubly quantified”; it has one “¥” and one “3”, to-
taling to two quantifiers. Most of us do not spend a great deal of time
considering the validity of doubly quantified assertions, FEXCEPT when
we play games. The chess player may say: “whatever move my oppo-
nent makes, I will be able to checkmate him/her on my next move”.
This is an example of a doubly quantified statement:

Vmove of my opponent, dJmove of mine s.t. checkmate

Somehow we are hardwired to deal with highly quantified statements
while playing certain games, and you can piggyback off that hardwiring
by converting highly quantified theorems into games.

Now that we believe in Theorem 6.1, we need a specific strategy
to win. It is not enough to say, “Well, just make sure the ¢ is very
small”. We need a specific method for choosing  after we know «.

Sometimes, it helps to focus first on the finish, in order to see what
is needed in the J-strategy. We wish to force

¥ +i<e
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Some students may have practiced solving quadratic inequalities, which
is one route to setting up a J-strategy. However, there are more com-
plicated problems leading to, e.g., §° + % + § < ¢, and this kind of in-
equality is hard to solve. We favor a more robust approach, in which
we break the problem down, term by term. That is, we work separately
on the first term 4% and the second term J. If we can force
2 <e/2 and §<¢g/2
then we will win the game. It is therefore enough to force

0<0<4/e/2 and §<¢g/2
This leads us to the strategy:

Let § := min{e/2,/2/2}.

We now need to take this strategy and turn it into a pidgin proof.
Before we can do that, however, we will need to expose the basics
of arithmetic and inequalities. In particular, we need to define

min{ , } and v

That will take a few sections, but, in §14, we will prove Theorem 6.1.

7. ARITHMETIC

Here are two of our starter statements:
Statement H FV ‘

x is a real number || z

7 1s an integer J

AXIOM 7.1. d1set S, denoted Z, s.t.:
Vi, [(7€S) < (jis an integer)].

The logic purist would drop the axiom above, then add “Z” to the
list of special characters and to the list of constants, and would then
add two axioms:

Z is a set and
Vset S, [(V4, [(j€S) < (jis an integer)]) « (S =72)]

Exercise: Formalize the last of these axioms.

AXIOM 7.2. d1set S, denoted R, s.t.:
Va, [(xeS) < (xis a real number)].



CLASS NOTES 25

The logic purist would drop the axiom above, then add “R” to the
list of special characters and to the list of constants, and would then
add two axioms:

R is a set and
Vset S, [(Vz, [(z € §) < (x is a real number)]) < (S =R)]

Exercise: Formalize the last of these axioms.
Our next axiom says, in set-theoretic language, that 1 is an integer,
and that every integer is a real number:

AXIOM 7.3. 0,1 Z < R.
Our next axiom says that any two real numbers have a real sum:
AXIOM 7.4. Vz,yeR,dzeR s.t. x +y = 2.

More formally:
Ve, ([reR] = |
Vy, ([yeR] = |
Jz st ([zeR]&|
rT+y==z

D1

Finally, if you are feeling energetic, change the brackets to parentheses,
and then write the entire stream of symbols on one line.
Our next axiom:

AXIOM 7.5. Vx € R, r+0=u=x.
More formally:
Va, (reR) = (z+0=ux).
From there, the remaining “tsk!”s are easily dealt with:
(Vz)((zeR) = (x +0=u1))
AXIOM 7.6. Vx,ye R, x+4+y=y+x.

The equation “z 4+ y = y + x” needs to be broken apart into several
atomic statements, like:
r+y=1L, y+zr=R , L=R

So we could partially formalize Axiom 7.6 as

Vr,ye R, 4L, R e R s.t.
(x+y=L)&(y+x=R)& (L =R)
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From there, we can work on “V--- € R” and “d--- € R”:
)

r+y=L)&(y+z=R)&(L=R)
DHhDDh

Finally, if you are feeling energetic, change the brackets to parentheses,
and then write the entire stream of symbols on one line.

AXIOM 7.7. Vx,y,2€ R, z+ (y+2)=(v+y)+ 2.

We could formalize the above axiom as:

Vr,y,z€ R, da,b, L, R € R s.t.
(y+z=a)&(x+a=L)&
(x+y=b0&(b+2z=R)&
(L = R)

From there, we can work on “V--- € R” and “d--- € R”:

10)([be R] &

AL)([L e R] &

AR)([R e R] & [
(y+z=a)&(x+a=L)&
(x+y=0&b+2z=R)&
(L=R)

DHHHHDD

Finally, if you are feeling energetic, change the brackets to parentheses,
and then write the entire stream of symbols on one line. Uff da!

For lack of time, going forward, we will avoid formalizing most of our
pidgin statements. However, if any question arises about how to con-
vert a pidgin statement into a formal statement, be sure to ask.

Some more axioms:

AXIOM 7.8. Vz,ye R, 3z e R s.t. xy = 2.
AXIOM 7.9. Vx € R, r-1=ux.
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AXIOM 7.10. Vx,y € R, Ty = Y.
AXIOM 7.11. Vz,y,z € R, x(yz) = (zy)z.
AXIOM 7.12. Vx,y,z € R, x(y+z2)=xy+ 2.

To formalize “x(y + 2) = xy + 22”7, we would write:
da,b,c, L, R € R s.t.
(y+z=a)&(x-a=L)&
(x-y=b&(z-z=c)&(b+c=R)&
(L =R)
We leave the rest of this formalization as an exercise for the reader.
Next, we develop negation and subtraction.

AXIOM 7.13. Vx e R, 41y € R, denoted —x, s.t. x +y = 0.
DEFINITION 7.14. Va,be R, b—a = b+ (—a).

In high school, we teach students to solve simple equations in a single
unknown. For example, solving 4 + z = 7 leads to z = 3. It should
be no surprise that, for any two real numbers a and b, we can solve
a + x = b, and find a real solution x. More formally, we have:

THEOREM 7.15. Va,be R, Jx e R s.t. a+x = 0.

We are not yet writing proofs, but, in the proof of this theorem,
at some point, we would write “Let z := b — a”, see Theorem 29.3.

THEOREM 7.16. Va,z,yeR, (a+x=a+y) = (z=y).
THEOREM 7.17. Vze R, z-0=0.

Next, division. The next axiom is the multiplicative analogue of The-
orem 7.15. It says: Va,b e R, we can solve ax = b, PROVIDED a # 0.
That solution z is unique, and is denoted b/a. Formally:

AXIOM 7.18. Va,be R,
(a#0) = (3lz e R, denoted b/a, s.t. axr =b).

Logic Purist: Add a new special character “/”, then add a new starter
statement “b/a = z”, then add two new axioms:
Va,beR, (a#0) = (JzreR st. b/a=1) and
Va,beR, (a#0) = (Vreal z, [(ax =b) < (bla=12z)]) .

AXIOM 7.19. Va, a/0 = ©.
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The next axioms are part of a general understanding that ® is “in-
fective”. That is, if an expression has @ inside, then it equals ®.

AXIOM 7.20. —® = ®.

AXIOM 7.21. Vo, 24+ @ =0 +z = 0.
AXIOM 7.22. Vz, - ©@ =0 -z =0.
AXIOM 7.23. Vz, z/® =0/x = 0.

8. SOME REAL NUMBERS OF INTEREST
Let’s pin down how 1,...,9 are related:
AXIOM 8.1. All of the following are true:
1+1=2 2+1=3, 3+1=4, 44+1=05,
5+ 1=6, 6+1=7, 7T+1=8, 8+1=0.

The logic purist would ask either that we create eight separate ax-
ioms, or that we combine with parentheses and “&”s:

14+1=2)&2+1=3)&B+1=4)&A+1=5)&
G+1=06)&6+1=7&(7T+1=8)&(8+1=09)
The logic purist would have us put this all on one line.

DEFINITION 8.2. 10:=9 + 1.

Logic purist: Make

a new constant: “10” and

a new axiom: “9+ 1= 10"
DEFINITION 8.3. 100 := 10 - 10.
DEFINITION 8.4. 1000 := 10 - 100.
DEFINITION 8.5. 10000 := 10 - 1000.
DEFINITION 8.6. 100000 := 10 - 10000.

DEFINITION 8.7. 0.1:=1/10 and 0.01 := 1/100 and
0.001 := 1/1000 and 0.0001 := 1/10000 and 0.00001 := 1/100000.

DEFINITION 8.8. 11:=10+1, 12:= 10+ 2, 13:= 10+ 3,
14:=10+4, 15:= 10+ 5, 16 := 10 + 6,
17:=10+7,18:= 10 +8, 19:= 10 + 9.
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THEOREM 8.9. 0,1,2,3,...,19 e R.
Also, 100, 1000, 10000, 100000 € R.
Also, 0.1,0.01,0.001,0.0001,0.00001 € R.

9. SETS OF SETS, UNIONS AND INTERSECTIONS
A “set of sets” is just a set all of whose elements are sets:

DEFINITION 9.1. VS, by S is a set of sets, we mean:
(S is a set) & (VAe S, Ais a set).

THEOREM 9.2. Let A :={5,6,7,8} and let B := {7,8,9}.
Then {A, B} is a set of sets.

THEOREM 9.3. J is a set of sets.
Proof. See Theorem 15.4. O
THEOREM 9.4. {J} is a set of sets.

AXIOM 9.5. Vset S of sets, I1set U, denoted | JS, s.t.:
Ve, [(zeU) < (FJAeS st. x € A)].

AXIOM 9.6. | J© = ©.
THEOREM 9.7. Let A :={5,6,7,8} and let B := {7,8,9}. Then
| J{A, B} = {5,6,7,8,9}.

THEOREM 9.8. Ug =o.
Proof. See Theorem 15.5. O
THEOREM 9.9. g} =@.

AXIOM 9.10. Vnonempty set S of sets, A1set V, denoted (S, s.t.:
Ve, [(zeV) < (VAeS, zeA)].

AXIOM 9.11. (@=g = ©.

THEOREM 9.12. Let A := {5,6,7,8} and let B := {7,8,9}. Then
({A, B} = {7.8}.

THEOREM 9.13. ({2} = &.

AXIOM 9.14. VS, (S is not a set of sets) = (|JS =0 =()S).
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THEOREM 9.15. Vset A, | J{A} = A = N {A}.

DEFINITION 9.16. Vsels A, B,

AuB = |J{A B} and ~ An B := (){A, B}.
THEOREM 9.17. Let A := {5,6,7,8} and let B := {7,8,9}. Then
AUB=1{56,789  and AnB=1{78.

DEFINITION 9.18. Vsets A, B, C,

AuBuC:=J{A B,C} and
AnBnC:=({A B,C}.

DEFINITION 9.19. Vsets A, B,C, D,
AuBuCuD:=J{A B,C,D} and
AnBnCnD:=({A B,C,D}.

We leave it to you to continue these definitions until we have unions
and intersections of nine sets A, ..., I, finishing by writing out the
following definition, without ellipses.

DEFINITION 9.20. Vsets A, ..., 1,
Au--—-ul:=U{A ....1I} and
An-nl:={A, ..., I}

10. EXTENDED REALS AND INEQUALITIES

DEFINITION 10.1. Vz,y, by z <y, we mean:
(z <y)v(z=y)
DEFINITION 10.2. Vz,y, by x >y, we mean: y < x.

DEFINITION 10.3. Vz,y, by x = y, we mean:
(z>y)v(z=y)

AXIOM 104. Vz,y,z, (r<y<z) = (x<z).

AXIOM 10.5. Vz, —(z <uz).

THEOREM 10.6. Vz,y, (z<y)= (—(x>=y).

AXIOM 10.7. 0 # O # —w.

By Axiom 10.7 and Axiom 3.2, there is a set denoted {—00, o0} whose
elements are exactly —oo and oo.

DEFINITION 10.8. R* := R U {—o0, o0}.



CLASS NOTES 31

Elements of R* are called extended real numbers.
We can now formulate our domain of discourse, as an axiom:

AXIOM 10.9. V—z, [(z€eR*) v (z is a set)].

AXIOM 10.10. Vx € R*, x s not a set.

AXIOM 10.11. Vx e R, —wo<z<®

THEOREM 10.12. -0 < .

THEOREM 10.13. Vx e R, —o0 # x # w0 # —w0.

AXIOM 10.14. 0 < 1.

AXIOM 10.15. Va,z,ye R, (z<y)= (a+z<a+y).
THEOREM 10.16. 1 <2<3<4<5<6<7<8<9<10.
AXIOM 10.17. Va,z,ye R, [(a>0)&(z<vy)] = [ax <ay].

DEFINITION 10.18. 20 := 2-10, 30 := 3-10, 40 := 4-10, 50 := 5-10,
60 := 6-10, 70 := 7-10, 80 := 8-10 and 90 := 9-10.

THEOREM 10.19. 10 <20 <30 < --- <90 < 100.
AXIOM 10.20. Vz,ye R, (z<y)=(—z> —y).
THEOREM 10.21. -10< -9< -8<---<-1<0.
AXIOM 10.22. Vz,y e R*, (z<y)v(z=1y) v (z>y).
Combining Axiom 10.22 and Theorem 10.6, we get:
THEOREM 10.23. Vz,y e R*, (z<y) < (—(xz>=1y)).

DEFINITION 10.24. Let x € R.
By x is positive, we mean x > 0.
By x 1s semi-positive, we mean x = 0.
By x 1s negative, we mean x < 0.
By z 1s semi-negative, we mean x < 0.

Finally, ® is strictly incomparable with everything:
AXIOM 10.25. Vz, [ (-[e@<z]) & (-[z<®]) ]
THEOREM 10.26. V-, [ (m[@<2]) & (-[z<®]) |

However, do keep in mind that, by Axiom 1.1, ® = ®. It follows
that ® compares NONstrictly with itself:

THEOREM 10.27. ® < ©.
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11. AXIOMS OF SPECIFICATION

By a specification triple, we mean three pieces of data:

(1) a formal statement with at least one free variable :
(2) one of its free variables and
(3) a set
Since we know how to formalize pidgin statements, we will relax, and
allow a pidgin statement in (1), so long it has at least one free variable.
We will soon see, example by example, that each specification triple
leads to an Axiom of Specification. There are infinitely many such
triples, leading to infintely many axioms. We illustrate a few:
We begin with the specification triple
(I)a<zxz<b )
(2) z and

To get the corresponding Axiom of Specification, identify all the free
variables in (1), except for the variable in (2). This yields: “a” and “b”.
Then the axiom we seek begins “Va, Vb”. It reads:

AXIOM 11.1. VYa, Vb, I1set S, denoted {x € R|a < z < b},
st, Vo, ([reS] © [(zeR)&(a<xz<b)]).

Here is another specification triple:
(1) teRst.atqg+t* =1 :
(2) a and
(3) Z
To get the corresponding Axiom of Specification, identify all the free
variables in (1), except for the variable in (2). This yields: “¢”. Then
the axiom we seek begins “Vq”. It reads:

AXIOM 11.2. Vq, I1set S, denoted {a € Z |3t € R s.t. a+q+1* = 1},
sit,Va, ([aeS] < [(a€eZ)&(FHeR st.a+qg+t>=1)]).

Here is another specification triple:

(1) z#0 ,
(2) 2z and

To get the corresponding Axiom of Specification, identify all the free
variables in (1), except for the variable in (2). There are none. The
axiom reads:
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AXIOM 11.3. 1set S, denoted {z € R|z # 0},
st,Vz, ([z€S] « [(zeR)&(2#0)]).

Here is another specification triple:
(1) 22 =a :
(2) = and
3) R
To get the corresponding Axiom of Specification, look at all the free
variables, ezcept the one in (2). This yields: “a”. Then the axiom we
seek begins “Va”. It reads:

AXIOM 11.4. Ya, 1set S, denoted {x € R|2? = a},
st, Vo, ([reS] < [(zeR)&(2>=a)]).

Here is another specification triple:

(1) 22 =4 :
(2) z and

To get the corresponding Axiom of Specification, look at all the free
variables, except the one in (2). There are none. The axiom reads:

AXIOM 11.5. J1set S, denoted {x € R|x* = 4},
st Vo, ([2€8] = [(zeR)& (s =4)] )

In high school algebra one learns that the solutions of 22 = 4 are —2
and 2. We express that result as a theorem:

THEOREM 11.6. {reR|22=4} = {-2,2}.
The focus on the variable z is somewhat arbitrary. We also have:
THEOREM 11.7. {zeR|22=4} = {-2,2}.

Because this is a real analysis course, and not a complex analysis
course, our formalism is focused on R. You may have learned, in high
school, that (1 + 4)? = 2i, but, for us, this is not a theorem. Conse-
quently, we do NOT have a theorem that says

{zeC|2=2i} = {l+i,-1—1i}.

In fact, C is not a set in this course, and “2? = 2i” is not a formal
statement. So we do not have a specification axiom that defines the
set {z € C|2% = 2i}. The point is: There are many formal systems
of mathematics. We are tailoring ours to this particular course.
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Now that we have specification, we can define many useful sets.

DEFINITION 11.8. Va,b € R*,
[a;0] == {x e R*|a < x < b},
(a;b) :={x e R*|a < x < b},
[a;0) :={zeR*|la<z<b} and
(a;b] :={z e R* |a < z < b}.
DEFINITION 11.9. 1.3:=1+ (3/10) and 2.6 := 2 + (6/10).

THEOREM 11.10. [1.3:1.3] = {1.3}, 1.3 ¢ (1.3;2.6], 2.6 € (1.3:2.6],
(2.6;2.6) = [2.6;1.3) = [2.6;1.3] = &.
DEFINITION 11.11. Z* := Z U {—0, 0}.

Elements of Z* are called extended integers.

DEFINITION 11.12. Va, b € R*,
[a.b] :={xeZ*|la<z<b}
(a.b) :={xeZ*|la<x<b}
[a.b) :={reZ*|la<x<b} and
(a.b] :={xeZ*|a <z <b}

THEOREM 11.13. [1..1] = {1} and (1..2] = {2} and
(1.3.2.6) = {2} and (2.2) = [2..2) = (2.2] = [2.1) = &.

DEFINITION 11.14. N:=[1..00), Nj:=[0..00),
N*:=[l.o], N§:= [ ..00].

DEFINITION 11.15. Let A and B be sets.
Then we define  A\B := {v e A|z ¢ B}.

THEOREM 11.16. Let A :={5,6,7,8} and let B := {7,8,9}.
Then A\B = {5,6}.

DEFINITION 11.17. Q := {j/keR|(jeZ) & (keN)}.

According to specification, between “{” and “|”, we should have:
a single variable, then “€”  then a set

The logic purist would therefore do some rewriting of Definition 11.17:
Q := {reR|3jeZ,IkeNst. j/k = x}.

Elements of Q are called rational numbers.
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12. UPPER BOUNDS, LOWER BOUNDS, MAX, MIN, SUP AND INF

DEFINITION 12.1. VS < R*, Va € R*,

S < a means: VreS, z<a ,

a = S means: VreS,a>x ,

a < S means: Vee S, a<zx ,

S = a means: VreS, z>a ,

S < a means: VreS, x<a ,

a > S means: VreS,a>x ,

a < S means: VreS, a<ux and
S > a means: Vre S, x>a

DEFINITION 12.2. VS < R*,
UB(S):={aeR*|S<a} and LB(S):={aeR*|a<S}.
We also define UB(®) := @.

DEFINITION 12.3. VS < R*,

max(S) := UE(S n [UB(S)]) and min(S) := UE(S n [LB(95)]).
DEFINITION 12.4. VS < R*,

sup(S) := min(UB(S)) and inf(S) := max(LB(95)).

Here, “sup(S)” is read “the supremum of S”. Sometimes “supre-
mum” is abbreviated to “sup”, which is read “soup”. We sometimes
change “min” to “least” and “UB” to “upper bound”, and then “sup”
becomes “least upper bound”.

Also, “inf(S)” is read “the infimum of S”. Sometimes “infimum” is
abbreviated to “inf”, which is read as written. We sometimes change
“max” to “greatest” and “LB” to “lower bound”, and then “inf” be-
comes “greatest lower bound”. Some examples:

’ S H LB ‘ UB ‘ min ‘ max ‘ inf ‘ sup ‘
{6} || [-o0;5] | [B;0] | B 5 5 5
[0;1] || [o0;0] |[L;00]| O 1 0 1
0;1) | [050] |[Leo]| @ | ©® | 0 | 1
[0;1) | [o0;0] |[L;0]] O | ® | O 1
;1] | [:0] [[Goo]| @ | T [ 0 | 1
0,11 [o0;0] [[Lioo]| O | 1T [0 | 1
R* {—o0} | {0} |—0| © |—0| ©
R {0} | {0} | ® | ® |—0| ©
(%] R* R* ® ® o0 | —o0
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Up to this point, all of our axioms about R would be equally true
about Q. There is, however, a significant problem with trying to do
real analysis using only rational numbers: Let S := {z € Q|z* < 2}.
It turns out that the supremum of S is NOT a rational number, so,
working over Q has the disadvantage that not every subset of Q has

its supremum in Q. Since supR = oo, we are aslo forced

into working

in R* if we want to guarantee infima and suprema. And we do! The
next axiom is called completeness of the extended reals:

AXIOM 12.5. VS < R*, inf(S) # ® # sup(9).
THEOREM 12.6. Va € [0;0), 31r € [0;0) s.t. 7* = a.

More formally, Theorem 12.6 would be written:
(Va) ([a€[0;0)] = [

(@) ([rel0;o)]&[r*=a])) &
( (vr) ((Vs)(
( [re[0;0)]&[se[0;0:0)]&
[1? =a &ESQZCL] )

= ( r=s
)

)))

D
THEOREM 12.7. Va € (—x0;0), #r e R s.t. r? = a.

More formally, Theorem 12.7 would be written:
(Va) ([ae (=0;0)] = [
(@) ( 536 R]&[r* =a]))

DEFINITION 12.8. Vac R, /a:= UE{r e [0;0)|r? = a}.

By Theorem 12.6, Va € [0;), v/a € [0;00). On the other hand,

by Theorem 12.7, Va € (—0;0), \/a = ®.

In this course, when we write a ~€ S, wemean: (a=®) v (a€S).

THEOREM 12.9. VS c R*, (minS ~e 5)& (maxS ~e S).

In this course, when we write ¢ ~< b, we mean:

In this course, when we write ¢ —> b, we mean:
In this course, when we write ¢ ~< b, we mean:

~
In this course, when we write ¢ ~> b, we mean:

AN
I
®0 6 0

) v (a<b).
) v (a>b).
) v (a<b).
) v (a=0).
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In this course, when we write a <™ b, we mean: (a <b) v (b=9).
In this course, when we write a >7 b, we mean: (a>b) v (b=9).
In this course, when we write a <™ b, we mean: (a <b) v (b=9).
In this course, when we write a =7 b, we mean: (a>b) v (b=9).

THEOREM 12.10. VS < R*, (minS < 5)&

—~

max S = 95).
THEOREM 12.11. VS < R*, (infS < S)&(supS = 9).

AXIOM 12.12. supN = o0.

13. UNASSIGNED HOMEWORK

THEOREM 13.1. ¥SCR*, [(S>0) = (mins ~>0)) ].
THEOREM 13.2. VS CR*, Vo e S, [(r<S) = (minS=z)].
THEOREM 13.3. Va,b € R*, [ (min{a,b} = a) v (min{a, b} = b)].
THEOREM 13.4. Ya > 0, Vb >0, min{a,b} > 0.

THEOREM 13.5. Va,b e R*, [ (min{a,b} < a)& (min{a,b} <b) ].
THEOREM 13.6. Ve >0, Va >0, &/a>0.

THEOREM 13.7. Vx >0, /x> 0.

THEOREM 13.8. Va,beR, [(0<a<b) = (a2<0?)].

We cannot square the inequality —2 < —1; in fact, (—2)* > (—1)%
So, in Theorem 13.8, the assumption that 0 < a is important.

THEOREM 13.9. Ya,b,c,dc R,
([a<b]&[e<d]) = (a+tc<b+d).

THEOREM 13.10. Vs > 0, (/5)% = s.
THEOREM 13.11. Ve e R,  (¢/2) + (¢/2) = &.
THEOREM 13.12. 12+ 1 < 100 < 1000.

THEOREM 13.13. 0.000012 4+ 0.00001 < 0.001.
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14. A DOUBLY QUANTIFIED THEOREM, REDUX

We next discuss the art of proof-writing, with a focus on proving The-
orem 6.1. In writing proofs, the most common mistake made by stu-
dents in this course is failure to follow the Cardinal Binding Rule:

You must bind a variable before you use it.

In any proof, ANY time you use a variable, you MUST be able to tell me
where you did the binding of that variable, and that binding must hap-
pen before the variable is used. Otherwise, you lose some credit. There
is only one exception to this rule, see §24. Also tricky: Some bindings
are temporary, and only last until the end of the clause in which they
appear. For example, suppose, in a homework, I see

(Ve e S, x>3)&(x+ 5 is an integer)
Then the binding on z expires before “x + 5 is an integer”, and the
student will lose some credit. By contrast, if I see

Vee S, [(x>3)&(x+5is an integer )|
then the binding continues to “|”, so there is no problem.

For the logic purist, each time “(Vz)(...... )” or “(Fx)(...... ) ap-
pears, the binding of the variable = continues inside “(...... )”. Imme-
diately after “)”, that binding expires. This is a straightforward rule.
In less formal (“pidgin”) mathematical writing, to follow the Cardinal
Binding Rule, it helps to know how to formalize pidgin statements,
to determine where their clauses begin and end.

The past participle of “to bind” is “bound”; it is NOT “bounded”.
After you bind a variable, it becomes bound, NOT bounded. Confu-
sion arises because the verb “to bound” is also used frequently in math-
ematics, and the past participle of “to bound” is “bounded”. After you
bound a variable, it becomes bounded. Within this section, we will
bound no variables; we only bind them. So, in this section, no vari-
ables become bounded; they become bound.

Free is the opposite of bound. To say that a variable is free is to say
that it is not bound. Read everything in the Exposition Handout (EH)
up to, but not including, (7) on pp. 1-3. This describes how to tell if a
given variable is free or bound. Recall Theorem 6.1, which we restate:

THEOREM 14.1. Ve >0, 36 > 0 s.t. > +J < e.

Recall, from §6, that Theorem 14.1 is doubly quantified: There is
one “V” quantifier, and one “3” quantifier.
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In this section, we explain how to write a proof of Theorem 14.1.
First, observe that, in Theorem 14.1,

the quantifier “V” binds the variable “c”  and
the quantifier “3” binds the variable “0”,

but both of these bindings are temporary, and they expire at the end
of the sentence. So, as we begin our proof, there are NO bound vari-
ables. We therefore cannot use any variables, until some binding hap-
pens. Now read (7)-(12) on the EH, pp. 3-4.

At the start of our proof, we will implement Template (10) on p. 4
of the EH. Following it, we write:

Given € > 0.
Want: 36 > 0 s.t. 62+ < e.

At this point, the variable “¢” is bound until the end of the proof,
and that is the only bound variable. The variable “0” was temporarily
bound, but that binding expired at the end of its sentence.

We next implement Template (11) on p. 4 of the EH. Following it, we
leave a blank space, and keep in mind that, somewhere in that blank
space, a line must eventually appear that binds the variable §, and,
moreover, it is important that 0 > 0. We will refer to this blank space
as our “O-strategy”. After this blank space, we write:

Want: 62 + 6§ < e.

Then we leave a blank space for the remainder of the proof, followed
by a small rectangular box. We will call this second blank space the
“finish”. At this point we have finished structuring the proof, and
the proof has the following apperance:

Proof. Given ¢ > 0. Want: 36 > 0 s.t. 2 + 6 < e.

BLANK SPACE FOR §-strategy.

Want: 6% + 4§ < e.

BLANK SPACE FOR finish. 0

For a proof of a doubly quantified theorem, if you can even structure
the proof correctly, then you should receive substantial credit, typically
about one third of the available points. The structuring of a proof is
straightforward: You just untangle the quantifiers, carefully following
templates (10)—(12) on p. 4 of the EH, leaving blank spaces as needed.

The hard part comes next: We must fill in the blanks, which typi-
cally requires that you both understand the proof as a game and know
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a winning strategy. It also requires that you communicate that strategy,
following all of the rules in the Exposition Handout (EH).
In the case of Theorem 14.1, recall the strategy from §6:

Let § := min{e/2,/2/2}.
Because € > 0, by Theorem 13.6 and Theorem 13.7, it follows that
both £/2 and \/5/7 are positive. Then, by Theorem 13.4, 6 > 0. So
our d-stragtegy could be expressed as follows:
Let § := min{e/2, /5/2}. Then § > 0.
All we have left is the finish.
Read (24) on p. 8. We cannot stop until we KNOW that 6%+ < ¢
Read (25) on p. 8. We MUST stop once we know that 62 +§ < ¢
Following Theorem 13.5, because § = min{e/2, /c/2}, we consider
the inequalities § < 4/£/2 and & < £/2 to be obvious. Then, by Theo-
rem 13.10, (1/£/2)? = /2. Finally, by Theorem 13.11, (£/2) + (¢/2) =
. So, knowing Theorem 13.8 and Theorem 13.9, the finish might read:
0<5\m s0 0% < £/2.
§<e/2and §? < /2,80 6 + 6% <
By (24) and (25) of the EH, we must stop Writing because what we
know matches what we want. The full proof now reads:

Proof. Given € > 0. Want: 30 > 0s.t. 2+ <e
Let 0 := min{s/?, \e/2}. Then § > 0.
Want: 6% + 6 <
Ogégﬁ 50(52 <e/2.
d<e/2and §* <g/2,50 0 + % < O

Question for discussion: Suppose, in some proof, a student shows
that 0 > 0, and, somewhere after that, writes

6 < A/2/2, 50 82 < ¢/2
instead of
0<0<4/2/2,50 6% <¢/2
Is this bad style? Should it result in a loss of credit? I say yes. Recall:
We cannot square the inequality —2 < —1; in fact, (=2)? > (—1)2.
For some students, it may be tempting to replace
0 <6 <+/e/2,50 82 <¢/2
by
0<d</e/2 = 66<¢g/2
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However, this is bad style, and would lead to a loss of credit. The
problem is that we KNOW that 0 < 0 < \/ETQ, so this statement does
not belong on the left of =. When we say A = B, the understood
meaning is “I am not sure if A is true, but if it should turn out to be
true, then B must be true as well.” Typically, someone who knows
for sure that it is raining outside would not say: “If it is raining outside,
then I will need my umbrella.” Instead, they would say: “It is raining
outside, so I will need my umbrella.” For more explanation of this,
read (26) on pp. 89 of the EH. T accept “.".” as an abbreviation for
“therefore” or “so”. Consequently, if you wish, you may replace

0<0<4/e/2,50 06 <¢/2
by
0<d<Ae/2 . %<eg/2

15. THREE SUBTLETIES IN MATHEMATICAL LOGIC

First, we discuss null true statements. Let P and Q be formal
statements, and suppose we are, for some reason, interested in proving
that P = Q. The rules of inference are set up in such a way that,
if we can prove —P, then P = Q follows. One sometimes expresses
this by saying that P = Q is “null true”, because P is false. Example:

THEOREM 15.1. (3#3) = (1=2).
Read (13), p. 7 of the Exposition Handout, on proof by contradiction.

Proof. Assume 3 # 3. Want: 1 = 2.
Assume 1 # 2. Want: Contradiction.
3#3. By Axiom 1.1, 3 =3. Contradiction. 0

Keep in mind:
any false statement implies every statement, true or false.
So be careful what you believe in!
Second, we apply null truth to the empty set ¢, obtaining void true
statements. For example, the two statements

Yu e O, u=9
and
Yu e O, u#9

are both true. In fact, for any formal statement P, if u is the only free
variable in P, then
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Yu e , P

is a theorem. For example:
THEOREM 15.2. YVue J, u = 9.

Proof. Given u € . Want: u = 9.
Assume u # 9. Want: Contradiction.
ue . By Axiom 2.7, u ¢ .  Contradiction. 0

THEOREM 15.3. Vset A, & < A.

Proof. Given a set A. Want: @5 < A.

Want: Vz e ¢, x € A.

Given z € . Want: x € A.

Assume x ¢ A. Want: Contradiction.

re . By Axiom 2.7, x ¢ .  Contradiction. O

The following is Theorem 9.3:
THEOREM 15.4. J is a set of sets.

Proof. Know: ¢J is a set.

Want: VA e ¢, A is a set.

Given A € &. Want: A is a set.

Assume A is not a set. Want: Contradiction.

Ae . By Axiom 2.7, A¢ .  Contradiction. O

The following is Theorem 9.8:
THEOREM 15.5. Uo =@.

Proof. By Theorem 15.3, & < | J &.

So, by the Axiom of Extensionality (Axiom 2.3),

Want: & < .

Want: Yz e | J &, x € &.

Given z € | &. Want: z € .

Assume x ¢ (. Want: Contradiction.

Since z € | J , choose A e J s.t. x € A.

Then Ae . By Axiom 2.7, A¢ #.  Contradiction. U

Third, the inclusive or. When Hamlet says, “To be or not to be”,
it is understood that a choice must be made. Hamlet cannot decide
both both to “be” and “not be” at the same time. However, this is

not how “or” is used in mathematics. The rules of inference are set up
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in such a way that, for any two formal statements P and Q, if both P
and Q are known, then P v Q is known. So for eample, we have:

THEOREM 15.6. Vo e R*, [(z<0) v (2=0)].
Read (16)—(17) on p. 6 of the Exposition Handout (EH).

Proof. Given x € R*. Want: (z<0) v (z>=0).
By Axiom 10.22, one of the following is true:

(1) z <0,

(2) =0 or

(3) x> 0.
Case (1):

Sincez <0, 2<0,80[(2<0) v (z=0)].
End of Case (1).

Case (2):
Sincex =0,2<0,s0[(z<0) v (z=0)].
End of Case (2).

Case (3):

Sincex >0,2>0,s0[(2<0) v (z=0)].

End of Case (3). O
16. UNASSIGNED HOMEWORK

THEOREM 16.1. Vz,y,ze R*, (r<y<z)= (r<z2).
THEOREM 16.2. Va,b,ceR, [(0<a<b<c) = (a*<®)].

17. A TRIPLY QUANTIFIED THEOREM WITH IMPLICATION
In this section, we explain how to write a proof of:

THEOREM 17.1. Ve > 0, 36 > 0 s.t., Vz € R,
[0<2<0] = [2*+z<e]

There are two “V” quantifiers, one “J” quantifier and one “=7, so
we describe Theorem 17.1 as: triply quantified with implication.
We begin by structuring the proof, using

(10) on p. 4, for “Ye > 0,...... 7, then
(11) on p. 4, for “36 > 0s.t. ......”, then
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(10) on p. 4, for Yz eR,...... 7, then
(12) on p. 4, for “[---- - =] 1

This yields:

Proof. Given ¢ > 0.

Want: 30 > 0s.t.,VzeR, ([0<z<d] = [2*+x<¢e]).
BLANK SPACE FOR §-strategy.

Want: Ve eR, ([0<z<d]|= [22+x<e]).

Given x € R. Want: [0<2<d0] = [22+z<e].
Assume: 0 < z < 4. Want: 22 + z < &.
BLANK SPACE FOR finish. O

The first blank area is for our “d-strategy”, within which 6 must
become bound, satisfying 6 > 0. The second blank area is for our
“finish”. In this second blank area, we must show that z? + 2 < e.
Also, once we have proven 22 + x < ¢, we MUST immediately STOP.

Theorem 17.1 is triply quantified with implication, and, for the struc-
turing of a proof of that kind of statement, I would typically give half
credit. This is a good deal, so learn the structuring process. In partic-
ular; learn p. 4 of the Exposition Handout.

To go further, it helps to turn Theorem 17.1 into a game:

You move first: You choose a real € > 0, and reveal it to me.
My move: I choose § > 0, and reveal it to you.
Your move: You choose x € R, and reveal it to me.
We check to see if [0 < z < §] = [2? + = < €.
If so, then I win.
If not, then you win.

Remember that, if you choose x so that —[0 < z < ¢], then the impli-
cation

0<z<d]=[2"+z<¢g|

is “null true”, and so I will win. So you are effectively forced to choose
x satisfying 0 < z < 4. if you want to have any hope of winning. For
that reason, it is common to revise the game, and make it part of the
rules that your choice of j must satisfy 7 > K. This revised game
reads:

You move first: You choose a real € > 0, and reveal it to me.
My move: I choose § > 0, and reveal it to you.
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You move: You choose a x € R s.t. 0 < x < 6, and reveal it to
me.
We check to see if 22 + = < e.

If so, then I win.

If not, then you win.

Let’s play. Say you choose ¢ = 100. I will laugh at your poor play,
and choose § = 3. You choose, say, z = 1. Since 12+1 < 100, I win. We
play again. You try € = 1000. I laugh even harder, and choose § = 3
again. Maybe this time, you try = 2. Since 22 +2 < 100, I win. You
begin to see that making ¢ large is not in your interest. However, by
the rules, you cannot make it negative or zero. You try € = 0.001. Now
I have to concentrate. I choose 6 = 0.00001. You begin to understand
that your goal, in choosing x, is to make = as large as possible, so that
2% + x will be large. However, you face a constraint: You are required
to choose x so that 0 < & < 0.00001. So your best move is x = 0.00001.
Since 0.000012 + 0.00001 < 0.001, I win. You begin to think the game
is rigged. Saying that the game is rigged against you is the same as
saying that you believe that Theorem 17.1 is true. Belief is the first
step in proof. Now that we believe in Theorem 17.1, we need a specific
strategy to win. It is not enough to say, “Well, just make sure the ¢ is
really small”. We have to come up with a specific method for choosing
0 after we know e.

Sometimes, it helps to focus first on the finish, in order to see what
is needed in the J-strategy. We wish to force

P +r<e

We break the problem down term-by-term. That is, work separately
on the first term 22 and the second term z. If we can force

2? <e/2 and z < /2

then we will win the game. It is therefore enough to force
0<z<+/¢/2and z <¢/2

So, since 0 < x < 9, we can win by forcing
6 < 4/g/2 and § < /2

This leads us to the same J-strategy as for Theorem 14.1:
Let § := min{e/2, \/¢/2}. Then 6 > 0.

For the finish, by Theorem 16.1 and Theorem 16.2, we could write:

r<0<¢g/2,s0x<¢g/2
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0<xz<d<4/e/2, 80 2? <¢/2.
r? <eg/2and z <e/2,80 2? + 1 < e.

Here, then, is the full proof:

Proof. Given ¢ > 0.

Want: 30 > 0s.t. Ve eR, ([0<z<d] = [22+z<¢]).
Let § := min{e/2, /5/2}. Then § > 0.

Want: Vz e R, ([0<z<d] = [22+z<e]).

Given x € R. Want: [0<z<d0] = [22+z<e].
Assume: 0 <z < 0. Want: 22 + 2 < e.
r<0<¢g/2, 50 <eg/2

0 <7 <0 <4/e/2, 50 2% <g)2.

2 <e/2and z <¢g/2,50 2 + x < €.

DEFINITION 17.2. For all s € R, we define |z| := max{z, —x}.
Let € R. Then |z| is called the absolute value of z.

THEOREM 17.3. 13 =3 and |—6|=6.

THEOREM 17.4. Vo e R, |z| > 0.

THEOREM 17.5.  [(=2) +3| # | — 2|+ [3].

THEOREM 17.6. All of the following are true:

(1) VxeR, |z|=0.

(2) Vz,yeR, |z -yl =l|z|-|y|.
(3) Ve eR, [2?|=]|z|*

(4) Vo,yeR, |z +yl < lz|+]y|

THEOREM 17.7. Ve > 0, 36 > 0 s.t., Yz € R,
[lt<d] = [|a;2+x|<5].

Proof. Given € > 0.

Want: 36 > 0s.t. Ve e R, ([|z] <d] = [|22+2|<e]).
Let § := min{e/2,/c/2}. Then § > 0.

Want: Ve e R, ([|z] <d] = [|22+ 2| <e]).

Given x € R. Want: [ |z] <d] = [|22+2x2] <e].
Assume: |z| < 4. Want: |z? + z| < e.

lz| <6 <e/2, 50 |z| < e/2.
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0<|z| <6 <4/2/2,50 0 < |2| </g/2, 50 |2|* < /2.
Then
2 + 2| < 2+ 2] = |of + |2
< (e/2)+(/2) = ¢
as desired. U

18. UNASSIGNED HOMEWORK

THEOREM 18.1. Let S < R* and let x € R*.
Assume v <sup S.  Then —(S < z).

THEOREM 18.2. Let S < R* and let x € R*.
Assume —(S < x). Then3Jye S s.t. y> x.

19. THE ARCHIMEDEAN PRINCIPLE
The next theorem is called the Archimedean Principle.
THEOREM 19.1. Vz e R, dk e N s.t. x < k.

Proof. Given z € R. Want: dk e Ns.t. z < k.

By Axiom 12.12, supN = co.

Since x € R, by Axiom 10.11, x < o0.

Then z < sup N.

Then —(N < z).

Choose k € N s.t. k > .

Want: x < k.

Since k > x, we conclude that x < k, as desired. O

20. ARITHMETIC OF SETS OF REAL NUMBERS
DEFINITION 20.1. VS < R, -5 := {—x eR | T € S}.
DEFINITION 20.2. VS € R, Va e R,

S+a:={r+acR|zeS}, S—a:={r—aeR|zeS}
a+S:={a+zeR|zeS} a—S:={a—reR|zxeS}
a-S:={areR|zeS} and S-a:={xaeR|xeS}.
Also, ¥S < R\{0}, Ya e R, a/S :={a/xr e R|x e S}.
Also, ¥S < R, VYa € R\{0}, S/a:={x/aeR|x e S}.

THEOREM 20.3. ¥YSC R, VaeR, a+S=25+a.
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THEOREM 20.4. Let S := (0;1]. Then

-5 =[-1,0),
S+3=3+5=(3;4],
S —4=(—-4;-3],

4— 5 =[3;4),

65 =5-6=(0;6],
1/S = [L;0)  and
S/5 = (0:1/5].

21. PRIMITIVE ORDERED PAIRS, RELATIONS AND FUNCTIONS
DEFINITION 21.1. Va,y, {(z,3)) = {{z}, {z,y}}.
THEOREM 21.2. ((1,2)) = {{1},{1,2}}.

THEOREM 21.3. ((2,1)) = {{2}, {1, 2}} # {{1},{L,2}} = «1,2)).
THEOREM 21.4. Vz,y,  {z,y} = {y,z}.
THEOREM 21.5. ((3,3)) = {{3},{3,3}} = {{3}. {3}} = {{3}}.
THEOREM 21.6. ({5, = {{5}.{5,®}} = {{5},0} = ®.
THEOREM 21.7. Va, (a,®)) = ® = (®,a)).
THEOREM 21.8. V—a, Vb, V—c, V—d,

(a,by) = dy)) < (la=cl&[b=d])

DEFINITION 21.9. Vq, by q is a primitive ordered pair, we
mean: I—zx, I~y s.t. ¢ = {x,y)).

AXIOM 21.10. Vsets A, B, 1set C, denoted Axx B, s.t., Vz, [(z€
C) < (JzreAdyeBst z=xy))]

Well refer to the set AxxB of Definition 21.10 as the primitive
product of A and B. A set of primitive ordered pairs is called a
relation:

DEFINITION 21.11. VR, by R is a relation, we mean:
R is a set and

Vqge R, q is a primitive ordered pair.

THEOREM 21.12. Let R := {{{5,2)), {(5,9)), (7,6, (8,4 }.

Then R is a relation.
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THEOREM 21.13. &5 is a relation.

AXIOM 21.14. Let R be a relation. Then 1set A, denoted dom|[R],
s.t., Ve, [(ze A) < (Fy s.t. {x,y))eR)].

AXIOM 21.15. Let R be a relation. Then 1set B, denoted im|[R],
st Wy [(yeB) = (3 st (oy)yeR)]

THEOREM 21.16. Let R := {{(5,2)), {{5,9)), {{T7,6)), {{(8,4))}.
Then dom[R] = {5,7, 8}.

THEOREM 21.17. Let R := {{(5,2)), (5,9, ((7,6%, {((8,4))}.
Then im|[R] = {2, 4, 6,9}.

DEFINITION 21.18. Let R be a relation,
A :=dom|[R], B :=im[R].
Then R7' = { {y,z)) e BxxA | {z,y))€ R }.
According to specification, between “{” and “|”, we should have:
a single variable, then “€”  then a set
The logic purist would therefore do some rewriting of Definition 21.18,
and define R~ to be
{ze BxxA|dx e A, Jy € B s.t. [((z,y)) € R)&({y,x)) = 2)]}.

THEOREM 21.19. Let R := {((5,2)), ((5,9)), ((T,6)), (3,4} }.
Then R~ = {{(2,5)), {(9,5)), {(6,7)), {{4,8)) },
dom[R™'] = {2,4,6,9} = im[R],
im[R™'] = {5,7,8} = dom|[R] and
(Ril)il - {<<57 2>>7 <<579>>7 <<77 6>>v <<8’4>>} = R.

THEOREM 21.20. Let R be a relation.

Then: R < (dom[R])xx(im[R]) and
Vo e dom[R],Jy € im[R] s.t. {x,y))ye R and
Vy € im[R], 3z € dom[R] s.t. ({x,y)) € R.

THEOREM 21.21. Vrelation R, [ (R =R) &
(dom[R™!] = im[R]) & (im[R™'] = dom[R]) ].
DEFINITION 21.22. Vf, by f is a function, we mean:

(1) f is a relation and

(2) Va € dom[f], Yy, z € im[f],
[z, ), Lz e fl = [y==]
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Condition (2) in Definition 21.22 is called the vertical line test.

THEOREM 21.23. Let R := {{(5,2)), {{7,6), ({8,4), (5,95 }.

Then R is a not a function.

THEOREM 21.24. Let f := {{(5,2)), ((7,6)), ((8,4))}.
Then:  fis a function, dom[f]={5,7,8} and im[f]={2,4,6}.

THEOREM 21.25. Let f := {{(5,2)), (7,6)), ((8,6))}.
Then: [ is a function, dom[f] = {5,7,8} and im[f] = {2,6}.

THEOREM 21.26. Let f := {{{z,y)) e RxxR |y = z?}.
Then:  f is a function, dom[f]=R and im[f] = [0;0).

THEOREM 21.27. Let f := {{{x,y)) e RxxR |y = 23}.
Then:  f is a function, dom[f] =R and im[f]=R.

THEOREM 21.28. Let f := .
Then:  f is a function, dom[f]= & and im|[f] =J.

DEFINITION 21.29. Let f be a function. Then, Vz,
f@) = UE{yeim[f] |z yyef}

We also often use f, instead of f(z):

DEFINITION 21.30. Let f be a function. Then, Yz,
fo = UE{yem[f] |z ypef}

THEOREM 21.31. Let f:= {{(5,2)), (7,65, ((8,4)}.
Then f(7) =6, fs=4 and f(0)=0®.

THEOREM 21.32. Let f:= {{(2,8)), ((3,8)), ((4,9)) 1.
Then f is a function, f(2) = f(3) =38, f(4) =9 and f(5) = @.

THEOREM 21.33. Let f := {{{x,y)) € Rxx[0;0) |y = 2?}. Then
fB)=[f(=3)=9, fi=4,  [f(0)=0,
f(@)=f(-0)=0©  and  [f(©)=0.

DEFINITION 21.34. V7,
[ f not a function] = [Va, ((f(z) =@)&(fr:=®)) ]

THEOREM 21.35. Let R := {{(5,2)),{(5,9)), (7,6, {(8,4)}.
ThenR5=R7=Rg=R1:®.
Also, Y, R, =0®.
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THEOREM 21.36. Let f:= {{(2,8%), ((3,8), (4,9}, Then
fil = {<<87 2>>7 <<87 3>>7 <<97 4>> }7

f~1 is not a function,
loy=0, @) =0, [19=0 and
Ve, [ (z) = ®

Unhappiness is infective:
THEOREM 21.37. Vf, f(®) = fg =0.

DEFINITION 21.38. VS, by S is set-valued, we mean:
(S is a function) and (Vjedom[S], S;is a set).

THEOREM 21.39. Let S := {{(1,{2,5})), (7,{0})), {9, F)) }.
Then S is set-valued, Sy = {2,5}, S; = {0}, Sg = & and Sy = ©.

52
We will use the following notational convention: By | 7+— 6 |, we
8+—4
mean the function {{(5,2)), ((7,6)), ((8,4))}. Following this conven-
1—7
: 2—4 1. :
tion, then 30 |8 the function { ((1,7)), ((2,4)), {(3,0)), ({(4,6)) }.
4+—6
1 — {2,5}
Also, [ 7w {0} |is the fumction { (1, 2,51, (7, {0})), (9, @) }.
9—
We will use the following notational convention: By (7,4,0,6), we
1—7
. 2—4 . . . .
mean the function a0 | Following this convention, then (3,7) is
4+—6

; ~ i ), which, in turn, is equal to {{{1,3)), ({3, 7)) }.
Also, ({3,7}) is the function ( 1—{3,7} ), which, in turn, is equal
to {((1,{3,7}))}. Finally, () is the empty set, sometimes called the
empty function. That is, () = .

The logic purist has no patience with conventions, and would insist

the function (

that every function be written out as a set of primitive ordered pairs.

DEFINITION 21.40. Yq, by q is an ordered pair, we mean:
F—a, 3~b s.t. ¢ = (a,b).
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DEFINITION 21.41. Vq, by q is an ordered triple, we mean:
F—a, I—b, I—c s.t. ¢ = (a,b,c).

An ordered pair is sometimes called an ordered 2-tuple. An or-
dered triple is sometimes called an ordered 3-tuple. There are simi-
lar definitions for ordered quadruple, a.k.a. ordered 4-tuple, and
for ordered pentatuple, a.k.a. ordered 5-tuple. Let’s not use “hex-

29 14

atuple”, “septuple”, “octuple”, “nonuple”, and instead, keep it simple,
by using “6-tuple”, “7T-tuple”, “8-tuple”, “9-tuple”.

Exercise: Continue with the definitions appearing above, until you
get to ordered 9-tuples. In particular, fill in the ellipses in:

DEFINITION 21.42. Vq, by q is an ordered 9-tuple, we mean:
phantomz I—a, ..., I—i, s.t.q=(a,...,1i).

THEOREM 21.43. Let A := {5,6,7,8} and let B := {7,8,09}.

Then (4.8) = (373 ) = (€L 5.0.T.8D) (278,91}

Also, we have dom[(A, B)] = {1,2} and im[(A, B)] = {A, B}.
Also, (A, B) is set-valued.

THEOREM 21.44. Let A :={5,6,7,8} and let B := {7,8,9}.

Let § = ( g:g ) Then § = {((0, A, (1, B}

Also, dom[S] = {0, 3} and im[S] = {A, B}.
Also, Sy = A and S3 =B and S; = ®.
Also S is set-valued.

THEOREM 21.45. Vset-valued S, im[S] is a set of sets.
DEFINITION 21.46. Yset-valued S, | JS. := |Jim[5].
DEFINITION 21.47. Vset-valued S, ()S. := ()im[S].
THEOREM 21.48. |J(). =Ug. = Uim[g] =U T = @.
THEOREM 21.49. (). =(1J. =im[J] =T = ®.

THEOREM 21.50. Let A := {5,6,7,8} and let B := {7,8,9).
Then | J(A, B)e = {5,6,7,8,9} and ((4, B). = {7,8}.

THEOREM 21.51. Let A :={5,6,7,8} and let B := {7,8,9}.

Let S := ( gHg ) Then |J Se = {5,6,7,8,9} and (S, = {7,8}.
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22. INJECTIVITY

DEFINITION 22.1. Vfunction f, by f is one-to-one, we mean:
(+) Vw,z e dom[f], ([f(w)=f(z)] = [w=2]).

Condition (*) in Definition 22.1 is called the horizontal line test.
The word injective is synonomous with one-to-one. We typically
write “one-to-one” as “1-17.

THEOREM 22.2. Let f := {((5,2)), ({7,6%), ((8,6))}. Then
f s a function,
f(7)=6=f(8), f is not 1-1,
f_l = { <<27 5>> ) <<67 7>> ) <<67 8>>}:
{6, 7)), 6,8y e [, =Y is not a function,
[716)=0, f12)= and (Vz, f[(z)=0).
THEOREM 22.3. Let f := {{(5,2)), {(7,6)), ((8,4))}. Then
f is a 1-1 function, f(7) =6,
f_l = { <<27 5>> ) <<47 8>> ] <<67 7>> }>
f~1 is a function and f746) =1.

THEOREM 22.4. Let f := {{{x,y)) €e RxxR |y = 2?}. Then
f s a function,
f(3)=9=f(-3), f is not 1-1,
7=y 2)) e RxR |y = 27},
<<97 3>>7 <<97 _3>> € f_lz
=Y is not a function and 719 =f10)=0
and (Vz, fH(z)=©).
THEOREM 22.5. Let [ := {{{x,y)) € RxxR |y = 23}. Then
f is a 1-1 function, f(2) =8,
7 =A{ly 2)) e RoxR |y = 27},
f~1is a function and 18 =2.

THEOREM 22.6. Yfunction f,
( fis1-1 ) < ( f~' s a function ).
23. ARROW NOTATION FOR FUNCTIONS

DEFINITION 23.1. Let f be a function and let A be a set. By A is
a superdomain of f, we mean: A 2 dom][f].
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The following is a quantified equivalence for equality of functions.
Two functions are equal iff they agree on a common superdomain:

THEOREM 23.2. Let f and g be functions and let A be a set.
Assume that A = dom[f] and that A 2 dom|[g].

Then: (f=g) = (VeeA, f(z) = g())

DEFINITION 23.3. Let f be a function and let B be a set. By B s
a superimage or target of f, we mean: A 2 im[f].

Any function has many superdomains and many superimages, but
only one domain and one image.

In this course, we will not use the term “range”, since it has different
meanings to different people: Some take it to mean image, while others
take it to mean target.

DEFINITION 23.4. Vf, A, B, by f:A--» B, we mean

f is a function and A and B are sets and
dom[f] < A and im[f] < B.

DEFINITION 23.5. Vf,A,B, by f:A— B, we mean

f is a function and A and B are sets and

dom[f] = A and im[f] < B.
DEFINITION 23.6. Vf, A, B, by f:A—> B, we mean

f s a function and A and B are sets and

dom[f] = A and im[f] = B.

DEFINITION 23.7. Vf, A, B, by f: A< B, we mean
f:A—-B and fis 1-1.

DEFINITION 23.8. Vf, A, B, by f:A <> B, we mean
f:A—>>DB and fis 1-1.

THEOREM 23.9. Let f: A<>> B. Then f~1: B> A.

DEFINITION 23.10. Vsets A, B,
1A — B means: 1f s.t. f: A— B,
dA —-> B means: 1f s.t. f: A—>> B and
JA <> B means: If s.t. f: A—>> B.

THEOREM 23.11. Vsets A,B, [JA<—> B] < [iB <> A].
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24. HOwW TO DEFINE A FUNCTION

Instead of
fo= {lzy) e RxR|y = 2},
the logic purist would prefer
f = {zeRxR|3z,yeRs.t. y=22&{z,y))}.

We are not logic purists, but, nevertheless, from here on out, in this
course, we will treat

fo= {lzy)eRxR|y =%}
as an example of poor style (with a loss of credit). Instead, the preferred
syntax will be
Define f : R --» R by f(z) = 22
The variable x is free, and it might be better to write Define
f:R--+]0;0) by: Vr € dom[f], f(x) = 22
However, in practice, the “Vz € dom|[f]” is typically omitted. This is
our ONLY exception to the Cardinal Binding Rule. We compute
dom[f] = {r e R|2? e R} = R, im[f] = {2* e R|xz € R} =
[0; 00). We could therefore just as easily have written:
Define f: R — R by f(x) = z*
Or:
Define f : R — (=3;0] by f(z) = 2?
All that is important is that the superimage (or “target”) contain the
image of f, which is [0; c0). In this course, it is unacceptable to say “Let
f(x) = z*”. You must always specify a superdomain and superimage.
Another example:

Let g : R --» [5; ) be defined by by g(z) = 1/x
We only know that R is a superdomain of g, i.e., that R is a superset

of dom[g]. In this situation, g(0) = ® ¢ [5;0), and so it is understood
that 0 is not in the domain of ¢g. In fact, by convention, if we write

Let g : R --» [5; ) be defined by by g(z) = 1/x :
then the domain of g is given by:
domlg] — {zeR|lze[50)} = (0;1/5]
DEFINITION 24.1. Let A be a set.
We defineidy : A — A by ida(z) = x.
The function id 4 is called the identity function on A.



56 SCOT ADAMS

THEOREM 24.2. Vset A, ids: A —> A.
THEOREM 24.3. Vset A, 3JA<—> A.

25. RESTRICTION, FORWARD IMAGE AND PREIMAGE

DEFINITION 25.1. Yfunction f, Vset A,
the function f|A: A (dom[f]) — im[f]

is defined by (f|A)(z) = f(z).

3—9
THEOREM 25.2. Let B := {3,4,5}, C := {8,9}, f := ( 49 )
58
3—9
Let A :={0,3,5}. Then f: B — C and f|A = ( £ g )
THEOREM 25.3. Let A, B and C' be sets. Let f : B — C.
Then f|A is a function and dom[f|A] = (dom[f]) n A.

39
THEOREM 25.4. Let B := {3,4,5}, C := {8,9}, f := ( 49 )
58

Let A:={3,5}. Then AC B and f: B — C and f|A = (;’Hz)
THEOREM 25.5. Let B and C be sets. Let A< B. Let f : B — C.
Then, Yt e A, (f|A)(t) = f(t). Also, Yt ¢ A, (f|A)(t) = ®.

THEOREM 25.6. Define f : R — R by f(z) = 2°. Let A :=[0;0).
Then: fisnot 1-1 and f|A is 1-1  and
fIA:A>>A and Vye A, (flA)"y) = Vu-

DEFINITION 25.7. Let f be a function. Let S be a set. Then

fe(8) = { f(z) eim[f] [ z € S~ (dom[f]) } and
f*(8) = {wedom[f]] f(z)esS}.

1—7

27
THEOREM 25.8. Let f := a6 | Then

4—9

f«({0,1,2,4}) = {7,9} and  [*({6,7,8}) = {1,2,3}.

THEOREM 25.9. Define f : R - R by f(x) =z + 2.
Then:  fi([0;0)) = [2;00)  and  f*([0;%0)) = [-2;0).
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THEOREM 25.10. Define f: R — R by f(z) = 22. Then
[([9:16)) = (=4, =3] U [3;4).

26. COMPOSITION

THEOREM 26.1. Let f and g be functions. Then 31function h,
denoted g o f,

s.t., Vo, h(z)=g(f(x)).

THEOREM 26.2. Define f,q:R — R by f(z) = 2 + 2, g(z) = /7.
Then, Yz e R, (go f)(x) = vz + 2.
Also, dom[g o f] = [-2;00) = f*(dom][g]).
Also, im[g o ] = [0; ) = ga(im[f]).
THEOREM 26.3. Define f,g: R —> R by f(z) = +/x, g(z) = x + 2.
Then, Yz € R, (go f)(x) = \/z + 2.
Also, dom[g o f] = [0;0) = f*(dom]|g]).
Also, im[g o f] = [2;00) = g.(im[[]).
THEOREM 26.4. Let f and g be functions.  Then

(1) dom[go f] = f*(dom[g]) and

(2) im[g o f] = g.(im[f]).

Composition of functions is associative:
THEOREM 26.5. Yfunctions f, g, h, we have: ho(go f) = (hog)o f.

THEOREM 26.6. Let f : A <> B and let g : B —> C. Then
gof:A—>C.

THEOREM 26.7. Let A, B and C be sets.
Assume that 3A — B and that 1B — C.
Then: JA — C.

27. POWER SETS AND SETS OF FUNCTIONS

AXIOM 27.1. Vset S, I1set P, denoted 2°, s.t.
VA, (AeP)<= (A< S).

For any set S, the set 2° is called the power set of S. It is the set
of all subsets of S.

THEOREM 27.2. 2{789 =
{ T, {9}, {8}, {8,9},
{7}, {79}, {7,8}, {7,8,9} }.
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DEFINITION 27.3. Vsets A, B, BA = {f € AxB| f: A — B}.

According to specification, between “{” and “|”, we should have:
a single variable, then “€”  then a set

The logic purist would therefore do some rewriting of Definition 21.18,
and define B4 to be B4 := {f e 28| f: A — B}.

THEOREM 27.4. {0,1}{7%% —

7—0 7—0 7—0 7—0

{ 8—0 |, 8—=0 |, 8—1 |, 8—1 |,
9+—0 9—1 9+—0 9—1
7—1 7—1 7—1 7—1
8—0 |, 8—=0 |, 8—1 |,| 8—1 }
9+—0 9—1 9+—0 9—1

THEOREM 27.5. Vset A, 3{0, 1}4 <> 24,
THEOREM 27.6. {7,8,9}{1:%

(D) (300D,
(323) (58 (528
(;:2) (3:2) (;:3>}
7), 9,7),(9,8), (9,9) }.

{(7,7),(7,8),(7,9), 8,7) ), (8,

28. ORBITS

DEFINITION 28.1. Let f be a function. Let k € Ny.
Let S := (dom[f]) u (im[f]).  Then, Va,
ORB(a) := UE{z € SI*M | (zg = a)&(Vj € [1.k], f(z;-1) = x;)}.

The function ORB'}(a) is called the k-orbit of @ under f.
THEOREM 28.2. Define f:[1,8] > R by f(z) =2 + 2.
Then ORBY(3) = (0 3), ORB}(3) = ( 03 )

1—5
03 03
1—
ORB}(3)=| 1—5 |, ORB}(3) = QH? and
2 —
’ 39

ORB}(3) = @.
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Also,  (ORB}(3))o =3, (ORB}(3)); =
(ORB%(3))2 = 7, (ORB3(3)) 9 and
(ORBj(3))1 = ©

DEFINITION 28.3. Let f be a function, k € Ny.
Then, Ya,  fF(a) := (ORB?(@));C.

THEOREM 28.4. Define f : [1,8] — R by f(z) = = + 2
Then f3(3) =3, f2(3) =5, f2(3) =7, f2(3) =9, f/(3) =
THEOREM 28.5. Define f:[1,8] > R by f(z) 2.

=+
Then f(3) =3, fi(3)=[f(3), f3(3)=(fof)3 )
f23)=(fofo)B) and [fI(3)=(fofo
THEOREM 28.6. Vfunction f, Va,
fola)=a, fi(a)=fla), f3a)=(fof)(a),
f3a)=(fofof)a) and fi(a)=(fofofof)(a).

THEOREM 28.7. Vfunction f, Va, f(f!(a)) = fi™'(a).

DEFINITION 28.8. Let a€ R. Define f: R — R by f(z) = ax.
Then, Yk € Ny, a* := fk(1).

DEFINITION 28.9. Yae R, Vke N, a~* := 1/(a").

° f)(3).

THEOREM 28.10. 20=1, 2'1=2 22—=4  23=38,
271 =1/2, 272=1/4, 273=1/8.

THEOREM 28.11. Vje Ny, 2.2/ =2*L

THEOREM 28.12. Vae R, a’ = 1.

THEOREM 28.13. 0 =1.

THEOREM 28.14. Vae R, a'=a anda™' =1/a.

DEFINITION 28.15. Vset A, Vk e N, A := All-#],
Review Theorem 27.6.

THEOREM 28.16. {7,8,9}> = {7,809}l
{77, (7.8), (7,9), (8,7), (8:8), (8,9), (9:7), (9,8), (9,9) }.

DEFINITION 28.17. Vsets A and B,
AxB = {(a,b)e(AuB)?|(acA)&(beB)}.
We call A x B of Definition 28.17 the product of A and B.
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THEOREM 28.18. {7} x {8,9} = {(7,8),(7,9)}.
THEOREM 28.19. {1,2,3} x {8,9} =
{(1,8),(2,8), (3,8), (1,9), (2,9), (3,9) }
DEFINITION 28.20. Vsets A and B and C,
Ax BxC:={(a,bc)e (AuBuUC)’|(aec A)&(be B)&(ce C}.
We call A x B x C' of Definition 28.20 the product of A, B and C.
THEOREM 28.21. {1,2,3} x {8,9} x {0} =
{(1,8,0), (2,8,0), (3,8,0), (1,9,0), (2,9,0), (3,9,0) }

We leave it to you to continue these definitions up to nine sets.
For the last definition, fill in the ellipses (- -) in:

DEFINITION 28.22. Vsets A, ..., 1,

Ax--xIT:={(a,...,i)e (Au---0I)?|(aec A& - &(iel)}.
THEOREM 28.23. Vset A, A> = Ax A and A> = A x Ax A and
A'=AXxAxAxAand A =Ax Ax Ax AxA.

We also have similar formulas for A%, A7, A® and A°.

Let A, B and C be sets. Let f: Ax B — C. Then, Vx € A, Vy € B,
we have (z,y) € Ax B and f((z,y)) € C, but it is common to eliminate
one set of parentheses, and write f(x,y) instead of f((x,y)).

The logic purist eschews ellipses (- - - ). Consider the theorem

1 +---+4 = 10
The logic purist would prefer
1+2+3+4 = 10

On the other hand, consider the theorem:
THEOREM 28.24. V/eN, 1+.---4+{(=/((({+1)/2.

We now have a challenge in eliminating the ellipsis, because ¢ is a
variable. We can use composition powers to deal with this challenge:

THEOREM 28.25. Define f:Z xR — Z x R by
fG,2) =G+ La+)).
Then f(1,0) = (2,1) and f(2,1) = (3,3) and
f(3,3) = (4,6) and f(4,6) = (5,10).
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Also, (fc>1(170))2 = ((271))2 = 1
(fg(lvo))Q = ((373))2 =3 = 1+27
(f3(1,0))2 = ((4,6)) = 6 = 1+2+3 and

(f4(1,0))s ((5,10)2)2 =10 = 1+2+3+4.

Instead of Theorem 28.24, the logic purist would prefer:

THEOREM 28.26. Define f:7Z xR — Z x R by

f2) = (G + La+j).
Then, V¢ € N, we have (f£(1,0))y = £( +1)/2.

However, as is often the case, purity comes at the cost of readability,

and, in this course, we will often use ellipses. Theorem 28.24 is proved
below, see Theorem 30.7. Next, we introduce the summation notation:

DEFINITION 28.27. Let a be a function, let k,f € N.
Assume k < £, [k.£] < dom[«a] and im[a] < R.

¢
Then: Za. = ap+ -+ ay.
k

‘
Assuming that j is a free variable, we can also use the notation Z Q;
j=k
¢

to denote Z «,. In this case, the variable j becomes bound between

k
l

“Z” and “a;”, and is then free again. If j is not free, but ¢ is free,
j=k
14
then we could use Z a;, and, again ¢ is temporarily bound. Any free
i=k
variable is acceptable, not just ¢ or j. For this reason, the variable

is sometimes called a “dummy variable”, meaning a variable that is
easily replaced by another, as a dummy mannequin is easly replaced
by another in a department store.

Definition 28.27 is not acceptable to a logic purist because of the
ellipsis. The following, while difficult to read, is formally better.

DEFINITION 28.28. Let « be a function and let k,{ € N.
Assume k < {, [k..£] < dom[«a] and im[a] < R.
Define f : [k. L] xR > Z xR by f(j,z) = (j + 1,2+ o).

¢

Then: Za. = ( Ik, 0))s.
%
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The product notation is similar:

DEFINITION 28.29. Let « be a function and let k,{ € N.
Assume k < {, [k..£] < dom[a] and im[a] < R.

¢
Thenl_[oz. = Qoo Q.
k

¢
Assuming that j is a free variable, we can also use the notation H Q;
j=Fk
¢
to denote H Q.. In this case, the variable 7 becomes bound between

k
L

“H” and “o;”, and is then free again. If j is not free, but i is free,
j=k
¢
then we could use 1_[ a;, and, again 7 is temporarily bound. This is
i=k
another dummy variable; any free variable is okay, not just ¢ or j.

More formally:

DEFINITION 28.30. Let a be a function and let k, ¢ € N.
Assume k < {, [k..£] < dom|«a] and im[a] < R.
Define f: [k. L] x R—>Z xR by f(j,z) = (j+ 1,2 ;).

¢

Then: 1_[ Oy = (ff_k+1(k3, 1))a.
k

Using summation notation, we can rewrite Theorem 28.24 in a way
that is readable and avoids ellipses:

¢
THEOREM 28.31. VeeN, >l j=Ll+1)/2.
j=1
¢
THEOREM 28.32. Then VL eN, > (idg). = (¢ +1)/2.
1

29. APPENDIX 1

The following is Theorem 1.2:
THEOREM 29.1. Vz,y, [(z=y) = (y=1x)].
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Proof. Given z,y.

Want: (z =y) = (y = z).

Assume z = y.

Want: y = x.

By Axiom 1.1, x = x.

Since x = y, we may replace the first z in x = x by y.

Then y = z, as desired. U

The following is Theorem 1.3.
THEOREM 29.2. Vz,y,z, [(z=y=2) = (x=2)].

Proof. We have z =y and y = 2.
Since = y, we may replace y in y = z by .
Then z = z, sa desired. O

The following is Theorem 7.15:
THEOREM 29.3. Va,be R, 3x e R s.t. a +x = b.

Proof. Given a,b e R. Want: dr e Rs.t. a4+ x =b.
Let z : =0 —a.
Then

a+r = a+(b—a) = a+b+(—a)
= b+a+(—a) = b+0 = b,
as desired. ]
30. PRINCIPLE OF MATHEMATICAL INDUCTION

DEFINITION 30.1. VS € R, by S is successor closed, we mean:
VreS, x+1€b.

AXIOM 30.2. N is successor closed.

Recall that N = [1..00). Then 1 € N. Recall:
1+1=2)&2+1=3)&B+1=49)&(1+1=5)&
BG+1=6)&6E+1=7)&(T+1=8&B8+1=9)

and 9 + 1 = 10. So, as N := [1..0c0) € Z, using Axiom 30.2, we have:
THEOREM 30.3. 1,2,3,4,5.6,7,8,9,10 e N C Z.
AXIOM 30.4. Z = (—N) u {0} UN.
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THEOREM 30.5. 0,—-1,—-2,-3,—4,—5,—6,—7,—8,-9,—-10 € Z.
The next axiom is the Principle of Mathematical Induction.

AXIOM 30.6. Let S < N.
Assume that 1€ S  and that S is successor closed.
Then S = N.

THEOREM 30.7. V(e N, 1+---+0=((0+1)/2.

Proof. Let S:=={{eN|1+---+{=1(({+1)/2}.

Want: S = N.

Since 1 =1-(1+ 1)/2, it follows that 1 € S.

So, by the PMI, it suffices to show: S is successor closed.
Want: Ve S, {+1€S.

Given £ € S. Want: {+1€S.

Know: 1+---+{=1(({+1)/2.

Want: 1+---+0+({+1)=L+1)(((+1)+1)/2.

We have:

I+ 40+ (+1)

A~ N /N

l+1)/2)+ (0 +1)
(2 +0)/2) + ((2¢ + 2)/2)

P 430+2)/2 = (L+1)(0+2)/2
C+1)((0+1)+1)/2,

as desired.
THEOREM 30.8. Vj,ke N, j+keN.

Proof. Let S :={keN|VjeN, j+ ke N}.

Want: S = N.

Since N is successor closed, we know: Vj e N, j + 1€ N.
Then 1€ S.

By the PMI, it suffices to show: S is successor closed.
Want: Vke S, k+1€ 5.

Given k € S. Want: k+ 1€ S.

Know: VjeN, j+ keN.

Want: VjeN, j+ (k+1)eN.

Given j € N. Want: j+ (k+1) e N.

J + k e N and N is successor closed.

Then (j + k) +1eN.

Then j+ (k+1) = (j + k) + 1 € N, as desired
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We leave it as unassigned homework to show that successor closed is
“translation invariant”. That is:
VS € R, Va e R,
[ (S is successor closed ) = (S + a is successor closed ) |.
We can generalize the PMI:

THEOREM 30.9. Let ke Z. LetS < [k..o0).
Assume that k € S and that S 1s successor closed.

Then: S = [k..0).

Proof. Let a :=1— k. Then a + k= 1.
Since S is successor closed, S + a is successor closed.
Since ke S, k+aeS+a.
Since S < [k..o0), S+ac [k.0)+a.
Then S + a is successor closed
andl=k+aeS+a
and S +a € [k..o0) + a = [1..0),
so, by Axiom 30.6, S+ a=N.
Then S =N —a = [1..0) — a = [k..o0), as desired. O

THEOREM 30.10. Vj e Ny, 2/ > j + 1.

Proof. Let S :={jeNg|2/ = j+ 1}.

Then S < Ny = [0..00). Want: S = Nj. Want: S = [0..00).
Since 2° =1 > 0+ 1, we see that 0 € S.

Then, by Theorem 30.9, it suffices to show: S is successor closed.
Want: Vje S, j+1€S.

Given j € S. Want: j+1€S.

Know: 27 > j + 1. Want: 2771 > (5 +1) + 1.

Since 27 > j+ 1, weget2-27 =2 (5 +1).

Since j € S € Ny = [0..00) = 0, we get j = 0.

Then j+(j4+2) =20+ (j+2),s02j+2>j+2.

Then 2071 =2.21 22 (j+1)=2j+2=j5+2=(j+1)+ 1 O

THEOREM 30.11. Vj e Ny, 2/ > j.
Proof. Given j € Nj. Want: 27 > j.

By Theorem 30.10, 27 > j + 1.
Then 27 > j + 1 > j, as desired. 0
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31. WELL-ORDERED SETS

DEFINITION 31.1. Let S < R*. By S is well-ordered, we mean:
Vnonempty A< S, minA # ®.

THEOREM 31.2. Let A < N* and let j € Ny. Let k=5 + 1.
Assume [1..j] n A= # [1.k] n A. Then min A = k.

Proof. Unassigned homework. O
THEOREM 31.3. N* s well-ordered.

Proof. Want: Vnonempty A € N* min A # ®.
Given nonempty A < N*.

Want: min A # ®.

Assume min A = ®.

Want: Contradiction.

Claim 1: ¥Vj e Ny, [1.j] n A= &.

Proof of Claim 1:

Let S:={jeNy|[l.j] n A=}

Want: S = Nj. Want: S = [0..00).

Since [1.0]n A= n A=, we see that 0 € S.
Then, by the GPMI,

Want: S is successor closed.

Want: Vje S, j+1€S.

Given j € S. Want: 7+ 1€ S.

Let k:=7+ 1. Want: ke S.

Since j € S, we have [1..j] n A = &.

So, since k # @ = min A, by Theorem 31.2, we see that [1..k]n A = .
Then k € A, as desired. End of proof of Claim 1.

Claim 2: A < {o0}.

Proof of Claim 2:

We have N*\N = {o0}. Want: A < N*\N.
We have A € N*. Want: Vje N, j¢ A.
Given j € N. Want: j ¢ A.

Since j € N, we conclude that j € [1..7].

By Claim 1, [1..j] n A = .

Then j ¢ [1..5] n A.

So, since j € [1..5], we see that j ¢ A, as desired.
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End of proof of Claim 2.

Since J # A < {0}, we see that A = {o0}, so min A = 0.
Then min A = o0 # ® and min 4 = ®.
Contradiction. O

THEOREM 31.4. Let T < R* and let S < T.
Assume that T is well-ordered. Then S is well-ordered.

THEOREM 31.5. N is well-ordered.

THEOREM 31.6. Let S < R* and let t € R.
Assume that S 1s well-ordered. Then S + t is well-ordered.

THEOREM 31.7. VkeZ, [k..0] is well-ordered.
THEOREM 31.8. VkeZ, [k..0) is well-ordered.

DEFINITION 31.9. Let S < R.
By S is bounded below in R, we mean: Jue R s.t. u < S.
By S is bounded above in R, we mean: Ju e R s.t. S < u.
THEOREM 31.10. The following are all true:
[1;00) is bounded below in R, but not bounded above in R,
N s bounded below in R, but not bounded above in R,
(—00;5) is bounded above in R, but not bounded below in R,
Z 1s neither bounded above nor bounded below in R and
(2;5] is both bounded above and bounded below in R.
&5 18 both bounded above and bounded below in R.

The following will be called the Reverse Archimedean Principle:
THEOREM 31.11. Vu e R, dk € —N s.t. k < u.

Proof. Given u € R.  Want: 3k € —N s.t. kK < u. By the Archimedean
Principle (Theorem 19.1),
choose j € Ns.t. j > —u.

Let k := —j.

Want: £ < u.

Since j > —u, we see that —j < —(—u).

Then k = —j < —(—u) = u, as desired. O

THEOREM 31.12. Let S € Z be nonempty.
Assume that S 1s bounded below in R. Then min S # ®.
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Proof. Since S is bounded below in R, choose u € R s.t. u < S.
By the Reverse Archimedean Principle (Theorem 31.11),
choose k€ =N s.t. k < u.
Then S < (k;0) N Z = (k..0) < [k..0].
By Theorem 31.8, [k..c0] is well-ordered.
So, since @& # S < [k..0], we get min S # @, as desired. O

THEOREM 31.13. Let S < R.
Assume that S is bounded above in R.
Then —S s bounded below in R.

Proof. Unassigned HW. O
THEOREM 31.14. ¥S € R, min(—S) = —(max S5).
Proof. Unassigned HW. O

THEOREM 31.15. Let S < Z be nonempty.
Assume that S is bounded above in R. Then max S # ®.

Proof. Since S < 7Z, we see that —5 < Z.
Since S # (J, we see that —S # (.
Since S is bounded above in R, by Theorem 31.13,
we see that —S' is bounded below in R.
Then, by Theorem 31.12 (with S replaced by —S),
we see that min(—S5) # ®.
By Theorem 31.14, min(—S) = —(max 95).
Then —(max S) # ®. Then max S # ®, as desired. O

32. CONSTANTS, PUNCTURES, FILLS AND ADJUSTMENTS

DEFINITION 32.1. Vset A, V—y,
we define CY : A — {y} by CY%(x) =y.

The function C% of Definition 32.1 is called the constant function
on A with value y. For example, the graph of C} is the horizontal line
through the point (0,1). Another example:

2+ 6
THEOREM 32.2. Cfy59, = | 5—6
96

In class, we graphed Cf.
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DEFINITION 32.3. Vset S, 0g:=C%.
DEFINITION 32.4. Let A be a set. Then, Y—b,
Af = A\{b} and A = Au{b}.

Also, Yb, the set A; is called A punctured at b.
Also, Vb, the set Aj is called A filled by b, or A adjoin b.

THEOREM 32.5. Let A := {5,6,7,8}. Then

Ag = {67778}7 AE; = {5,6, 7,8} ,
AF =1{5,6,7,8}, Ay =1{5,6,7,8,9}

Let X := (0;2).
In class, we graphed X and then X and then X" on a number line.
We then graphed X and then Xj .

THEOREM 32.6. Let f be a function.
Then, Y—p,V—q, I function g, denoted adj] f, s.t.

[Vo, (z#p) = (g(x)=f(x))] and  [g(p)=q]
The function adj] f is called the adjustment of f sending p to q.

N
THEOREM 82.7. Let f = [ 21 |, o= | 7%
51 6 iy

07

Then adil f = adjl¢ — 21 H_41

5 6

THEOREM 32.8. Define f: R --» R by f(z) = x/x.
Then adjy f = Cg.

THEOREM 32.9. Define f: R --» R by f(z) = (2 +2—-2)/(z—1).
Let g :=adj’ f.  Then, Ve e RS, f(z) =z +2. Also, f(1) = ®.
Also, Vx e R, g¢g(x) =z + 2.

THEOREM 32.10. Vfunction f, V—p, V—q,
dom|[(adj; f)] = (dom[f]);  and im[(adjj f)] < (im[f]); -
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33. FINITE AND INFINITE SETS

THEOREM 33.1. Let S be a set. Let A:={jeNy|3S — [1..5]}.
Let B:= AY. Then & # B < N{.

DEFINITION 33.2. Let S be a set. Let A:= {j e Ny|3S — [1..5]}.
Let B:= Af.  Then #S := min B.
THEOREM 33.3. #{2,7,9} = 3 and #7Z = w0 = #R and # = 0.
THEOREM 33.4. Vset S, #SeNj.
DEFINITION 33.5. Vset S, by S is finite, we mean #S < 0.
DEFINITION 33.6. Vset S, by S is infinite, we mean #5 = 0.
THEOREM 33.7. Let S be a set, k € Ng.
Then: (#S=Fk) < (IL.k] >>9).
THEOREM 33.8. Vfinite sets A, B,
Then: (#A=#B) < (JA—> B).
THEOREM 33.9. Vsets A,B, [ (JA— B) v (iB— A) |.
The next theorem is the Schroeder-Bernstein Theorem:

THEOREM 33.10. Vsets A, B,
[ (I A—>B) & (IB—A) ] = [ JA —>> B ]

We described the “World of Sets”, as a big blob on the board, with
no top. Inside, sets that are at the same horizontal level are bijective.
If one set is above another then there’s an injection from the lower one
to the upper one, but not the other way around. Inside, starting at
the bottom, we showed the empty set, then singletons, then unordered
pairs, etc., and then a dividing line between finite and infinite.

THEOREM 33.11. Let S be a set.
Then: (#S =) < (IN<=9).

In the World of Sets, we showed N at the bottom of the infinite
sets. Sets at or below N are said to be “countable”. Sets above N are

“uncountable”. Sets at the same horizontal level as N are “countably
infite”. That is:

DEFINITION 33.12. Let S be a set.

Then S is countable means: 15 — N.

Also, S is countably infinite means: 35 <> N.
Also, S is uncountable means: 35 — N.
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THEOREM 33.13. Let S be a set. Then:
[ S is countably infnite] < [ (S is countable) & (S is infnite) |.

THEOREM 33.14. Ycountable set C', VA< C, A is countable.
THEOREM 33.15. Ny and Z and Q are all countably infinite.
We put Ny, Z, Q all at the same level as N.
THEOREM 33.16. V sets A, [ (34 — 24) & (#24 — A) ].
We put in 2" and 22" and explained that there is no top.
THEOREM 33.17. 32 <> R,

We put in R at the same level as 2. Sets at that level are said to
have “continuum cardinality”:

DEFINITION 33.18. Let S be a set.
By S has continuum cardinality, we mean: 315 —> R.

Any Euclidean space had continuum cardinality:
THEOREM 33.19. Vk € N, R* has continuum cardinality.

We put R', R?, R? at the same level as R.
Any nondegenerate interval has continuum cardinality:

THEOREM 33.20. Let a,be R*. Assume a <b. Then:
[a;0], [a; D), (a;b] and (a;b) all have continuum cardinality.

We put [0;1] and (0;1) at the same level as R.
Within our axiom system, there is no way to determine if there are
any sets strictly between N and 2. The assertion
fset S s.t. (AN — 9) & (IS — 2M) & (}S — N) & (#28 — )
is called the Continuum Hypothesis or CH. The axiom system
of this course is equivalent to a standard axiomatic system called ZFC.
Within ZFC, it is impossible to prove CH, but it is also impossible
to prove —CH. To convey this, one says: “CH is independent of ZFC”.
Within our axiom system, Vinfinite set A, there is no way to deter-
mine if there are any sets strictly between A and 24. The Generalized
Continuum Hypothesis or GCH is the assertion:  Vinfinite set A,
fset S st. ((AA > 9) & (3S — 2M) & (1S — A) & (J24 — 9))
Within ZFC, it is impossible to prove GCH, but it is also impossible
to prove —GCH. That is, GCH is independent of ZFC.
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Here are a few important sets:
Let ¢y := .
Let ¢; := {co}.
Let ¢y := {co, 1}
Let ¢3 := {co, ¢1, Ca}.

Let Yo := {co, ¢1, €2, €3, .. .}

Then ¢y is called the Oth cardinal number, and it is the only set at the
bottom level of the World of Sets. The first cardinal number is ¢;, and
we will position it as the leftmost set at the level of singleton sets. The
second cardinal number is ¢y, and we will position it as the leftmost
set at the level of unordered pairs. The third cardinal number is ¢z,
and we will position it as the leftmost set at the level of sets with three
elements. The countably infinite cardinal number is Ny, and we will
position it as the leftmost set at the level of countably infinite sets.

We will not go into more detail here, but there is a system for produc-
ing exactly one cardinal number at each horizontal level in the World
of Sets, and I like to position these sets on the left. The “cardinality”
of a set is the unique cardinal number that is bijective with that set.
Then two sets are bijective iff they have the same cardinality.

THEOREM 33.21. Yfinite, nonempty A € R*, min A # ® # max A.
Recall Theorem 27.4:

THEOREM 33.22. {0,1}{"%% —

70 70 70 70

{ 8—0 |, 8—~0 |, [ 8—~1 ], 8—1],
90 91 90 91
71 71 71 71
8—0 |,.[ 8—»0 ], [ 8—~1 ], [ 8—1 }
90 91 90 91

Recall Theorem 27.6:

THEOREM 33.23. {7,8,9}1% =
17 107 17
{(2H7>’(2H8>’(2H9)’
18 18 18
(2H7)’(2H8>’<2H9)’
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19 19 -9\ _
(227) (20) (520} -
{(7,7),(7,8),(7,9), (8,7),(8,8),(8,9), (9,7), (9,8), (9,9) }-
THEOREM 33.24. Vfinite sets A, B, #(B*) = (#B)#4.

Recall: Theorem 27.2:

THEOREM 33.25. 2789} —

{ <, {9}, {8}, {8,9},
{7}, {79} {7,8}, {7,8,9} }.

Recall Theorem 27.5:
THEOREM 33.26. Vset A, 3{0, 1} <> 24,
THEOREM 33.27. Vfinite set A, #(24) = 2#4,

34. ARITHMETIC OF FUNCTIONALS

DEFINITION 34.1. Vf, by f is a functional, we mean:
(f is a function) & (im[f] < R).

DEFINITION 34.2. Let a € R and let f be a functional.
Then a- f, a/f and f/a are the functionals defined by: Vz,

(a- f)(x) =a-[f(x)],
(a/f)(x) =a/[f(x)] and
(f/a)(x) = [f(z)]/a.

We often write af instead of a - f.
DEFINITION 34.3. For any functional f, we define —f := (—1)- f.

DEFINITION 34.4. Let f and g be functionals.
Assume that im[f] € R and that im[g] < R.
Then f+g, f—g, [-g and f/g are the functionals defined by: vz,

(f +9)(x) = [f(@)] + [9(=)],

(f =9)(x) = [f(@)] = [9(=)],
(f-9)(@) = [f(0)]-[g(x)]  and
(f/9)(x) = [f (2)]/[g(x)]-

We often write fg instead of f - g.

T T
T T

THEOREM 34.5. (1,2,3) + (4,0,—3) = (5,2,0) and
(1,2,3) — (4,0, —3) = (—3,2,6).
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THEOREM 34.6. 3.(2,0,-3,1) = (6,0, -9, 3).

THEOREM 34.7. (6,0,-9,3)/3 = (2,0,-3,1).
35. ABSOLUTE VALUE AND DOT PRODUCT

THEOREM 35.1. Vz e R, 2?> 0.

THEOREM 35.2. VzeR, (22=0) < (2 =0).

THEOREM 35.3. Vz >0, |z| =z

THEOREM 35.4. Yz <0, |z|=—z

THEOREM 35.5. Yz e R, |z| = Va2,

THEOREM 35.6. All of the following are true:

(1) Vz e R, [(z=0) < (|z|=0)].
(2) Vae R, Vx € R, lax| = |a| - |z|.
(3) Vz,y e R, [z +y| < [z] + |yl.

In Theorem 35.6,

(1) says that “| e | separates zero” )
(2) says that “| e | is absolute homogeneous” and
(3) says that “| e | is subadditive”
The three properties together say “| e | is a norm”.
DEFINITION 35.7. Vk € N, Vo, w € R¥,
Vew = VW + -+ VpWy.
k

Logic purist: Replace “viwq + - -+ + vpwy” by “Z (vw)”.
1

DEFINITION 35.8. 44 :=4-10 + 4.

THEOREM 35.9. (1,3,5)¢(2,4,6) =1-2+3-4+5-6=44.
THEOREM 35.10. Yk e N, Yo, w e RF, vew = wev.

THEOREM 35.11. Yk e N, Yu,v, w € RF,
ue (v+w)=(uev)+ (uew).

THEOREM 35.12. Vk € N, Va € R, Vo, w € R¥,
(av)esw =a- (vew).

THEOREM 35.13. Vke N, Vo e RF,  vev > 0.
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36. STANDARD NORMS ON EUCLIDEAN SPACES

FOR NEXT YEAR: Define |v|, := (Jv;|P + - -+ + |v[P)¥P and note
that |v]s = /v ev. Don’t use |v|g; instead, use |v|o. LATER, don’t use
0|k, p; instead, use |v|,.

DEFINITION 36.1. Vk € N, Yv € R¥, we define |v]), := v ev.
THEOREM 36.2. Vke N, Vo e R*,  wvev = |v]3.

THEOREM 36.3. [(3,4)]> = 1/(3,4) + (3,4) = /32 + 42 = 5.
DEFINITION 36.4. 194 := 1-100 + 9-10 + 4.

THEOREM 36.5. |(7,8,9)|3 = V7% + 8 + 92 = 1/194.

Recall (Definition 32.3) that, Vset S, we defined 05 := C¥.
DEFINITION 36.6. Vk € N, Ok = Op1.iy-

Then 0, = (0,0) and 03 = (0,0,0) and 04 = (0,0,0,0), ete.
THEOREM 36.7. Let k € N. Then all of the following are true:

(1) Vv e R¥, [(v=0;) < (Jv][g=0)].
(2) Ya e R, Yv e R, lav]y = |a| - |v].
(3) Vv, w € R, v+ w|, < ||k + |wlk.

Let k € N. In Theorem 36.7,

(1) says that “| e | separates zero” :
(2) says that “| e | is absolute homogeneous” and
(3) says that “| e | is subadditive”

The three properties together say “| e | is a norm”.

We sometimes refer to the absolute value function, |e|: R — [0; o0),
as the standard norm on R. For all £ € N, the standard norm
on R¥ is | e |; : R¥ — [0;00). Some use “Euclidean norm” instead of
standard norm.

THEOREM 36.8. Let ke N, v e R*. Let a := |v|;.
Then Ju € R* s.t.: (Julg =1) & (v=oau).

Proof. One of the following is true:
(1) v =04 or
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Case (1):

Let u := (1,0,...,0).

Want: (|ulp=1) & (v =oau).

We have |ul, =12+ 02+ -+ + 02 = 1.
Want: v = au.

We have v =0, =0 - u = au.

End of Case (1).

Case (2):

Since v # O, we see that |v[; # 0.

Then a = |v|; # 0.

So, since a € [0; ), we conclude that a € Rj.
Let u :=v/a.

Want: (|ulz=1) & (v =au).

We have |ulp = |[v/alx = (|v]x)/a = a/a = 1.
Want: v = au.

We have v = a - (v/a) = au.

End of Case (2). O
The following theorem is the Cauchy-Schwarz inequality:
THEOREM 36.9. Vke N, Vo,w e R¥,  |vew| < |v| - |wlg.

Proof. Let a:= vl and b= |wlg.

By Theorem 36.8, choose t € R* s.t. |t|y = 1 and v = at.

By Theorem 36.8, choose u € R* s.t. |ulp = 1 and w = bu.

Then tet = |t|2 =12 =1, Also, usu = |ulz =12 = 1.

We have (t —u) e (t —u) = 0.

Expanding this, we get 1 —2- (teu) +1>0,502—2- (teu) > 0.
Then 2> 2-(teu),s01l>=teu

Then teu < 1, so (ab) - (t e u) < ab.

Then vew = (at) ¢ (bu) = (ab) - (teu) < ab = |v|; - |wlg. O

37. UNASSIGNED HOMEWORK

THEOREM 37.1. Va,z € R, [|a| < z] © [(a<2)&(—a<2)].

38. METRIC SPACES

FOR NEXT YEAR: Put nonemptyness as part of the definition of
a metric space.
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FOR NEXT YEAR: Maybe we should define “extended metric” as
a function d : S x S — [0; 00] with the same properties as a metric, but
with the target including co. So, some points could be at an infinite
distance from others. This would allow for a standard extended metric
on R*. We’d need to define: Va € RY, a + o0 = oo to make the triangle
inequality make sense.

DEFINITION 38.1. Let S be a set, and let d : S x S — [0;0).
By d is a metric on S, we mean:

(1) Vz,y e s, ([z=y] < [dz,y)=0]),
(2) Vo,ye S, d(z,y) = d(y, z) and
(3) Vo,y,2€ S, d(z,z) < [d(z,y)] + [d(y, 2)].

In Definition 38.1,

(1) says that “d separates points” ,
(2) says that “d is symmetric” and
(3) says that “d satisfies the triangle inequality”

DEFINITION 38.2. For any set S,

M(S) = {d:SxS—][0;0)|dis a metric on S}.

The logic purist would object because, according to our Axioms
of Specification, in Definition 38.2, we should write “{d € ...|...}".
To fix this, we could write

M(S) = {de[0;00)%]|dis a metric on S}.

THEOREM 38.3. 31d € M(R), denoted dy,
st,Vr,yeR, d(z,y)=|y— x|
We call dy the standard metric on R.

THEOREM 38.4. Let k € N. Then 31d € M(R¥), denoted dy,
s.t, Yo,weRF,  dv,w) = |w—vl;.
We call dy, the standard metric on RF.

DEFINITION 38.5. A metric space is an ordered pair (S, d) s.t.
S is a set and de M(S).

DEFINITION 38.6. Let X be a metric space.

Then Xget 1= X1 and dx := Xo.

Also, Xget 15 called the underlying set of X.
Also, dx is called the metric on X.
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We sometimes omit the subscript “X” from “dx”.

We almost always omit the subscript “set” from “Xgqat”, so, by slop-
piness, the underlying set Xgot of X is often denoted X. This means
that X has two different meanings, and, in each usage, you have to fig-
ure out, by context, which X is intended. For example, if you see “dx”,
then X is a metric space. On the other hand, if you see “a : R — X”
or “be X7, then X is a set.

For your confusion, (R, dy) is denoted R. Then dy = dg.

Let k € N. For confusion, (R*¥, d}) is denoted R¥. Then dj, = dg.

THEOREM 38.7. dr(5,7) =2 and dg(9,3)=6 and
d2((17 7)7 (4’ 3)) = \/(1 - 4)2 - (7 - 3)2 =9

A basic property of | e | is that it is “distance semi-decreasing”:

THEOREM 38.8. Vz,y € R, dr(|z|,|y]) < dr(z,y).
Proof. Unassigned HW. U
According to Theorem 38.8, Vz,y € R,

el = Wl < fe =yl

For each k € N, | o |, is also “distance semi-decreasing”:
THEOREM 38.9. Vk e N, Vo,w e R¥,  dr(|v]g, [w|p) < di(v,w).

Proof. Given k € N and v, w € R*.

Want: dg(|v|k, |w|k) < di(v,w).

Let a := |v|x — |w|x and let z := |v — w|y.

Then dg(|v|x, jw|k) = |a|] and dy (v, w) = z.

Want: |a| < z. Want: ¢ < z and —a < z.

We have |v], = |w+ (v —w)|p < |w|g + v —w|p = |w|k + 2.
Subtracting |w|; from both sides, we see that a < z.

Want: —a < z.

We have |w—vlp=[v—wly=2 and —a=|wlx—|v|x.
Then |w|, = [v+ (w — V)| < |v|p + |w — V| = V| + 2.
Subtracting |v[; from both sides, we see that —a < z, as desired. O

According to Theorem 38.9, Yk € N, Vv, w € R”,
| vl = Jwle | < v = w |k

DEFINITION 38.10. Let X be a metric space, z € X, r > 0.
Then Bx(z,r):={qe€ X |dx(z,q) <r}.
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We sometimes omit the subscript “X” from “Bx(z,r)”.

The set Bx(z,7) of Definition 38.10 is called: the open ball about
z of radius r. We sometimes omit “open” and simply say “ball about
z of radius r”.

THEOREM 38.11. Yae R, V¥§ > 0, Bg(a,0) = (a—0d;a+9).

The next result says that any two points in a metric space can be
separated by balls of equal radii.

THEOREM 38.12. Let X be a metric space, and let y,z € X.
Assume y # z. Then Ir > 0 s.t. [Bx(y,7)] n [Bx(z,7)] = &.

Proof. This is HW#6-2. U
Theorem 38.12, above, is the Hausdorff property of metric spaces.

DEFINITION 38.13. Let X be a metric space and let z € X.
We define Bx(z) := {B(z,r) |r > 0}.

We sometimes omit the subscript “X” from “Bx(z)”.

THEOREM 38.14. Let X be a metric space and let p,qe X.
Assume that p #q.  Then 3A € Bx(p), 3B € Bx(q) s.t. An B = .

Proof. By Theorem 38.12,

choose r > 0 s.t. [B(y,r)] n [B(z,r)] = &. Let A := B(y,r) and
B := B(z,1).

Want: An B = .

We have: An B = [B(y,r)] n[B(z,7)] = &, as desired. O

DEFINITION 38.15. Let X be a metric space.
Then Bx = {B(z,r) € X |2zeX, r>0}.

THEOREM 38.16. Let X be a metric space, B € Bx and p € B.
Then 3A € B(p) s.t. A< B.

Proof. Since B € Bx, choose g€ X and t > 0 s.t. B = B(q, ).
Since p € B = B(q,t), we get d(p,q) < t.

Let s :=d(p,q). Then s <t.

Let r:=t—s. Thenr>0andr+s=*t.

Let A:= B(p,r). Then A€ B(p).

Want: A < B.

Want: Vze€ A, z € B.
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Given ze€ A.  Want: z € B.
Since z € A = B(p,r), we get d(z,p) < r.
Since d(z,p) < r and d(p,q) = s,
we get [d(z,p)] + [d(p,q)] <7+ s.
Then d(z,q) < [d(z,p)] + [d(p,q)] <T+ s =1t,s0 z€ B(q,t).
Then z € B(q,t) = B, as desired. O

THEOREM 38.17. Let X be a metric space, A€ Bx and g€ X.
Then 3B € B(q) s.t. B 2 A.

Proof. This is HW#6-3. O

Theorem 38.16 is called the Subset Recentering Lemma.
Theorem 38.17 is called the Superset Recentering Lemma.

DEFINITION 38.18. Let X be a metric space and let S < X.
By S is bounded in X, we mean: 3B € Bx s.t. S € B.

The following is the same as Theorem 31.10:

THEOREM 38.19. The following are all true:
[1;00) is bounded below in R, but not bounded above in R,
N s bounded below in R, but not bounded above in R,
(—00;5) is bounded above in R, but not bounded below in R,
Z 1s neither bounded above nor bounded below in R and
(2;5] is both bounded above and bounded below in R.
& is both bounded above and bounded below in R.

THEOREM 38.20. The following are all true:
[1;0) is not bounded in R,
N s not bounded in R,
(—00;5) is not bounded in R,
Z is not bounded in R and
(2;5] bounded in R.
& bounded in R.

THEOREM 38.21. Let S < R. Then:
[ (S is bounded in R) <
((S is bounded below in R )& (S is bounded above in R)) |.

39. SEQUENCES

DEFINITION 39.1. Va, by a is a sequence, we mean:
a is a function and dom[a] = N.
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DEFINITION 39.2. Va, VX, by a is a sequence in X, we mean:
ae XN,

DEFINITION 39.3. Let f be a function and let X be a set.
By f is X-valued, we mean im[f] < X.

DEFINITION 39.4. Let X be a metric space and let f be an X-
valued function.
By f is bounded into X, we mean:

im[ f] is bounded in X.

We sometimes say “bounded in X” instead of “bounded into X”.

FOR NEXT YEAR, let’s just write “a — z in X”, not “a, — z in
X7. Also, use s instead of a; think of a is indicating a sequence of
reals, and s as a more general sequence.

DEFINITION 39.5. Let X be a metric space, a € X~ and z € X.
By a, — z in X, we mean: Ve >0,dK eN s.t.,VjeN,
(j=zK) = (da,z)<e).

We sometimes omit “in X” in “a, — 2z in X”. For any sequence a,
we sometimes denote a by (ay, as,as,...). Then, for example, the text
Define a € RN by a; = 1/j
might be replaced by
Let a := (1,1/2,1/3,...).
This is very irksome to the logic purist who does not like ellipses.

THEOREM 39.6. (1,1/2,1/3,...)s — 0 in R.
The purist would prefer:
THEOREM 39.7. Define a € RN by a; = 1/j. Then a, — 0 in R.

Proof. Want: Ve > 0, 3K € N s.t., Vj € N,

(j=K) = (d(a;,0)<e).
Given ¢ > 0. Want: 3K e Ns.t., Vj e N,

(j=2K) = (d(a;0)<e).
By the Archimedean Principle (Theorem 19.1),

choose K e Ns.t. K > 1/e.

Want: VjeN, [(j=K) = (d(a;,0)<e)].
Given jeN.  Want: (j=> K ) = (d(a;,0) <e).
Assume j > K.  Want: d(a;,0) < e.
Since j = K > 1/e, we get j > 1/e.
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Since j > 1/e > 0, we get 1/j < e.
Since a; = 1/5 > 0, we get |a;| = a;.
Then d(a;,0) = |a; — 0| = |aj| = a; = 1/j < ¢, as desired.

DEFINITION 39.8. Let X be a metric space and let a € XV,
Then a is convergent in X means:
dze X s.t. ae — z in X.

Sometimes “in X7 is omitted from “convergent in X”.
From Definition 38.18 and Definition 39.4, we have:

THEOREM 39.9. VYmetric space X, Ya e XV,
(a is bounded in X) < (im[a] is bounded in X)
< (IS € Bx s.t. im[a] = 9).

A bounded sequence is not necessarily convergent:

THEOREM 39.10. Define a € RY by a; = (—1).

Then: a=(-1,1,-1,1-1,1—-1,1—-1,1—-1,1,...) and
a 18 bounded in R and
a 18 not convergent in R.

THEOREM 39.11. Let X be a metric space, a € X" and z € X.

Assume that ae — 2z in X.
Then: YB € Bx(z), 3K € N s.t., Vj € N,
( ] = K ) = ( a; eB )

Proof. Given B € Bx(z). Want: 3K € Ns.t., Vj e N,
(j=K) = (a;eB).
Since B € Bx(z), choose € > 0 s.t. B = Bx(z,¢).
Since a, — z in X, choose K € Ns.t., VjeN,
(j2K) = (dx(an2)<e).
Want: VjeN, [ (j=2K ) = (a;€B) |
Given jeN. Want: (j>K ) = (a;€B).
Assume j > K. Want: q; € B.
Since j = K, by choice of K,
we have dx(a;,2) < ¢, and so a; € Bx(z,¢).
Then a; € Bx(z,¢) = B, as desired.

U

THEOREM 39.12. Let X be a metric space, p,q € X and s € X",

Assume: (s > pin X ) & (8¢ > qin X ). Then p = q.
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Proof. Assume that p # q. Want: Contradiction.

By Theorem 38.14, choose A € Bx(p) and B € Bx(q) s.t. An B = &.

Since s, — p in X, by Theorem 39.11, choose K € N s.t., Vj € N,
(j=2K) = (s;ed).

Since s, — ¢ in X, by Theorem 39.11, choose L € N s.t., Vj € N,
(j=L) = (s;€B).

Let j := max{K, L}. Then j € N.

Since j = K, by choice of K, we have s; € A.

Since j = L, by choice of L, we have s; € B.

Then s; e AnB,so An B # .

By choice of A and B, we have: An B = . Contradiction. O

=
=

40. PROPERTIES OF LIMITS

THEOREM 40.1. Let s,t € RY and let xz,y € R.
Assume: (s¢ > x inR ) & (te >y inR).
Then (s +1t)e = x +y in R.

Proof. Want: Ve > 0, dK e N s.t., Vj e N|

(j=2K) = (dr((s+t)jz+y)<e).
Given e > 0. Want: 3K e Ns.t., Vj e N,

(j=2K) = (de((s+t)jz+y)<e).
Since s; — z in R, choose L € N s.t., Vj e N,

(7=L) = (dr(sj,z)<e/2).
Since t; — y in R, choose M € Ns.t., Vje N,

(G2M) = (delty)<e/2).
Let K := max{L,M}. Then KeNand K> L and K > M.
Want: VjeN, [(j=2K) = (d((s+t)j,a+y)<e)]
Given j € N. Want: (j>2K) = (dr((s+t)j,z+y)<e).
Assume j > K. Want: dr((s +1t);,2 +y) <e.
Since j = K > L, by choice of L, we have dg(s;,r) < £/2.
Since j = K > M, by choice of M, we have dr(t;,y) < ¢/2.
Then dr((s + 1),z +y) = dr(s; +t;,x+y)

= [(sj+t;) —(z+y)| = [(s5—2) + (t; —y)]
< [sj—x| + [t -yl = [dr(sj,z)] + [dr(t),y)]
< [e/2] + [g/2)] = e, as desired. O

THEOREM 40.2. Let s € RY and let a,y € R.
Assume that s, — x in R. Then (as)s — azx in R.
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Proof. Want: Ve > 0, K e N s.t., Vj e N,
(j2K) = (dal(as),0z)<=).
Given € > 0. Want: 3K e Ns.t., Vj e N,
(i=2K) = (der((as);ax) <e).
Let b:=|a|] + 1. Then b > 0 and |a|/b < 1.
Since s; — z in R, choose K € N s.t., Vj e N,
(j=K) = (dr(sjx)<e/b).
Want: VjeN, [ (j=K ) = (dr((as);,ax) <e) |
Given j € N. Want: (j = K ) = (dr((as);,ar) <e).
Assume j > K. Want: dg((as);,az) < €.
Since j = K, by choice of K, we have dgr(s;, z) < /b.
So, since |a| = 0, we get |a| - [dr(s;, z)] < |a| - [¢/b].
Since |a|/b < 1 and € > 0, we get [|a|/b] - € < e.

Then dg((as);j,ax) = dr(a-s;,a-z) = |a-s; —a- x|
= la-(s; —2)| = la[-[s; —x| = lal - [dr(s;, 2)]
< |a|-[e/b] = [|a|]/b] - < e, as desired.

THEOREM 40.3. Let X be a metric space and let z € X.
Then C¥ — y in X.

Proof. Unassigned HW.

THEOREM 40.4. Let s,t € RY and let x,y € R.
Assume: (s¢ > x inR ) & (te >y inR).
Then (s —t)e = x —y in R.

Proof. Unassigned HW.

THEOREM 40.5. Let s,t € RN and x,y € R.
Assume that s, — x in R and that t, — y in R.
Then (st)s — xy in R.

Proof. Since s, is convergent in R, by HW#6-4, s, is bounded in R.
Let ¢ := C{. By Theorem 40.3, ¢, — y in R.
So, since t, — y in R and since y — y = 0, by Theorem 40.4,
we see that (t —¢), — 0 in R.
So, since s, is bounded in R, by HW#6-5,
we see that (s (t —c¢))e — 0 in R.
So, since s - (t — ¢) = st — sc, we get (st — sc)e — 0 in R.
Since s, — x in R, by Theorem 40.2, we get ys — yx in R.
So, since ys = c¢s = sc and since yxr = zy, we get sc — xy in R.
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So, since (st — sc)s — 0 in R, by Theorem 40.1,
we see that (sc+ st — sc)e — xy + 0 in R.
So, since sc + st — sc = st and since zy + 0 = zy,
we see that (st)s — zy in R, as desired. O

Recall (Theorem 38.8): | | is distance semi-decreasing.
That is, Vo, y € R, we have:  d(|z|, |y]) < d(x,y).

THEOREM 40.6. Let be (R})N and » € R}
Assume that be — z in R.
Then (1/b)e — 1/z in R.

Proof. Want: Ve > 0, dK e N s.t., Vj e N,

(j2K) = (dal(1/b);,1/) <=).
Given € > 0. Want: 3K e Ns.t., Vj e N,

(12K) = (da((b);,1/2) <<).
Let n := min{|z|/2, e2%/2}.
Then n < |z|/2 and n < 22/2.
Since z € R}, we get |z| > 0 and 2% > 0.
So, since € > 0, we get n > 0.
So, since b; — z in R, choose K € Ns.t., Vj e N,

(i=2K) = (dr(bj,2)<n).
Want: VjeN, [ (j= K ) = (dr((1/b);,1/2) <) ].
Given j € N. Want: (j=>K ) = (dr((1/b);,1/2) <e).
Assume j > K. Want: dr((1/b);,1/2) < €.
Since j > K, it follows, from the choice of K, that dr(b;,2) <.
Then |z — b;| = dr(z,b;) = dr(bj, 2) <.
By Theorem 38.8, dr(|;|, |2]) < dr(bj, 2).
Since da [ty |21) < da(b;, 2) <7, we get |2 —n < [by] < 2] + 1.
Since n < |z|/2, we get |z| —n = |z] — (|z|/2) = |z|/2.
Then [bj| > |2 = n = |2 = (|2]/2) = [2]/2.

~ 2 = bl U
So, since |z — bj| < 1, we get: < :
’ 1 |blj|'|2| 1 (|21|/2)'|Z| )
Z— .
Then dgr((1/b);,1 —de | = 2] == = 2| = j
en dr((1/b);,1/2) R(bj,z> b b2
_}. . . ] 2
_ =l o :2;7=22”<2(622/2))=5.D
b1 -1zl (l=1/2) -2 [ 2 P

THEOREM 40.7. Let ae RY, y e R, be (RJ)TN, z € R}. Assume
that a, — y in R and that by — z in R. Then (a/b)e — y/z in R.
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Proof. By Theorem 40.6, (1/b)s — 1/z in R.

So, since a, — y in R, by Theorem 40.5, ((1/b) -a)e — (1/2) -y in R.
So, since (1/z) -y = y/z, we get: ((1/b) - a)e — y/z in R.

It therefore suffices to show: a/b = (1/b) - a.

Want: Vj e N, (a/b); = ((1/b) - a);.

Given j e N.  Want: (a/b); = ((1/b) - a);.

We have (a/b); = a;/b; = (1/b;) - a; = ((1/b) - a);, as desired. O

41. DIAMOND AND SQUARE NORMS

DEFINITION 41.1. Yk e N, Yv € R*, we define:
0[P = Jur] + -+ | and
[v[? := max{|vi|, ..., |vk]}.

Let k € N. We leave it as an unassigned exercise to show that | e |7
separates O, is symmetric and satisfies the triangle inequality. Thus
| o [P is a norm, called the diamond norm in R*. Since | o [P is a
norm, its unit level set

{veRFst. v =1}
is called its “unit sphere” and is denoted {| ® [P = 1}. Since | o [P is a
norm, its open unit sublevel set

{veRFst. [P <1}
is called its “unit ball” and is denoted {| o [P < 1}.

We graphed {| ¢ |2 = 1}, and observed that it is a diamond.

Let k € N. We leave it as an unassigned exercise to show that | e |?
separates Ok, is symmetric and satisfies the triangle inequality. Thus
| o |¥ is a norm, called the square norm in R*. Since | e | is a norm,
its unit level set

{veRFst. |v]f =1}
is called its “unit sphere” and is denoted {| e |¥ = 1}. Since | o |7 is a
norm, its open unit sublevel set

{veRFE s.t. [v]f <1}
is called its “unit ball” and is denoted {| o |¥ < 1}.

We graphed {| e |5 = 1}, and observed that it is a square.

We explained how to reccover any absolutely homgeneous function
from its unit level set. The graph of that unit level set contains, in geo-
metric form, all of the information of the function, and it is a skill
to look at that graph, and, from it, to “see” properties of the function.
For example, for any absolutely homogeneous function, that function
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is a norm iff
its unit level set is symmetric through the origin, and
its unit sublevel set is convex.
Let £ € N. Every positive multiple of a norm is a norm. So, for
example 2 - | o |7 is a norm. We observed that
2-Je[f <1} c {leff <1} c {[el<1} = {[o]f <1}
According to the “Compensation Principle”, big norms have small
balls and small norms have big balls. Thus, we expect that:
VoeRF 2-|v)f = P = ol = ]g,
and we will leave it as homework to verify these inequalities via sym-
bolic proofs. (See HW#7-1, HW#7-2 and HW+#7-3.)

42. PAIRING TOGETHER FUNCTIONS

DEFINITION 42.1. Vfunctions f, g, by (f,g)m, we mean the func-
tion defined by: vz, (f,9)m(z) = (f(2), 9(2)).

Keep in mind that, in Definition 42.1, (f, g) would refer to an ordered
pair, and (f,g) = ( ;—)ch > Unfortunately, the subscript “fn” is

almost always omitted from the notation “(f,g)wm”, and so “(f,g)”
l—f
29
reader to figure out, from context, which is meant.

might mean (f, g)m or it might mean ( It is up to the

THEOREM 42.2. Let f,g : R --» R be defined by f(x) = \/z and
g(z) =1 —2x2. Then

(f,9): R --»R?,

Ve eR, (f,9)(z) = (Wz,V/1—x) and

dom[(f,g)] = [0;%0) N (—0;1] = (dom[f]) N (dom][g]).

The domain of the pairing is always the intersection of the domains,
for any two functions, not just for the particular two functions f and ¢
that were specified in Theorem 42.2:

THEOREM 42.3. Vfunctions f and g, we have:
dom|[(f,9)] = (dom[f]) ~ (dom]g]).

Since a sequence is just a function with domain N, we see, from
Theorem 42.3, that a pairing of two sequences is again a sequence:

THEOREM 42.4. Vsequences a and b, (a,b) is a sequence.
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Moreover, any evaulation of a paired sequence is done by evaluating
the first and second parts of the pair:

THEOREM 42.5. Vsequences a and b, ¥j € N, (a,b); = (a;,b;).
Targets of paired functions also behave predictably:

THEOREM 42.6. Vsets S and T, Vfunctions f and g,
[(im[f]<S) & (im[g]=T) ] = [im[(f,9)]cSxT].

Targets of paired sequences also behave predictably:

THEOREM 42.7. Vsets S and T, Ya e SN, Ybe TV,
(a,b) € (S x T)N.

Projection to the z-axis is distance semi-decreasing:
THEOREM 42.8. Vv, w € R?, dg(vy,w;) < da(v,w).

Proof. Given v,w € R, Want: dg(vy,w;) < do(v,w).

Let z :=v—w. Then |z|]y = dy(v,w).

Want: dg(v1,wr) < |x|s.

Since x1 = v; — wy, we get |x1| = dr (v, w1).

Want: |z;| < |z|s.

Since 0 < 2% and 0 < 73, we get 0 < 2% < 2% + 22

It follows that 4/2% < /2% + 23.

Then |21 = v/22 < A/2% + 23 = |2y, as desired. O

THEOREM 42.9. Let a,be RY and let p,q € R.
Assume that aq — p n R and that by — q in R.
Then (a,b)s — (p,q) in R2,

Proof. Want: Ve > 0, 3K € N s.t., Vj € N,
(j=2K) = (da((a,b);,(p,q) <€)
Given € > 0. Want: 4K e Ns.t., Vj e N,
(j=2K) = (d((ab),(p.q)<e).
Let n:=¢/2.
Then n > 0 and 2n = e.
Since a, — p in R, choose L € N s.t., Vj € N,
(j=zL) = (drlajp)<n).
Since b, — ¢ in R, choose M € N s.t., Vj e N,
(j=M) = (dr(bjq) <n).
Let K := max{L,M}. Then K > L and K > M and K € N.
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Want: Vj e N, [ (72K ) = (dol(@b), (nq) <) ]

Given jeN. Want: (j > K ) = (da((a,b);,(p,q)) <¢).

Assume j > K.  Want: dy((a,b);, (p,q)) <e.

Since j = K > L, by choice of L, we have: dg(a;,p) <.

Since j = K > M, by choice of M, we have: dr(b;,q) <.

Let v := (a; — p,b; — q).

Then v = (a;,b;) — (p,q) and |v[g = |a; — p[ + [b; — ql.

By HW 7-1, we have: |[v|} > |v]a.

Then dy((a,b);, (p, ) = da((a;, b;), (p, @) = [(a;,b;) — (p, @)
= |vl2 < vy = |a; — p| +[b; — q

= [dR(aj,p)] + [dR(bj q)] <n+n=2n=e¢, as desired.

43. PRODUCT METRICS AND RELATIVE METRICS
DEFINITION 43.1. Let X and Y be metric spaces.
Define de M(X xY) by

d(v,w) = \/[dX(Ula w1)]? + [dy (v2, w2)]?.

Then d is called the product metric on X x Y from X and Y .

We leave it as an unassigned exercise to show that the function

d: (X xY)x (X xY)—[0;0)
of Definition 43.1 is, in fact, a metric on X x Y.

89

In Definition 43.1, the phrase “from X and Y” is often omitted.
For any metric spaces X and Y, the standard metric on X x Y is the

product metric.

We can generalize Definition 43.1 to products X x Y x Z of three

metric spaces X and Y and Z. Or to four, or to five, etc.

THEOREM 43.2. Let X and Y be metric spaces.
Letae XN, pe X, beYN andqeY.
Then: ([(a,b)e = (p,q) in X xY | <

[(ae >pin X)& (be —>qinY)]).

DEFINITION 43.3. Let X be a metric space and let S < X.

Then dx|(S x S) is called the relative metric on S inherited from X.

We leave it as an unassigned exercise to show that the function

d|(Sx8):8x%x 85— [0;0)

of Definition 43.3 is, in fact, a metric on S.
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In Definition 43.3, the phrase “inherited from X7 is often omitted.
For any metric space X, for any S € X, the standard metric on S is
the relative metric.

THEOREM 43.4. Let C := {ve R?|v} +v3 = 1}

be the unit circle about the origin in R?.
Let d be the product metric on R x R from (R, dg) and (R, dg).
Let § be the relative metric on C' inherited from (R x R, d).
Let v := (1,0) and w := (0,1).
Then d=dy, and 6&(v,w)=+2.

44. CONTINUITY

DEFINITION 44.1. Let X and Y be metric spaces.
Let f: X - Y andpe X.
By f is continuous at p from X toY, we mean:
Vae XN, (ae—>pinX) = ((foa)e— f(p)inY ).

DEFINITION 44.2. Let X and Y be metric spaces, f: X — Y.
By f is continuous from X to Y, we mean:
Vpe X, f is continuous at p from X toY.
Also, VS < X, by f is continuous on S from X toY, we mean:
Vpe S, [ is continuous at p from X to Y.

In Definition 44.1 and in Definition 44.2, sometimes, the text “from
X to Y” is omitted, provide the domain and target of f are clear.

DEFINITION 44.3. Let ¢ be a functional and let k € N.
Define f : R — R by f(z) = 2*.
Then ¢F := f o ¢.

THEOREM 44.4. Yfunctional ¢,
gZ)O:Céom[(ﬂ and ' = ¢ and ¢* = ¢ - ¢ and ¢* = ¢ - ¢ - .
THEOREM 44.5. Va € RY,

a’=Chanda' =a anda® =a-a and a® = a - a'la.

THEOREM 44.6. Let f: R — R be defined by f(x) = z2.

Then f is continuous from R to R.
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Proof. Want: Vx € R, f is continuous at x from R to R.
Given x € R.  Want: f is continuous at x from R to R.
Want: Vae RY, [ (ae > 2inR) = ((foa)e— f(z)inR)].
Given ae RN, Want: (a, > 2 inR) = ((foa).— f(z) inR).
Assume that a, — x in R. Want: (foa)e — f(x) in R.
Since a, — X in R and since a, — x in R,
by Theorem 40.5, we get (a-a)e — x -z in R.
So, since a-a =a? = foa and since z - v = 2% = f(x),
we get (foa)e — f(z) in R, as desired. O

THEOREM 44.7. Let A: R?* — R be defined by A(z,y) =z +y.
Then A is continuous from R? to R.

Proof. Want: Vz € R?, A is continuous at z from R? to R.
Given z € R.. Want: A is continuous at z from R? to R.
Want: Vv e (RN, [ (v, —» 2inR?) = ((Aow), > A(z)inR) |.
Givenv e (RH)N.  Want: (v, > 2inR?) = ( (Aov)s — A(z) in R ).
Assume that v, — z in R%.  Want: (Aowv), — A(z) in R.
Let x := z; and y := z5.  Then 2z = (21, 22) = (z,y).
Define s,t € RN by s; = (vj); and t; = (v;)a.
Then, \V/j € N, v; = ((Uj)la (Uj)g) = (Sj,tj) = (S,t)j.
Then v = (s,t).
Since v, — z in R?, since v = (s,t) and since z = (z,y),

we see that (s,t)e — (z,y) in R%
Then, by Theorem 43.2,

we see that s, — xin R and ¢, — y in R. Then, by Theorem 40.1,
we see that (s +¢)e — 2 +yin R.
So, since A(z,y) = x + y, we see that (s +t)s — A(z,y) in R.
Recall that we want: (Aowv), — A(z) in R.
It therefore suffices to show that Aov = s+ 1.
Want: Vje N, (Aow); = (s +t);.
Given j e N.  Want: (Aov); = (s +1);.
We have (Aov); = A(vj) = A(sj,t;) = sj+t; = (s+1);, as desired. [

The next two theorems are proved similarly.

THEOREM 44.8. Let S : R? - R be defined by S(x,y) = x —y.

Then S is continuous from R? to R.

THEOREM 44.9. Let M : R* - R be defined by M(z,y) = xy.
Then M is continuous from R? to R.



92 SCOT ADAMS

In Theorem 44.10, below, the metric on R x R} is the relative metric
inherited from (R? dy). In Theorem 44.10, below, the metric on R is
the standard metric dp.

THEOREM 44.10. Let D : Rx R} — R be defined by D(z,y) = z/y.
Then D is continuous from R x R} to R.

THEOREM 44.11. Let X be a metric space.
Let S X,aeSY andpe S.
Assume that a, — p in S.  Then a, — p in X.

Proof. Want: Ve > 0, dK e N s.t., Vj e N|
(j2K) = (dxlagp)<e).
Given € > 0. Want: 4K e Ns.t., Vj e N,
(j=2K) = (dx(a;,p)<e).
Since a, — p in S, choose K € N s.t.,, Vj € N,
(j=K) = (ds(a;,p) <e).
Want: VjeN, [ (j=>K ) = (dx(a;,p)<e)].
Given jeN.  Want: [ (j=>K ) = (dx(aj,p)<e)].
Assume j > K.  Want: dx(a;j,p) <e.
Since j > K, by choice of K, we get ds(a;,p) < e.
Since aj,pe S < X, we have ds(aj,p) = dx(a;,p).
Then dx(aj,p) = ds(a;,p) < €, as desired. O

The converse of Theorem 44.11 holds, with similar proof:

THEOREM 44.12. Let X be a metric space.
Let SCc X,aeSY andpe S.
Assume that a, — p in X. Thena, > p in S.

Proof. Want: Ve > 0, 3K € N s.t., Vj € N,
(i2K) = (dslasp)<e)
Given e > 0. Want: 3K e Ns.t., Vj e N,
(j2K) = (ds(anp)<e).
Since a, — p in X, choose K € N s.t.,, Vj e N,
(j2K) = (dx(app)<e).
Want: VjeN, [ (j=K ) = (ds(aj,p) <e) ]
Given jeN.  Want: [ (j=>K ) = (dx(aj,p)<e)].
Assume j > K.  Want: dx(aj,p) <e.
Since j > K, by choice of K, we get ds(a;,p) < e.
Since aj,pe S < X, we have ds(aj,p) = dx(a;,p).
Then dg(a;,p) = dx(aj,p) < e, as desired. O
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The buzz phrase for Theorem 44.13, below, is “restriction maintains
continuity”. In Theorem 44.13, below, the metric on S is the relative
metric, inherited from X.

THEOREM 44.13. Let X and Y be metric spaces.
Let f : X =Y, Sc X andpeS.

Assume that [ is continuous at p from X to Y.
Then f|S is continuous at p from S to'Y.

Proof. Want: Va e SV,
(ae—pinS) = (((fIS)eca).— (f|F)(p)nY).
Given a € SN,
Want: (ae —pin §) = (((f]9)ca)e = (f[S)(p) n Y").
Assume a, — pin S.  Want: ((f|S)oca)e — (f]S)(p) in Y.
Since a, — p in 9, it follows, by Theorem 44.11,
that a, — p in X.
Then, by continuity of f at p from X to Y,
we see that (foa)e — f(p) in Y.
Since p € S, we have (f|S)(p) = f(p).
Then (f oa)e — (f|S)(p) in Y.
Recall that we want: ((f|S)oa)s — (f|S)(p) in Y.
It therefore suffices to show that f oa = (f|S) ca.
Want: VjeN, (foa); = ((f|S) ca);.
Given j e N. Want: (foa); = ((f]5) o a);.
Since a € SN, we get a; € S, and so (f|S)(a;) = f(a;).
Then (f oa); = f(a;) = (f]5)(a;) = ((f|S) o a);, as desired. O

The buzz phrase for Theorem 44.14, below, is “decrease of target
maintains continuity”. The buzz phrase for Theorem 44.15, below, is
“increase of target maintains continuity”. In both Theorem 44.14 and
Theorem 44.15, below, the metric on Y| is the relative metric, inherited
from Y.

THEOREM 44.14. Let X and Y be metric spaces.
Letpe X, Yo=Y and ¢ : X — Yj.

Assume that ¢ is continuous at p from X to'Y.
Then ¢ is continuous at p from X to Yy.

Proof. We have both ¢p: X - Yyand ¢: X — Y.
Want: Vae XN, [(a.—>pin X ) = ((¢oa)e— ¢(p)inYy) ]
Givenae XN, Want: (a. > pin X ) = ((¢oa). — ¢(p) in Yy ).
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Assume a, — pin X. Want: (¢poa)e — ¢(p) in Y.

Since a, — p in X, by continuity of ¢ at p from X to Y,
we see that (poa)y — ¢(p) in Y.

Since a € XN and ¢ : X — Yj, it follows that ¢ o a € Y.

Since p € X and ¢ : X — Yy, it follows that ¢(p) € Yp.

Then, by Theorem 44.12 (with b replaced by ¢ o a, and g by ¢(p)),
we see that (¢ oa)s — ¢(p) in Yy, as desired. O

The converse of Theorem 44.14 holds, with similar proof:

THEOREM 44.15. Let X and Y be metric spaces.
Letpe X, Yo=Y and ¢ : X — Yj.

Assume that ¢ is continuous at p from X to Y.
Then ¢ is continuous at p from X to Y.

Proof. We have both ¢: X - Yyand ¢: X — Y.
Want: Yae XN, [(ae—>pin X ) = ((¢oa)e—¢(p)inY )]
Given ae XY,  Want: (a. —>pin X ) = ((doa)s — ¢(p)inY ).
Assume a, — pin X.  Want: (poa)e — ¢(p) in Y.
Since a, — p in X, by continuity of ¢ at p from X to Yj,
we see that (¢poa)s — ¢(p) in Yj.
Since a € XN and ¢ : X — Yj, it follows that ¢ o a € Y.
Since p € X and ¢ : X — Yy, it follows that ¢(p) € Yp.
Then, by Theorem 44.11 (with b replaced by ¢ o a, and g by ¢(p)),
we see that (¢poa)s — ¢(p) in Y, as desired. O

The next theorem, Theorem 44.16 below, is transitivity of inher-
ited metrics; it follows from HW 8-2.

THEOREM 44.16. Let X be a metric space, let T < X and let
ScT.
Then (dx|(T x T))|(S x S) = dx|(S x S)

In Theorem 44.17 below, the point is that, to prove that f(p) € f.(5),
it is not sufficient that p € S; one also needs p € dom|f]. Otherwise,

we get: f(p)® ¢ f.(5).
THEOREM 44.17. Vfunction f, Vset S, Vp,

[(peS) & (pedom[f]] = [ f(p)e f(5) ]
THEOREM 44.18. Let S, T, U and V be sets, leta : S — T and let
f:U—-V.
Assume that T < U.  Then foa:S — fu(T).
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Proof. Unassigned HW. O
THEOREM 44.19. Vfunctions f and g, Vset S, we have:

(1) f*(S) < dom|[f] and
(2) fu(S) € im[f].

Proof. Unassigned homework. O

THEOREM 44.20. Let X, Y and Z be metric spaces.
Let f: X -->Y,g:Y -—»Z andpe X.

Assume that f is continuous at p from dom[f] to Y.
Assume that g is continuous at f(p) from dom[g] to Z.
Then g o f is continuous at p from dom|[g o f] to Z.

Proof. Want: Va € (dom[g o f])V,
(a0 —pindom[gof]) = (((gof)oa)—(gof)p)inZ)
Given a € (dom[g o f])N.
Want: (a. — pindom[go f]) = (((gof)ea)s—(gof)(p)inZ ).
Assume that a, — p in dom[g o f].
Want: ((go f)ea)e = (go f)(p) in Z.
By (1) of Theorem 44.19, we have: f*(dom[g]) < dom|[f].
Since a € (dom[g o f])N, we get a : N — dom[g o f].
Since f: X --» Y, we get f:dom[f] > Y.
By (1) of Theorem 26.4, we have dom[g o f] = f*(dom]|g]).
So, since f*(dom|g]) € dom][f], we conclude that dom[go f] < dom][f].
Since a : N — dom[go f] and dom[go f] < dom[f] and f : dom[f] — Y,
it follows, from Theorem 44.18, that foa: N — f.(dom[go f]).
Recall that dom[g o f] = f*(dom[g]).
By HW#38-1, we have f.(f*(dom[g])) < dom|g].
Then f.(dom[go f]) = f.(f*(dom[g])) < domlg].
So, since foa: N — f,(dom[go f]), we get foa: N — dom|g].
Then f oa € (dom[g])N.
Since f is continuous at p, it follows that p € dom|[f].
Since ¢ is continuous at f(p), it follows that f(p) € dom[g].
Since ( @, — p in dom[g o f] ) and since ( dom[g o f] € dom[g] ),
we conclude, from Theorem 44.11, that a, — p in dom|[f].
So, since f is continuous at p from dom[f] to Y,
we conclude that (foa)e — f(p) in Y.
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So, since f o a € (dom[g])N and f(p) € dom|[g],

we conclude, from Theorem 44.12, that (foa)s — f(p) in dom|[g].
So, since ¢ is continuous at p from dom[g] to Z,

we conclude that (go (foa))e — g(f(p)) in Z.

So, since go (foa) = (go f)oa and since g(f(p)) = (go f)(p),
we conclude that ((go f)oa)e — (go f)(p)) in Z, as desired. [

THEOREM 44.21. Let X, Y and Z be metric spaces.
Let f: X --»Y andg: X --+ Z.

Assume that f is continuous at p.

Assume that g is continuous at p.

Then (f,g) is continuous at p.

Proof. Let S := dom[f] and T := dom[g]. = Then SNnT = dom|(f, g)].
Also, f: S—>Y andg:T - Zand (f,9): SNnT —->Y x Z.
Also, f is continuous at p from S to Y.
Also, g is continuous at p from T to Z.
Want: (f,g) is continuous at p from SnT to Y x Z.
Want: Va e (S nT)N,
(ae—=>pinSnT) = (((f.g)oa)e— (f.g)(p) InY x Z).

Given a € (S n T)N.
Want: (ae >pin SnT) = (((f,9)oa)e = (f,9)(p)inY x Z).
Assume a, > pin SnT. Want: ((f,g)oa)e — (f,9)(p) inY x Z.
Since a, — p in S nT, by Theorem 44.11,

we conclude that a, — pin S.
So, since f is continuous at p from S to Y,

we conclude that (foa)e — f(p) in Y.
Since a, — p in S N T, by Theorem 44.11,

we conclude that a, — pin T
So, since ¢ is continuous at p from T to Z,

we conclude that (g oa)e — g(p) in Z.
Since (foa)e — f(p) in Y and (goa)s — g(p) in Z,

by < of Theorem 43.2, we get (foa,goa)e — (f(p),g9(p)) in Z.
So, since (f, g)(p) = (f(p), 9(p)), we get (foa,goa)e — (f,g)(p) in Z.
Recall that we want: ((f,g)ca)e — (f,9)(p) inY x Z.
It therefore suffices to show: (foa,goa)=(f,g)ca.
Want: VjeN, (foa,goa); = ((f,9) ca);.
Given j e N.  Want: (foa,goa); = ((f,9) ca);.



CLASS NOTES 97

We have (foa,goa); = ((foa);,(goa);) = (f(a;),g(a;))
= (f.9)(aj) = ((f,9) ca);, as desired. O

THEOREM 44.22. Let X be a metric space.

Let f,g: X --+ R and let p € R.

Assume that f is continuous at p from dom[f] to R.
Assume that g is continuous at p from dom[g]| to R.

Then f + g is continuous at p from dom|[f + g] to R.

Proof. We have (f,g) : X --» R2
Let A:R?* — R be defined by A(x,y) = x +¥.
Since (f, g) is continuous at p and A is continuous at (f, g)(p),
it follows, from Theorem 44.20, that
o (f,g) is continuous at p from dom[A o (f,g)] to R.
Recall that we want: f + g is continuous at p from dom[f + g] to R.
It therefore suffices to show: Ao (f,g) = f+g.
Want: Vze X, (Ao (f,9))(z) = (f + g9)(2).
Given z e R.  Want: (Ao (f,9))(z) = (f + 9)(2).
We have (Ao (f,9))(2) = A((f,9)(2)) = A(f(2),9(2))
= [f(A)] +[9(2)] = (f + 9)(2), as desired. m

THEOREM 44.23. Let X be a metric space.

Let f,g: X --+» R and let p e R.

Assume that f is continuous at p from dom|[f] to R.
Assume that g is continuous at p from dom[g] to R.
Then fg is continuous at p from dom[f + g]| to R.

Proof. We have (f,g): X --» R2.
Let M : R? - R be defined by M(x,y) = zy.
Since (f, g) is continuous at p and M is continuous at (f, g)(p),
it follows, from Theorem 44.20, that

M o (f,g) is continuous at p from dom[M o (f, g)] to R.
Recall that we want: fg is continuous at p from dom|fg] to R.
It therefore suffices to show: M o (f,g) = fg.
Want: V2 € X, (Mo (£,9))() = (f9)(2).
Given ze R, Want: (Mo (f,9))(z) = (fg9)(2).

We have (M o (f,9))(z) = M((f,9)(2)) = M(f(2),9(2))
= [f(2)] - [9(2)] = (fg)(2), as desired. 0
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45. A SQUEEZE THEOREM

THEOREM 45.1. Let u € RY and let x € R.
Assume: Yje N, v — (1/j) < u; < x.
Then ue — x in R.

Proof. Want: Ve > 0, dK e N s.t., Vj e N,
(i=K) = (dr(uj,z) <e).
Given € > 0. Want: 1K e Ns.t., Vj e N,
(j2K) = (daujz)<e).
By the Archimedean Principle, choose K € N s.t. K > 1/e.
Want: VjeN, [ (j=> K ) = (dg(u;,z) <e)].
Given j € N. Want: (j =K ) = (dr(uj,z)<e).

Assume that j > K. Want: dg(u;,z) <.

Want: |u; — x| <e. Want: © —e <u; <z +e.

By assumption u; < x. Since € > 0, we get © < x + <.
Then u; <z <x +e. Want: v — ¢ < u;.

By assumption, x — (1/7) < u;.

Want: © —e <z — (1/7). Want: 1/j < e.

Since j = K > 1/e, we get j > 1/e.
Since € > 0, it follows that 1/ > 0.
Since j > 1/e > 0, we conclude that 1/j < ¢, as desired.

46. THE SUPREMUM IS A LIMIT

THEOREM 46.1. Let S € R and let x :=sup S.
Assume that S # & and that S is bounded above in R.
Then Ju € SN s.t. ue — x in R.

Proof. We have S <supS =uz,s0 S < .
Also, Yw < z, we have [S < w).

Claim: Vje N, [x — (1/7);x] n S # &.

Proof of Claim:

Given j € N. Want: [z — (1/5);z] n S # &.

Since (Yw < z, (S < w)) and since x — (1/j) < z,
we conclude: [S <z — (1/5)).

Then choose t € S s.t. t > x — (1/7).

We havete S < x,sot < x.



CLASS NOTES 99

Also, z — (1/5) <t <z, s0xz—(1/5) <*t.

Then z — (1/j) <t < xz,sote (v —(1/j);x].

Since t € (x — (1/7);x] < [z — (1/4); x] and since t € S,
we conclude: t € [z — (1/7);x2] n S.

Then [z — (1/7);x] n S # &, as desired.

End of proof of Claim.

By the Claim, and by Axiom 4.6, we have:
vjieN, CH(lz—(1/j);z]nS) € [z —(1/j);z]n S
Define u € SN by u; = CH([z — (1/4); 2] n S).
Want u, — x in R.
By Theorem 45.1, it suffices to show: Vj e N, z — (1/j) < u; < .
Given j € N. Want: = — (1/j) < u; < x.
We have u; = CH([z—(1/j);z]nS) € [x—(1/j);z]nS < [z—(1/)); x].
Then z — (1/j) < u; <z, as desired.
0

47. LIMIT PRESERVES NONSTRICT INEQUALITIES

THEOREM 47.1. Let w € RY and let y, z € R.
Assume that w, — z in R.

Assume: Vj e N, w; <y.

Then z < y.

Proof. HW#38-2. U

THEOREM 47.2. Let w € RY and let 3,z € R.
Assume that we — z in R.

Assume: Vj e N, w; > y.

Then z = y.

Proof. Unassigned HW. O

48. INCREASING AND DECREASING FUNCTIONS R --» R

DEFINITION 48.1. Let f: R --» R and let S < dom|f].
By f is strictly increasing on S, we mean:

Vi,bue S, [ (t<u) = ( f(t) < f(u))].

By f is strictly decreasing on S, we mean:

Vibue S, [(t<u) = (f(t)> f(u))]

By f is semi-increasing on S, we mean:
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VibueS, [(t<u) = (f{t)<f(u))]
By f is semi-decreasing on S, we mean:
Vi,bue S, [(t<u) = (f(t)= f(u))]

THEOREM 48.2. Let f : R --» R and let S < dom| f]. Then:
(1) (f 1is strictly increasing on S) =
(f is semi-increasing on S')
and (2) ( f is strictly decreasing on S') =
(f is semi-dencreasing on S').

THEOREM 48.3. Let f : R --» R and let S < dom| f]. Then:
and (1) ( f is strictly increasing on S) <
(Vi ue S, [(t>u) = (f(t)> f(u))])
and (2) (f is strictly decreasing on S') <
(Vi ue S, [(t>u) = (f(t) < f(u)])
and (3) (f is semi-increasing on S) <
(Vtue S, [(tzu) = (f(t) = f(u)])
and (4) ( f is semi-decreasing on S) <

(Vtue S, [(tzu) = (f(t) < f(u)]).

DEFINITION 48.4. Let f : R --» R.
By f s strictly increasing, we mean:

f s strictly increasing on dom][f].
By f is strictly decreasing, we mean:

f is strictly decreasing on dom|[f].
By f is semi-increasing, we mean:

f is semi-increasing on dom|[ f].
By f is semi-decreasing, we mean:

f is semi-decreasing on dom| f].

DEFINITION 48.5. Vf : R --» R, Va,b,

In Definition 48.5, “DQ” stands for “Difference Quotient”.

We drew a graph of a function f and demonstrated how (DQ;)(a, )
is the slope of a secant line.

For Theorem 48.6 below, we showed the graphs of idg and (idg)? and
(idg)? and C32. We discussed slopes of secant lines for these graphs and
used various variants of HW#9-1.
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THEOREM 48.6. All of the following are true:
(1) (idg is strictly increasing )

and (2) ( (idg)? is strictly increasing )

and (3) ( (idr)? is neither strictly decreasing nor strictly increasing )
and (4) ( (idr)? is strictly decreasing on (—o0;0] )

and (5) ( (idg)? is strictly increasing on [0;0) )

and (6) ( C3 is neither strictly decreasing nor strictly increasing )

and (7) ( C3 is both semi-decreasing and semi-increasing ).
THEOREM 48.7. V(e Z, [({>0) = (£ =1)].
Proof. Unassigned HW. U

Theorem 48.8, below, is of use in HW#9-2. It follows easily from
Theorem 48.7, above.

THEOREM 48.8. Vj,keZ, [(j<k) = (j+1<k)].
Proof. Unassigned HW. O

DEFINITION 48.9. Let f be a functional.

By f is bounded above into R, we mean:
im[ f] is bounded above in R.

By f is bounded below into R, we mean:
im[ f] is bounded below in R.

49. CAUCHY SEQUENCES

DEFINITION 49.1. Let X be a metric space, S < X and € > 0.
By S is e-small in X, we mean: Yy, z € S, dx(y,2) < €.

DEFINITION 49.2. Let X be a metric space and a € X".
By a is Cauchy in X, we mean: Ve > 0, 3K € N s.t., V1,5 € N,
('Laj = K ) = ( dX(aiaa’j) <€ )

A buzz phrase for Definition 49.2 is:
“A sequence is Cauchy iff,
Ve > 0, the sequence has an e-small tail.”
More precisely, Ve > 0, there is a tail with e-small image.

50. INTERMEDIATE VALUE THEOREMS (IVTS)

The following is HW#8-4:
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THEOREM 50.1. Let w e RY and let y, z € R.
Assume that we — y in R.  Assume: Vj e N, w; < z.
Show: y < z.

The following is an unassigned exercise:

THEOREM 50.2. Let w e RY and let y, z € R.
Assume that we — y in R.  Assume: Vj e N, w; > z.
Show: y = z.

THEOREM 50.3. Let f be a function and let S be a set. Then, Vp,
[(peS)&(pedom[f])] = [f(p)e f(5)].
THEOREM 50.4. Let b, x € R. Assume that x < b.

h—
Define v e RY by v; =z + .x.

J
Then (ve — x inR) and (Vje N,z <v; <Db).

THEOREM 50.5. Let f: R --» R,

Let a,b,ye R.  Assume a < b.

Assume f is continuous on [a;b] from dom|[f] to R.
Assume f(a) <y < f(b). Then Iz € [a;b] s.t. f(x) =1y.

Proof. Since f is continuous on [a; b], we see that [a;b] < dom|[f].
Let S:={te[a;b]| f(t) <y}
Then S < [a;b] < dom[f]. Then SN < (dom[f])N.

Claim 1: f.(S) <.

Proof of Claim 1:

Want: Vq € f.(5), ¢ < y.

Given g € f.(S). Want: ¢ < y.

Since q € f(S), choose t € S n (dom|[f]) s.t. f(t) = gq.

Since t € S, it follows, from the definition of S, that f(t) < y.
Then ¢ = f(t) <y, as desired.

End of proof of Claim 1.

By assumption, f(a) < y.

Since a € [a;b] and f(a) < y, we conclude,
from the definition of S, that a € S.

Since a € S, it follows that S # (7.

We have a € S < sup 5, so a <supS.

Since S € [a;b] < b, we get S < b.
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Then sup S < b. Then a
Let x :=sup S. Thena <=z
Want: f(x) = y.
Since x € [a;b] and since f is continuous on [a;b] from dom[f] to R,
we conclude that f is continuous at z from dom|[f] to R.
Since S < b, we conclude that S is bounded above in R.
So, since S # &, by Theorem 46.1, choose u € SN s.t. u, — x in R.
We have u € SN < (dom[f])N. Also, x € [a;b] < dom][f].
Then, by Theorem 44.12, u, — x in dom]|f].
So, since f is continuous at = from dom|[f] to R,
we see that (fou)s — f(z) in R.

Claim 2: Vje N, (fou); <w.

Proof of Claim 2:

Given j € N. Want: (fou); <.

Since u € SN, we get u; € S.

Then u; € S < dom|[f].

By Claim 1, f,(S) <.

Since u; € S and u; € dom|f], we get: f(u;) € f.(S).
Then (fou); = f(u;) € f«(S) <y, as desired.

End of proof of Claim 2.

Since (f ou)s — f(x) in R, by Theorem 50.1,
it follows, from Claim 2, that f(z) < .
It remains to show: f(z) = y.
Since x € [a; b], we conclude that one of the following is true:

(a)z =10 or (B) x € [a;b).

Case (a):

By assumption y < f(b).
Then f(x) = f(b) = y, as desired.
End of Case a.

Case (5):
N b—x
Define v e R™ by v; = 2 + ——.

J
By Theorem 50.4, we know both of the following:
(A) ve > zin R
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and (B) VjeN, z <v; <b.

Claim 3: v € [a;b]".

Proof of Claim 3:

Since v € RY, we see that dom[v] = N.
Want: im[v] < [a; b].

Want: Vz € im[v], z € [a; b].

Given z € im[v]. Want z € [a;b].

Since z € im[v] and v : N — R, choose j e Ns.t. z = v;.
By (B), z <wv; <b.

Since x € [a; b], we get a < z.

Then a < x <wvj,s0oa <wv;. Then a <v;.
Since a < v; < b, we get v; € [a; b].

Then z = v; € [a;b].

End of proof of Claim 3.

By (A), we have: v, — z in R.
Recall that x € dom|[f].
Since [a; b] < dom|[f], it follows that [a;b]N < (dom[f])N.
Then, by Claim 3, we see that v € (dom[f])N.
It follows, from Theorem 44.12, that v, — x in dom|[f].
So, since f is continuous at = from dom|[f] to R,
we see that (fov)e — f(z) in R.
Recall that we want to show: f(z) > y.
Then, by Theorem 50.2, it suffices to prove: Vj e N, (fov); > .
Given j € N. Want: (fowv); > y.
By (B), z < wvj.
Since S <sup S =x < v, we get S <vj,s0v; >95,s0v; ¢ 9.
By Claim 3, im[v] € [a; b].
Then v; € im[v] < [a; b], so v; € [a;b].
So, since v; ¢ S, by definition of S, we see that —(f(v;) <vy).
Then f(v;) > . Then f(vj) = y.
So, since (f ov); = f(v;), we get: (f ov); =y, as desired.
End of Case (B).

THEOREM 50.6. Let f : R --» R.
Let a,b,ye R.  Assume a < b.
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Assume f is continuous on [a;b] from dom|[f] to R.
Assume f(a) =y = f(b). Then Iz € [a;b] s.t. f(x) =y

Proof. Let g := —f and let z := —y.

We have g(a) = —(f(a)) and z = —y and g(b) = —(f(b)).
Since f(a) =y = f(b), we get —(f(a)) < —y < —(f(b)).
Then g(a) < z < g(b).
By HW#38-3, g is continuous on [a; b].
Then, by Theorem 50.5 (with f replaced by g and y by z),
choose z € [a;b] s.t. g(x) = z.
Want: f(x) =y
Since g = —f, we get g(x) = —(f(x)), and s0 f(z) = —(9(2)).
We have z = —y, so —z = y.
Then f(z) = —(g(z)) = —z = y, as desired. O

DEFINITION 50.7. Ya,be R*, [a|b] := [a;b] U [b;a].
THEOREM 50.8. [1/3] = [1:3] = [3[1].
THEOREM 50.9. Ya,be R*, [a|b] = [min{a,b}; max{a,b}].

The following is the Intermediate Value Theorem.

THEOREM 50.10. Let f R — R, a,b e R.
Assume [ is continuous on [alb]. Then [f(a)|f(b)] < f«([a]b]).

Proof. Want: iy & [£(a)|f(b)], y € fu([alb]).
Given y e [f(@|f®)).  Want: ye fu([alt]).
Want: 3z € [a]b] n (dom[f]) s.t. f(x) =
Since f is continuous on [a|b],
it follows that [a|b] < dom][f],
so [a[b] N (dom[f]) = [a]b].
Want: 3z € [a|b] s.t. f(z) =
Let « := min{a, b} and § := max{a, b}.
Then [a|b] = [«; 5], so, by assumption, f is continuous on [«; [].
Also, [F(@)F(D)] = [£(@)|£(A)], s0 y & [F()|£(5)]
Want: Jx € [o; 5] s.t. f(z) =y
At least one of the following is true:

(1) fle) < f(B)  or  (2) fla) = F(B).

Case 1:
We have [f(a)[f(B)] = [f(a); f(B)], so y € [f(a); f(B)],
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so f(a) <y < f(B).

Then, by Theorem 50.6 (with a replaced by « and b by f3),
we see that 3z € [«; 5] s.t. f(x) = vy, as desired.

End of Case 1.

Case 2:
We have [£(a)|£(8)] = [/(5): f(a)]. s0 y € [F(5): ()],
so f(a) =y = f(B).
Then, by Theorem 50.5 (with a replaced by o and b by (),
we see that 3z € [a; ] s.t. f(x) = y, as desired.
End of Case 2. O

51. ISOMETRIES AND HOMEOMORPHISMS

DEFINITION 51.1. Let X and Y be metric spaces.
Then, Vf, by f is an isometry from X toY, we mean:
( [ XoS>Y ) &
( VpgeX, dv(f(p), fl@)) = dx(p,q) ).
Also, by X and Y are isometric, we mean:
f s.t. f is an isometry from X to Y.
Also, Vf, by f is a homeomorphism from X toY, we mean:
( [ X>>Y ) &
([ is continuous from X toY ) &
( f7'is continuous fromY to X ).
Also, by X and Y are homeomorphic, we mean:
if s.t. f is a homeomorphism from X toY.

We sometimes omit “from X to Y”. We sometimes say “X is isomet-
ric to Y7 or “Y is isometric to X” instead of “X and Y are isometric”.
We sometimes say “X is homeomorphic to Y” or “Y is homeomorphic
to X7 instead of “X and Y are homeomorphic”.

We drew pictures indicating that two circles of the same radius are
isometric. We indicated that any circle is homeomorphic to any el-
lipse. We drew a wandring simple closed curve and indicated that it is
homeomorphic to a circle.

THEOREM 51.2. (—1;1) is homeomorphic to R.
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Proof. Define f: (—1;1) > R by f(x) = z/v/1 — z2.
Unassigned HW: f is a homeomorphism from (—1;1) to R.
Then (—1;1) is homeomorphic to R. O

Theorem 51.2 shows that it is possible for a bounded subset of R like
(—1;1) to be homeomorphic to an unbounded one, like R itself.

DEFINITION 51.3. Let X be a metric space, pe X, r > 0. Then:
Bx(p,r) :={qe X|dx(p,q) <1} and
Sx(p,r) = {qe X |dx(p.q) =r}.

We sometimes omit the subscript X from “Bx(p,7)” and “Sx(p,7)”.

The set Bx(p,r) is called the closed ball in X about p of radius 7.
When X = R, Bx(p,7) is a closed interval. When X = R2 Bx(p,r)
is a closed disk. The set Sx(p,r) is called the sphere in X about p
of radius 7. When X = R, Bx(p,r) is a set of two real numbers. When
X =TR2, Bx(p,r) is a circle.

THEOREM 51.4. Let C := Sg2(02,1) and let p := (0,1).
Then C is homeomorphic to R.

Proof. Define f: CY — R by f(z,y) = z/(1 —y).
Unassigned HW: f is a homeomorphism from C} to R.
Then €} is homeomorphic to R. U

Theorem 51.4 shows that it is possible for a bounded subset of R?
like € to be homeomorphic to an unbounded subset of R, like R itself.

DEFINITION 51.5. Let X be a metric space.
By X is geometrically bounded, we mean: X is bounded in X.
By X is topologically bounded, we mean: Ymetric space Y,

('Y is homeomorphic to X ) = (Y is geometrically bounded ).

Note that the definition of topologically bounded is universally quan-
tified over metric spaces. This makes it a challenge to study, but study
it we will. Moreover, even though it is a topological concept, we will
relate it to real analysis through the Extreme Value Theorem.

THEOREM 51.6. Let C' := Sg2(02,1) and p := (0,1).

Let X := {(x,0) |z € R}. Let I := (—1;1) and J := [-1;1].
Then I, J C and C; are all geometrically bounded.

Also, R and X are both not geometrically bounded.

Also, I, C), R and X are all not topologically bounded.
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In Theorem 51.6, the fact that I is not topologically bounded fol-
lows from Theorem 51.2. In Theorem 51.6, the fact that C is not
topologically bounded follows from Theorem 51.4.

Let C := Sg2(0y,1) and let J := [—1;1]. We drew pictures of subsets
of R? that are homeomorphic to J, and noted that they were all geomet-
rically bounded. Some were very big, stretching across several black-
boards, but all were geometrically bounded. We drew pictures of sub-
sets of R? that are homeomorphic to C, and noted that they were all
geometrically bounded. Some were very big, stretching across several
blackboards, but all were geometrically bounded. Based on these ob-
servations, we speculated that J and C' are both topologically bounded.
Our intention is to spend the next class or two developing the material
necessary to analyze topological boundedness.

DEFINITION 51.7. Let s and t be sequences.
By t is a subsequence of s, we mean:
Istrictly increasing £ € NY s.t. t = s o (.

The intuition is: The sequence t is obtained from s by dropping some
of the terms of s. The terms of s that are NOT dropped must appear
in t in exactly the same order as they appear in s.

THEOREM 51.8. The following are all true:
(1/2,1/4,1/6,1/8,...) is a subsequence of (1,1/2,1/3,1/4,...).
(4%,8%12%,16%,...) is a subsequence of (2,4,6,8,...).
(3,4,5,6,...) is a subsequence of (1,2,3,4,...).
(2,1,3,4,5,6,7,8,9,...) is NOT a subsequence of (1,2,3,4,...).

All of the following are true:
(1/2,1/4,1/6,1/8,...) = (1,1/2,1/3,1/4,...) 0 (2,4,6,8,...).
(42,82,122,162,...) = (2,4,6,8,...) 0 (8,32,72,128,...).
(3,4,5,6,...) = (1,2,3,4,...) 0 (3,4,5,6,...).
(2,1,3,4,5,6,7,8,9,...) = (1,2,3,4,...) 0 (2,1,3,4,5,...).
We noted that (2,1,3,4,5,...) is not strictly increasing.

DEFINITION 51.9. Let X be a metric space and s € X".
By s is subconvergent in X, we mean:
da subsequence t of s s.t. t is convergent in X.

We sometimes drop “in X” from “subconvergent in X”.

THEOREM 51.10. The following are all true:
(—-1,1,-1,1,—-1,1,—-1,1,...) is NOT convergent in R.



CLASS NOTES

(—-1,1,-1,1,—1,1,—1,1,...) IS subconvergent in R.
(1,2,3,4,...) is NOT subconvergent in R.

DEFINITION 51.11. Let X be a metric space.
By X 1is compact, we mean:

Vs e XN s is subconvergent in X.
Also, by X is proper, we mean:

Vbounded s € XV, s is subconvergent in X .

Our upcoming goals:
(1) [-1;1] and Sg2(02,1) are both compact.

109

(2) If a metric space is homeomorphic to a compact metric space,

then it is compact.
(3) Any compact metric space is geometrically bounded.
By Definition 51.5 and (2) and (3), we get:
(A) Any compact metric space is topologically bounded.
By (1) and (4), we get our earlier goal:
(B) [—1;1] and Sgz2(02, 1) are both topologically bounded.
We will see that (1) is hard, (2) is easy and (3) is medium.
A subsequence of a convergent sequence has the same limit:

THEOREM 51.12. Let X be a metric space, s€ X" andpe X.

Let t be a subsequence of s.  Assume that s, — p in X.
Then ty — p in X.

Proof. Want: Ve > 0, dK e N s.t., Vj e N,
Given € > 0. Want: 4K € N s.t., Vj e N,
(j=2K) = (dx(tj,p) <e).
Since s, — p in X, choose K € N s.t., V) € N,
(i2K) = (de(s;p) <2 ).
Want: VjeN, [ (j=>K) = (dx(tj,p)<e)].
Given j € N. Want: (j =K ) = (dx(t;,p) <e).
Assume j > K. Want: dx(t;,p) <e.
Since t is a subsequence of s,
choose a strictly increasing £ € NN s.t. t = s o /.
By HW#9-2, we see that ¢; > j.
Since £; > j > K, by the choice of K, we get: dx(s¢;,p) <e.
So, since t; = (sol); = s¢;, we get dx(t;,p) < ¢, as desired.
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DEFINITION 51.13. Let s € RY.

Then sq — 0 in R* means: VM € R, 3K € N s.t., Vj € N,
(j2K) = (8>M),

Also, s¢ — —o0 in R* means: VN e R, 3K € N s.t., Vj € N,
(j=K) = (s;<N).

THEOREM 51.14. Let s € RY.
Then ( se — o0 in R* ) = ( s is not bounded above in R ).
Also, ( 8¢ > —0 in R* ) = ( s is not bounded below in R ).

Proof. Unassigned HW. U

THEOREM 51.15. Let s € RN,
Let t be a subsequence of s.  Assume that s, — o0 in R*.
Then ty — o0 in R*.

Proof. Want: VM € R, 4K € N s.t., Vj e N,
(j=K) = (t;>M).
Given M € R. Want: 3K € Ns.t., Vj e N,
(j=K) = (t;>M).
Since s, — o0 in X, choose K € N s.t., Vj € N,
(j=2K) = (s;>M).
Want: VjeN,[(j=2K ) = (t; >M)].
Given j € N. Want: (j=>K ) = (t;>M).
Assume j > K. Want: t; > M.
Since t is a subsequence of s,
choose a strictly increasing £ € NN s.t. t = so /.
By HW#9-2, we see that ¢; > j.
Since {; > j = K, by the choice of K, we get: s;; > M.
So, since t; = (sol); = s, we get t; > M, as desired. [l

THEOREM 51.16. Let s € RN,
Let t be a subsequence of s.  Assume that s, — —o0 in R*.
Then ty, — —o0 in R*.

Proof. Unassigned HW. 0

52. THE -0 QUANTIFIED EQUIVALENCE FOR CONTINUITY

THEOREM 52.1. Let a € RY, Assume: Yje N, 0 <a; <1/j.
Then a, — 0 in R.

Proof. Unassigned HW. U
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THEOREM 52.2. Let X and Y be metric spaces.
Let f: X - Y and let ge X.
Assume: Ye >0, 36 > 0 s.t., Vpe X,

(dx(p,q) <d) = (dy(f(p), fl@)) <€)
Then f is continuous at q from X to Y.

Proof. This is HW#10-4. O
The converse of Theorem 52.2 is also true:

THEOREM 52.3. Let X and Y be metric spaces.
Let f: X ->Y andlet ge X.

Assume that f is continuous at q from X to Y.
Then: Ve >0, 30 > 0 s.t., Vpe X,

(dx(p,q) <d) = (dyv([f(p), flq)) < ¢€).

Proof. Assume: de > 0 s.t., Vo > 0, dp € X s.t.

(dx(p,q) <0) & (dy(f(p), flq)) =€)
Want: Contradiction.
Choose € > 0 s.t., Vo > 0, dp e X s.t.

(dx(p,q) <0) & (dyv(f(p), flq)) = ¢ ).
Define A : N — 2R by
A = {peX|(dx(p,q) < 1/j)&(dv(f(p), fla)) =€)}

Clatm 1: Vj e N, A; # &.

Proof of Claim 1:

Given j € N. Want: A; # .

Since 1/j > 0, by the choice of ¢, choose p € X s.t.
(dx(p,q) < 1/7) & (dv(f(p), fq))

Then p e Aj, so A; # J, as desired.

End of proof of Claim 1.

Define s € XN by s; = CH(A;).

V

£).

Claim 2: Y5 e N, 0 < (dx(s,q)); < 1/j.

Proof of Claim 2:

Given j e N. Want: 0 < (dx(s,q)); < 1/j.

Since (dx(s,q)); = dx(sj,q), we want: 0 < dx(s;,q) < 1/j.
Since dx(s;,q) € im[dx]| < [0;0) = 0, want: dx(s;j,q) < 1/j.
Since A; # ¢, it follows that CH(A;) € A;.

Since s; = CH(A;) € A;, we conclude that:
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(dx(sj,q) < 1/j) & (dy(f(s;), fa)) = €).
Then dx(s;,q) < 1/j, as desired.
End of proof of Claim 2.

Claim 3: ¥Vje N, dy((fos);, flq)) = e.
Proof of Claim 3:
Given j € N. Want: dy((fos);, f(q)) = e.
Since A; # &, it follows that CH(A4;) € A,.
Since s; = CH(A;) € A;, we conclude that:
(dx(sj,q) <1/5) & (dy(f(s5), f(a)) = ¢ ).
Then dy ((fos);, f(q)) = dy(f(s;), f(q)) = €, as desired.
End of proof of Claim 3.

By Claim 2 and Theorem 52.1, we see that (dx(s,q))e — 0 in R.

Then, by < of HW#10-2, we have: s, — ¢ in X.

By assumption, f is continuous at ¢ from X to Y.

Then (f os)e — f(q) in Y, so choose K € N s.t., Vj e N,
(j=2K) = (dv((fos);, flg)) <€)

Let 5 := K.

From Claim 3, we get: ¢ < dy((fos);, f(q)).

Since j > K, by the choice of K, we have:

dy((fos);, fla)) < e
Thene < dy((fos);, f(q)) < ¢, s0e<e. Contradiction. 0

53. DISTANCE BETWEEN A SEQUENCE AND A POINT

DEFINITION 53.1. Let X be a metric space, s€ X~ and ge X.
Then dx (s, q) € [0;0)N is defined by: (dx(s,q)); = dx(sj,q).

The subscript X in “dx(s,q)” is sometimes omitted.

THEOREM 53.2. Let X be a metric space, s,t € X" and g e X.
Assume that t is a subsequence of s.
Then dx(t,q) is a subsequence of dx(s,q).

Proof. Let a := dx(s,q) and b := dx(t,q).
Want: b is a subsequence of a.
Want: IJstrictly increasing £ € NN st. b= ao /.
Since t is a subsequence of s,
choose a strictly increasing £ € NY s.t. ¢t = s o /.



CLASS NOTES

Want: b=aol/.

Want: VjeN, b, = (aol);.

Given j € N. Want: b; = (a0 /),

Let k:=¢;. Then ay, = (dx(s,q))r = dx(Sk,q)-

Since t; = (sol); = sy, = s, we get dx(t;,q) = dx (k. q).

Then b; = (dx(t,q)); = dx(t;,q) = dx(sk,q) = ar = ag;, = (aol);.

THEOREM 53.3. Let X be a metric space, s€ X" and qge X.

Assume that s is bounded in X . Then dx(s,q) bounded in R.
Proof. Let 0 :=dx(s,q). Want: o is bounded in R.
Want: im[c] is bounded in R. Want: C € Bg s.t. im[o] < C.

Since s is bounded in X, we know that im[s] is bounded in X.
Then choose B € Bx s.t. im[s] € B.
Choose pe X and r > 0 s.t. B = Bx(p, 7). Let a := dx(p, q).
Since a = dx(p, q) € im[dx] < [0;00) = 0, we get a = 0.
So, since r > 0, we conclude that a + r > 0.
Let C := Bg(0,7 + a). Then C € Bg. Want: im[o] < C.
Want: Vz € im[o], z € C.
Given z € im|[o]. Want: z € C.
Want: z € Bg(0,7 + a). Want: dg(2,0) <7+ a.
Since z € im[o], choose j € N s.t. 2z = 0.
Then z = 0; = (dx(s,q)); = dx(s;,q).
By the triangle inequality, dx(s;,q) < [dx(s;,p)] + [dx(p, ¢)]-
We have s; € im[s] € B = Bx(p,r), so dx(s;,p) <T.
So, since dx(p, q) = a, we get [dx(sj,p)] + [dx(p,q)] <7 + a.
Since a + r > 0, we see that —(a + r) < 0.
Since dx (s;, q) € im[dx] < [0;0) = 0,
we get dx(sj,q) =0, and so 0 < dx(s;,q).
Then —(r 4+ a) < 0 < dx(s;,q) = 2,50 —(r +a) < z.

Also, z = dx(sj,q) < [dx(s;,p)] + [dx(p,q)] <7 +a,s0 z <7 +a.

Then —(r +a) <z <r+a,so|z| <r+a.
Then dg(z,0) = |z — 0| = |2] <1 + a, as desired.

54. COMPACT IMPLIES GEOMETRICALLY BOUNDED
We finish goal (3):

THEOREM 54.1. Let X be a nonempty compact metric space.
Then X 1is geometrically bounded.

113
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Proof. Let A := X. Then A is compact.
So, by HW#10-5, we conclude that A is bounded in X.
Then X is bounded in X, so X is geometrically bounded. O

Our remaining goals:
(1) [-1;1] and Sg2(0z,1) are both compact.
(2) If a metric space is homeomorphic to a compact metric space,
then it is compact.

55. A CONTINUOUS IMAGE OF A COMPACT IS COMPACT

THEOREM 55.1. Let X and Y be sets, f : X — Y and s,t e X".
Assume that t is a subsequence of s.
Then f ot is a subsequence of f o s.

Proof. Want: Jstrictly increasing £ € NN s.t. fot = (fos)ol.
Since t is a subsequence of s,
choose a strictly increasing £ € NN s.t. t = so /.
Want: fot=(fos)ol.
We have fot = fo(sol)=(fos)ol, as desired. O

THEOREM 55.2. Let X and Y be metric spaces and let t € XV,
Assume that f is continuous from X toY.

Assume that t is convergent in X.

Then f ot is convergent in'Y .

Proof. Choose pe X s.t. t, — pin X.
Since t, — p in X and since f is continuous at p from X to Y,
it follows that fot — f(p) in Y.
Then f ot is convergent in Y. U

THEOREM 55.3. Let X andY be sets. Let f: X —->>Y.
Then, Yz €Y, f*({z}) # &.

Proof. Given z €Y. Want: f*({z}) # &.

Since f: X —»> Y, we see that im[f] =Y.

Then z € Y = im[f], so choose p € X s.t. f(p) = 2.

Since f(p) = z € {z}, it follows that p € f*({z}).

Then f*({z}) # &, as desired. O
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THEOREM 55.4. Let X and Y be metric spaces. Let f: X —->Y.
Assume that f is continuous from X to Y.
Asume that X is compact. Then'Y is compact.

Proof. Want: Vo € YN, ¢ is subconvergent in Y.
Given o € YN, Want: o is subconvergent in Y.

Claim 1: Vj e N, f*({o,}) # .

Proof of Claim 1:

Given j € N. Want: f*({o;}) # .

By Theorem 55.3 (with z replaced by o;),
we see that f*({o;}) # O, as desired.

End of proof of Claim 1.

By Claim 1, j € N, CH(f*({o;})) € f*({o;}).
Define s € X" by s; = CH(f*({0;})).

Then: Vj e N, s; € f*({g;}).

Since X is compact, s is subconvergent in X.
Choose a subsequence ¢ of s s.t. t is convergent in X.
By Theorem 55.2, f ot is convergent in Y.

By Theorem 55.1, f ot is a subsequence of f o s.
Then f o s is subconvergent in Y.

It therefore suffices to show: fos=ao.

Want: VjeN, (fos); = oj.

Given j € N. Want: (fos); = 0.

We have s; € f*({0,}), so f(s;) € {g;}, so f(s;) = 0;.
Then (f os); = f(s;) = 0}, as desired.

We finish goal (2):

THEOREM 55.5. Let X and Y be metric spaces.
Assume that X is compact and that X is homeomorphic to Y .
Then Y is compact.

Proof. Since X is homeomorphic to Y,
choose f s.t. f is a homeomorphism from X onto Y.
Then f is continuous from X to Y and f: X —->Y.
So, since X is compact, by Theorem 55.4, we get: Y is compact. [
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56. SOME TOPOLOGY

Our remaining goal:
(1) [-1;1] and Sg2(0y,1) are both compact.

FOR NEXT YEAR: Define dx A as points approached from inside
and outside A. Then define Intx A as A\(dxA) and ClxA as Au(dxA).
Then the definitions below will become theorems.

DEFINITION 56.1. Let X be a metric space and let A < X.
Then Intx A := {pe X |3IB € Bx(p) s.t. B < A}.
Also, ClxA:={pe X|3se AV s.t. s, » p in X}.

In Definition 56.1, Int x A is called the interior in X of A, and Clx A
is called the closure in X of A. When X is clear, we simply say the
interior of A and the closure of A, and we simply write Int A and Cl A.

THEOREM 56.2. Let [ := (—1;1), J:=(—1;1], K :=[-1;1].
Then IntgJ = I and ClgJ = K and Intg2J? = I? and Clg2J? = K?2.

THEOREM 56.3. Let X be a metric space and let A < X. Then:
[IntyA< A< ClyA | &
[ Intx(IntxA) = Intx A | &
[ Clx(ClxA) = ClxA | &
[Intx(X\4) = X\(Clxd) ] &
[ Clx(X\A) = X\(IntxA) ].
DEFINITION 56.4. Let X be a metric space and let A < X.
By A is open in X, we mean: Intx A = A.
By A is closed in X, we mean: ClxA = A.

In Definition 56.4, when X is clear, we omit “in X”.

DEFINITION 56.5. Let X be a metric space.
Then Tx :={U < X |U is open in X}.
Also, Ty :={C < X |C is closed in X}.
In Definition 56.5, Ty is called the topology on X.

The following theorem gives quantified equivalences for open and
closed subsets of a metric space.

THEOREM 56.6. Let X be a metric space and let A < X.
Then: (Ae Tx) < (Vpe A,AB € Bx(p) s.t. B< A).
Also: (AeTy) = (Vse AN Vpe X, [(se > pin X)= (pe A)]).
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THEOREM 56.7. Let A:=(—1;1), B := (—1;0),
C:=[-1;1], D :=[-1;0).
Then A,B € Tg and C,D € T and A?, B* € Tg2 and C*, D? € Tg,.

Recall: R* = R u {—,00}. Define a function f : (—=1;1) - R
by f(z) = x/+/1—22 Then f is a homeomorphism from (—1;1)
onto R. Let g := adj_{(adj(f)). Then g : [—1,1] —> R*. De-
fine d, € M(R*) by d.(p,q) = dr(g7'(p), g7 (q)). Then, for example,
di(—0,0) = dg(—1,1) = |(=1) — 1| = 2. It may seem strange that
—oo should be a finite distance from oo, and, in fact, we will call d,
the weirdo metric on R*. There are other metrics on R*, but for any
“reasonable” d € M(R*), we have: T+ q) = T(r*4,). S0, while there
is no “standard” metric on R*, we do have a standard topology on R*.
By Theorem 56.7, D € Tg. That is, [—1; ) is closed in R. In fact, the
closure Clg B in R of (—1;0) is [—1;00). It is NOT equal to [—1;0].
This may seem strange, but keep in mind that, since oo ¢ R, we cannot
have oo € ClgB. The set [—1;00) is “as closed as it can be”, within
R. Working in (R*,d,), things are very different. In fact, the closure
Clir# 4,y B in (R*,d,) of (=1;00) is equal to [—1;0].

We drew a few amoeba-like subsets of R? and discussed their interi-
ors and closures. Some were bounded, some unbounded. We discussed
open amoeba-like subsets of R?, both bounded and unbounded. We dis-
cussed closed amoeba-like subsets of R?, both bounded and unbounded.

We noted that many subsets of R? contain part, but not all, of their
boundaries; such sets are neither open nor closed. It can also happen
that a set is both open and closed:

DEFINITION 56.8. Let X be a metric space and let A < X.
Then A is clopen in X means: A € Ty nTx.

THEOREM 56.9. Let X be a metric space.
Then: &, X € TynTx.

THEOREM 56.10. Let X :=[1;2] u [3;4].
Then [1;2]) € T n Tx. Also, [3;4] € T n Tx.
DEFINITION 56.11. Let X be a metric space.
Then X is connected means: Ty N Tx = {J, X }.

That is, a topological space is connected iff it has no clopen sets
except for the obvious ones.
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THEOREM 56.12. All of the following are true:
(1) R and R?* are both connected.
(2) [1;2] U [3;4] is not connected.
(3) VaeR, R is not connected.
(4) YveR? (R?*) is connected.

v

THEOREM 56.13. R and R? are not homeomorphic.

Proof. Assume that R and R? are homeomorphic.

Want: Contradiction.

Choose f such that f is a homeomorphism from R onto R2

Let A :=Rj. Let B := (RQ);(O).

Then f|A is a homeomorphism from A onto B.

By (4) of Theorem 56.12, B is connected.

So, since A and B are homeomorphic, A is connected.

By (3) of Theorem 56.12, A is not connected. Contradiction. [J

Thus connectedness becomes a topological tool for distinguishing
between the Euclidean spaces R and R?. There is another tool called
“simple connectedness” that is used to distinguish between R? and R3.
There are many other tools, but topology is not the focus of our course,
so we return to basics.

THEOREM 56.14. Let X be a metric space and let A < X.
Then: (AeTy ) < (X\AeTy).
Also: (AeTy ) < (X\AeTx).

That is, a set is open iff its complement is closed, and a set is closed
iff its complement is open. In any metric space, singletons are closed:

THEOREM 56.15. Let X be a metric space and let p € X.
Then {z} € Ty

THEOREM 56.16. Let a,be R. Then [a;b] € Tg.

Proof. Let C := [a;b]. Want: C € Tg.

Want: Vse CY VpeR, [ (se »pinR) = (peC)].

Given se CN, pe R. Want: (s > pinR) = (peC).
Assume: s, — p in R. Want: pe C.

Since s € CN = [a; b]", we conclude: Vj e N, a < s; < b.

So, since s, — p, by HW#8-4 and by unassigned HW, a < p < b.
Then p € [a;b] = C, as desired. O
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THEOREM 56.17. Let a € R. Then [a; ) € Tg.

Proof. Unassigned HW. U
THEOREM 56.18. Let b e R. Then (—0;b] € Tg.

Proof. Unassigned HW. U

Our only remaining goal is to show that [—1;1] and Sgz(0s,1) are
both compact. We can now break this up into various subgoals:
(A) [—1,1] is closed and bounded in R.
(B) Sgz2(04, 1) is closed and bounded in R?.
(C) For any subset of a metric space,
( compact ) implies ( closed and bounded ).
(D) For any subset of a proper metric space,
( closed and bounded ) implies ( compact ).
(E) R and R? are both proper.
By (C), (D) and (E), we see that
a subset of R is compact iff it is closed and bounded.
By (C), (D) and (E), we also see that
a subset of R? is compact iff it is closed and bounded.
Then, by (A) and (B), [—1;1] and Sg2(02, 1) are both compact.
We next work on these five subgoals, (A) to (E).

57. SuBGoALs (A)-(D)

THEOREM 57.1. Let X and Y be metric spaces and let f: X — Y.
Assume: [ is continuous from X to Y. Then: YC € Ty, f*(C) e Tx.

Proof. Given C € Ty. Want: f*(C) e Tx.

Let A := f*(C). Want: A e Tx.

Want: Vse AN, Vpe X, [(se—pin X ) = (ped)]

Given se AN, pe X. Want: (s, >pin X ) = (peA)

Assume s, — p in X. Want: p e A.

Let ¢t := fosand let g := f(p).

Since f is continuous at p from X to Y and since s, — p in X,
we conclude that t, — ¢ in Y.

Claim 1: t € CN.

Proof of Claim 1:

Want: dom[t] = N and im[t] < C.
Since A € X, we get AN < XN,
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We have se AN < XN sos:N— X.

Since s :N— X and f: X - Y, wesee thatt : N — Y.
Then dom[¢] = N. Want: im[t] < C.

Want: Vz € im[t], z € C.

Given z € im[t]. Want: z € C.

Since z € im|[t], choose j € N s.t. z = ¢;.

Since s € AN, we have im[s] € A.

Then s; € im[s] € A = f*(C), and so f(s;) € C.

Then z =t; = (fos); = f(s;) € C, as desired.

End of proof of Claim 1.

Since t € OV, since t, — ¢ in Y and since C € Ty,
we conclude that ¢ € C.

Since f(p) = qe C, we get pe f*(C).

Then p e f*(C) = A, as desired.

O

THEOREM 57.2. Let X and Y be metric spaces and let f: X — Y.
Assume: NC € Ty, f*(C) € Tx. Then: f is continuous from X toY .

Proof. Unassigned HW.

By Theorem 57.1 and Theorem 57.2, a function is continuous iff
the preimage of any closed set is closed.

U

THEOREM 57.3. Let X and Y be metric spaces and let f: X — Y.
Assume: f is continuous from X toY. Then: YU € Ty, f*(U) € Tx.

Proof. Unassigned HW.

O

THEOREM 57.4. Let X and Y be metric spaces and let f: X — Y.
Assume: YU € Ty, f*(U) € Tx. Then: f is continuous from X to Y.

Proof. Unassigned HW.

By Theorem 57.3 and Theorem 57.4, a function is continuous iff

the preimage of any open set is open.
It may seem strange that, in
Theorem 57.1, Theorem 57.2,
Theorem 57.3 and Theorem 57.4,

preimages are so important by contrast with forward images.

4

Part
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of the explanation is that, generally,

points want to go forward,

sets want to go backward and

sequences want to go forward.
Other mathematical objects have a similar propensity to move in one
direction or another, and the astute learner will start to track which
ones want to do what. Looking at open sets and closed sets, following
this philosophy, it makes sense that preimages come up a lot. However,
one does sometimes study maps such that the forward image of a closed
set is closed, or such that the forward image of an open set is open:

DEFINITION 57.5. Let X and Y be metric spaces and f : X — Y.
By f is a closed mapping from X toY, we mean:

VC e Ty, [f(C)eTy.
By f is an open mapping from X toY, we mean:

YU e Tx, f(U)eTy.

THEOREM 57.6. Let f : R? —> R be defined by f(x,y) = 2% + y°.
Then f is continuous from R? to R.

Proof. Unassigned HW. 0

We leave subgoal (A) as an unassigned exercise. For subgoal (B),
because Sgz(02, 1) S Bgz2(09,2), it follows that Sgz(0s,1) is bounded in
R2. To finish subgoal (B), we need only show:

THEOREM 57.7. Sg2(0y,1) € T

Proof. Let A := Sp2(09,1). Want: A€ Tg,.
Define f : R? > R by f(z,y) = 22 + y*. Then A = f*({1}).
Also, by Theorem 57.6, we see that f is continuous from R? to R.
By Theorem 56.15, we conclude that {1} € 7.
So, since f is continuous from R? to R,
by Theorem 57.1, we get: f*({1}) € Tg..
Then A = f*({1}) € Tz, as desired. O

To do subgoal (C), we must show that any compact subset of a metric
space is closed and bounded. By HW#10-5, any compact subset of a
metric space is bounded. The following shows that it’s also closed:

THEOREM 57.8. Let X be a metric space and let C' < X.
Assume that C' is compact. Then C € Tx.
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Proof. Want: Vse CN, Vpe X, [ (s —>pin X ) = (peC)].
Given s e CV, pe X. Want: (se > pin X ) = (peC).
Assume s, — p in X. Want: pe C.
Since C' is compact and s € CV, we get: s is subconvergent in C'.
Choose a subsequence t of s s.t. t is convergent in C.
Choose g € C s.t. t, — ¢ in C. Then t, — ¢ in X.
Since s, — p in X and since t is a subsequence of s,

it follows, from Theorem 51.12, that t, — p in X.
Since t, > pin X and t, — ¢ in X,

it follows, from Theorem 39.12, that p = ¢.
Then p = q € C, as desired. O

THEOREM 57.9. Let X be a topological space, A < X and t € AV,
Then: (t is convergent in A) = (t is convergent in X ).

Proof. Unassigned HW. O

THEOREM 57.10. Let X be a topological space, A < X and s € AV,
Then: (s is subconvergent in A) = (s is subconvergent in X ).

Proof. Unassigned HW. U

THEOREM 57.11. Let X be a topological space, A € T and t € AY.
Then: (t is convergent in A) < (t is convergent in X ).

Proof. By Theorem 57.9, we have:
(tis convergent in A) = (t is convergent in X ).
Want: (¢ is convergent in X ) = (¢ is convergent in A).
Assume: t is convergent in X. Want: ¢ is convergent in A.
Choose pe X s.t. t, —» pin X.
Since A€ Ty and t € AN and t, — p in X, it follows that p e A.
Since t, — p in X, since t € AN and since p € A4,
it follows that t, — p in A.
Then t is convergent in A, as desired. O

THEOREM 57.12. Let X be a topological space, A € T} and s € AV.
Then: (s is subconvergent in A) < (s is subconvergent in X ).

Proof. By Theorem 57.10, we have:

(s is subconvergent in A) = (s is subconvergent in X ).
Want: (s is subconvergent in X ) = (s is subconvergent in A ).
Assume: s is subconvergent in X. Want: s is subconvergent in A.
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Choose a subsequence t of s s.t. t is convergent in X.
Then, by < of Theorem 57.11, we see that t is convergent in A.
So, since t is a subsequence of s, s is subconvergent in A, as desired. [

We now finish subgoal (D):

THEOREM 57.13. Let X be a proper metric space and let A < X.
Assume: (A€ Ty )& (A is bounded in X). Then A is compact.

Proof. Want: Vs e AN, s is subconvergent in A.
Given s € AN, Want: s is subconvergent in A.
Since im[s] € A and since A is bounded in X,
we conclude that im[s] is bounded in X.
Then s is bounded in X.
So, since X is a proper metric space, s is subconvergent in X.
By < of Theorem 57.12, s is subconvergent in A, as desired. U

Our only remaining subgoal:
(E) R and R? are both proper.
This is addressed in §58 and §60.

58. PROPERNESS AND COMPLETENESS OF THE LINE

THEOREM 58.1. Let S be a set. Then:
(#S<1) < (Vo,ye S, z=y).

THEOREM 58.2. Let A < R*. Then #(An [LB(A)]) <1
Proof. Unassigned HW. O

Proof. Let S := An [LB(A)]. Want: #S < 1.

By Theorem 58.1, want: Vz,ye S, x = y.

Given z,y € S. Want: x = y.

Since S = A n [LB(A)], we get: S < A and S < LB(A).
Since x € S < LB(A), it follows that z < A, so A > x.

Thenye S A>uz,s0y > x. Want: = > y.
Since y € S < LB(A), it follows that y < A, so A > v.
Thenze S< A >y, sox >y, as desired. O

THEOREM 58.3. Vset S, Vx,
[(#S =1)& (x e S)] = [UE(S) = z].

Proof. Unassigned HW. U
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THEOREM 58.4. Let A < R. Assume:
(A# )& (A is closed in R) & (A is bounded above in R).
Then max A # ®.

Proof. This is HW#11-3. O

THEOREM 58.5. Let A < R. Assume:
(A# )& (A is closed in R) & (A is bounded below in R).
Then min A # ®.

Proof. Let B:= —A. Then min A = —(max B). Also,
(B # )& (B is closed in R) & ( B is bounded above in R),
so, by Theorem 58.4, we see that max B # ®.
Then max B € B € R, so —(max B) € R, so —(max B) # ®.
Then min A = —(max B) # @, as desired. O

THEOREM 58.6. Let A < R. Assume: (A # &) & (A is compact).
Then min A # ® # max A.

Proof. By HW#10-5, A is bounded.
By Theorem 57.8, A € Tg, so A is closed in R.
Then, by Theorem 58.5 and Theorem 58.4, min A # ® # max A. [

We consider sequences in metric spaces:

According to HW#6-4, convergent implies bounded.

According to HW#09-5, convergent implies Cauchy.

According to HW#11-4, Cauchy implies bounded.
So, HW+#9-5 and HW#11-4, together, prove HW+#6-4.

Observe that, in the metric space QQ, Cauchy does not imply con-
vergent: Let s := (1,1.4,1.41,1.414,...) be the sequence of decimal
approximations to /2. Then s is Cauchy, but not convergent.

Observe that, in the metric space R, bounded does not imply Cauchy:
The sequence (—1,1,—1,1,—1,1,...) is bounded, but not Cauchy.

DEFINITION 58.7. Let f: R --» R.
Then f is strictly monotone means:

( f is strictly increasing) v ( f is strictly decreasing).
Also, f is semi-monotone means:

(f is semi-increasing) v ( f is semi-decreasing).

THEOREM 58.8. Let a € RY,
Assume: a is semi-increasing and bounded above in R.
Then: a is convergent in R.
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Proof. This is HW#9-4. O

THEOREM 58.9. Let a € RY.
Assume: a is semi-decreasing and bounded below in R.
Then: a is convergent in R.

Proof. Let b := —a. Then a = —b. Want: b is convergent in R.
Since b is semi-increasing and bounded above in R,
it follows, from Theorem 58.8, that b is convergent in R, as desired. []

THEOREM 58.10. Let a € RY,
Assume: a 1s semi-monotone and bounded in R.
Then: a is convergent in R.

Proof. Since a is semi-monotone, we know that at least one of the fol-
lowing is true:

(1) @ is semi-decreasing or

(2) @ is semi-increasing.

Case (1): Since a is bounded, it follows that a is bounded below.
Since a is semi-decreasing and bounded below, by Theorem 58.9,
a is convergent, as desired.

End of Case (1).

Case (2): Since a is bounded, it follows that a is bounded above.
Since a is semi-increasing and bounded above, by Theorem 58.9,
a is convergent, as desired.

End of Case (2). O
The next theorem is fundamental to the area of dynamical systems.

THEOREM 58.11. Let X be a set, let f: X — X and let z € X.
Then: VjeNy, fi(z)eX.

Proof. Unassigned HW. (Hint: Use induction on j.) O
THEOREM 58.12. Let P < N and let m := max(P;).

Assume m # ®. Then Vj € (m..o0), j ¢ P.

Proof. Unassigned HW. U

THEOREM 58.13. Let s € RN,
Then dsubsequence t of s s.t. t is semi-monontone.
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Proof. Let P :={j e N|Vq e (j..0), s; = s,4}.
Then one of the following is true:

(1) P is finite or

(2) P is infinite.

Case (1):

Since P < N, it follows that P;" < Ny.

Since P is finite, it follows that P is finite.

Since Py” € R and since Fy is finite, we get max(F;") € Py .
Let m := max(F,). Then m € Py

Then m € By = Ny, so m € Np. Also m # ®.

Define A: N — 2N by A; :={q e (j..00)|s; < 84}

Define f : (m..0) --» (m..c0) by f(j) = min 4;.

Claim A:Vj e (m..o0), f(j) € A;.
Proof of Claim A:
Given j € (m..o0). Want: f(j) € A,.
By Theorem 58.12, j ¢ P.
Then, by definition of P, we get: —(Vq € (j..0), s; = s,).
Then 3q € (j..0) s.t. s; < s4. Choose g € (j..o0) s.t. 5; < $,.
Then q € Aj, so A; # .
So, since A; < N and since N is well-ordered,
we conclude that min A; # ®, and so min A; € A;.
Then f(j) = min A; € A;, as desired.
End of proof of Claim A.

We have f : (m..c0) --» (m..o0).

Also, by Claim A, Vj € (m..0), f(j) # ®.
Then f: (m..c0) — (m..co.

Then: Vj €N, f/(m+1) € (m..0) = N,
Define £ € NN by ¢; = fi(m +1).

Claim B: { is strictly increasing.

Proof of Claim B:

Want: VjeN, {; < l;;1.

Given j € N. Want: £; < €;41.

Let k :={;. Want: k < £j.

We have f(k) = f(¢;) = f(fi(m+1)) = fIT (m+1) ={;41.
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By Claim A, we have f(k) € A.

Also, by defininition of A, we have A, < (k..o0).
Then (;1 = f(k) € Ax < (k..0) > k.

Then (;11 > k, so k < {;41, as desired.

End of proof of Claim B.

Let t :=5s0/.

By Claim B, t is a subsequence of s.

Want: ¢ is semi-monotone. Want: t is strictly increasing.
Want: Vje N, t; <tj;. Given j € N. Want: ¢; < ;4.
Let k :=¢;. By Claim A, we have f(k) € Ay.

Let q := f(k). Then q € A;.

S0, by definition of A, we get s;, < s4.

We have g = f(K) = f(6;) = F(fi(m + 1) = f+(m +1) = (1.
Then t; = (s0l); = sy, = sp < 8q = 5¢;,, = (504L)j41 =tj41.
End of Case (1).

Case (2):
Define A: N — 2V by A; = P n (j..0).
Define f: N --» N by f(j) = min A;.

Claim C:VjeN, f(j) € Aj.
Proof of Claim C:
Given j e N. Want: f(j) € A;.
Since P is infinite and [1..j] is finite,

we conclude that P & [1..5].
So, since P € N = [1..00), we get P n (j..00) # .
Then A; = P n (j.0) # .
So, since A; < N and since N is well-ordered,

we conclude that min A; # ®, and so min A, € A;.

Then f(j) = min A; € A;, as desired.
End of proof of Claim C.

We have f: N --» N.

Also, by Claim C, Vj € (m..0), f(j) # ®.
Then f: N — N.

Then: Vje N, fi(1) e N.

Define ¢ € NN by ¢; = fI(1).
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Claim D: ( is strictly increasing.

Proof of Claivm D:

Want: VjeN, {; < ;4.

Given j € N. Want: €; < lj41.

Let k :={;. Want: k < £;;.

We have f(k) = £(65) = f(f2(m + 1)) = 21m +1) = 6,1,
By Claim C, we have f(k) € Ay.

Also, by defininition of A, we have A, < (k..o0).
Then (;1 = f(k) € Ay < (k..0) > k.

Then ;1 > k, so k < {;1, as desired.

End of proof of Claim D.

Let t :=s0/.

By Claim D, t is a subsequence of s.

Want: ¢ is semi-monotone. Want: t is semi-decreasing.
Want: VjeN, t; >t1. Given j € N. Want: t; > t;41.

Let k :=¢; and let i := fI71(1).

Then k = £; = f1(1) = f(fI71(1)) = f(i).

By Claim C, f(i) € A;.

Then k = f(i) e A; = P n (i.0) € P, so ke P.

Let g = £(k). Then g = £(k) = (t;) = F(FI(1)) = (1) = (11,
By Claim D, ;41 > {;. Then g = ¢j11 > {; = k, so g € (k..o0).
So, since k € P, by definition of P, we get: s; > s,.

Then t; = (sol); = sy, = 5p = 8¢ = 5¢;,, = (504L)j41 = tj41.

End of Case (2). O

THEOREM 58.14. Yfunctions f and g, im[g o f] < im[g].
Proof. Unassigned HW. U
THEOREM 58.15. Vsequence s, Vsubsequence t of s, im[t] < im][s].

Proof. Given a sequence s and a subsequence t of s.
Want: im[t] < im[s].
Since t is a subsequence of s,
choose a strictly increasing £ € NN s.t. t = so /.
By Theorem 58.14, im[s o ¢] < im]s].
Then im[t] = im[s o (] < im[s], as desired. O
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THEOREM 58.16. Let X be a metric space and let s,t e XV,
Assume: (t is a subsequence of s)& (s is bounded in X ).
Then t is bounded in X.

Proof. Since s is bounded in X, we get: im[s] is bounded in X.

Then choose B € Bx s.t. im[s] < B.

By Theorem 58.15, im[t] < im[s].

Then im[t] € im[s] € B, so im[t] < B.

So, since B € By, we conclude that im[t] is bounded in X.

Then t is bounded in X, as desired. O

THEOREM 58.17. R is a proper metric space.

Proof. Want: V bounded s € RY, s is subconvergent in R.
Given a bounded s € RY, Want: s is subconvergent in R.
By Theorem 58.13, choose a subsequence t of s s.t. t is semi-monotone.
Since s is bounded in R and ¢ is a subsequence of s,
it follows, from Theorem 58.16, that ¢ is bounded in R.
Since t is semi-monotone and bounded in R, by Theorem 58.10,
we conclude that ¢ is convergent in R.
So, since t is a subsequence of s,
we see that s is subconvergent in R, as desired. 0

DEFINITION 58.18. Let X be a metric space, S < X, € > 0. Then
Ns(S) = {zeX|3dyeS st dx(y,z) <ce}
15 called the e-neighborhood of S.

We drew a coordinate plane with a short curve S, picked a small
distance ¢ and drew the e-neighborhood of S.

THEOREM 58.19. Let X be a metric space, S < X, € > 0.
Then N%(S) < X.

THEOREM 58.20. Let X be a metric space, S, T < X, §,& > 0.
Assume S < T and § < €.

Then N%(S) < N%(T).

DEFINITION 58.21. Let X be a metric space, S < X, € > 0.
By S is e-dense in X, we mean: N%(S) = X.

We noted that Z is almost 1/2-dense in R, but not quite. In fact,
we have: Ya > 1/2, Z is a-dense in R. Therefore: Z is 1-dense in R.
Similarly, (1/2) - Z is (1/2)-dense in R. Generally:
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THEOREM 58.22. Vj e N, (1/5) - Z is (1/j)-dense in R.
THEOREM 58.23. Ve > 0, Q s e-dense in R.

Proof. Given € > 0.  Want: Q is e-dense in R.  Want: N3(Q) = R.
Since Ng(Q) € R, we want: R < Nz (Q).

By the Archimedean Principle, choose j € N s.t. j > 1/e.

Since j > 1/e > 0, we get 1/j < e.

So, since (1/7) - Z < Q, we get Nﬂé/j((l/j) -7) < NE(Q).

By Theorem 58.22, we have Nﬂé/j((l/j) -Z) =R.

Then R = Ny ((1/§) - Z) = Ng(Q), as desired. O

DEFINITION 58.24. Let X be a metric space and let S < X.
By S is dense in X, we mean: ClxS = X.

THEOREM 58.25. Let X be a metric space and let S < X.
Assume: Ye > 0, S is e-dense in X.
Then: S is dense in X.

Proof. This is HW#12-1. O
THEOREM 58.26. Q is dense in R.

Proof. By Theorem 58.23, Ve > 0, QQ is e-dense in R.
Then, by Theorem 58.25, Q is dense in R. 0

DEFINITION 58.27. Let X be a metric space.
By X is complete, we mean: Vs e XV,
(s is Cauchy in X ) = (s is convergent in X ).

By HW#9-5, we know, for ANY metric space X, for any s € X",
(s is convergent in X ) = (s is Cauchy in X ).

A metric space that is not proper is said to be nonproper.

A metric space that is not complete is said to be incomplete.

The intuition behind completeness: Complete means “has no holes”,
or, equivalently, incomplete means “has holes”.

For example, define X := R;. Then the “hole” at 0 allows us to con-
struct Cauchy sequences in X that are not convergent in X. For ex-
ample, the sequence

(1,1/2,1/3,1/4, ...)
is Cauchy in X, but is not convergent in X. Consequently, X is an

incomplete metric space. The sequence
(1, 14,141, 1414, ...)
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of decimal approximations to 1/2 is Cauchy in Q, but not convergent
in Q. Consequently, Q is an incomplete metric space. Speaking intu-
itively, X is only slightly incomplete, because there is only one hole.
By contrast, Q is “very” incomplete, with a hole at every irrational.

THEOREM 58.28. R} and Q are both incomplete.

Proof. Let s := (1,1/2,1/3,...).
Then s is Cauchy in Rj, but not convergent in R[,
so R is incomplete. Want: Q is incomplete.
Let 0 :=(1,1.4,1.41,...) denote the sequence
of decimal approximations to /2.
Then ¢ is Cauchy in Q, but not convergent in Q,
so Q is incomplete, as desired. O

For any metric space X, we can “fill in all the holes”, and obtain
a complete metric space X:

THEOREM 58.29. Let X be a metric space.
Then there exists a metric space X s.t.
( X is complete ) & ( Xgot S Xgot ) & ( Xget 45 dense in X ).

Proof. Omitted. O

THEOREM 58.30. Let X be a proper metric space.
Then X s complete.

Proof. Want: Vs e XN,
(s is Cauchy in X ) = (s is convergent in X ).
Given s € XN. Want: (s is Cauchy in X ) = (s is convergent in X ).
Assume s is Cauchy in X. Want: s is convergent in X.
Since s is Cauchy in X, by HW#11-4, we get: s is bounded in X.
So, since X is proper, we see that s is subconvergent in X.
So, since s is Cauchy in X, by HW#11-5,
we conclude that s is convergent in X, as desired. O

THEOREM 58.31. R is a complete metric space.

Proof. By Theorem 58.17, R is proper.
Then, by Theorem 58.30, R is complete, as desired. O

THEOREM 58.32. R} and Q are nonproper metric spaces.

Proof. By Theorem 58.28, R and Q are both incomplete.
Then, by Theorem 58.30, R and Q are both nonproper, as desired. [
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By Theorem 58.30, proper implies complete. In the next section, we
address why the converse fails.

59. COMPLETE DOES NOT IMPLY PROPER

By Theorem 58.29, any metric space X has a “completion” X. For
example, one completion of R is R. Intuitively, we have “filled in the
hole at 0”7 to go from R} to R. For another example, one completion
of Q is R. Intuitively, we have “filled in the all holes at all of the
irrationals” to go from Q to R. In some sense, a metric space with holes
is unnatural and, if we encounter such an object, we simply ignore it,
and focus on one of its completions.

With experience as my guide, any natural finite dimensional metric
space should not just be complete, but proper. For example, the metric
spaces R and R? are both proper. On the other hand, with experience
as my guide, any natural infinite dimensional metric space is nonproper.
Based on this, since we seek a metric space that is complete but non-
proper, we should look for some “natural” infinite dimensional metric
space. This works, and there are many examples, but the problem is
that, in an undergraduate course, it is typical only to look at finite
dimenional examples, and to leave infinite dimensions to a graduate
course in an area of mathematics called “Functional Analysis”.

We therefore turn to “unnatural” finite dimensional metric spaces.
We will describe a metric space called R<y, and, in Theorem 59.7 below,
we will argue that R¢; is complete an nonproper.

Recall that the underlying set of a metric space X is denoted Xgept.
We typically omit the subscript “set”, but sometimes keep it:

DEFINITION 59.1. Let X be a metric space.
Define d € M(Xget) by d(p,q) = min{d(p, q), 1}.
Then X< := (Xget, ).

THEOREM 59.2. Let Y := R_;.
Then dy(2.7,2.8) = 0.1 and dy (3, 5000) = 1.

THEOREM 59.3. Let X be a metric space, Y := X< andpe Y.
Then By (p,2) =Y.

THEOREM 59.4. Let X be a nonempty metric space, ¥ = X<;.
Then'Y 1is geometrically bounded.
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THEOREM 59.5. Let X be a metric space, Y 1= X<, se Y,
Then s is bounded.

THEOREM 59.6. Let X be a metric space and let s € XN,
Then: (s is subconvergent in X ) < (s is subconvergent in X<y ).

Proof. Proof of =:
Assume: s is subconvergent in X. Want: s is subconvergent in X;.
Since s is subconvergent in X,

choose a subsequence t of s s.t. t is convergent in X.
Then, by = of HW#12-3, we see that ¢ is convergent in X;.
So, since t is a subsequence of s,

we see that s is subconvergent in X<;, as desired.

End of proof of =.

Proof of <:
Assume: s is subconvergent in X<;. Want: s is subconvergent in X.
Since s is subconvergent in Xy,

choose a subsequence t of s s.t. ¢t is convergent in X;.
Then, by < of HW+#12-3, we see that ¢ is convergent in X.
So, since t is a subsequence of s,

we see that s is subconvergent in X, as desired.

End of proof of <. O
THEOREM 59.7. Rg; is complete and nonproper.
Proof. This is HW#12-5. O

60. PROPERNESS AND COMPLETENESS OF THE PLANE

THEOREM 60.1. Let s, t and u be sequences.
Assume that s is a subsequence of t and that t is a subsequence of u.
Then s is a subsequence of u.

Proof. Since s is a subsequence of t,

choose a strictly increasing £ € NN s.t. s =t o /.
Since t is a subsequence of u,

choose a strictly increasing m € NN s.t. ¢t = wom.
Then s =tol =uomol.
Since £,m € NY, we see that m o £ e NV,
Since ¢ and m are strictly increasing,

we see that m o £ is strictly increasing.
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So, since s = uomo/,
we conclude that s is a subsequence of u, as desired.

THEOREM 60.2. Let X be a metric space and let 0,5 € XV,

U

Assume that o is a subsequence of s and that o is subconvergent in X .

Then s 1s subconvergent in X.

Proof. Since o is subconvergent in X,
choose a subsequence t of o s.t. t is convergent in X.
Since t is a subsequence of ¢ and since o is a subsequence of s,
by Theorem 60.1, t is a subsequence of s.
So, since t is convergent in X,

we conclude that s is subconvergent in X, as desired.

THEOREM 60.3. Let X be a metric space and let s € XV.
Assume that s is subconvergent in X.
Then Istrictly increasing { € NN s.t. s o ( is convergent in X.

Proof. Since s is subconvergent in X,

choose a subsequence t of s s.t. t is convergent in X.
Since t is a subsequence of s,

choose a strictly increasing £ € NN s.t. t = s o /.
Want: s o £ is convergent in X.
Since t is convergent in X and since t = so /,

we conclude that s o £ is convergent in X, as desired.

THEOREM 60.4. Let X be a metric space and let s € XN,
Let t be a subsequence of s.

Assume: s is bounded in X.

Then: t is bounded i X.

Proof. This is Theorem 58.16.

THEOREM 60.5. Let X be a metric space and let s € XN,
Let t be a subsequence of s.

Assume: s is convergent in X.

Then: t is convergent in X.

Proof. Since s is convergent in X, choose pe X s.t. s, — pin X.

Then, by Theorem 51.12, we have: t, — p in X.
Then t is convergent in X, as desired.

O
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THEOREM 60.6. Let s € (R?)N,
Define p,q : R* - R by p(x,y) = z and q(z,y) = y.
Then: | ( s is bounded in R? ) <
(pos and qos are both bounded in R ) |.

Proof. Proof of =:
Unassigned HW.
End of proof of =.

Proof of <:
Assume that po s and ¢ o s are both bounded in R.
Want: s is bounded in R2. Want: im[s] is bounded in R?.

Want: 3C € Bge s.t. im[s] < C.
Since po s and ¢ o s are both bounded in R,
im[p o s] and im[q o s] are both bounded in R,
so choose A, B € By s.t. im[po s] € A and im[g o s] < B.
Since A € Bg, choose a € R and a > 0 s.t. A = Bg(a, ).
Since B € Bg, choose be R and 5 > 0 s.t. B = Bg(b, 3).

Let ¢ := (a,b) and let v := y/a? + (2.

Let C' := Bgz(c,7). Then C € Bga.

Want: im[s] < C. Want: Vz € im[s], z € C.

Given z € im[s]. Want: z € C.

Choose z,y € R s.t. z = (z,v). Then p(z) = z and ¢(z) = v.

Since z € im[s], choose j € N s.t. z = s;.
Then (pos); = p(s;) = p(z) =z and (g0 s); = q(s;) = q(z ) Y.
Then x = (pos); €eim[pos| € A = Bg(a,®), so dr(z,a) <
Also, y = (¢os); eim[gos| € B = Bg(b, 3), so dr(y,b) <
Then |z — a| = dg(z,a) < « and |y — b| = dr(y,b) < B.
Then 0 < |[r —a] <aand 0 < |y — b < S,
so |z —al?* < a? and |y — b|? < 2.

We have |z — al? = |(z — a)?| = (z — a)?

and |y — 0> = |(y — b)*| = (y — b)*.
Then (z —a)®* + (y —b)* = |z —a* + [y — b]* < a® + 5%
Since 0 < (x —a)®* + (y —b)? < a2 + 2,

we get: \/x—a y—b)? <\/a2+52.
Then dg2(z,¢)) = |z—c|2—|(1:—a y—b)|2
=+/(x—a)2+ (y—b)2 <+/a2+ 32 =r.

Then z € Bgz(c,vy) = C, as deswed End of proof of <. O
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THEOREM 60.7. Let s € (R?)N.
Define p,q : R* - R by p(x,y) = z and q(z,y) = y.
Then: | ( s is convergent in R? ) <
(pos and qos are both convergent in R ) |.

Proof. Proof of =:
Unassigned HW.
End of proof of =.

Proof of <:
This is Theorem 42.9.
End of proof of <.

THEOREM 60.8. R? is a proper metric space.

Proof. Want: Vs € (R*)N,
(s is bounded in R?) = (s is subconvergent in R?).
Given s € (R?)N,
Want: (s is bounded in R?) = (s is subconvergent in R?).
Assume s is bounded in R2. Want: s is subconvergent in R2.
By Theorem 58.17, R is proper.
Define p,q : R? > R by p(z,y) = x and q(z,y) = .
Since s is bounded in R?, by = of Theorem 60.6,
posand qos are both bounded in R.
Since p o s is bounded in R and since R is proper,
p o s is subconvergent in R.
Then, by Theorem 60.3, choose a strictly increasing £ € NN
s.t. poso/fis convergent in R.
Let 0 :=sol/. Then p o o is convergent in R.
Since o is a subsequence of s and since s is bounded in R?,
by Theorem 58.16, o is bounded in R2.
By Theorem 60.2, it suffices to show: o is subconvergent in R2.
Since o is bounded in R?, by = of Theorem 60.6,
poo and g oo are both bounded in R.
Since g o ¢ is bounded in R and since R is proper,
q o o is subconvergent in R.
Then, by Theorem 60.3, choose a strictly increasing m € NV
s.t. g o o0 om is convergent in R.
Since p o ¢ is convergent in R
and since p o 0 om is a subsequence of p o o,
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it follows, from Theorem 60.5, that p o o o m is convergent in R.
Since po o om and g o o o m are both convergent in R,

by < of Theorem 60.7, o o m is convergent in R?.
So, since o om is a subsequence of o,

we see that o is subconvergent in R2, as desired. 0

THEOREM 60.9. R? is a complete metric space.

Proof. By Theorem 60.8, R? is proper.
Then, by Theorem 58.30, R? is complete, as desired. U

THEOREM 60.10. Vm € N, R™ is a proper metric space.
Proof. Unassigned HW. U

61. THE EXTREME VALUE THEOREM

DEFINITION 61.1. Vfunctional f,
max [ := max(im[f]) and min f := min(im[f]).

Theorem 61.2, below, is the Extreme Value Theorem.

THEOREM 61.2. Let X be a nonempty compact metric space.
Let f: X - R. Assume f is continuous from X to R.
Then min f # ® # max f.

Proof. Let A :=im|f]. Want: min A # ® # max A.
By HW#12-2, we see that f is continuous from X to A.
So, since X is compact and since f : X —»> A,
by Theorem 55.4, we conclude: A is compact.
Since X # @ and f: X — A, we get: A # (.
Then, by Theorem 58.6, min A # ® # max A, as desired. O

62. THE TOPOLOGICAL INVERSE FUNCTION THEOREM

THEOREM 62.1. Let X be a metric space, C € T and t € CV.
Assume that t is convergent in X.
Then t is convergent in C.

Proof. Since t is convergent in X, choose ¢ € X s.t. t, —» ¢ in X.
Since t € CN, since t, — ¢ in X and since C € T,
it follows that ¢q € C.

Then, by Theorem 44.12, t, — ¢ in C'.
Then ¢ is convergent in C', as desired. U
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THEOREM 62.2. Let X be a metric space, C € T and s € CN.
Assume that s is subconvergent in X.
Then s is subconvergent in C'.

Proof. Since s is subconvergent in X,
choose a subsequence t of s s.t. t is convergent in X.
By Theorem 62.1, t is convergent in C.
So, since t is a subsequence of s,
we conclude that s is subconvergent in C. U

THEOREM 62.3. Let X be a compact metric space and let C € Ty .
Then C' is compact.

Proof. Want: Vs e CV, s is subconvergent in C.
Given s e CN. Want: s is subconvergent in C.
Since C' € T, we get C < X, and so CN < XV,
Since s € CN < X" and since X is compact,
s is subconvergent in X.
So, since C € Ty, by Theorem 62.2,
we see that s is subconvergent in C'. U

THEOREM 62.4. Let X and Y be metric spaces.
Let f:X—-Y, ScX, A:=/f/(9).
Assume that f is continuous from X to Y.

Then f|S is continuous from S to A.

Proof. Since im[f|S] = f«(S) = A, by HW#12-2,
it suffices to show: f|S is continuous from S to Y.
Want: Vp e S, f|S is continuous at p from S to Y.
Since f is continuous from X to Y,
it follows that f is continuous at p from X to Y.
Then, by Theorem 44.13, f is continuous at p from S to Y. O

THEOREM 62.5. Let X and Y be metric spaces.

Let f: X - Y andlet C < X.

Assume that [ is continuous from X to Y.

Assume that C' is compact. Then f.«(C) is compact.

Proof. Let A := f,(C). Then f|C:C —>> A. Want: A is compact.
By Theorem 62.4, f|C is continuous from C' to A.
So, since C' is compact, by Theorem 55.4, A is compact. 0
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THEOREM 62.6. Let X and Y be sets and let S < X.

Let f : X —>Y. Then f«(S) = (f~1)*(9).

Proof. Unassigned HW. O
Proof. Unassigned HW. O
THEOREM 62.7. Let X and Y be sets and let S € Y.

Let f: X —->>Y. Then f*(S) = (f71)(S).

Proof. Unassigned HW. U

THEOREM 62.8. Let X := [1;2] U (3:4] and Y := [5:7].
z+4, ifl<z<?

r+3, if3<z<A4.
Then f: X —>Y and f is continuous from X to Y.
Also, =1 is not continuous at 6 from'Y to X.

Proof. Unassigned HW. U

Define f: X =Y by f(z) =

Theorem 62.8 presents us with a problem. Frequently, we will be
given a bijection f between metric spaces, and suppose we want to
show that f is a homeomorphism. Say f is given by some formula for
f(x) in terms of z. By using continuity of basic functions, together with
properties of continuity, we can often verify continuity of f. However,
in order to see continuity of f~!, we would need to compute a formula
for f~1(y) in terms of y, which may be very difficult.

For example, define f : [1;2] — [2;10] by f(z) = x + 2. Then it is
possible to show that f is a bijection from [1;2] onto [2;10]. Also, it is
not hard to show that f is continuous from [1;2] to [2;10]. However,
there is no obvious formula for f~'(y) in terms of y. Even computing
/71(5) involves solving z+x* = 5 for z, which is difficult. However, the
next theorem guarantees that f~! is continuous from [2;10] to [1;2].

The next theorem is the Topological Inverse Function Theorem.

THEOREM 62.9. Let X and Y be metric spaces. Let f: X —>Y.
Assume:  f is continuous from X toY  and X is compact.
Then: ' is continuous from'Y to X.

Proof. By Theorem 57.2, we want: YC € T, (f~1)*(C) € Ty-.
Given C € Ty. Want: (f~1)*(C) € Ty

By Theorem 62.6, f,(C) = (f~1)*(C). Want: f,(C) e Ty.
Since X is compact and C' € Ty, by Theorem 62.3,
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we see that C' is compact.
Then, by Theorem 62.5, f,(C) is compact.
Then, by Theorem 57.8, f.(C) e Ty, as desired. O

63. LIMITS OF FUNCTIONS

DEFINITION 63.1. Let Y be a metric space, p€ Y and r > 0.
Then By (p,r) := [By(p,7)],

DEFINITION 63.2. Let Y be a metric space and let pe Y .
Then By (p) := {By (p,r)|r > 0}.

DEFINITION 63.3. Let Y be a metric space and let pe Y.
Then By := {By(p,7)|pe Y, r > 0}.

DEFINITION 63.4. Let Y and Z be metric spaces.
Let f:Y --» Z, letpeY and let qe Z.
Then f — q near p from'Y to Z means:

adjj [ is continuous at p from'Y to Z.

THEOREM 63.5. Let Y and Z be metric spaces.
Let f:Y --» Z and let pe Y.
Then: [ f is continuous at p from dom[f] to Z |
< [Ve>0,30 >0 s.t., Vo € dom|f],
(dy(z,p) <0) = (dz(f(2), [(p)) <e)]
< [VBeBz(f(p), 3A € By(p) s.t. fi(A) = B,]
< [Vse (dom[f])", ([se = pin Y] = [(fos)e = f(p) in Z])].

Proof. Unassigned HW. U

THEOREM 63.6. Let Y and Z be metric spaces.
Let f:Y --» Z letpeY andletqe Z.
Then: [ f — q near p fromY to Z |
< [Ve> 0,30 >0 s.t., Vo € dom|f],
(0 <dy(z,p) <0) = (dz(f(z ) q) <e)]
< [VB e Bz(q), 3A € By (p) s.t. f.(A) < B,]
< [Vs e ((dom[f]);)Y, ([se = pinY ] = [(fos)e > qinZ])].

p
Proof. Unassigned HW. U

THEOREM 63.7. Let f be a function and let p € dom|f].
Then adj/® f = f.

Proof. Unassigned HW. U
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THEOREM 63.8. Let X and Y be metric spaces.
Let f: X --»Y and let p € dom|f].
Then: [ f — f(p) near p from X to Y|

< [ f is continuous at p from dom[f] to Y'].

Proof. Let g := adjg(p) f.
By Definition 63.4, we have:
[ f — f(p) near p from X to Y|

< [ g is continuous at p from dom|[f] to Y'|.
By Theorem 63.7, g = f.
Then: [ f — f(p) near p from X to Y|

< [ g is continuous at p from dom[f] to Y]

< [ f is continuous at p from dom|f] to Y |. O

64. ISOLATED POINTS AND LIMIT POINTS

DEFINITION 64.1. Let T' be a metric space.
Then IsolT := {qeT|3B € Br(q) s.t. B = {q}}.

An element of Isol T is called an isolated point of T'.

We drew a picture on the board of a subset 7" of the plane that had
two singleton connected components, and two uncountable connected
components, each a partial closure of a connected amoeba-like open
set. We computed IsolT" as the union of the two singleton components.

THEOREM 64.2. Let T := [1;2) U {3,4}. Then IsolT = {3,4}.

Proof. Unassigned HW. O
THEOREM 64.3. Let T :={1,1/2,1/3,...}. ThenIsolT =T.
Proof. Unassigned HW. O

THEOREM 64.4. Let A:={1,1/2,1/3,...} and let T := A;.
Then IsolT = A.

Proof. Unassigned HW. U

DEFINITION 64.5. Let Y be a metric space and let T < Y.
Then LPyT := (ClyT)\ (IsolT").

An element of LPy T is called a limit point in Y of T

Note: In ClyT, we think of T as a subset of the metric space Y.
On the other hand, in Isol T, we think of T" as a metric space with the
relative metric inherited from Y.
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We went back to the picture on the board of a subset 7" of the plane
that had two singleton connected components, and two uncountable
connected components, each a partial closure of a connected amoeba-
like open set. We computed LPg2T as the union of the closures of the
two singleton components.

THEOREM 64.6. Let T :=[1;2) u {3,4}. Then LPgT = [1;2].
Proof. Unassigned HW. O
THEOREM 64.7. Let T :={1,1/2,1/3,...}. Then LPgT = {0}.
Proof. Unassigned HW. O

THEOREM 64.8. Let A:={1,1/2,1/3,...} and let T := A;.
Then LPRT = {0}.

Proof. Unassigned HW. U

THEOREM 64.9. Let Y be a metric space, T <Y and qe Y.
Then: [q € ClyT]

< [V6>0, ([By(q,0)]nT # )]

< [VBeBy(q), BnT # &, ]

< [IseTVN st se > qinY].

Proof. Unassigned HW. U

THEOREM 64.10. Let Y be a metric space, T <Y and ge Y.
Then: [ q € LPyT]

< [V6 >0, ([By(q,0)]nT # J)]

< [VBeBy(q), BnT # &, ]

< [Ise (T))V st sa > qin Y.

Proof. Unassigned HW. O

DEFINITION 64.11. LetY be a metric space, Z a set, f:Y --» Z.
Then LPDy f := LPy(dom[f]).

In Definition 64.11, LPD stands for “limit points of the domain”.

THEOREM 64.12. Let Y and Z be metric spaces.

Let f:Y --»Z,qgeY and a,be Z.

Assume f — a and f — b near q from'Y to Z.
Then a = b.



CLASS NOTES 143

Proof. Let D := dom]f].
Since q € LPy D, by Theorem 64.10,
choose s € (D) s.t. 5, > qin Y.
Since Dy < D}, it follows that (D;)N < (D)™,
Then s € (D;)Y < (D}
So, since ¢ € D and since s, — ¢ in Y,
it follows that s, — ¢ in D, .
Let g:=adj,f and h:= adjgf.
Then ¢(q) = a and h(q) = b.
Also, dom[g] = D = doml[h].
We have: Vj e N, s; # q.
It follows that: Vj € N, g(s;) = f(s;) and h(s;) = f(s;).
That is, we have: Vj e N, (gos); = (fos);and (hos); = (fos);.
Then gos= fosand hos = fos.
Since f — a and f — b near ¢ from Y to Z, by Definition 63.4,
it follows that g and h are both continuous at ¢ from D to Z.
So, since s, — ¢ in D7,
(gos)e — g(q) and (hos)e — h(q) in Z.
So, since go s = fos and g(q) =a and hos = fosand h(q) = b,
(fos)e aand (fos)e —bin Z.
Then, by Theorem 39.12, a = b, as desired. O

DEFINITION 64.13. Let ¢ and v be functions. Let S be a set.
Then, by ¢ =1 on S, we mean: Yx € S, ¢(x) = (x).

THEOREM 64.14. LetY and Z be metric spaces.
Let o, Y --» Z , peY and qe Z.

Assume B € By (p) s.t. ¢ =1 on B.

Assume ¢ — q near p from'Y to Z.

Then v — q near p from'Y to Z.

Proof. Unassigned HW. O

Let f be a functional and let k € Ny. Define p : R — R by p(z) = z*.
Recall that f* is defined to be po f.
Let f:=3-idg. Then, for all z € R, we have f(z) = 327.

DEFINITION 64.15. The function | e |: R — R s defined by
(le[)(x) = |-
THEOREM 64.16. | e | is continuous at 0 from R to R.
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Proof. Unassigned HW. O
THEOREM 64.17. | e| — 0 near 0 from R to R.
Proof. Unassigned HW. O

DEFINITION 64.18. Let f be a functional. Then |f|:= (] o]) o f.

THEOREM 64.19. Let X be a metric space, f: X --+ R, pe X.
Then: | f — 0 near p from X to R |
< [ |f| = 0 near p from X to R |.

Proof. Unassigned HW. O

65. SOME SETS OF FUNCTIONS

DEFINITION 65.1. Let f be a function, X a metric space and p €
X. By f is defined near p in X, we mean: 3B € Bx(p) s.t. B €

dom]| f].
NEXT YEAR, just define 0; as (CVZ) - (| o |7). See Theorem 68.9

DEFINITION 65.2. DNZ := {a : R --» R |« is defined near 0 in R}.

THEOREM 65.3. Both of the following are true:
(1) [Va, 3 € DNZ, a + B, - 5 € DNZ] and
(2) [Vee R,V € DNZ, ¢-a € DNZ].

Proof. Unassigned HW. O
DEFINITION 65.4. Define o : Ny — 2DNZ 3y
0; = {aeDNZ (a(0)=0)&

(ﬁ—»() nearOfromRto]R) }
[ ]

We argued that o 201 20, 2032 ---.

We argued (using HW#13-5) that id}, € 0,. We also argued that
id% ¢ 03. This proves that 0y # 03.

More generally, we have: Vj € N, idﬂ'% € 0j_; and idﬂ'Q ¢ 0;, and so
0j_1 # 0j. That is, 09 # 01 # 09 # 03 # - -.

Then 09 201 2022032+

THEOREM 65.5. All of the following are true:
(1) [VjeN,Ya,B€0;, a+ o] and
(2) [Vj, ke NVaeo;,Vieo, a-feoj] and
(3) [VjeN,Vce R Yaeo;, c-aco;].
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Proof. Unassigned HW. O

DEFINITION 65.6. Let f and g be functions.
Let X be a metric space and let pe X.
Then f = g near p in X means: 3B € Bx(p) s.t. f =g on B.

THEOREM 65.7. Let X and Y be metric spaces.

Leta,B: X --»Y,pe X. Assume: o = 3 near p in X.
Assume: « is continuous at p. Then [ is continuous at p.

Proof. Unassigned HW. U
THEOREM 65.8. Let j € Ny and let o, 5 : R — R.

Assume o = 3 near 0 in R. Assume o € 0. Then B € o;.
Proof. Unassigned HW. O

DEFINITION 65.9. Define H : Ng — 2% by H; = {a-id}, |a € R}.

THEOREM 65.10. Define C,L,Q, K : R — R by

C(r) =3, L(z)=Tr, Qx)=4r*  K(x)= 925
Then C =3-idy € Ho and L="7-ideH
and Q=4-id3 e Hy and K =9-id} e Hs.

Proof. Unassigned HW. O

THEOREM 65.11. Vj e No, Vf € #;, 3a € R s.1.,
VreR, f(x)=ax’.

Proof. Unassigned HW. U
DEFINITION 65.12. 0 := C}.

THEOREM 65.13. Vj, ke Ny, [(j#k) = (H; nHi ={0})].
Proof. Unassigned HW. U

THEOREM 65.14. All of the following are true:
(1) [VjeN,Ya,B e H;, a+ e H;] and
(2) [Vj, ke NVaeH;, Ve H, a-feHj] and
(3) [VjeN,Vee R, VYaeH;, c-aeHt,].

Proof. Unassigned HW. O
Proof. Unassigned HW. U
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DEFINITION 65.15. C := HQ, L= 7‘[1, Q = 7‘[2, K= 7‘[3.
THEOREM 65.16. Define C,L,Q), K : R — R by

C(x)=3, L(z)=Tr, Qx)=42? K(x)=92>
Then CeC and LeLl and Qe€Q and KeK

and C¢002012@22"'

and L e og and Léoi20,2032 -

and Qe o <o and Q¢E02032042 -

and Keoy, C o C o and K¢os2Do, 2052 -

and C+Q+L+Kd¢og20, 2052 ---
and C+Q+Ldog20, 202

and L+Q+K € og and L+Q+K¢o, 20,2032
and Q+Keo Cog and RQ+K¢os2032042--.
Proof. Unassigned HW. U

THEOREM 65.17. We have: C n oy = {0}
and Lcoy and Lo ={0}
and Qco; and Qnoy={0}
and K<coy, and Knos=/{0}.

Proof. Unassigned HW. U
More generally:

THEOREM 65.18. We have: VjeN, H; <o ;.
Also, we have: YjeNy, H;no;={0}.

Proof. Unassigned HW. U

66. TRANSLATIONS, LINEARIZATIONS AND DERIVATIVES OF
FUNCTIONS

DEFINITION 66.1. Let S be a set, f: R --» 5, peR.
Then f(p +e): R --» S is defined by:
(f(p+e)(h) = flp+h).

The function f(p + e) is called the horizontal translate of f by p.

DEFINITION 66.2. Let f :R--» R, pe R.
Then [} : R --» R is defined by:
fo () =1f(p+h)] = [f(p)].
The function f;;F is called the double translate of f based at p.
Note that, if p € R\(dom[f]), then f| = & is the empty function.
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DEFINITION 66.3. Let f be a function.
Then f(® + o) := ® and f% = 0.

We drew the graph of a partial function f : R --» R whose domain
was a half-open interval, and which had an interval of decrease, then
one of increase, then one of decrease. We picked a point p on the first
interval of decrease. We displayed graphs of f(p + e) and pr .

THEOREM 66.4. Let f : R --» R, p € dom[f]. Then pr(O) = 0.
Proof. Unassigned HW. 0

The analytic properties of f at/near p are preserved and reflected
in the analytic properties of f(p + ) and fg at/near 0. For example:

THEOREM 66.5. Let f:R — R, peR.
Then: ( f is defined near p)

< (f(p+e) is defined near 0)

< (f] is defined near 0).
Also: ( f is continuous at p)

< (f(p+e) is continuous at 0)

< (f) is continuous at 0).

Proof. Unassigned HW. U

DEFINITION 66.6. Let f: R --» R and p € R.
Then LINS,f :={Le L|fI' — Leo}.

An element of LINS, f is called a linearization of f at p. Note that,
if p e R\(dom|[f]), then LINS,f = &.

Let f: R --» R, let p € dom|[f] and let L € LINS,f. Assume that
the graph of f has a tangent line at a point (p, f(p)). Note that the
graph of L is typically NOT tangent to the graph of f at (p, f(p)).
Instead, the graph of L is tangent to the graph of pr at (0,0).

THEOREM 66.7. Define f: R — R by f(z) = 2%
Define L € L by L(h) = 6h. Then L € LINS;f.

Proof. Define Q € Q by Q(h) = h2.

We have: Vhe R, fI'(h) = [f(3+ h)] - [f(3)] = (3 + h)? — 32
=9+6h+h*—9=06h+h%=][LR)]+[Q(h)] = (L+Q)h).

Then fI' =L+ Q. Also L—- L =0.

Then fI1 —-L=L+Q-L=0+Q=Q€cQco.

Since L € £ and fI — L € 0y, we get: L € LINS;f, as desired. 0
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THEOREM 66.8. Let f : R --» R and let p e R.
Then #(LINS, f) < 1

Proof. Want: YL, M € LINS,f, L = M.
Given L, M € LINS, f. Want: L = M.
Since L, M € LINS, f, we get fg — L eo; and pr — M € 0.
Then (f] — M) —(f] — L) € o1.
Since f — L € 0, < DNZ, choose B € Bg(0) s.t. B < dom[f] — L].
We have L, M € LINS,f < L.
Since L, M € L, we get dom[L] = R = dom[M].
Since L, M € L, we get L — M € L.
Let D := dom[f]].
Then, as dom[L] = R = dom[M], we get:
dom[f] — L] = D = dom[f] — M].
Then (f) — M) —(f —L)=L—M on D.
So, since B < dom[f, ] D, it follows that:
(fg —M)—(ff —L)=L—MonB.
So, since B € BR(O), we conclude that:
(ff =M)—(f] —L)=L— M near 0 in R.
So, since (fT M) — (fT L)€ oy,
by Theorem 65.8, we see that L — M € o;.
So, since L — M € L, we get L — M € L n o, = {0}.
Then L — M =0, so L = M, as desired. O

DEFINITION 66.9. Let Le L.
Then sly, := UE{a e R| L = a -idg}.

NEXT YEAR: Easier to define s¢;, := L(1). Define slg = ®.
THEOREM 66.10. Define L € L by L(h) = 6h. Then sty = 6.
Proof. Unassigned HW. U

DEFINITION 66.11. Let f: R --» R.
Then f': R --» R s defined by: f'(p) = UE{sly | L € LINS, f}.

The function f’: R --» R is called the derivative of f. Note that,
if p € R\(dom[f]), then f; = ®

NEXT YEAR: Define D,f := UE(LINS,f) and f, = slp, ;. Also,
note that, if p € R\(dom[f]), then D,f = ®. Also, define slg := ®.

THEOREM 66.12. Define f : R — R by f(x) = 2%. Then f'(3) =
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Proof. Define L € L by L(h) = 6h.

By Theorem 66.10, we have: sf; = 6.
Let S := {sly; | M € LINS3f}.

By Definition 66.11, f'(3) = UES.

By Theorem 66.8, #(LINS;f) < 1.

By Theorem 66.7, I € LINS, f.

Then LINS; f = {L}.

Then S = {sly; | M € {L}} = {slr} = {6}.

Then f'(3) = UES = UE {6} = 6, as desired. O
THEOREM 66.13. Let f R >R, pe R, Le L.
Assume that f — L € oy. Then f'(p) = sty

Proof. Let S := {slys | M € LINS, f}.

By Definition 66.11, f'(p) = UES.

By Theorem 66.8, #(LINS, f) < 1.

By Definition 66.6, L € LINS, f.

Then LINS, f = {L}.

Then S = {slp; | M € {L}} = {str}.

Then f'(p) = UES = UE {sf.} = sl as desired. O

THEOREM 66.14. Define f: R — R by f(z) = 5.
Then f'(2) = 3- 22

Proof. Define Le L, QQ € Q, K € K by
L(h)=3-22-h, Q(h)=3-2-h* K(h)=h

Then L = 3- 2% -idg, so sl;, = 3 -22.

Also, since (Q € Q < 07 and since K € K € 0, € 01,
we conclude that @ + K € 0;.

We have: Vhe R, fI(h) =[f(2+h)] —[f(2)] =(2+h)>—-23
=2243-22-h+3-2-h*+h3—2?
=322 h+3-2-h*+h
= [L(W)] + [Q(R)] + [K(h)]
= (L+Q+ K)(h).

Then ff =L+ Q+ K. Also L— L =0.

Then ff —L=L+Q+K—-L=0+Q+K=Q+Kceo,.

Then, by Theorem 66.13, we get: f'(2) = sfy.

Then f'(2) = sl = 322, as desired. O

THEOREM 66.15. Define f: R — R by f(z) = 5.
Then, Yz € R, f'(z) = 322.
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Proof. Given x € R. Want: f'(x) = 322
Define Le £, Q € O, K € K by
L(h) = 3z*h, Q(h) =3zh?, K(h)=h3.
Then L = 322 - idg, so sl; = 322.
Also, since Q € Q < 07 and since K € K € 0, € 04,
we conclude that @) + K € 0.
We have: Vhe R, fI'(h) = [f(z +h)] — [f(x)] = (x + h)? — 23
= 2% + 32%h + 3xh® + h3 — 23
= 32?h + 3zh* + h?
= [L(W] + [Q(R)] + [K(h)]
= (L+Q+ K)(h).
Then fI =L+ Q + K. Also L— L =0.
Then fIT - L=L+Q+K-L=0+Q+K=Q+Kceo,.
Then, by Theorem 66.13, we get: f'(z) = slr.
Then f'(x) = sl = 322, as desired.

67. BASIC FACTS ABOUT DIFFERENTIATION
THEOREM 67.1. YCeC, C'=0.
Proof. Unassigned HW.
THEOREM 67.2. VYLel, L =Ci*.
Proof. Unassigned HW.

DEFINITION 67.3. Let f : R --» R, pe R.
By f is differentiable at p, we mean: p € dom|[f].

THEOREM 67.4. Let f : R --» R, p € dom[f’].
Then3Le L, IRe€ oy s.t. fl =L+ R.

Proof. Let S := {slr, | L € LINS, f}.

Then f'(p) = UE(S).

Since p € dom[f’], we get @ # f'(p).

Then UE(S) = f/(p) # ® = UE(), so S # .

By Theorem 66.8, #(LINS, f) < 1.

Since {slr | L € LINS,f} = S # &, we conclude that LINS, # .
Then #(LINS, f) = 1.

Let L := UE(LINS,f). Then LINS,f = {L}. Then L e LINS,f.
Then L € LINS,f L.

Since L € {L} = LINS, f, we see that f] — L € 0.
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Let R:= f] — L. Then R € o;.
Then L € £ and R € 0. Want: f' = R+ L.
SinceszpT—L,W(eget: R+L=pr—L+L=pr+O= pT,

and so pr =R+ L =L+ R, as desired. O

THEOREM 67.5. Let f - R-—»R, peR, Le £, Re o,
Assume that f = L + R. Then f'(p) = sty

Proof. Since pr — L = R € 04, it follows, from Theorem 66.13,
that f'(p) = sly, as desired. O

THEOREM 67.6. Let f : R --» R, p € dom[f’].
Then: ( f is defined near p)& ( f is continuous at p).

Proof. By Theorem 67.4, choose L € £ and R€ 0y s.t. f = L+ R.
Since L and R are defined near 0, we get: L + R is defined near 0.
Then f; is defined near 0.

Since L and R are continuous at 0, we get: L + R is continuous at 0.
Then pr is continuous at 0.

Since pr is defined near 0 and pr is continuous at 0, by Theorem 66.5,
we get: ( f is defined near p) & ( f is continuous at p). O

THEOREM 67.7. Let f : R --» R. Then dom[f’] < dom]|f].

Proof. Want: ¥p € dom[f'], p € dom][f].

Given p € dom][ f’]. Want: p € dom[f].

By Theorem 67.6, f is defined near p.

So, by Definition 65.1, choose B € Bx(p) s.t. B < dom|[f].

Since B € Bx(p), we get: p € B.

Then p € B < dom|f], as desired. O

DEFINITION 67.8. Let f : R --» R and let p € R.
Then SS} : R --» R is defined by
(SSF)(h) = (DQy)(p;p + h).

We call SS’} the secant slope function of f based at p. The limit
of the secant slope is not always the value of the derivative:

THEOREM 67.9. Let A :={1,1/2,1/3,1/4,...} U {0}.
Let f:= (id3)|(A + 3).
Then: f'3)=® and SS;’c — 6 near 0 from R to R.

Proof. Unassigned HW. U
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The limit of the secant slope is typically the value of the derivative:

THEOREM 67.10. Let f: R --» R and let p,m € R.
Assume that [ is defined near p.
Then: [ f'(p) = m] < [SS} — m near 0 from R to R].

Proof. Omitted. 0
THEOREM 67.11. Let ae R. Then | o | —a- [idr] ¢ 0;.

Proof. Let f:=|e|—a-[idg]. Want: f ¢ o;.
Assuume f € 0. Want: Contradiction.

Since f € 01, we get: f/[| e |] — 0 near 0 from R to R.
So, by Theorem 63.6, choose § > 0 s.t., Vh € R,

(0 <dr(h,0)<d) = (dR<(’Tf’) (h),O) <1>.
Then, Vh € R, l(0<|h|<5) = < <%> (h) <1>}

At least one of the following must be true:
(1)a=0 or (2) a<0.

Case (1):

Let h:= —§/2.  Since h <0, we get |h| = —h.

Since |h| = 0/2 and since 0 < §/2 < §, we get: 0 < |h| < 4.
(i> (h)' <1

K

Let y := (i) (h). Then |y| < 1. Then 1 > |y|.

o]
We calculate: y = (%) (h) = f|(h}|b) _ |h|‘;|ah

B —h—ah_h+ah_
- - =

Then, by the choice of ¢, we have:

1+ a.

Since a = 0, we get: 1 +a > 1.
So, since y = 1 + a, we get: y > 1.
Since y = 1 > 0, we conclude that y > 0, and so |y| = y.
Then 1> |y|=y>1,s01> 1. Contradiction.
End of Case (1).

Case (2):
Let h:=6/2. Since h > 0, we get |h| = h.
Since |h| = 0/2 and since 0 < §/2 < §, we get: 0 < |h| < 4.
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()l

Let y := (%) (h). Then |y| < 1. Then 1 > |y|.

- (f _ f(h) || —ah h—ah
We calculate: y (’ . ’) ) i i ;
Since a < 0, we get: 1 —a > 1.
So, since y =1 — a, we get: y > 1.
Since y = 1 > 0, we conclude that y > 0, and so |y| = y.
Then 1> |y|=y>1,s01>1. Contradiction.

End of Case (2). O

THEOREM 67.12. Let L € L and let a := sl;,.
Then L = a - idg.

Then, by the choice of §, we have:

=1-—a.

=

Proof. Unassigned HW. U

THEOREM 67.13. Let f : R --» R.
Assume f(0) = 0. Then fI = f.

Proof. Unassigned HW. O
THEOREM 67.14. 0 ¢ dom[| e |'].

Proof. Assume 0 € dom][| e |]. Want: Contradiction.

By Theorem 67.4, choose L € £ and R€ 0y s.t. ||l = L + R.

By Theorem 67.13, we have: | e |l = |e].
Then|o|—L:‘o‘%—LzL—i—R—L:R—i—O:REOl.

Let a := s/ By Theorem 67.12, we have: L = a - [idg].
Then |e| —a-[idg] =|e|—Leo;. Then |e|—a-[idg]€ 0.
However, by Theorem 67.11, we have: | e | —a - [idg] ¢ 0.
Contradiction. O

THEOREM 67.15. Let a: R --» R.
Assume that a = 0 near 0 in R.  Then: Vj e Ny, a € 0.

Proof. Unassigned HW. O
THEOREM 67.16. (|e|)(2) = 1.

Proof. Let m:=1. Let L:=m-[idg]. Then sl = m.
We calculate: Yh € (—2;2),
(olf—L)(h) = |2+ Al — 2] —m -}
—24+h-2—1-h=0=0(h).



154 SCOT ADAMS

Then | e |} — L =0 on (-2;2).

Then | e |} — L = 0 near 0 in R.

Then, by Theorem 67.15, | o |2 — L € 0.
Then, by Theorem 66.13, (] o |')(2) = sly.
Then (| e |')(2) = sl = m = 1, as desired.

THEOREM 67.17. (| o )(—2) = —1.

Proof. Let m := —1.  Let L :=m-[idg]. Then sf; = m.
We calculate: Vh e (—2;2),
(%= L)(h) = | —2+h] — |~ 2| —m-h
= —(—=24+h)—2—(-1)-h=0=0(h).
Then |e|X, — L =0 on (-2;2).
Then | e |T, — L = 0 near 0 in R.
Then, by Theorem 67.15, | o |Z, — L € 0.
Then, by Theorem 66.13, (] o |')(—2) = /.
Then (| e |')(—2) = sl = m = —1, as desired.

THEOREM 67.18. ¥z > 0, (| o |)(z) = 1.

Proof. Let m :=1. Let L:=m-[idg]. Then sl = m.
We calculate: Vh e (—z;x),
(o7 = L)(h) = |z + bl — |z = m -}
=x+h—xz—1-h=0=0(h).
Then |e |l — L =0 on (—z;x).
Then | e|L — L = 0 near 0 in R.
Then, by Theorem 67.15, | o |2 — L € 0.
Then, by Theorem 66.13, (| o |')(z) = sL.
Then (| e |')(z) = sl = m = 1, as desired.

THEOREM 67.19. V2 <0, (| o |)(z) = —1.

Proof. Let m := —1.  Let L :=m - [idg]. Then sf; = m.
We calculate: Vh e (z; —x),
(e ff = L)(h) = |&+h[ = |z[ =m-h
=—(x+h)—(—z)—(=1)-h=0=0(h).
Then |e |l — L =0 on (z; —x).
Then | e|T — L = 0 near 0 in R.



CLASS NOTES 155

Then, by Theorem 67.15, | o |L — L € 0.
Then, by Theorem 66.13, (| o |')(x) = sf.
Then (| e |')(z) = sl = m = —1, as desired.
U

Since dom[| e |] = R, the next result follows from Theorem 67.14,
Theorem 67.18 and Theorem 67.20:

THEOREM 67.20. dom[| e |'] = R < R = dom][| « |].

According to Theorem 67.7, Vf : R --» R, dom[f’] < dom][f].
By Theorem 67.20, we see that the inclusion is sometimes proper.

DEFINITION 67.21. Let f : R --» R and let S < R.
Then f is differentiable on S means: S < dom[f’].

DEFINITION 67.22. Let f : R --» R.
Then f is differentiable means: dom[f’] = dom[f].

Unassigned HW: Vf, g : R --» R, Vpe R, (f +g)] = [f} ]+ [9.]

Unassigned HW: Ve e R, Vf : R --» R, Vpe R, (c- )] =c-[f]]

To express these last two unassigned HWs, we sometimes say,
“Double translation is linear.”

Unassigned HW: YL, M € L, sl = [s0r] + [sla].

Unassigned HW: Ve e R, VL € L, sl.., = ¢ - [slL].

To express these last two unassigned HWs, we sometimes say,

“Computation of slope is linear.”

Unassigned HW: 0’ = 0.

We will sometimes use f; instead of f'(p).

According to Theorem 67.14, (| o |); = ©.

Unassigned HW: (—| e |){ = ®.

Let f:=|e|and g := —| e |. Then we have: fj = ® and g; = ®.
Also, f 4+ g =0. Then (f + g) = 0. It follows that (f + g); = 0y = 0.
Also, [fo] +[90] = @ + @ = ®. Let p := 0. Then

(f+9)p=(+90=0#0=][fi]l + [l =[]+l
and so (f +g);, # [f,] + [g,]. On the other hand:

THEOREM 67.23. Let f,g: R --> R and let p € R.
Then: (f +9), =" [f,]+[g,]-

Proof. Want: ([f,] +[g,] #®@) = ((f +9), = [f,] +[g,])-
Assume [f)] + [g,] # ®.  Want: (f +g);, = [f)] + [g,]-
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Since [f,] + [g,] # @, we conclude that f) # ® # g,

Then p € dom|[f’] and p € dom[¢'].

Then, by Theorem 67.4, choose L, M € L and R, S € 0y s.t.
pr=L+R and ggzM—i-S.

By Theorem 67.5, we have: fo=sly and g, =sly.

Since L, M € L, we get: L+ M e L.

Since R, S € 01, we get: R+ S € 0;.

Also, (f+9)] = [f1+[9t] = [L+R]+[M+S] =[L+M]+[R+S].

Then, by Theorem 67.5, (f + g);, = slry -

Then (f + g);, = slpiar = [slp] + [sla] = [f)] + [g,], as desired. [

THEOREM 67.24. Letce R, let f : R --+» R and let p e R.
Then (c- f), =" c-[f,]

Proof. Unassigned HW. U

Unassigned HW: Va, b, ([(a =* b)& (b =* a)] = [a=10]).
Unassigned HW: Va, Vb ~e R, Vc e R,
[a =* b] = [c-a =* c-b].

THEOREM 67.25. Let ce R}, let f: R --+ R and let p e R.
Then (c- f), = c-[f,]

Proof. By Theorem 67.24, (cf); =* c. [flg]
Want: c-[f)] =* (c- f),

Let ¢ :=c- f and let v :=1/c.

By Theorem 67.24, (v - ¢), =* v- [(b;]

So, since v - ¢ = f and since ¢ = c- f, this gives: fz/) =* ~v-[(c- f);;]

Multiplying by ¢, we get: ¢ [f;] =* c-v-[(c- f),].

So, since ¢ -7 = 1, we conclude: c-[f)] =* (c- f),, as desired. O

68. BASIC RESULTS ABOUT BIG O AND LITTLE O

DEFINITION 68.1. Vsets X and Y, PFxy :=J{Y?|Dc X}.

THEOREM 68.2. Vsets X and Y, Vf,
(fepfxy) = (f:X——-)Y).

DEFINITION 68.3. Vset X, VS, T < PFxr,
S+T:={f+g|feS,geT} and
S T:={fglfeSgeT}.
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DEFINITION 68.4. Vset X, Vf: X --» R, VS € PFxg,
f+S={f}+S=8+f and
[-S={f}-S§=8-F.

DEFINITION 68.5. Vset X, VA< R, VS € PFxrg,
A-S:={c-flceA feS}=§ A

DEFINITION 68.6. Vset X, VAC R, Vf: X --» R,
A-f=A-{f}=f A

DEFINITION 68.7. Vset X, Vae R, VS € PFxg,
a-S:={a}-S§=:Sa.

Recall Definition 65.2 and Definition 65.4.

DEFINITION 68.8.
CVZ := {aeDNZ|(«a is continuous at 0)& («(0) =0)}.

THEOREM 68.9. Let j € Ny. Then o; = (CVZ) - (| o ).

Proof. By HW#1-1, it suffices to show: 0; € (CVZ) - (] e ).
Want: Ya € 0, a € (CVZ) - (| o |7).
Given « € 0;. Want: o € (CVZ) - (| o ).
Let 3 := adj’ (ﬁ) Want: (8e CVZ)& (a=5-(e})).
[ ]

Since a € 0;, we know:

(a € DNZ) & (a(0) = 0) & <ﬁ — 0 near 0 from R to R).

[

We have dom[S] = ((dom[a])y)g = dom|«],

so, since aw € DNZ, we get: € DNZ.
Since |a_|j — 0 near 0 from R to R, we see that 8 is continuous at 0.

[

So, since 3 € DNZ, it follows that g € CVZ.
Want: a = - (| e]’).
Want: Vz e R, a(z) = (8- (| o)) ().
Given z € R. Want: a(z) = (8- (] e "))(z).
Want: [5(x)] - [|2z]'] = a(z).
Exactly one of the following is true:

() x=0 or
(2) x # 0.
Case (1):

We have a(x) = a(0) = 0.
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Then [8(z)] - [|z]'] = [B(0)] - [|0}'] = 0- 0/ = 0 = a(x), as desired.
End of Case (1).

Case (2):
We have [B(2)] - [Jz}'] = K' f‘P) (a:)} ]
- O(iT;) [lz] = a(z), as desired.
End of Case (2). O

THEOREM 68.10. 0p = CVZ.

Proof. By Theorem 68.9, 09 = (CVZ) - (] ¢ |°).
So, as | e [ = Cg, we get 0y = CVZ, as desired. O

NEXT YEAR, just define 0; as (CVZ) - (| o 7).

DEFINITION 68.11.
BNZ := {a € DNZ|3C € Bg(0) s.t. a.(C) is bounded in R}.

We graphed z +— 272 : R --» R. This is in DNZ, but not in CVZ
and not in BNZ.
We graphed z — (z —1)72 : R --» R. This is in DNZ and in BNZ,
but not in CVZ.
1, ifxr<0
We graphed | x —
{x, ifz >0
in BNZ, but not in CVZ.
By definition of CVZ, we have DNZ < CVZ.

According to HW#1-2, we have CVZ < BNZ.

) :R — R. This is in DNZ and

THEOREM 68.12.  (CVZ)-(CVZ) < CVZ.

Proof. By HW#1-2, CVZ < BNZ, so (CVZ)- (CVZ) < (BNZ) - (CVZ).
According to HW#1-4, we have (BNZ) - (CVZ) < CVZ.
Then (CVZ) - (CVZ) < (BNZ) - (CVZ) < CVZ, as desired. O

DEFINITION 68.13. Define O : Ng — 2PNZ by O, = (BNZ)(| o |Y).
THEOREM 68.14. Oy = BNZ.

Proof. By Theorem 68.13, Oy = (BNZ) - (| » |).
So, as | e [ = Cf, we get Oy = BNZ, as desired. O
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THEOREM 68.15. VjeN,, R-O;c 0.
Also, Vje Ny, O;+
AZSO, VJ, ke No, Oj : Ok - OjJrk-

Proof. Unassigned homework. O
THEOREM 68.16. Let j € N. Then O, € 0;_;.

Proof. Since | o | € CVZ,

we et (BNZ) - (|« ) (|- =) € (BNZ) - (CVZ) - (|- ).
By HW#1-4, we have (BNZ) - (CVZ) < CVZ,

and so (BNZ) - (CVZ) (o7t = (CVZ) - (|oJP7H).
Then (9 = (BNZ) - (| e }7)

— (BNZ) (o)) (|« b)
€ (BNZ)- (CVZ) - (|e )
< (CVZ) - (|o]"™!) = 0j_1, as desired. O

We define 0.5 = 1/2. For any f: R --» R, for any j € Ny, we define
freo2 iR - Rby fr70%(2) = [f"(2)] - [/ f(2)]-
We dlsplayed all the (’) ;s and all the ;s s in a chain:
(903003(913013023023033033(94304

Elements of (50 are said to have constant order.
Elements of oy are said to be subconstant.
Elements of (’31 are said to have linear order.
Elements of 0, are said to be sublinear.

Elements of (52 are said to have quadratic order.
Elements of 05 are said to be subquadratic.
Elements of (53 are said to have cubic order.
Elements of 03 are said to be subcubic.

Elements of (54 are said to have quartic order.
Elements of 04 are said to be subquartic.

We have: | e |° has constant order, but is not subconstant.
We have: | e |5 is subconstant, but is not of linear order.
We have: | e |! has linear order, but is not sublinear.

We have: | e |15 is sublinear, but is not of quadratic order.
We have: | e |* has quadratic order, but is not subquadratic.
We have: | e [*5 is subquadratic, but is not of cubic order.
We have: | e |> has cubic order, but is not subcubic.
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We have: | e [>5 is subcubic, but is not of quartic order.
We have: | e |* has quartic order, but is not subquartic.

THEOREM 68.17. Let j, k€ Ny. Then oy, - O; = O, - 04 S 0.

~

Proof. By commutativity of multiplication, oy - O; = @j - Op.
It remains to show: @j CO € 01k
By HW#1-4, we have (BNZ) - (CVZ) < CVZ.
Then O; - 0 = (BNZ) - (| [P) - (CVZ) - (] o |F)
< (CVZ) - (| o |"™) = 0j4+, as desired. O

THEOREM 68.18. Let j, ke No. Then 0j - O & Oj1k.

Proof. By HW#1-5, we have 0; < @j. Then o; - 0}, < @j - O.
By Theorem 68.17, we have O; - 0 S 0j44.
Then 0; - 0, € O; - 0 S 04, as desired. O

THEOREM 68.19. Let j,k € Ny. Then O; - O, < O, ..

Proof. By HW#1-3, we have (BNZ) - (BNZ) < BNZ.
Then O; - O = (BNZ) - (| o 7) - (BNZ) - (| o |¥)
< (BNZ) - (| o |**) = O; 4, as desired. O

Recall: Vj e N, VP € H;, Ice R s.t., Ve e R, P(z) = ca’.

Also, Vj € N, elements of H; are said to be homogeneous polynomials
of degree j.

Recall: C = Ho, L= 7‘[1, Q = 7‘[2, K= Hg.

Elements of C are said to be constant.

Elements of £ are said to be (homogeneous) linear.

Elements of Q are said to be (homogeneous) quadratic.

Elements of K are said to be (homogeneous) cubic.

THEOREM 68.20. Let L € L. Then L(1) = sy.

Proof. Since L € L, choose m € R s.t., Vx € R, L(x) = mx.
Then sl;, = m. Then L(1) =m -1 =m = s, as desired. O

NOTE: Next year, we'll just use L(1) as the definition of s¢y,.

We recalled the definition of pr , see Definition 66.2.

We recalled the definition of LINS, f, see Definition 66.6.

We recalled the definition of f’; see Definition 66.11.

The next theorem asserts: “Any linear function R — R has linear
order.”
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THEOREM 68.21. LcO,.

Proof. Want: VL e L, L e O.
Given L € L. Want: L e O;. Want: L e (BNZ)-(|e]).
(L
Let v := adj} <m) Want: v€ BNZ and L = v - (| o).
[
L
Know: Yz e Rj, vy(z) = <|—) (x). Also, v(0) = 0.
[

Also, dom[v] = ((dom[L]){ )¢ = (RY)§ = R, so Br(0,1) < dom[v], so
~ € DNZ.

Since L € L, choose m € R s.t., YV € R, L(z) = mz.

Let a := |m|. Then 0 < a.

Know: Ve e RS, |y(z)| = '(|_L|> (x)‘ _

_ ‘m”'ﬂ :|m|:a
] '
So, since |y(0)| = 0] = 0 < a, we conclude: Vx € R, |y(x)| < a.
Then, Vz € R, we have: v(z) € [—a;al.
Then im|[y] € [—a; al.
Since 7 (B (0, 1)) € i3] € [~asa],
and since [—a;a] is bounded in R,
we conclude that 7, (Bg(0, 1)) is bounded in R.
So, since v € DNZ, we get v € BNZ.
Want: L =~-(|e]). Want: Yz e R, L(z) = (v- (| o |))(2).
Given z € R. Want: L(z) = (v- (] o]))(x).
Want: [7(z)] - [|=[] = L(z).
One of the following is true:
(1)z=0 or (2) z # 0.

L@)| _ L)

|

Case (1):
We have [y(z)]-[[z]] = [(0)]-[[0]] = 0-0 =0 =m-0 = L(0) = L(z).
End of Case (1).

Case (2): . .
\%Mwh@ymﬂ=Kﬁouﬂﬂm={$wﬂ=mw
End of Case (2). O

THEOREM 68.22. Vk € No, Hyi € Op.
Proof. Unassigned HW. U
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Proof. Unassigned HW.

SCOT ADAMS

We recalled Theorem 65.17.
To summarize the preceding discussion:

Any constant has constant order.
However, any nonzero constant is not subconstant.

Any linear function has linear order (hence is subconstant).
However, any nonzero linear function is not sublinear.

Any quadratic function has quadratic order (hence is sublinear).
However, any nonzero quadratic function is not subquadratic.

Any cubic function has cubic order (hence is subquadratic).
However, any nonzero cubic function is not subcubic.

FEtc.

THEOREM 68.24. Let f : R --» R, p € dom[f’].
Then 3L € LINS,f, 3Re€ 0y s.t. (L+ R = f])&(f) = sly).

Proof. Since p € dom[f'], we get f) # ®.

So, since f;, = UE{sly; | M € LINS, f}, we get: LINS, f # ®.
Choose L € LINS, f. Then, by Theorem 66.8, LINS, f = {L}.
Then f) = UE{sl.} = s(y. Want: L+ R = f.

Since L € L, we see that L — L = 0.

ThenL—FR:L—Fpr—L:pr—FO: pT,a,Sdesired.

THEOREM 68.25. Let f: R --» R, p € dom[f’].
Then 3L € LINS,f, 3Re oy s.t. [(L+ R = f] )& (f, =slp)].

Proof. Since p € dom[f'], we get f) # ®.

Then UE{sl); | M € LINS,f} = f, # ®, and so LINS, f # (.
Choose L € LINS, f. Let R:= f] — L.

Then, by definition of LINS, f, we have: R € 0.

Want: (L+R=f1)&(f, =slL).

By Theorem 66.8, LINS, f = {L}.

Then {sly; | M € LINS,f} = {sl.}.

Then f) = UE{sly | M € LINS, f} = UE{s(.} = s(y.

Want: L—i—R:fg.



CLASS NOTES 163

Since L € LINS,f < £, we get L — L = 0.

Then L+ R=L+(ff —L)=f] +0=f, as desired. O
THEOREM 68.26. Let L€ L. Then L is continuous.

Proof. Unassigned HW. O
THEOREM 68.27. Let k € Ny, R € o,. Then R is continuous
at 0.

Proof. By Theorem 68.10, o = CVZ.
We have R € o, € 09 = CVZ,

and so R is continuous at 0. U
THEOREM 68.28. Let f:R--» R, pe R. Then
(f is continuous at p) < ( fI is continuous at 0).
Proof. Unassigned HW. O
THEOREM 68.29. Let f : R --» R, p € dom[f]. Then f is

continuous at p.

Proof. By Theorem 68.25, choose L € £ and R € 05 s.t.
(fT =L+ R)&(f,=sl).
By Theorem 68.26, L is continuous at 0.
By Theorem 68.27, R is continuous at 0.
Then by Theorem 44.22, L + R is continuous at 0.
So, since fg = L + R, we conclude that pr is continuous at 0.
Then, by < of Theorem 68.28, f is continuous at p, as desired. O

THEOREM 68.30. Let f :R - R, pe R and L € LINS, f.

Then f, = slr.
Proof. By Theorem 39.12, LINS, f = {L}.
Then f;) = UE{SKM | M e LINSpf} = UE{SEL} = SEL. U

69. THE ProbpuUCT AND CHAIN RULES

THEOREM 69.1. Let L€ L, be R.
Then SELb = (Sgl) - b.

Proof. We have slp, = (Lb)(1) = [L(1)] - b = (sf;) - b, as desired. [

THEOREM 69.2. Let L,M € L.
Then sl nr = (s€;) + (slar).
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Proof. We have slp,p = (L + M)(1).
= [L(1)] + [M(1)] = (s6;) + (styr), as desired. O

Theorem 69.3, below, is the High School Product Rule.

THEOREM 69.3. Let a,A.b,B ~¢ R.
Then AB—ab = a-[B—b] +b-[A—a] + [A—a] [B—b].

Proof. Unassigned HW. O
Theorem 69.4, below, is the Precalculus Product Rule.

THEOREM 69.4. Let f,g:R-->R, peR, a:= f,, b:=g,.
Then (fg), =a-lgg]+0-1f 1+ 1,1 [gy]-
Proof. Want: Vh e R,
(f9)p (h) = ((f5) - (gp) + (fp) - (g5) + (fy) - (gp))(h).
Given h € R.

Want: (0)](h) = ((F1) - (9,) + (£) - (65) + () - (4)(h)
Let A := fpin, B := gpin.
Then A —a = forn — fp = [ (h).
Also, B—b = gpen — gp = g, (h).
By Theorem 69.3, AB—ab = a-[B—0b] +b-[A—a] + [A—a]-[B—0].
Then (f@g(h) = [(fDp+n] = [(f9)p] = Josn - Gpen = fo - 9p
=AB—-ab=(A—a)b+a(B—-0b)+ (A—a)(B—-0)
= £, (W]-[g@)]+ [f ()] [, (W] + £ (W] - [g; (B)]
= ((£y) - (gp) + (fp) - (gp) + (f;) - (g)) (D),
as desired. 0

Theorem 69.5, below, is the Product Rule.

THEOREM 69.5. Let f,ge R --» R, pe R.
Then (fg), =* (f) - (g) + (fp) - (g,)-

Proof. Want: [(f5)-(gp)+(fp)-(9,) # @1=1[(f9), = (f3)-(gp) + (/) (g,)].

Assume: (f;,;) ’ (gp) + (fp) ’ (g;) # .

Want: (fg), = (f;) - () + (fp) - (9p)-

Since [(f,) - (9p) + (fp) - (g,) # @],
we get: [ #® #g, and [ #© #g,.

Since f;, # ®, we see that p € dom[f’].

Then, by Theorem 68.25, choose L € LINS,f and R € o; s.t.
fI=L+R and [ =slp.

Since g, # ®, we see that p € dom[g'].
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Then, by Theorem 68.25, choose M € LINS, f and S € 0; s.t.
gy =M+S and g, = slur.
Let a := f, and b := g,,.
By the Precalculus Product Rule (Theorem 69.4),
we have: (fg)y =a-[g;]+b-[fy 1+ [f;] [g;].
Then (fg)) =a-[M+S]+b-[L+R]+[L+R]-[M+ 5]
=0b-L+a-M)+(a-S+b-R+[L+R]-[M~+S95)).
We have b- L+a-Me L. Then (b-L+a-M)—(b-L+a-M)=0.
Then (fg)) —(b-L+a-M)=a-S+b-R+[L+R]-[M+5].
SinceL+R,M+SE£+O1§@1+@1Q@l,
we get: [L+R]-[M+S]e -0, < O,
Then (fg) — (b-L+a-M)eR-0, +R-0; + O
C 01 +01+ 01 € 0.
So, since b- L+ a-M e L, we see that b- L + a- M € LINS,(fg).
Then: (fg);, = sloryarr = b (slr) + a- (slar)
= (sr)-b+a-(sly) = (f}) (gp) +(fp)-(g,), as desired. [

DEFINITION 69.6. Let X, Y and Z be sets.
Let S PFxy, T €PFyz. ThenT oS :={goflgeT, feS}

DEFINITION 69.7. Let X, Y and Z be sets.
Let fe PFxy, TS PFyz. ThenTo f:=To({[f}).

DEFINITION 69.8. Let X, Y and Z be sets.
Let SCPFxy, g€ PFyz. ThengoS :=({g})oS.

THEOREM 69.9. (CVZ) o (CVZ) € CVZ
and (BNZ)o (CVZ) < BNZ.

Proof. Unassigned HW: (CVZ) o (CVZ) < CVZ.
Want: (BNZ) o (CVZ) < BNZ.
By HW#2-2, (BNZ) o (CVZ) < BNZ, as desired. O

DEFINITION 69.10. Let X be a set and let f: X --+» R.
Then |f|: X --+ R is defined by (|f])(z) = |f(z)].

DEFINITION 69.11. Let X be a set and let S € PF xg.
Then |S| := {|f]| s.t. feS}.

THEOREM 69.12. [BNZ| < BNZ and |CVZ| < CVZ.

Proof. Unassigned HW: |BNZ| < BNZ.
Want: |CVZ| < CVZ.
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Unassigned HW: |e| € CVZ. By Theorem 69.9, (CVZ)o(CVZ) < CVZ.
Then |[CVZ| = (|e|) o (CVZ) < (CVZ)o (CVZ) < CVZ, as desired. O

THEOREM 69.13. Let ¢,¢ : R --» R and let j, k € Ny.
Let = 6+ (|o ) and let 3 =y (| o "),

Then Boy = (¢o7)- ([vP)- (e ")

Proof. Want: Yz e R, (Bov)(z) = (
Given x € R.  Want: (S o)

b07) - () - (| » ) ().
o) (WP) - (| o P9))(@).
6 (o ) (r(@))

We compute: (8o7)(x) = (B(y(x)) = (

= [o(y(@)] - [ v() V]

=[(@o)@)]-[l (- (le")(z) ]

= [(eoy)(@)] [l [¥(@)] - [|=[*] ']

= [(oy)(@)] [[¢¥(@)]] - [|l=[*]

= ((¢o7) - (JU1) - (| o ")) (), as desired. m
THEOREM 69.14. Let a € BNZ, j € Ny. Then o’ € BNZ.
Proof. Unassigned HW. O
THEOREM 69.15. Let a € CVZ, j e N. Then o € CVZ.
Proof. Unassigned HW. U

THEOREM 69.16. Let 5, k € N.
Then 0; © Ok - Ojk-

Proof. Want: Yo € 0; o @k, Q€ 0jp.

Given a € 0; o Ok Want: a € 0j;.

Since a € 0, o(’)k, choose f3 € 0, 760k s.t.a=[on.

Want: o7y e 0j.

Since € 0; = (CVZ) - (| o %), choose ¢p € CVZ s.t. B=¢- (| o]7).
Since v € O}, = (BNZ) - (| o |¥), choose 1) € BNZ s.t. v = 1 - (| » |F).
By Theorem 69.13, foy = (¢ o) - ([¢) - (| o [*).

Want: oy e (CVZ) - (| e]F). Want: (¢po)- ([¢)) e CVZ.
Since k € N, we get @k c (’31. By Theorem 68.16, @1 C 0.

By Theorem 68.10, oy = CVZ. Then v € @k c (’31 C o9 = CVZ.
By Theorem 69.9, (CVZ) o (CVZ) < CVZ.

Then ¢ oy € (CVZ) o (CVZ) < CVZ.

Also, |[¢] € IBNZ| < BNZ, so, by Theorem 69.14, ||’ € BNZ.

By HW#1-4, (BNZ) - (CVZ) < CVZ.

Then (¢ o) - (|¥P) € (CVZ) - (BNZ) = (BNZ) - (CVZ) € BNZ. O
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THEOREM 69.17. Let j, k € N.
Then Oj 00k & Oji.

Proof. Unassigned HW. U
THEOREM 69.18. Let j, ke N.

Then 0; 0O S Oj.

Proof. By Theorem 69.16, o, o Oy < Ojk-

Also, 0, < O,..

Then 0 0 0 € 0; 0 O S 0j3, as desired. O

THEOREM 69. 19 Let j, k € N.
Then (’) OC)k c (’)]k

Proof. Unassigned HW. O
Theorem 69.20, below, is the Precalculus Chain Rule.

THEOREM 69.20. Let f,g:R--»R, peR, q:= f,.
Then (go f)y = (94)  (f;)-

Proof. Want: Vhe R, ((go f)p)(h) = ((g7) o (f)))(h).
Given h € R. Want: ((go ) )(h) = qT) (f, ) (h).
We compute ((go f);)(h) =[(go f)(p+ )] —[(go f)(p)]
= [9(fp+n)] = 9(fp)] = [9(fp+n)] — [9(q)]-

Exactly one of the following is true:
(1)g=© or (2) ¢ # ®.

7)o
7)
((g
h)

Case (1):
Since ¢ = @, we get:
both  [g(fyen)] — [9(@)] =@ and  ((g])

Then (g0 f),)(h) = [9(fpn)] = [9(0)] = © =
End of Case (1).

Case (2):
Since f, = ¢ # ®, we get f, € im[f] < R.
Then ¢ = f,eR,s0¢—q=0.
Lot kim (f1)(R).  Then k = fyrn — fy = fyun — 4
Then g+ k =q+ (forn— @) = forn+ (@ —q) = foen + 0= frin
Then ((go f),;)(h) = [g(fp+n)] = [9(0)] = [9(q + &)] — [9(q)]
= g4 (k) = (g2)((£;)(R)) = ((g4) o (f,))(R),
as desired. End of Case (2). O
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THEOREM 69.21. Let M € L, x € R.
Then M(z) = (sly) - x.

Proof. Since M € L, we get M(xz-1) =z - [M(1)].
Then M(z) = M(xz-1) =z [M(1)] =x- (sly) = (sly) - z. O

THEOREM 69.22. Let L, M € L.
Then slyror, = (slar) - (slp).

Proof. Let x :=sly,. Then z = L(1).
Also, by Theorem 69.21, we have M (x) = (sly) - .
Then sy;o;, = (M o L)(1) = M(L(1))
= M(x) = (sly) -z = (slpr) - (slr), as desired. O

THEOREM 69.23. Let f and g be functionals and let h be a function.
Then (f +g)oh=(foh)+ (goh).

Proof. Want: VY, ((f +g)oh)(x) = ((foh)+ (goh))(x).
Given z. Want: ((f+g)oh)(x) = ((foh)+ (goh))(z).
We have ((f +g) o h)(z) = (f + g)(hs) = [(hs) + g(ha)

= [(feh)(z)]+[(goh)(z)] = ((foh)+(goh))(zx). U

Theorem 69.23 asserts: “o is additive on the left.”
WARNING: o is not additive on the right.
Let f:=idg, g := idg and h := (idg)%.
Then ho(f+g) = (f+9)* = f?+2fg+g* # f>+g° = (ho f)+ (hog).
However, if we replace h by a homogeneous linear function, then we
do get additivity on the right:

THEOREM 69.24. Let L€ L. Let f and g be functionals.
Then Lo (f +g)= (Lo f)+ (Log).

Proof. Want: Vz, (Lo (f+g))(z) = ((Lo f) + (Log))(z).

Given z. Want: (Lo (f+g))(x) = ((Lo f)+ (Log))(z)

Since L € L, we get: L(f. + g) = [L(f2)] + [L(g2)]-

We have (Lo (f+g))(x) = L((f +9)s) = L(fa+92) = [L(f2)] +[L(9:)]
= [(Lof)@)]+[(Log)(x)] = ((Lof)+(Log))(z). U

Theorem 69.25, below, is the Chain Rule.

L(f
(

THEOREM 69.25. Let f,g:R--»>R, peR, q:= f,.
Then (go f), = (gq) - (f)-
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Proof. Want: [(g]) - (£;) # ©] = [(g° £} = () - (1))
Assume: (g)- (f]) #©.  Want: (g0 /), = (g])- (/)
Since (g;) - (f,) # @, we see:
both gy # ® and [y # @.
Since f, # ®, we get p € dom[f’].
Then, by Theorem 68.25, choose L € LINS,f and R € o; s.t.
fI=L+R and [ =slL.
Since g; # @, we get ¢ € dom[g'].
Then, by Theorem 68.25, choose M € LINS,g and S € 0; s.t.
go=M+S and gy = sl
By the Precalculus Chain Rule (Theorem 69.20), (go f) = (g0)o(f)).
Then (g0 )7 = (¢7) o (f7) = (M + S)o (L + R)
=[Mo(L+R)|+[So(L+R)]
=[MoL]l+[MoR]+[So(L+R).
Since L, M € L, we get M o L € L.
Then (M oL)— (MoL)=0.
Then (go f)] — (M oL)=[MoR]+[So(L+R)].
Wehave L+ Re L+0, €O, +0,c0,. Ao, MeLc 0.
Then (go f)) —(MoL)e [Oy001]+[01001] S 01+ 01 S 0.
Then M o L € LINS,(g o f).
Then (g o f);, = slyor = (slu) - (slr) = (g;) - (f,), as desired. O

70. THE QUOTIENT RULE

THEOREM 70.1. Definer :R >R byr, = 1/x.
Then, Vx € R, v/, = —1/(x?).

Proof. Unassigned HW. See HW#3-2. U
Theorem 70.2, below, is the Quotient Rule.

THEOREM 70.2. Let f,g: R — R and let x € R.
Then (i)l _# (92) - (f2) = (fa) - (g;)

p =

Proof. Define r : R - R by r, = 1/x. Let y := g,.
By Theorem 69.25, we have: (rog), =* (r,) - (g,)-
By Theorem 70.1, we have: 7|, = —1/(y?).

Then (é) — (rog), =* (1)) ()
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) ((5) )+ (gg> )

R ) ()~ () (g
= () @) '

71. FERMAT’S THEOREM

DEFINITION 71.1. Let f and g be functionals and let S be a set.
Then f < g on S means:
Also, f < g on S means:
Then f > g on S means:

Also, f = g on S means:
Then f =g on S means: Vx e S, f

Keep in mind Axiom 10.25. From that axiom,
we get: Yy, =(® < y). Also, Yy, —(y < @).
Also, Yy, —=(® < y). Also, Yy, —=(® > y).
However, ® = ®, so both ® < ® and ® > ®.

DEFINITION 71.2. Let f be a functional, a € R, S a set.
Then f <a on S means: f < C§ on S.

Also, f < a on S means
Then f > a on S means
Also, f = a on S means
Also, f = a on S means
Then a < f on S means

Also, a < f on S means:

Then a > f on S means

Also, a = f on S means:

Also, a = f on S means

s f<C§onS.
s f>C¢onS.
s f=C§onS.
cf=C5o0nS.
cCg<fonb.

Ce¢< fonS.

20> fonS.

Ci¢=fonsS.

:C¢=fonS.

THEOREM 71.3. Let f : R --» R and let a € R .

Then (af) =a-[f'].
Proof. Want: ¥pe R, (a
Given p € R. Want:

Fy = (a1

(af), = (a-[f

/

Dp-

Want: (af), = a-[f,].
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By Theorem 67.24, we have: (af), =* a-[f}]
It suffices to show: (af), *= a-[f}]
Let g :== af and b := 1/a. Then ba =1 and bg = f.
By Theorem 67.24, we have: (bg), =* b-[g,].
Reversing this, we get: b- [g,] *= (bg),,.
Multiplying by a, we get: ab- [g,] *= a-[(bg),].
So, since ab = 1 and since bg = f, we get: [g,] *= a-[f)].
So, since g = af, we get: [(af),] *= a-[f]], as desired.

O

THEOREM 71.4. Let f: R --+ R, pedom|[f].  Assume f, > 0.
Then 36 > 0 s.t. (1) f > f, on (p;p +9) and

(2) [ <[y on(p—0;p).

Proof. Since p € dom[f’], by Theorem 68.25, choose L € LINS,f and
Re oy st.
fi=L+R and f) = stz
Since R € 0y and L/2 € L, by HW#2-5,
choose B € Bg(0) s.t. |R| < |L/2| on B.
Since B € Bg(0), choose § > 0 s.t. B = Bg(0, ).
Want: (1) and (2).

Proof of (1):

By HW-2-1,  Want: fI > 0 on (0;0).

We have sl = f, > 0.

Then, Vo > 0, we have L(x) = (slL) - > 0.

That is, L > 0 on (0; ). Then L > 0 on (0;0).

Then L/2 > 0 on (0;9). Also, |L/2| = L/2 on (0;0).

Since (0;0) < (—0;9) = Br(0,9) = B and since |R| < |L/2| on B,
we get: |R| < |L/2] on (0;0).

So, as |L/2| = L/2 on (0;6), we conclude: |R| < L/2 on (0;9).

Then —L/2 < R < L/2 on (0;0).

Adding L, this yields: L/2 < L+ R <3L/2 on (0;6).

So, since L + R = f], we get: L/2 < f]' <3L/2 on (0;0).

Then f > L/2 > 0 on (0;6), as desired. End of proof of (1).

Proof of (2): Unassigned HW. End of proof of (2). O
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THEOREM 71.5. Let f: R --+ R, pedom|[f].  Assume f, <O0.

Then 36 > 0 s.t. (1) f < fp, on (p;p +9) and
(2) f > fp on (p—d;p).
Proof. Let g := —f. By Theorem 71.3, ' = —f', so g, = — f,,.
By Theorem 71.4, choose § > 0 s.t.
9> gpon (p;p+9) and

g <gyon (p—4d;p)
Want: (1) and (2).
From the choice of 9, we get:
—g < —gp on (p;p +9) and
—9 > =gy on (p—0;p).
So, since —¢g = f and —g, = f,, we get: (1) and (2), as desired. O

DEFINITION 71.6. Let X be a metric space.

Let f: X --» R and let p € dom|[f].

Then f has a local minimum at p in X means:
iB € Br(p) s.t. f = f, on B.

Also, f has a local maximum at p in X means:
B € Bg(p) s.t. f < f, on B.

THEOREM 71.7. Let X be a metric space.
Let f: X --» R and let p € dom|[f].

Then: ( f has a local mazximum at p in R)
= ( —f has a local minimum at p in R ).
Also: ( f has a local minimum at p in R)
= ( —f has a local mazimum at p in R).
Proof. Unassigned HW. U

DEFINITION 71.8. Let X be a metric space.
Let f: X --» R and let p € dom|f].
Then f has a local extremum at p in X means:
either f has a local minimum at p in X
or f has a local mazximum at p in X.

THEOREM 71.9. Let X be a metric space.

Let f: X --» R and let p € dom|[f].

Assume that f has a local extremum at p in X.

Then 3g € {f,—f} s.t. g has a local mazimum at p in X.
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Proof. Follows from Theorem 71.7. Unassigned HW.

THEOREM 71.10. Let pe R, let § > 0 and let B € Bg(p).
Then: Bn(p—3d;p) # & # Bn(pp+9).

Proof. Since B € Bgr(p), choose r > 0 s.t. B = Bg(p,r).
Let a := min{r,d}. Then a > 0.

Let y :=p— (a/2) and z := p + (/2).

Then y, 2z € Br(p, ) and y € (p — a;p) and z € (p;p + «).
Also, since o < r, we have Bg(p, «) S Br(p,T).

Then y, z € Bgr(p,«) < Br(p,r) = B.

Also, since o < 6, we have (p — a;p) < (p — J;p).

Then y € (p — a;p) < (p — 05 p).

Also, since o < 8, we have (p;p + «) < (p;p + 9).

Then z € (p;p + a) < (p;p + 9).

Since y € Band y € (p—d;p), we get y € B (p—0;p).
Then B (p—90;p) # &. Want: B n (p;p+0) # &.
Since z € B and z € (p;p+9), we get z€ Bn (p;p+ ).
Then B n (p,p + d) # &, as desired.

Theorem 71.11, below, is called Fermat’s Theorem.

THEOREM 71.11. Let f: R --» R and let p € dom[f'].

Assume that f has a local extremum at p in R. Then f,, = 0.

Proof. By Theorem 71.9, choose g € {f, —f} s.t.
g has a local maximum at p in R.
Since g € {f, —f}, it follows that f € {g, —g}.
Then, by Theorem 71.3, f' € {¢’, —¢'}.
Then f] € {g,,—g,} Want: g, = 0.
Assume that g, # 0. Want: Contradiction.
Since ¢ has a local maximum at p in R,
choose B € Bg(p) s.t. g < g, on B.
Since g, # 0, exactly one of the following must be true:

(1) g, >0 or (2) g, <0.
Case (1):
By Theorem 71.4, choose § > 0 s.t.

g > g,on (p;p+9) and

9 <gpon (p—0dp)
By Theorem 71.10, B n (p;p + 0) # .

173
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Choose z€ B (p;p+0) # . Then z € B and z € (p;p + 0).
Since z € B, by choice of B, we get g, < gp.

Since = € (p;p + &), by choice of J, we get g, > g,. Then g, < g,.
Then g, < g, < gp, 50 gp < Gp- Contradiction.

End of Case (1).

Case (2): Unsassigned HW. End of Case (2). O

72. THE MEAN VALUE THEOREM

DEFINITION 72.1. Let X be a metric space and let' Y be a set.
Let \,u: X --»Y and let pe X.

Then \ = u near p means: 1B € Bx(p) s.t. A = u on B.

Also, X < p near p means:  IB € Bx(p) s.t. A < p on B.

Also, A < p near p means: 3B € Bx(p) s.t. A< u on B.

Also, A > p near p means: 3B € Bx(p) s.t. A > p on B.

Also, A = p near p means: 3B € Bx(p) s.t. A = p on B.

THEOREM 72.2. Let A\, : R --» R.
Assume € DNZ.  Assume XA = u near 0.
Then A € DNZ.

Proof. Unassigned HW. O

THEOREM 72.3. Let \,u: R --» R.
Assume € BNZ.  Assume A\ = p near 0.
Then A € BNZ.

Proof. Unassigned HW. U

THEOREM 72.4. Let A\, u: R --» R.
Assume € CVZ.  Assume A = p near 0.
Then A € CVZ.

Proof. Unassigned HW. O

THEOREM 72.5. Let a: R --» R, k € Ny and \ := adj’ (ﬁ)
[

Assume ag = 0.  Thena = \- (] [F).

Proof. Want: Vo € R, a, = (A (] o |F)),.
Given r e R, Want: a, = (A- (| ¢ [F)),. Want: a, = (\,) - (|z|*).
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Exactly one of the following is true:

(H)z=0 or (2) x #0.
Case (1):
We have )\, = )¢ = (adjg (%)) = 0. Also, |z|F = |0]F = 0.
[ ]

0
Then a, = ag=0=10-0=()\,) - (Jz|*), as desired.
End of Case (1).

Case (2):

.0 (67 «Q Ay
webe. = (s (1)) = (705), - 2

Then o, = (rl—Tk) (|lz]*) = (M) - (|2]*), as desired. End of Case (2).
T
U

THEOREM 72.6. Let k € Ny, a € DNZ and ) := adj (| O‘|k
[ ]

Then: dom[\] = dom[a] and A € DNZ.

Proof. Since a € 0, < DNZ, we see that « € DNZ.  Then 0 € dom|[a].
It follows that ((dom[a])y)s = dom|[a].
+

Then dom[\] = (dom lﬁ]) — ((dom[a])y)i = dom[a].
[ ]
It remains to show: A € DNZ. "
Since o € DNZ and since dom[\] = dom|«], we see that A € DNZ, as

desired.
O

THEOREM 72.7. Let k€ No, a € o and A := adj’ <| .O‘|k)
Then A € CVZ.
Proof. By Theorem 72.6, we see that A € DNZ.
Want: (Ao = 0) & (A is continuous at 0).
We have \g = (adjg ( a >) = 0. Want: A is continuous at 0.
0

Kis

. «
Since « € 0y, we see that W — 0 near 0.
[

a
Then adjg <W) is continuous at 0.
[

Then A is continuous at 0, as desired. 0
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THEOREM 72.8. Let k € No, a € Oy, and \ := adj! (i>

o fF
Then \ € BNZ.
Proof. This HW#4-1.

THEOREM 72.9. Let o, : R --+» R and let k € Ny.
Assume: (e o )& (o= near0). Then o € 0.

Proof. Since 8 € o, € 09 = CVZ, we get: [y = 0.
Since o = 3 near 0, we get ag = [p.

Let A := adj) (| .a|k> and p := adjy (%)

Since a = 3 near 0, it follows that A = p near 0.

Since ag = By = 0, by Theorem 72.5, we see that o = X - (| o |¥).
Since 3 € o, by Theorem 72.7, we see that e CVZ.

So, since A = p near 0, by Theorem 72.4, we see that A € CVZ.
Then a = X - (| o |F) € (CVZ) - (| o |¥) = 0y, as desired.

DEFINITION 72.10. Let f : R — R and let S < dom]|f].
Then f is constant on S means: Ve,ye S, fo = [y

DEFINITION 72.11. Let f : R --» R.
By f is constant, we mean:
f is constant on dom|f].

Recall Definition 48.1:

DEFINITION 72.12. Let f : R --» R and let S < dom|f].
By f is strictly increasing on S, we mean:

Vi,bue S, [ (t<u) = ( f(t) < f(u))].

By f is strictly decreasing on S, we mean:
Vibue S, [(t<u) = (f(t)> f(u))]
By [ is semi-increasing on S, we mean:
Vibue S, [(t<u) = (ft)<f(u))]
By f is semi-decreasing on S, we mean:

Viue S, [ (t<u) = (f(t)=f(u)) ]

THEOREM 72.13. Let meR.  Define L€ L by L, = mx.
Then L' = Cg.

Proof. Unassigned HW. See HW#3-3.
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Let X be a metric space and let S < X. Recall:
IntxS ={pe X|3IB e Bx(p) st. B< S}
and ClxS ={pe X|3ge X" s.t. ¢ — pin X}
and (Sisopenin X) < (IntxS =2S5)
and (Sisclosedin X) « (ClxS=25).

THEOREM 72.14. Let f :R --» R, a e R, pe dom|f], S € R and

q = fp'
Show: (f=aonS) < (ff =a—qonS—p).
Proof. Unassigned HW. See HW#2-1. U

We drew a graph of a function on the board to show that, in the
next theorem, the assumption that S is open in R is needed.

THEOREM 72.15. Let f: R --» R and let S < dom|[f].
Assume: (S is open in R) & ( f is constant on S). Then f' =0 on S.

Proof. Want: Vpe S, f, = 0. Given pe S. Want: f) = 0.
Since f is constant on S and p € S < dom|f], we get: f = f, on S.
Let g := f,. Then f =qon S.

Since S is open in R, we get: S = Intg$5.

Since p € S = IntgS, choose B € Bg(p) s.t. B< S.

Since B € Bgr(p), we get: B —p € Bg(0).

Since f = q on S and since B < S, we get: f =q on B.

By Theorem 72.14, fg =q—qon B—np.
Thenf;;F:OonB—p. ThenfgzoonB—p.

So, since B — p € Bg(0), we get: f = 0 near 0.

So, since 0 € 01, by Theorem 72.9, we get: pr € 0.

Since pr —-0= pr € 07 and 0 € L, it follows that 0 € LINS, f.
Then, by Theorem 68.30, we conclude that f, = slo.

Then f) = slo = 0(1) = 0, as desired. O

DEFINITION 72.16. Let f : R --» R and let S < R.
Then f is c/d on S means:
(f is continuous on S) & (IntgS < dom|[f']).

That is, f is ¢/d on S means:
f is continuous on S and differentiable on the interior of S.

Theorem 72.17, below, is called Rolle’s Theorem.
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THEOREM 72.17. Let a,be R and let f : R --+ R.
Assume a < b.  Let I := (a;b) and let J := [a;b].
Assume f is ¢/d on J and f, = fp. Then 3ce I s.t. fl=0.

Proof. Let g := f|J. By Theorem 62.4, g is continuous.
Then, by the Extreme Value Theorem (Theorem 61.2),

min g # ® # max g.
Let y := min g and 2 := max g. Then y # ® # 2.
Also, y < f < zon J.
Exactly one of the following is true:

(1) y==z or (2) y # 2.

Case (1):
Let ¢ := (a + b)/2. Since a < b, we get ¢ € (a; b).
Then c € (a;b) = 1. Want: f! = 0.
Since I = Intgr.J, it follows that [ is open in R.
Since y < f < z on J and since y = z,
it follows that f is constant on J.
So, since I = (a;b) < [a;b] = J, we see that f is constant on .
So, since I is open in R, by Theorem 72.15, f" =0 on I.
So, since c € I, we get f. = 0, as desired.
End of Case (1).

Case (2):
Let u := f,. Since y # z, we get: (u#y) v (u# z).
Choose v € {y, z} s.t. u # v. Let @ :=im|[g].

Then y = min ¢ = min ) and z = max g = max (. Since min () =
y # @, we get min Q) € Q.

Since max ) = z # @, we get max () € ().

Then y, z € Q. Then v € {y,z} € Q.

Since fisc¢/d on J, we see that f is continuous on J, and so J € dom|[ f].
So, since g = f|.J, we get dom|[g] = J.

So, since v € @ = im|g], choose c € J s.t. v = g..

Since c € J, we get (f|J). = fe. Then g. = (f|J)e = fe

Since f, = u # v = f,, we get f, # f., and so a # c.

Since f, = f, # f., we get f, # f., and so b # c.

Then c € J\{a, b} = [a;b]\{a,b} = (a;b) = I. Want: f! = 0.

By Fermat’s Theorem (Theorem 71.11),
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it suffices to show: f has a local extremum at ¢ in R.
Since [ is open in R, we have I = Intg/.
Since ¢ € I = IntgI, choose S € Bg(c) s.t. S < 1.
Then S € I = (a;b) < [a;b] = J.
Recall that y < f < z on J.
So, since S € J, we see that y < f < zon S.
So, since v € {y, z}, at least one of the following must be true:
(v<f<zonS) or (y<f<wvon§).
So, since v = f., at least one of the following must be true:
(fe<f<zon¥) or (y<f<foonS).
Then at least one of the following must be true:
(fe<fonls) or (f<feonS).
So, since S € Bg(c), at least one of the following must be true:
f has a local minimum at ¢ in R or
f has a local maximum at ¢ in R.
Then f has a local extremum at ¢ in R, as desired. End of Case (2). O

Theorem 72.18, below, is called the Mean Value Theorem.

THEOREM 72.18. Let a,be R and let f : R --+ R.
Assume a < b.  Let I := (a;b) and let J := [a;b].
Assume f is ¢/d on J. Then 3ce I s.t. fi=DQ;(a,b).

Proof. Let m := DQ(a,b). Then m = fb Ja ,som-(b—a) = fy— fa

Define L € £ by L(z) = mz. By Theorem 72.13, L' = Cg.
Then dom[L'] = dom[C}'] = R. Then L is continuous on R.
Then L is continuous on J and I < dom|[L'].
By assumption, f is ¢/d on J.
Then f is continuous on J and [ < dom|[f’].
So, since L is continuous on J and I < dom|[L'],
we see that f — L is continuous on J and that I < dom[(f — L)'].

Let g := f — L. Then ¢ is continuous on J and I < dom|[¢'].
It follows that g is c/ don J.
AISO _fb _fb_mb and ga:fa_La:fa_

Then gy — go = (fo —mb) — (fo —ma) = (fo — fu) —m - (b —a).

So, since m - ( a) = fy, — fa, we see that g, — g, = 0, and so g, = gp-
So, since g is ¢/d on J, by Theorem 72.17, choose c € I s.t. g. = 0.
Want: f. = DQ(a,b). Since g = f— L, we see that ¢, =* f/—L!
Since c € I < dom|[f’], we get: f.eim[f] < R.
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So, as Ll = Cg'(c) = m e R, we have f. — L e R, and so f. — L, # ®.
Since ¢, =* fl— L. # ®, we get: ¢, = f. — L.

Then 0 =g, = fl — L., so f. = L..

So, since L, = m = DQ;(a,b), we get f, = DQ;(a,b), as desired. [

Recall: Va,be R, [a|b] = [a;b] U [b;a] = [ min{a, b}, max{a, b} ].

DEFINITION 72.19. Let J < R. By J is an interval, we mean:
VYa,be J, |alb] < J.

The bounded intervals come in four flavors:
&S, open bounded nonempty;,
half-open bounded nonempty, closed bounded nonempty.
The unbounded intevals come in three flavors:
open nonclosed unbounded, closed nonopen unbounded, IR.
The set of open bounded nonempty intervals is
{(a;0)]a,be R, a < b},
The set of half-open bounded nonempty intervals is
{la;b) | a,be R,a < b} U {(a;b]|a,beR,a < b}.
The set of closed bounded nonempty intervals is
{[a;b] | a,be R, a < b}.
The set of open nonclosed unbounded intervals is
{(a,0)|ae R} U {(—w0,b)|be R}.
The set of closed nonopen unbounded intervals is
{la,0)|a e R} u{(—w,b)|beR}.

THEOREM 72.20. Let f: R --» R and a,b e R.
Then DQ;(a,b) = DQ;(b, a).

fb - f(l _ fa - fb
b—a a—2>b
THEOREM 72.21. Let f: R --» R and a,b e R.
Let o := min{a, b} and f := max{a, b}.

Then DQy(a, ) = DQs(a,b).

Proof. By Theorem 72.20, we have DQ;(a, ) = DQ(a, b).
Then { DQ;(a,b), DQs(b,a) } = {DQ;(a,b) }.
As (Oéa B) € {(aa b)? (b7 a)}7 we get DQf(aa ﬁ) € {DQf(av b) ’ DQf<ba a)}
Then DQf<O‘v5) € {DQf(a7b>> DQf<b7 a) } = {DQf(a7b) }7
so DQg(a, B) = DQy(a,b), as desired. O

Proof. We have DQ(a,b) = = DQ;(b,a). O
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THEOREM 72.22. Let f : R --+» R and let J be an interval.
Let a,be J and let I := IntgJ.

Assume that a # b and that f is ¢/d on J.

Then DQ(a,b) € fi(I).

Proof. Since a,b € J and since J is an interval, we get: [a|b] < J.
Let « := min{a, b} and § := max{a, b}. Then [a|b] = [«; 5]
Since a # b, we get a < 3.
Let P:= (o; 8) and Q := [a; f].  Then @ = [o; 8] = [alb] < J.
By HW#3-4, we see that P = Intr().
By Theorem 72.21, we have: DQ(«, ) = DQ/(a,b).
Since Q) < J, we see that Intg@ < IntgJ, so P < I.
Since f is ¢/d on J, we get: f is continuous on J and I < dom][f’].
So, since Q < J and P < I, we conclude:

f is continuous on Q and P < dom[f’].
Then f is ¢/d on Q.
So, by the Mean Value Theorem (Theorem 72.18),

choose ce P s.t. fl = DQ;(a, B).
Asce P < I < dom[f'], we get ¢ € dom|[f'] and c€ I, so f. e fi(I).
Then DQ;(a,b) = DQ;(a, B) = fle fi(I), as desired. O

THEOREM 72.23. Let f : R --+ R and let J be an interval.
Assume f is ¢/d on J. Let I :=IntgJ, T := f.(I). Then
(1) (0#T) = (f17is1-1)
and (2) (T > 0) = (f is strictly increasing on J )
and (3) (T <0) = (f is strictly decreasing on J)
and (4) (T ={0}) < (f is constant on J)
and (5) (T
and (6) (T

>0) < (f is semi-increasing on J)
<0) < (f is semi-decreasing on J).

Proof. Proof of (1):

Assume 0 ¢ T. Want: f|T is 1-1.

Want: Va,be J, [(fa=fo) = (a=0)].

Given a,b e J. Want: (fo=fp) = (a=0).
Assume that f, = fi. Want a = b.

Assume a # b. Want: Contradiction.

Since a # b and f, = f;, we get # =0.
—a
By Theorem 72.22, DQ(a,b) € f,(I).



182 SCOT ADAMS

Then 0 = fz—fa =DQy(a,b) € f(I)=T,s00€eT.
—a

However, by assumption, 0 ¢ 7. Contradiction.
End of proof of (1).

Proof of (2)-(6): Unassigned HW. End of proof of (2)-(6). O

73. TAYLOR’S FORMULA TO ORDER 2

THEOREM 73.1. Let X be a metric space. Then Bx < Tx.

Proof. Want: VB € Bx, B € Tx.

Given B € By. Want: B € Tx. Want: IntxB = B.

Since Intxy B < B, it suffices to prove: B < IntxB.

Want: Vp e B, p € IntxB. Given p € B. Want: p e IntxB.
Want: 3A € Bx(p) s.t. A < B.

By Theorem 38.16, 3A € Bx(p) s.t. A < B, as desired. O

DEFINITION 73.2. Let X be a metric space and let f be a function.
Assume dom|f] € X.
Then IntDy f := Intx (dom[f]).

THEOREM 73.3. Let f : R --» R and let p € dom[f’].
Then 0 € IntDg(fL).

Proof. Want: 0 € Intg(dom[f}]).
Want: 3B € Bg(0) s.t. B < dom[f,].
By Theorem 68.25, choose L € LINS, f and R € 05 s.t.
fI=L+R and f) = sty
Since f = L + R, we get: dom[f]] = (dom[L]) n (dom[R]).
Since R € 0; € DNZ, choose B € Bg(0) s.t. B < dom|[R].
Want: B < dom][f,].
Since L € L, we have: dom[L] = R.
Since dom|[R] € R, we get R n (dom[R]) = dom[R].
Then dom[f] = (dom[L]) n (dom[R]) = R n (dom[R]) = dom|[R].
Then B < dom[R] = dom[f, ], as desired. O

THEOREM 73.4. Let f : R --» R and let a,b e R.
Assume that [a]b] < dom][f'].
Then 3c € [a|b] s.t. [f]-[b—a] = fo — fa-
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Proof. Exactly one of the following is true:
(I)a=10 or (2) a #b.

Case (1):

Let ¢ := a. Then ¢ € [alb].

Want: [fi] - [b—al = fo = fa

Since a = b, we get b—a =0 and f, — f, = 0.

Since c € [a|b] < dom[f] < dom][f], we get f. € im[f].

Since f! € im[f] < R and since b —a = 0, we get [f!]- [0 —a] = 0.
Then [f!]-[b—a] =0 = f, — fa, as desired..

[

End of Case (1).

Case (2):

Let o := min{a, b} and § := max{a, b}. Then [a|b] = [«; 5]
Then [a; f] = [a|b] < dom][f']. Then f is ¢/d on [a; B].

By the MVT (Theorem 72.18), choose c € (a; 3) s.t. fi = DQy(c, B).
Then c € (a; 5) < [o; B] = [alb]. Want: [f!]-[b—a] = f, — fa.
By Theorem 72.21, DQ(c, B) = DQ;(a, b).

Then f. = DQ;(a, B) = DQ;(a,b) = fz:f“.
Then [f!] - [b—a] = lfb:f] [b—a] = f, — fa, as desired.
End of Case (2). O

THEOREM 73.5. Let x € R and let w € [0|x].
Then 3t € [0;1] s.t. tx = w.

Proof. Unassigned HW. U
THEOREM 73.6. Let B € Bg. Then B is an interval.
Proof. Unassigned HW. O

Theorem 73.7, below, is called the Choice MVT.

THEOREM 73.7. Let f : R --+ R and let B € Bg(0).
Assume that fy = 0 and that B < dom[f’].
Then da: B — [0;1] s.t., Ve e B, f. = [f'(ae-2)] - 2.

Proof. Define S: B — 20U by S, = {t € [0;1]| f, = [f' (- 2)] - 2.

Claim: Yx € B, S, # .
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Proof of Claim:

Given z € B. Want: S, # .

Since B is an interval and since 0,z € B, we get: [0]z] < B.

Then [0|z] € B < dom|[f’], so, by Theorem 73.4, choose w € [0]z]
st [fu] [ =01 = fa = fo.

Since w € [0|x], choose t € [0;1] s.t. tz = w.

Since fa: = fm - fO = [fl,u] ’ [I - O] = [f’(tl‘)] -x, we get: t € Sy.

Then S, # &, as desired.

End of proof of Claim.

Define a: B — [0;1] by a,, = CH(S,).

Want: Ve B, f, = [f(a,-2)] - .

Given x € B. Want: f, = [f'(a,-2)] - .

By the Claim, S, # ¢, and so CH(S,) € S,.

Since o, = CH(S;) € S;, we get f. = [f'(as )] - x, as desired. O

THEOREM 73.8. Let g: R --» R. Assume 0 = go. Then gl = g.

Proof. Want: Vh e R, (¢2)(h) = g(h).
Given h € R. Want: (g3)(h) = g(h).
We have (g )(h) = gorn — 9o = gn — 0 = gn, as desired. O

THEOREM 73.9. Let L € L. Assume sl = 0. Then L = 0.

Proof. Want: Vh € R, L, = 0y,
Given h € R. Want: L; = 0,.
We have L, = (sf)-h =0-h =0 = 0y, as desired. O

The next result asserts that any partial function R --+ R that van-
ishes to order one at 0 is necessarily sublinear.

THEOREM 73.10. Let g : R --» R. Assume that 0 = go = gj.
Then g € 0.

Proof. Since g}, = 0, we conclude that 0 € dom[¢’].
By Theorem 68.25, choose L € LINSyg and R € 07 s.t.
g =L+R and gy = sly.

By assumption, g, = 0. Then sl;, = g, = 0, and so L = 0.
By assumption 0 = go. Then gl = g.
Then g =gl =L+ R=0+ R = Re€ 0y, as desired. O

THEOREM 73.11. Let B € Bg(0), a: B — [0;1]. Then o € BNZ.
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Proof. Unassigned HW. O

The next result asserts that any partial function R --» R that van-
ishes to order two at 0 is necessarily subquadratic.

It is an unassigned induction exercise to show: Vk € Ny, any partial
function R --» R that vanishes to order k£ at 0 is necessarily “og

THEOREM 73.12. Let f:R-->R. Assume 0 = fy = fy = fl
Then f € o,.

Proof. Let g := f'. Then 0 = go = gy, so, by Theorem 73.10, g € 0;.
Since 0 = g, we see that gl = g.
Since g = 0, we conclude that 0 € dom[g'].
Then, by Theorem 73.3, we get: 0 € IntDgg.
Since 0 € IntDgg = Intg(dom|g]), choose B € Bg(0) s.t. B < dom|g].
Then by the Choice MVT (Theorem 73.7),
choose a: B — [0;1] s.t., Ve € B, f, = [f(ay - x] - x.
Leti:=idg.  Thenie £L< O,.
Since, Yz € B, we have f, = [f'(a, - x] -z = ([f o (- 7] - 1),
it follows that f = [f o (a-4)] -7 on B.
So, since B € Bgr(0), we get: f =[fo (a-i)]-i near 0.
Since B € Bg(0) and o : B — [0; 1], we see that o € BNZ,
Since « € BNZ (90 and 1€ (’)1, we see that -7 € (90 C’)l
Since a-ie Oy - O, (90+1 O, and f=ge€ o,
we see that [/ o (a-i) € 010 O,.
Since f'o(a-i) €010 (51 Copp=07and i€ (51,
we see that [fo(a-1)]-i€o; - O;.
Then [fo(od'i)]'ie(91'@1g(91+1 = 09.
So, since f = [f o (a-i)]-inear 0, we get f € 0y, as desired. O

THEOREM 73.13. Let L : R — R and let m € R.
Assume: Yh e R, L, = mh.
Then, Yh e R, Lj = m. Also, YVhe R, L} = 0.

Proof. Unassigned HW. O

THEOREM 73.14. Let ) : R — R and let a € R.
Assume: Vh e R, Qp, = ah?/2.
Then, Yh e R, Q) = ah. Also, Vhe R, @} = a.

Proof. Unassigned HW. U



186 SCOT ADAMS
Theorem 73.15, below, is Taylor’s Theorem to order 2.

THEOREM 73.15. Let f: R --» R and let p € dom|[f"].
Let m := f, and let a := f].

Deinfe L e L and Q € Q by L, = mh and Q;, = ah?/2.

Let R := fg—([wl—Q). Then R € 0,.

Proof. By Theorem 73.12, it suffices to show: 0 = Ry = R}, = R}.
We have: Vh e R, Lj = mh and Q) = ah?/2.

Then, Yhe R, L) =m and Q) = ah.

Also, Vhe R, Lj =0 and Q) = a.

Then Ry = f, —(a+0)=0—-0=0.

Also, Ry =* f,—(m+0)=m—-m=0# ©®,so Ry =0.

Also, Ry =* f)/ = (0+a)=a—-a=0# 9, s0 Ry =0.

Then 0 = Ry = Rj = R{, as desired. O

THEOREM 73.16. Let R € 0y and Q € O\{0}.
Then 3B € Bg(0) s.t. |R| < |Q| on B.

Proof. Since Q € Q, choose a € R s.t., Vhe R, Q) = ah?.
Since ) # 0, we conclude that a # 0.
Let € := |al. Then ¢ > 0.
Since R € 0y = (CVZ) - (| o |?), choose p € CVZ s.t. R=¢ - (| o |?).
Since ¢ € CVZ < DNZ, choose C € Bg(0) s.t. C' < dom[@].
Since ¢ € CVZ, we see that ¢ is continuous at 0,
so choose D € Bg(0) s.t. ¢.(D) < Br(¢o,¢).
Since ¢ € CVZ, we get ¢g = 0.  Then ¢,(D) < Br(¢o,c) = Br(0,¢).
Let B:=C n D. Then B € {C, D} < Bg(0).
Want: |R| < |Q] on B. Want: Vh e B, |R|;, < |Q|n.
Given h € B. Want: |R|, < Q.
We have he B=Cn D,so heC and he D.
By the choice of C', C' < dom[¢].
Since h € C' € dom[¢] and since h € D, we get ¢p, € ¢.(D).
Since ¢y, € ¢4(D) < Bg(0,¢), we get dr(¢p,0) < e.
Then |65 = | — 0| = du(én,0) < &.
Since |¢p| < € and h? = 0, we get |@y] - h* < e - A%
Since |h]? = 0, it follows that | |h|? | = |h|*.
Since R = ¢ - (] ¢ |*), we conclude that Ry, = (¢5,) - (|h]?).
Then [R|y = [Ry| = [ (6n) - (In[*) | = |én] - [|2* | = |60l - |P]?
<e-|h]* =la| - |h]* = |ah?| = |Qn| = |Q|n, as desired. O
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The logic of Theorem 73.16 shows: Any subquadratic is dominated,
near 0, by any nonzero quadratic polynomial, even inhomogeneous.
In the notation of Theorem 73.15, we showed that, Vx € R,
fom ot (F) - (=) + (£/2) - (x— ) + Ry
The remainder term R,_, is subquadratic in  — p.
Also, the rest, f, + (f)) - (x —p) + (f)/2) - (x — p)?,
is a quadratic polynomial in z — p.
Consequently, unless 0 = f, = f, = f,
the remainder is negligible (for x ~ p) compared to the rest.

74. THE SECOND DERIVATIVE TEST

THEOREM 74.1. Let f : R --> R and let p € R.
Then: [ (f)o=6H1&[(F)o=1 1

Proof. Let q := f,. Then f] = [f(p + )] — [CE].
Differentiating this, we get: (f))" = ([f(p + *)] — [CE])"
By HW#4-5, we have: ([f(p + )] — [C§])" = (f(p + o))"
By HW#4-4, we have: (f(p+ o)) = f'(p+ o).
Then (f,)" = ([f(p + )] = [CE]) = (f(p + o)) = f'(p + o).
Contracting this, we get: (f]) = f'(p +e).
Evaluating this at 0, we get: (f1)i = (f'(p + ))o-
Then (f, ) = (f'(p+))o=f(p+0) = f(p) = [,
It remains to show: (f])f = f}.
Differentiating (f, )" = f'(p + ), we get: (f))" = (f'(p+))".
By HW#4-4 (with f replaced by f’),
we have: (f'(p+e)) = f"(p+e).
Then (/7Y = (f(p-+ ) = f'(p -+ o).
Evaluating this at 0, we get: (f])§ = (f"(p + *))o.
Then (f])5 = (f"(p+))o=f"(p+0) = f"(p) = f}, as desired. O

DEFINITION 74.2. Let X be a metric space.

Let f: X --» R and let p € dom|f].

By f has a strict local minimum at p in X, we mean:
B € Bx(p) s.t. f > f, on B).

By f has a strict local maximum at p in X, we mean:
B € Bx(p) s.t. f < f, on B.

Recall Theorem 74.1.
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THEOREM 74.3. Let f : R --»> R and let p e R.
Assume f, =0 and f] > 0.
Then f has a strict local minimum at p in R.

Proof. By HW#4-5, it suffices to show:
fo has a strict local minimum at 0 in R.
Let g := fg . Want: ¢ has a strict local minimum at 0 in R.
Want: 3B € Bgr(0) s.t. g > go on By .
By assumption f), =0 and f] > 0.
Let m := f, and let a := f. Then m = 0 and a > 0.
Define L € £ and Q € Q by L, = mh and Q; = ah?/2.
Then (L =0) and (Q > 0 on R} ).
By Theorem 73.15, fI' — (L 4+ Q) € 0a. Let R:= f — (L + Q).
Then R € 0,. Also, R=fI —(L+Q)=9—-(0+Q)=g—-Q.
Since @ > 0 on R}, we get: /2 > 0 on Rj.
Then /2 # 0. So, as /2 € Q, we get: Q/2 € Q\{0}.
Then, by Theorem 73.16, choose B € Bg(0) s.t. |R| < |Q/2| on B.
Want: g > gy on By .
Since f) =0 # @, we get: p e dom[f'].
So, since dom|f'] < dom[f], we see that p € dom|[f].
Then (f))o = 0. Then go = (f})o = 0.
Want: g > 0 on By .
Since () € Q, we get: ) —Q = 0.
Then Q+ R=Q+(9g—Q)=9g+0=g.
Want: @ + R > 0 on B{.
Since /2 > 0 =0 on R, we get: @/2 > 0 on R.
We have (Q/2)o = Qo/2 = (a-0%/2)/2 = 0.
Since /2 > 0 on Rj and since (Q/2)y = 0,
we get: /2 = 0 on R.
Then |Q/2| = Q/2 on R. Then |R| < |Q/2| = Q/2 on B.
Since |R| < Q/2 on B, we get: —Q/2 < R < (/2 on B.
Since R > —Q/2 on B, we get: Q@ + R > Q — (Q/2) on B.
So, since @ — (Q/2) = Q/2, we get: Q@+ R > Q/2 on B.
So, since By < B, we get: Q + R > Q/2 on By
So, since /2 > 0 on By, we get: Q@ + R > 0 on B, as desired. O

Theorem 74.3 is the Second Derivative Test for Local Minima.
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THEOREM 74.4. Let f : R --»> R and let p e R.
Assume f, =0 and f; <O0.
Then f has a strict local maximum at p in R.

Proof. Unassigned HW. (Hint: Let g := —f and use Theorem 74.3.)
U

Theorem 74.4 is the Second Derivative Test for Local Maxima.

75. TENSORS, SETS OF TENSORS AND TENSOR SPACES

NOTE TO SELF:

Next year, define Zg := {J}.

Keep in mind that R # RZ®,
so we only have: VV € TNSR, V = R?v;
this does not extend to TNSR™.

Also, Vx € R, define x4 := z.

Also, define £ := 1.

Also, define 7 = idg.

Also, VV € TNSR™, Vf : R --» V| define é’%vf = f'. Also, Vo € N,

Vk € N7, define k| := k and |k := k.

Also, define JJ| & := .

Recall: Let X be a set. Then, Ym € N, we defined X™ = X171
so X™ denotes the set of all functions {1,...,m} — X.
Moreover, Ya,be X, (a,b) e X? = X112 = x {12},
(a,b); =a and (a,b)y = b.
There are simliar definitions for (a, b, ¢), etc.

DEFINITION 75.1. EUCL := {R™ |m e N}.

We have: EUCL := {R! R% R3,...}.

WARNING: (5) € R! = Rt = Rt} and (5); = 5.
However, (5) # 5 and, in fact, 5 ¢ R
Thus, R # R!, and, in fact, R ¢ EUCL.

In Definition 75.2 below, any element of N” is called a p-shape.
Then m is a p-shape.  Also, any element of [m] is called a p-index.

DEFINITION 75.2. Let p e N and let m € NP.
Then [m] := [1.mq] x - -+ x [1.m,].
Also, we define mqy X -+ X m

p = m.
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Following Definition 75.2, we see, Vp e N, Ym € N°,
my X - xm, = (my,...,m,).

THEOREM 75.3. We have 2 x 3 = (2,3).
Also, [2 x 3] =[1..2] x [1..3] = {1,2} x {1,2,3}.
Also, [2 x 3] ={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)}.

Here are some 2-shapes: 5 x 7,6 x4,2x3,1x9,1x 1.
Here are all of the (2 x 3)-indices:

(1,1), (1,2), (1,3), (2,1), (2,2), (2,3).

DEFINITION 75.4. Let X be a set, pe N, m e N°.
Then X™ := X[ml,

In Definition 75.4, the elements of X™ are called
m-shaped p-tensors with entries in X. A 1-tensor is sometimes
called a tuple.
A 2-tensor is sometimes called a matrix.

THEOREM 75.5. Vset X, we have
2x3 — x[2x3] — x{(1,1),(1,2),(1,3),(2,1),(2:2),(2,3)}

Some notation: Let X be a set and let a,b,c,d, e, f € X. Then

a b c ous
[def] € X

is defined by

labc] 4 labc] _ la
d e f Wy ’ d e f 1.2) ’ d

[abc] _ 4 {abc] . [a
d e f @) ’ d e f 22) ’ d

The index subscripts
(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)
are generally abbreviated: 11,12, 13, 21, 22, 23.
This notation is for (2 x 3)-shaped matrices, but, Vp, ¢ € N, we have a

a >~ o o
~ O
|
=
w
=

I
o

similar notation for (p x ¢)-shaped matrices.

DEFINITION 75.6. Let X be a set, p e N, m € N/ YV = X™

j € [m].
Y. - C oY)
Then 7j 1Y — X is defined by: 7 (2) = z;.
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THEOREM 75.7. Let S :=R? and let z := [ i 23 ]
Then m5y(2) = 292 = 5.
WARNING: R?*3 # R? x R3.
In fact, Va,b,c,d,e, f € R, [
Also, Va,b,c,d,e € R, ((a,b), (c,d,e)
Also, Va,b,c,d, e, f € R, [3 Z Jf] ¢ R? x R,
Also, Va,b,c,d,e € R, ((a,b), (c,d,e)) ¢ R**3.

WARNING: The sets
R, R' RIX! RIxIxL
are all distinct; no two are equal. However, as vector spaces (if you
know what that means), they are all one-dimesional, and so are all vec-
tor space isomorphic to one another. Keep in mind, though, that R?*3
and R? x R? are not even vector space isomorphic; in fact, the vector
space R?*3 is six dimensional, while R? x R? is only five-dimensional.

THEOREM 75.8. We have R3 = R{1:23},
Also, RM*3x1 — RILLD,(1,2,1),(13,1)}

WARNING: Let m € N. Then

m
R™,
Rlxm Rmxl
) )
Rlxlxm Rlxmxl Rmxlxl
) )

are all distinct sets, but are all vector space isomorphic to one another.

DEFINITION 75.9. Let pe N and m € NP. Then
VieN, jxm:=(jm,...,m,) and

mx ji=(m,...,mp, 7).

Also, Vi,keN, jxkxm:=(j,km,...,m,) and
Jgxmxk:=(j,my,...,mp,k) and
m X jxk:=(my,...,m,j,, k).

WARNING: Let p € N and m € N?. Then

m
R™,
Rlxm Rmxl
) )
Rlxlxm Rlxmxl Rmxlxl
) )

are all distinct sets, but are all vector space isomorphic to one another.
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Let k,¢,m € N. Then [(k,¢,m)] = [1..k] x [1..{] x [1..m].
Let ¢,m € N. Then [(¢,m)] = [1..£] x [1..m].
Let m € N. Then [(m)] = [1..m]. Also, we have
(m)eN' =N and  (m), = m.
While (m) # m, in the next theorem, we will prove:
Vset X, X — xm,

THEOREM 75.10. Let X be a set and let m € N. Then X(™ = X™,

Proof. We have X (™ = Xlm] = xt.ml — xm O
DEFINITION 75.11. Vpe N, TNSR, := {R™|m e N¢}.
Also, TNSR  := TNSR; u TNSR; u TNSRs U ---.

An element of TNSR will be called a tensor space.
For any p € N, an element of TNSR, will be called a p-tensor space.

THEOREM 75.12. We have TNSR; = EUCL.

Proof. By Theorem 75.10,
RO =R! and R® =R? and R® =R3> and ---.
Then TNSR; = {RW R® RO®) 1 ={R! R?R?...}=EUCL O
We have RQXS,]R5X7, R7X9X4, R2X2X2, R2x2><2><2 e TNSR.
Also, Yo € R?*3, Ja,b, e, d,e, f e R s.t. v = [ aboc ]
d e f
That is, each element of R?*3, as a 2-tensor,
is pictured as a 2-dimensional array, fitting nicely on the page.
Picturing elements of R>*7 is slightly harder,
requiring room for a 5 x 7 array, but is still 2-dimensional.
By contrast, the elements of R™9*% are all 3-tensors,
and it’s hard to put a 3-dimensional array onto a page.
The tensor space R?*2*2 is only 8-dimensional,
but is still difficult to picture its elements on a page.
Nevertheless, we can at least imagine each element of R?*2x2,
because we live in a three-dimensional world.
By contrast, elements of R2*2%2%2 are hard even to imagine,
without living in a four-dimensional space.

THEOREM 75.13. Let S € TNSR. Then
YvelS, wisa functional and
YVowe S, wv+wel and

VeeR,Vve S, cewebs.
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DEFINITION 75.14. Let X be a set, pe N, me NP Y = X™.
Then Iy := [m].

Following Definition 75.14, we have Y = X™ = X[ — X7r,

THEOREM 75.15. Let S := R**3x4,
Then Tg = [2 x 3 x 4] = [1..2] x [1..3] x [1..4]
— (1,2} x {1,2,3} x {,1,2,3,4}.

Let S := R?*3*4 Then S = RZ2*3*4 — RZs_ More generally:
THEOREM 75.16. Let S € TNSR. Then S = R%s.

DEFINITION 75.17. Let S € TNSR. Then
Yo, we S, vV oeg W o= Z VjW;.
J€ZLs

Also, YveS, lu|s = /U *s 0.

Following Definition 75.17, if S is obvious,
we may sometimes omit “S” from the subscript in v g w,
and simply write v  w.
Also, following Definition 75.17, if S is obvious,
we may sometimes omit “S” from the subscript in |v|g,
and simply write |v].

THEOREM 75.18. We have

123. 7 8 9
4 5 6 10 11 12

= 1-7+2-84+3-9+4-10+5-11+6-12.

Also, Hi ? 2” = 12422+ 32+ 42 + 52 + 62.

DEFINITION 75.19. Let S € TNSR.
Define § € M(S) by 6(v,w) = |w —v|s.
Then ¢ is called the standard metric on S.
Also, the metric space (S, ) is denoted S.

Let S € TNSR and let § be the standard metric on S. Then dg = ¢.
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THEOREM 75.20. Let S := R?*3.
1 2 3 01 3
Then ds([456]’[982]> -

VA=02+2-12+B3-32+(4-92+(5-8)2+ (6 —2)2.

DEFINITION 75.21. Let X be a set, pe N, me NP Y = X™.
Then My := {r} |i e [m]}.

DEFINITION 75.22. We define g := {idr}.

Let S € TNSR™ and let p € Ilg.

Then p : S — R is distance semi-decreasing, i.e., Lipschitz-1.
It follows that p is continuous from S to R.

THEOREM 75.23. Let S := R?*3,
Then Tlg = {77y, T3y, T3, Ty, Tog, Ths -
DEFINITION 75.24. We define: EUCL" := {R} u EUCL.
We also define: TNSR™ := {R} u TNSR.
DEFINITION 75.25. Let S € TNSR™'.
Then M5 := {CL}.
Also, Vj e N, M5 :={p1---p;|p1,....p; € Is}.

For any S € TNSR™, for any j € N, the elements of MY are called

monomials of degree j on S. Note that, Vj € N, M} = {id%}, so

there is only one monomial of degree j on R, namely id}.
Since every projection is continuous, it follows that every monomial
is continuous.

DEFINITION 75.26. Let S € TNSR and let j € N.

Then 7—[]5 = {ayu +-+ag | LeN,
a,...,ap € R,
PASVE

For any S € TNSR™, for any j € N, the elements of 7-[]5 are called
homogeneous polynomial functionals of degree 7 on S. Thus, a
homogeneous polynomial of degree j is a finite linear combination of
monomials, all of degree 7. The word “homogeneous” expresses the
idea that the monomials being used all have the same degree.

Since every monomial is continuous, it follows that every homoge-
neous polynomial functional is continuous.

THEOREM 75.27. Vj e Ny, H} =H;.
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THEOREM 75.28. Let S := R>3. Define P,Q : S — R by

P<l3 z ;])zbcde and Q([Z 2 ;]>:4bcde—\/§f4.
Then P = (nfy) - (n33) - (7m31) - (m33) € MF < HE. Also, Q € H.

DEFINITION 75.29. Let S,T € TNSR* and j € N,.
Then: HT = { f:S—>T|Vpelly, pofeHi}.

For any S,T € TNSR™, for any j € N, the elements of H]ST are called
homogeneous polynomials of degree j on S.
Let S,T e TNSR" and f:S — T.
Then ( f is continuous) < (Vp e Ilp,po f is continuous ).
So, since every homogeneous polynomial functional is continuous,
it follows that every homogeneous polynomial is continuous.

THEOREM 75.30. Let S € TNSR" and j € Ny.
Then HfR = ”HJS

DEFINITION 75.31. Let S,T € TNSR™.
Then Csp := H5T and Lsr := HYT and Qs := H5T and Ksr := H5T.

THEOREM 75.32. Let S € TNSR" and k € N,.
Then H,fR = ’H,f

THEOREM 75.33. Let k € Ny. Then H® = Hy.

DEFINITION 75.34. Let S € TNSR.
Then Og := C’%S. Also 05 := C3.

In Definition 75.34, we have Og € R’ = S and 0g: S — R.
DEFINITION 75.35. We define: Ogr:=0 and Og:=0.

DEFINITION 75.36. Let S € TNSR*,
Then | e |g:S — [0;00) is defined by |v]|s = /v ev.

In Definition 75.36, comparing with Definition 75.17, we see: Vv € S,
we have |v|s = |v].
76. SOME FUNCTION SPACES BETWEEN TENSOR SPACES

Let S € TNSR. Recall, from Definition 75.19, that, Vv, w € S,
ds(v,w) = |v—wlg = D7 (v = wy)2.

1€l
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DEFINITION 76.1. Let S,T € TNSR*.  Then
DNZgr :={a: S --» T |« is defined near 0},
BNZgr := {a € DNZgr | 3B € Bs(0g) s.t. a(B) is bounded in T},
CVZgsr := {a € DNZgr |[a(05) = O | & [ v is continuous at Og |}.

DEFINITION 76.2. Let X be a set, T'e TNSR, f,g: X --»T.
Then f+ g: X --» T is defined by (f +9g). = (f.) + (g.)-

DEFINITION 76.3. Let X be a set, T € TNSR, ce R, f: X --»T.
Then c- f: X --+ T is defined by (c¢- f), = ¢ (f.).

DEFINITION 76.4. Let X be a set, T € TNSR.
Let f: X --»R, g: X -—»T.
Then f-g: X --+T is defined by (f - g9). = (f.) - (g.).
Also, g- f:=f-g.
DEFINITION 76.5. Let S,T € TNSR* and j € N. Then:
OfT = { a € DNZ ‘ [ a(0g) =07 | & [ Oéj — 07 near Og ]}

|°|s
and O = (BNZsy) - (|o[}).

THEOREM 76.6. Let S,T € TNSR™ and let j € No.  Then
07" = (CVZsr) - (|« [3).

J

THEOREM 76.7. We have: DNZrr = DNZ,
BNZRR = BNZ and CVZRR = CVZ.

77. BASIC PROPERTIES OF TENSOR SPACES

DEFINITION 77.1. Vz,ye R, x g y := xy.
Ve R, lzlg = |z|.

Following Definition 77.1,
we may sometimes omit “R” from the subscript in x e v,
and simply write x e y.

THEOREM 77.2. Let S € TNSR*.  Then
Yo,we S, |veswr < |v|s - |wls and
Yo,we S, v+ wls < |vlg + |ws and
Yo,we S, |luls — |wlslg < |v — w]s.
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Let S € TNSR™ and let v,w € S. Then
dr(|v]s, [wls) = [|vls — |wls[r < [v — wls = ds(v,w).
That is, | e |s : § — R is distance-semidecreasing, i.e., Lipschitz-1.
It follows that | e |g : S — R is continuous.

THEOREM 77.3. Let S,T € TNSR™*, f:S --» T.
Then: (feLsr) < ([Yo,weS, forw=Ffo+ fu]
& [VCGR,V’UES, fcvzc'(fv)] )

That is, f is linear iff f is “algebraically linear”.
DEFINITION 77.4. VS, T € TNSR", O0g7p := CgT.

THEOREM 77.5. Let S,T € TNSR™, let j € Ny and let f € /HfT.
LetceR andve S. Then f(cv) = - [f(v)].

THEOREM 77.6. Let S,T € TNSRJr
Then: ( QST - O‘;T) ( QST N O = {OST}>

THEOREM 77.7. Let S,T € TNSR" and let j € Ny.
Then: (H;T < OF7) & (HET n 0T = {0s7}).

THEOREM 77.8. VS, T € TNSR*, C(CVZsr < BNZgr.

THEOREM 77.9. Let S, T € TNSR" and let j € Ny.

Then OT, < ST < O5T.

Proof. We have: Ojsfl = (BNZg7) - (] o 5
= (BNZgr) - (|os)- (| ]5)
< (BNZsr) - (CVZsr) - (| o [3)
< (CVZsr) - (| o [§) = of".
Want: 0" < OF7.
We have: 0T = (cszT) (| o I%) < (BNZgr) - (| o [}) = O5T. O
THEOREM 77.10. VS € TNSR™, |e|ge CVZ.

78. DOUBLE TRANSLATION

DEFINITION 78.1. Let R, S € TNSR*Y, f: R--» S.

Then, ¥p e R, Rgpr : R --+ S is defined by (Rgfg)<h) = forn — fp-
Also, Rsfcg = .
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In Definition 78.1, we will almost always omit the pre-subscript R.S,
and write pr instead of gg pr ,
and, also, fg} instead of Rsffg.
We have: YR, S € TNSR, Vf: R --» S, Vp e R\(dom[f]),
Iy =@ # @
DEFINITION 78.2. Let X be a set and let S € TNSR*.  Then
Vig: X --+S5, fesg: X -->R s defined
by (fes9)p=(fp) s (9p)
and YoelS, Vg:X--»S5, wvesg:=(C%)esyg
and Vi:X --» S, YweS, fesw:=fes(C¥).
DEFINITION 78.3. Let S, T € TNSR*, f: S --—»T andpe S.
Then LINSST := {Le Lsr|fl —LeoT)
and D3'f := UE(LINS;"f).

THEOREM 78.4. Let S, T € TNSR*, f: S --»T andpe S.
Then  #(LINSJT) < 1.

79. TENSOR PRODUCTS OF TENSOR SPACES

DEFINITION 79.1. Let 0,7 € N, let m € N? and let n € N”.
Then m|n := (my,...,Mg,N1,...,N;).

DEFINITION 79.2. Let 0 € N, let m € N and let n € N.
Then m|n := ml||(n) and n|m = (n)|m.

DEFINITION 79.3. Ym,ne N, mn :=(m)|(n).

DEFINITION 79.4. Let 0,7 € N, let m € N? and let n € N".
Then R @R" := R™I".

DEFINITION 79.5. VS e TNSR, S®R:=S andR® S :=S5.
DEFINITION 79.6. We define: R®R := R.

Recall that R?*3 # R? x R3. On the other hand, we have:
THEOREM 79.7. RZ2@R? = R® @ RG) = R23) = R2x3,

THEOREM 79.8. We have:
]Rl ®R3><5 _ R1><3><5 4 R3><5 and
R®R3X5 — R3><5 and

R6><8><2 @R — R6><8><2 and
R6X8X2 ®R3X5 — R6x8><2><3><5
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80. SLOPES OF LINEAR MAPS BETWEEN TENSOR SPACES

Let S,T € TNSR. According to HW#5-5, Vi € Zg, Vj € I,
we have i|j € Zsgr-
Also, we have the following:

THEOREM 80.1. Let S, T € TNSR, k € Togr.
Then 31 iEIS, J1 j EIT s.t. k= ZH]

DEFINITION 80.2. Let 0,7 € N.
Let me N7, ne N7, Let S :=R™, T :=R". Let k € Zsgr.
Then kg := (ki,...,ky) and ky:= (kos1, -, kosr).

DEFINITION 80.3. Let S,T € TNSR and let L € Lgr.
Then st;' € RT®s s defined by
(s = mh (L))
We have: VS, T € TNSR, VL € Lgr, sl;F e RTres =T ®S.

THEOREM 80.4. Leto:=1,7=1,m = (3), n = (2).
Let S :=R3 and T := R?,
Define L € Lsr by
L(x,y,z) = ( 3z — 2y + 4z,
Tr+ y—>5z).
ST ST 3 —2 4
Then: (1) (st;" )9 = and  (2)st]" = l - 1 5 ]

Proof. Proof of (1):
We calculate (s€97)y = nd (L(e?)) = 74 (L(1,0,0)) = 72 (3,7) = 7.
End of proof of (1).

Proof of (2): Unassigned HW. End of proof of (2). O

DEFINITION 80.5. Let S € TNSR and let L € Lgg.
Then SK‘ER e R%s is defined by
(62 = L().

We have: VS e TNSR, VL € Lsg, sli7eRs =S =R®S.

DEFINITION 80.6. Let T € TNSR* and let L € Lyr.
Then st;" := L(1).

We have: VT € TNSR, VL € Ly, sli7eT =TQR.
Also, VL e £, both L€ Lpr and sf7* = sly,.
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THEOREM 80.7. Let S,T € TNSR™ and let L € Lgr.
Then sﬁiT eT®S.

DEFINITION 80.8. Let S,T € TNSR™.

DEFINITION 80.9. Let S,T € TNSR™.
is defined by (s¢S7)(L) = st37.

DEFINITION 80.10. Let S,T € TNSR" and let f: S --»T.
Then srf' =S --+T®S is defined by srf, = sﬁfT(Dfo).

Then st3! = @.
Then sé*fT :Ler > T®S

In Definition 80.10, we will almost always omit the pre-subscript ST,
and write f) instead of g7 f,.

THEOREM 80.11. Let f : R3*2 ——» R>*7,
Then f/ . R3><2 SN ]R5><7><3><2 and
f// . R3><2 __s R5><7><3><2><3><2 and
f/// . R3><2 SN R5X7X3X2X3X2X3X2.
THEOREM 80.12. Let f: R --» R>*7,
Then f': R --» R5*7 and
"R -5 R7 and
f/// ‘R --» R5X7.
THEOREM 80.13. Let f: R! -—-» R>*7,
Then f': RY ——s R>*7x1 and
f// . Rl SN R5><7><1><1 and
f/// . RI N R5X7X1X1X1.
THEOREM 80.14. Let f: R3? -—» R.
Then f': R3*2 -5 R3*2 and
f// . R3X2 N R3><2><3><2 and

f‘//l .

R3><2 N R3><2><3><2><3><2

81. LINEARITY OF MULTIVARIABLE DIFFERENTIATION

THEOREM 81.1. Let S, T € TNSR*, f,g: S --—+T andpe S.
Then DJT(f +g) =* DT f + D37g.

THEOREM 81.2. Let S, T € TNSR", ceR, f:S-—»>T andpe S.
Then DiT(c- f) =* ¢ - DT f.

THEOREM 81.3. Let S, T € TNSR*, f,g: S --—+T andpe S.
Then (f +g), =* f, + g,
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THEOREM 81.4. Let S, T € TNSR*, ceR, f: 8 -—»T andpe S.
Then (c- f), =% c - f.

82. THE MULTIVARIABLE PRODUCT RULE

DEFINITION 82.1. Let X, Y and Z be sets. Let f: X xY --» Z.
Then, Ya € X, f(a,®):Y --+ Z is defined by (f(a,e))(b) = f(a,b).
Also, Vbe Y, f(e,b) : X --» Z is defined by (f(e,0))(a) = f(a,b).

DEFINITION 82.2. Let S,T,U € TNSR™.
Then By, == {B:SxT —U | (Yve S, B(v,e) € Lry)
&(VweT, B(e,w)e Lsy) }.

Elements of BY; are called bilinear functions from S times T to U.

NOTE TO SELF: We need to establish that every bilinear i is bounded
which we plan to make HW#7-4. This is needed to prove Ox0c (’)
etc., which, in turn is needed for the Product Rule (Theorem 82.10).

DEFINITION 82.3. Let X, Y and Z be sets.
Let«: X xY -2, a€eX and beY.
Then ax*b = =(a,b).

Every dot product is bilinear:

THEOREM 82.4. Let S € TNSR™.
Define + : S xS >R byv+w =vegw. Then = € Bis.

DEFINITION 82.5. Let R, S,T,U € TNSR* and let = € BY.
Then: Vfi:R--+S5, Vg:R--»T,

fxg:R-->U is defined by (f = g)p = fp * gp-
Also, YvelS, Vg:R--»T, veg:=Chxg.
Also, Vf:R--+95, YwelT, frw:= f=C}.

NOTE TO SELF: Need to define bilinear products of sets of func-
tions, and, also, compositions of sets of functions.
The following is proved in the same was as for functions R --» R.

Needed: Boundedness of bilinear maps between tensor spaces, which
we plan to make HW#7-4.

THEOREM 82.6. Let U,W, X, Z € TNSR*, « € BZ,, j, k€ N,.

AUW UX vz
Then O; *OL" S Off)

ow AUX — UZ
Also, 0™ = O < 075



202 SCOT ADAMS

AUW , AUX AUZ
Also, O7 ™ = O~ < O7 5.

The following is proved in the same was as for functions R --» R.
THEOREM 82.7. Let V,W, X € TNSR*, j, ke N.
Then OF* o 9kVW c o)X,
Also, 0" 0 OV < o)X,

AWX . AVW AV X
Also, O * o O™ < O

Theorem 82.8, below, is called the Multivariable Precalculus
Product Rule.

THEOREM 82.8. Let R, S, T,U € TNSR" and let = € BY;.
Let f:R--»S, g:R--»T and peR.
Then — (f=g)y = (f)*0 + fox(g5) + (f;) = (gp).

Proof. 1t is an unassigned HW problem to modify the proof of Theo-

rem 69.4 to prove this theorem. O
THEOREM 82.9. Let R, S, T,U € TNSR" and let + € BY;.

Then: VLe Lrg, YweT, LxweLpy.

AZSO, VUES, VM€£RT, ’U*MECRU.

Theorem 82.10, below, is called the Linearization Product Rule.

THEOREM 82.10. Let R, S,T,U € TNSR* and let « € BY,.
Let f:R--+S, g¢g:R--»T and peR.
Then D]?U(f xg) =* (Dfsf) xgp + [p* (Dng).

Proof. 1t is an unassigned HW problem to modify the proof of Theo-
rem 69.5 to prove this theorem. Needed: Boundedness of bilinear maps
between tensor spaces, which we plan to make HW#7-4. U

Theorem 82.11, below, is called the Tensorial Product Rule.

THEOREM 82.11. Let R, S,T,U € TNSR* and let « € BY,.
Let f:R--+S, g¢g:R--»T and peR.
Let " :=SQR andT' :=T@R and U :=U ® R.
Define 1, € BYp by A «p b= stE(Lin%® + b).
Define xg € BYr by a +r B = st (a « Link%).
Then (f*g);; =" f;la *L gp + fp *R g;r
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Proof. 1t is an unassigned HW problem to modify the proof of Theo-
rem 69.5 to prove this theorem. Needed: Boundedness of bilinear maps

between tensor spaces, which we plan to make HW#7-4.
DEFINITION 82.12. Let S,T € TNSR™.
Then st37 : Lop — T ® S is defined by (st57), = st97.

THEOREM 82.13. Let S,T € TNSR*.
Then stST : Lop >>T®S.

0

In fact, not only is st57 : Lo — T ® S bijective, but, also, it is

algebraically linear, and its inverse is algebraically linear, too.
discussed all this in class.

DEFINITION 82.14. Let S,T € TNSR™.
Then, YL € Lgr, [L]sr := st3".
Also, VAe T® S, Linj" := (stz7);".

THEOREM 82.15. Let S,T € TNSR*.
Then, VAe T®S, [Lin3 |sr = A.
Also, VL € Lgr, Linﬁ-ﬁﬁ = L.

THEOREM 82.16. Let S,T € TNSR™.
Then, VL, M € Lgr, [L+M]ST = [L]ST+ [M]ST-
Also, Vee R, VL € Lgp, [c- Llsr = c- ([L]sr).
Also, VA, BeT® S, Ling,p = Ling + Ling.
Also, Vcee R, YAeT®S, Lin.a = c-(Lina).

DEFINITION 82.17. Let R, S,T,U € TNSR*, » € BY..
Then, VAe SQ R, VyeT, Axy:=|[L% «y|py.
Also,Vre S,VBeT®R, 1B :=[x+LE|py.

THEOREM 82.18. Let R, S,T,U € TNSR*, » € BYj..
Let f:R--+S, g¢g:R--»-T, peR.

Then:  f, =* f, =g, + fp* g,

83. THE MULTIVARIABLE CHAIN RULE

Theorem 83.1, below, is called the Linearization Chain Rule.

THEOREM 83.1. Let S,T,U € TNSR*.
Let f:S--T, g¢g:T-->U, peS, q:=/f.
Then:  DV(go f) =* (DIVg) o (D3T).

We
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Proof. 1t is an unassigned HW problem to modify the proof of Theo-
rem 69.25 to prove this theorem. U

DEFINITION 83.2. Let S,T,U € TNSR™.
Then *gry € BU®T res 1S defined by
B *STU A = [ (LlngU) o (LlniT) ]SU'

Theorem 83.3, below, is called the Tensorial Chain Rule.

THEOREM 83.3. Let S,T,U € TNSR*.
Let f:S---T, ¢g:T---U, pes, q;:fp,
Then:  (go f), =" gq *stv [

THEOREM 83.4. Let T'e TNSR, veT.
Then: v = Z Ujé‘?.
JEIr

Proof. This is HW#6-1. O

THEOREM 83.5. Let S,T,U e TNSR, AeT® S,
L:=Lin3", ieZs, jeIr.
Then AJHZ ( (8?))3

Proof. Let k := j|i. Then k7 = j and kg = 7.
Since L = Lin%", we get: [L]sy = A.  Then A = [L]sp = st3".
Then Ajj; = Ax = (507" = ml, (L(ef,)) = 7} (L)) = (L(]));. O

3 3

THEOREM 83.6. Let S,T,U € TNSR.

Let BeU®T, AeT®S, keIy and iels.

Then: (B xsrv A = >, (Buy) - (Aj).
JE€Ir

Proof. Let L := Lin%" and let M := Ling".
Then L€ Lgr and M € Ly, so Mo L€ Lgy. Let C := B =gry A.
Then, by Definition 83.2, we have C' = [M o L]gy
Let N :=Ling’. By Theorem 83.5, we have: ~ Cy; = (N(g9))s.
Also, by Theorem 83.5, we have: VjeZIr, By = (M(e;
By HW#6-2, we have: L(ef) = Y| (Ay;) - (€] ).

J

N
S~—
S~—
e

jEIT
Since C' = [M o L]sy, we get Linc M o L. Then N = M o L.
Then (B * QU A k;Hz CkHz = k = ((M © L)(gf»k

= (M(L < < jnz)-(&f)))
JE€Ir k
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- (Z (Ajp) - [M(ef)]) = Z (Ajji) - [(M(7) )]

JEIT JEIr
= > (Aj) - (Bry) = D (Buy) - (A,
JjEIr JEIT
as desired. 0

THEOREM 83.7. Let {,m,n e N, B e R™™ AR,
S:=R T:=R™, U :=R".
Then B *STU A = BA.

Proof. We have B g7y A , BA e RILnIx[L4

Want: Vk e [1.n], Vi e [1..0], (B *s7v A = ( BA ).
Given k € [1..n], i € [1..4]. Want: ( B #s7v A )i = ( BA ).
We have T' = R™ = R(™) 50 Iy = [(m)] [1..m].

By Theorem 83.6, ( B *sry A g = Z By - Ajjs-

JE€Ir
Then ( B *s7y A) Z Byy; - Aji
J€Ir
= Z By;-Aj; = ( BA ), asdesired. O
je[1..m]
THEOREM 83.8. Let {,m,neN, f:R’ - R™ and g : R™ — R".
Let pe R and q := f,. Then (go f), =" (g5) - (f;)-

Proof. Let S:=Rf, T:=R™ and U:=R"

Want: ((g) - (f) # ©) = ((goh) = (6)) - (1)).
Assume: (gp) - (f;) # ©  Want: (go f), = (g;) - (f)-
Since (g;) - (f}) # ©, we get g, € R™™ and f] € R™**,
Then, by Theorem 83.7, (g;) *srv (f,) = (g;) - (f;)-

By Theorem 83.3, we have (go ), =* g, *stv [},
So, since (g;) *stv (f) = (g5) - (f;) # @,
we get: (go f), = g, *stu [
Then: (gof)y, = g5 *stv [, = (9,) - (f,) U

84. BASIC RESULTS IN TENSOR ALGEBRA

DEFINITION 84.1. Let S,T € TNSR*.
Then Cg = Cgr and

LL = Lsr and

oL = Qgr and

KL = Ksr and
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0?; = Ogr and
VLE,CST, [L]ST = [L]ST-

DEFINITION 84.2. Let X, Y and Z be sets.
Let f: X xY --» Z.
Then f(e,0): X NnY --» Z is defined by (f(e,e))(s) = f(s,s).

DEFINITION 84.3. Let W, X, Y and Z be sets.
Let f: W x X xY --s Z.
ThenVae W, Ybe X, f(a,b,®):Y --» Z s defined by
(f(a’ b> .))(S) = f(a’ bv 5)'
Also, Yae W, VeceY, fla,e,c): X --»Z s defined by
(f(av e, C))(S) = f(a"S?C)'
Also, Vbe X, VeeY, f(e,b,c): W --» Z s defined by
(f(.7b> C))(S> = f(sv b, C)‘
Also, Yae W, f(a,e,0): X nY --» 7 s defined by
(f(a7 e, °))(3> = f(a7575)'
Also, Yae W, f(a,e,00): X xY -5 7 s defined by
(f(a,e,00))(s,t) = f(a,s,1).
Also,Vbe X, f(e,b,0) : W nY --» Z s defined by
(f(e,b,0))(s) = f(s,b,5).
Also, YVbe X, f(e.b,ee): W xY --» Z s defined by
(f(.aba ..))(Sat) = f(37b7 t)
Also, YceY, f(e,0¢c): WX --5»Z s defined by
(f(.a .70))(5) = f(S,S,C).
Also, YceY, f(e,00.¢c): W x X --» Z is defined by
(f(.v OO,C))(S,t) = f(S,t,C).
Also, f(e,0.0) W NXNY --»Z s defined by
(f(.v e, .))(S) = f(87 S,S).

Recall, from Definition 82.2, that BY,, denotes the set of bilinear
maps T'xU — V. We next introduce a notation for the set of symmetric
bilinear maps U x U — V, as follows:

DEFINITION 84.4. Let U,V € TNSR™.
Then SBY;, = {F € B}, |Va,be U, F(a,b) = F(b,a)}.
We next introduce trilinear and symmetric trilinear notation:

DEFINITION 84.5. Let V,W, X,Y € TNSR™.
Then Ty = { F:VxWxX—>Y|
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VaeV,Vbe W, f(a,b,e)e LY and
VaeV,Vee X, f(a,e,c)e L), and
Vbe W,Vce X, f(e,bc)e LY }.

DEFINITION 84.6. Let X,Y € TNSR*.
Then STY = { FeTixx | Va,b,ce X,
F(a,b,c) = F(a,c,b) = F(b,a,c)
= F(b,c,a) = F(c,a,b) = F(c,b,a) }.

THEOREM 84.7. Let V,W € TNSR" and let B € BXV/VV.
Then, Yz € V, B(x,e), B(e,x) € L. Also, B(e,e) e QY.

THEOREM 84.8. Let V,W € TNSR* and let T € TW,,,.

Then, Va,yeV, T(z,y,e), T(z,e,y), T(e,z,y) € L.
Also, Vr eV, T(z,e,0), T(e,x,0), T(e,0,1) € Q.
Also, Vr eV, T(z,e,00), T(o,1,00) T(e 00 x) c B, .
Also, T(e,0,0)c K.

THEOREM 84.9. Let V,W € TNSR*, K € K and F e ST .
Assume K = F(e, 0 0). Then,Vx eV, DYWK =3.(F(x,x,e)).

Proof. Given z € V. Want: D, K =3 (F(z,z,e)).
We have: Vh € S,
K (h) = (K(z + h)) = (K())
= (F(x+ h,z+ h,z+ h)) — (F(x
= (F(z,z,2))+3- (F(z,z h)

+ (F(
(F(z,z,0) + 3 (F($7.7.>) (F (e,
Let L:=3-(F(x,z,0)) and let R := 3 (F(z,eo,e)
Then K = L+ Rand Le L}.

We have F(z,e,0) € QW < OYW c oV'W.

Also, F(e,e,0) € KW < OYW < ofW < VW,

Then R =3 (F(z,e,0))+ (F(e,0,0)) 0]
Then K' ~L=L+R—-L=R+0} =Reo]".

Then L € LINS, K, and so DY K = L.

Then DYV K = L =3 - (F(x,x,9)), as desired. O

THEOREM 84.10. Let V,W e TNSR, L e cVVV, A=[LW, zeV.

Then L(x Z Z Ajji-xi- €

ZEZV ]GIW
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Proof. By HW#6-2, we have: Vie Iy, L(g)) = Z Ajpi - €.

JEIw
We compute:
Le) -1 (Z ) = 3w (LED)
iEIV ’iEIV
w
€1y J€Tw
w
- Z Z i - Ajji - €
€Ly jeIw
- Z Z Ajji - i - €], as desired.
€Ly jelw

The following theorem is the Cauchy-Schwarz inequality:

THEOREM 84.11. Let I be a finite set and let z,y € R'.

Then Z Ty < Z 3 - Z y]z.

jel jel jel

Proof. Let a:= Z z5 andlet b:= Z Y
jel jel

Then o = Z a:? and b* = Z y]2 Want: Z x;y; < ab.
jel jel jel
At least one of the following must be true:
(1)a=0 or (2)b=0 or (3) a#0#b.

Case (1):
We have: » a7 =a”>=0>=0.  Then: Vje I, z; =0,
jel
Theanjyj = Zo-yj =0< 0 =0-b = ab, as desired.
jel jel

End of Case (1).

Case (2):
Wehavezy?262:02:0. Then: Vje I, y; =0.
jel
Theanjyj = Z:Ej-O = 0<0 = a-0 =ab, as desired.
jel jel

End of Case (2).

Case (3):
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Let u := il and v := Q‘
a b . v;
Then, Vjel, wu;j=- and ;= ?j

a
Then, Vjel, au;=z; and bv;=y;.
We have: VteR, 0 <t
Then Vjel,0< (u;—v;)? andso 0< Z (uj — vj)°.
jel
Then 0 < Z (uj —v;)?* = (u? = 2ujv; + v3)
jel jel

) @ u;) iy (; ujvj) n (; v?>.
Then 2- (; “j”j) < <jd u§> " (; U?>

1 2 1 2
- (g) @ (F)p-1e1-e

b
Mulitplying this by %, we get:  ab- Z ujv; < ab.

jel
Then Z Ty, = Z (auj) - (bv;) = ab- Z ujv; < ab, as desired.
gel gel gel
End of Case (3). O

THEOREM 84.12. Let U,V,W, X € TNSR and let T € Ty -
Then 3C =20 s.t., Vpe U, Vqe V,Vre W,
TP q,7)lx < C-lplo - lglv - |rlw-

Proof. Unassigned HW, modeled on HW#7-4. U

THEOREM 84.13. Let U,V € TNSR and let L € L.
Then 3C = 0 s.t., Vpe U,

IL(p)lv < C-|plv.
Proof. Unassigned HW, modeled on HW#7-4. U



210 SCOT ADAMS

DEFINITION 84.14. Let V,W, X € TNSR and let B € B‘)/(W.
Then [B]f/(w e XQ®V QW is defined by:
Vie Iy, Vjely, VkeIx
([BRSw ity = 7 (B(e},€})).

Unassigned HW: Extend Definition 84.14 to V, W, X € TNSR™.
For example: Let V, X € TNSR, W := R and let B € Bi;,. Then
[Blf € X ® V is defined by:
Vie Ly, Vk e Ix
(Bl w)us = 7 (B(Y,1).
Note that [Bli, e X @V =XQVOR=XQVW.

DEFINITION 84.15. Let U, V, W, X € TNSR and let T € T,y .
Then [T)Hvw € XQUQV QW is defined by:
Vi EIU, V] E:Zv, W Ezw, VEEIX
[T1ovw )i = 7 (T(e) €5, €x))-

Unassigned HW: Extend Definition 84.15 to U, V, W, X € TNSR™.
For example: Let U, V,W € TNSR, X := R and let T' € T\ -. Then
[T)¥w e U®V ®W is defined by:
Vi e IU: V] S Iv, Vk e Iw,
([TFvw agie = T e &)
Note that [T]3%w e UQVRW =RQUQVIW = XQUVRW.

NOTE TO SELF:
Next year, define Zg := {F}.
Keep in mind that R # R%®,
so we only have: VV € TNSR, V = R%v;
this does not extend to TNSR™.
Also, Vx € R, define zy4 := z.
Also, define £f; := 1.
Also, define 75 = idg.
Also, ¥V € TNSR*, Vf : R --» V, define 03/ f = f'. Also, Yo € N,
Vk € N7, define k|| := k and |k := k.
Also, define gJ| & := .

85. DERIVATIVES OF HOMOGENEOUS CUBICS

NOTE: The second midterm in Spring 2019 will cover everything up
to and including (2) of the next result, Theorem 85.1.
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THEOREM 85.1. Let V,IW e TNSR, K e KIV, F e STW.
Assume: Vx eV, K(z) = F(z,z,x).
Define Q € QU®Y, L e LY®VEY  C e cly®V®VeY py:

Qz = [F(JZ,ZL‘, .)]3/; L, = [F(ZL‘, ® ..)]\V}/\N Cy = [F]\V[//VV'
Then: (1) K' =30, (2) K" = 6L, (3) K" =6C.

Proof. Proof of (1):

Want: Ve eV, K. = 3-Q,.

Given x e V. Want: K =3-Q,.

By Theorem 84.9, we have: D,K =3 (F(z,x,e)).

Then K! = [D, K|\ =3 [F(x,z,¢)}Y =3-Q,, as desired.
End of proof of (1).

Proof of (2):
Want: Ve eV, K! =6 L,.
Given z € V. Want: K =6 L,.
By (1) of Theorem 85.1, we have: K’ =3-Q.
Then, by Theorem 81.4, we get: K =* 3-Q".
Want: 3-Q) =6 L,.
Define B € SB)Y®Y by B(z,y) = [F(z,y, )]V
Then Q = B(e, ), so, by HW#6-5, we have: DYV Q = 2. (B(x,9)).
Since DYWQ =2 (B(z,e)) e LY,
we get: QL. =2-[B(z,o) [N e WRVRV.
Also, by definition of L, we have: L, = [F(xz,e, ee)]{% .
Then L, = [F(x,e,00)[},, e WQV V.
Want: 32 [B(z, )|\ =6-[F(z,e,00)]l%.
Want: [B(:E, .)]\Vy = [F({E, ) ..)]\WV'
Want: Vk € Ty, Vi, j € Zv, ([B(z, )| ujay = ([F(z, 9, &)1y Jrjil-
Given k€ Zy, 1,7 € Ly.
Want: ( [B(z, o)V )iy = ([F(z,,00)]0% Jujils-
We have ( [F(x, e, e0)]1V, )kHiHJ =) (F(z,e),eY)).

Also, ([B(z, )V Ity = ﬂ-ijz " (B(x, ))

Also, ([F(z,ej, )]V Jwyi = m (F(z, }/7€Y))

By definition of B, we have: B(z, ) = [F(x,g5,0)]).

By symmetry of F, we have: F(z,e},e}) = F x,ay,g}/).

Then ( [Bla. )l Yoy = 70 (Bla.eV)) = (B!,
= ([F(z,¢;, )] Jeli = W( (z,7,el))

= m (F(x,ef,e))) = ([F(x, 0 00)]% )xjij, as desired.
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End of proof of (2).

Proof of (3):

Want: Ve eV, K =6-C,.

Given z € V. Want: K =6-C,.

By (1) of Theorem 85.1, we have: K" =6 L.

Then, by Theorem 81.4, we get: K =* 6-L/.

Want: 6- L) =6-C,. Want: L = C,.

By HW#6-4, we have D, L = L.

Since D,L = L e L]/®V®V,

we get: L' = [LIV®"® e W@VEVEV.

Also, by definition of C, we have: C, = [F|{% .

Then C, = [F|V¥,y e WRVRV V.

Want: [L]{/®V®Y = [F]W¥,.

Want: Vi, j, k€ Iy, V0 e Ty, ([LIY®V® )gage = ([FI¥vv e

Given 1,7,k € Iy, L € Ty.

Want: ([LIp® = Jnae = (LFIAvy agie:
F

We have: ( [Flvhyy )eilie = zW( (7€ 80)).
Also, ([LIy®Y®Y )gayie = ), ]( (EX))
Also, ([F(ey, o 00) [Py )ity = ™" (F(ef el g5)).
By definition of L, we have L(g)) = [F(g),e,00)]{% .
By symmetry of F', we have F(g) e V,s}/) = F(e}/,g;/, X ).
Then ( [LIy®"® Ve = mf;(Ley)) = (LX) )aa
= ([F(e, o 00) Vv )ity = ™" (Fef el g5))
= m (Flel,ef,ef)) = ([FRvv Depigie.  as desired
End of proof of (3). O

THEOREM 85.2. Let Se TNSR™, ve S, teR, M := Lin™>.
Then M, = tv.

Proof. Since Lin¥® and [e]gg are inverses, we get: [Lin®¥]pg = v.

By Definition 80.6, we have st5> = M (1).

Then M(1) = st5r = [M]gs = [Lin®¥]gg = v.

Then M, = M(t) = M(t-1) =t-(M(1)) = tv, as desired. O

THEOREM 85.3. Let ve R and L := Link™.
Then L = v.

Proof. Replace S by R and ¢ by 1 in Theorem 85.2. U
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THEOREM 85.4. Let Se€ TNSR*, ve S, teR.
Then v *prg t = tv.

Proof. Let L := Lin{™® and M := Lin®
By Theorem 85.3 (with v replaced by t), we have L; = t.
By Theorem 85.2, we have M, = tv.

By Definition 83.2, we have v *ggg t = [M o L]rs
By Definition 80.6, we have séLoM (L o M)(1 )
Then v #grs t = [MoLlgs = — S8 = (M

L)(1)

= M(Ly)) = M(t) = M, = tv, as desired.

THEOREM 85.5. Let x,y € R.
Then x *grr Yy = V.
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Proof. Replacing S by R and v by x and ¢t by y, we get: = *grr y = yz.

Then x *rgr y = yxr = xy, as desired.

Recall: Let L e L, m := sy, x € R. Then L, = mzx.
Then next result is the tensor analogue for that statement:

THEOREM 85.6. Let S,T € TNSR", Le £}, A:=sl;", z€S.

Then L(z) = A sgsr .

Proof. Let I := Lin” and G := Lin%’.

By Definition 83.2, we have A sgsr = = [G o Flgr.

By Definition 80.6, we have sl = (G o F)(1).

Then A spsy © = [GoFlgr = sty = (GoF)(1 (
By Theorem 85.2, Vt € R, F;, = tx. Then Fi =12 =

We have A = st7" = [L]sr.

So, since Lins” and [e]gr are inverses, we get: Lin3’ = L.
Then G = Lin%" = L.

Then L(z) = G(z) = G(F1) = A =gsr x, as desired.

86. TENSOR PRODUCTS OF TENSORS

DEFINITION 86.1. Let V,W € TNSR*, z eV, ye W.
Then y®x = y *yrw <.

THEOREM 86.2. . Let V,W e TNSR*, eV, ye W.

Letie Ty, j€Iy. Then WJV‘VM@V(y ®x) = y;z;.

O
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Proof. Let L := LinY® and let M := Linﬁw.

Then y ® x = [M o L]yw. Also [L]yr = .
Then Wm®v(y ®x) = ﬂ;VHPV([M o Llyw) = mV((M o L)(g})).
By Definition 80.5, (s¢}*); = L(&)).

Then z; = ([L]yr)i = (s¢4%); = L(£)).

Then (M o L)(e}) = M(L(g))) = M(z;).

By Theorem 85.2, we have: Vte R, M, = ty.

Then M(x;) = My, = xy, so 7} (M(x;)) = ;- (7} (y)) = 23y

Then Wm®v(y®x) = W}’V((MOL)(QV)) = W;V(M(xl)) = x;y; = Yz O
THEOREM 86.3. Let V := R3, W := R2.

Let x :=(2,3,4), y := (10, 20). Then y®@ x = { 10 60 80

Proof. This follows from Theorem 86.2. U

20 30 40}

87. POLARIZING POLYNOMIALS AND LINEARIZING MULTILINEARS

In the next result, students provided the coefficients on (), and, after
hearing them, I found the coefficients on F.

THEOREM 87.1. Let V := R? and X := R.
Define Q € Qi by Q(t,u) = 8t2 + 3tu + 4u?.
Define F € By, by F((r,s), (t,u)) = 8rt + (3/2)ru + (3/2)st + 4su.
Then F(e,0) = Q.
Proof. Want: Yt,u € R, F((t,u), (t,u)) = Q(t,u).
Given t,u € R. Want: F((t,u), (t,u)) = Q(t, u).
We have F((t,u), (t,u)) = 8tt + (3/2)tu + (3/2)ut + 4uu
= 8t2 + 3tu + 4u?® = Q(x,y), as desired. [
The technique of going from @) to F' generalizes, yielding:

THEOREM 87.2. Let V,W € TNSR*, Q € QW.
Then 31F € SBYY s.t. F(e,0) = Q.

Proof. Unassigned HW. U

THEOREM 87.3. Let V, X € TNSR™.
Define A : B, — Qi by A(B) = B(e,e). Let ® := A|(SBY).
Then A : By, —> Q7 and ® : SB —> Q5.

Proof. The existence part of Theorem 87.2 shows: ® : SB{f —> OF.
It follows that: A : By, —> OF. Want: ® : SByf —> O5.
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The uniqueness part of Theorem 87.2 shows: ® : SBf — OF.
Then @ : SBiY <> Q3 as desired.

THEOREM 87.4. Let V,W, X € TNSR*.
Define U : By — X @V QW by ¥(B) = [Bly
Then W : BX)/(W —>>XQRQVRW.

Proof. Unassigned HW.

DEFINITION 87.5. Let VWV, X e TNSR", Ae XV @W.
Define U : By, —> X QV QW by ¥(B) = Bl
Then Bilin""* := ~1(A).

THEOREM 87.6. Let U, V,W, X € TNSR™.
Define V: Ty —» XQUV QW by W(T) = [T]¥w-
Then U : Ty —>XQUQVQW.

Proof. Unassigned HW.

DEFINITION 87.7. Let U,V,W, X € TNSR™.
Define U : Ty —>> XQUQV QW by U(T) = [T]¥w-
Then Trilin§""* := w~1(A).

Let U, V,WW € TNSR™ and let B € BY,,.
Then [B], e WQUQV.
So, since E}/}/@V S>>WRURV,
we can choose L € Loy s.t. [Lgy = [B]Jy-
We “tensorize” B to get B}y,
and then “linearize” [B]f, to get L.

In this way,
any bilinear map can be converted into a linear map,
and so “bilinear algebra” is simply a part of linear algebra.

Let U, V,W, X € TNSR" and let T € Bi}yyy -
Then [T]F¢w e XQURV QW.
So, since Lgrew —> XQUQV W,
we can choose L € Ligvew St [Lldovew = [T10vw-
We “tensorize” T to get [T]3vw,
and then “linearize” [T, to get L.

In this way,
any trilinear map can be converted into a linear map,

and so “trilinear algebra” is simply a part of linear algebra.

215
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Let V,W € TNSR" and let Q € QY.
Then, since SBY —> QW

we can choose B € SBY s.t. Q = B(s, ).
Then [B]}, e WRV V.
So, since ,CI{/V®V S>>WRVRV,

we can choose L € Li/gy s.t. [L]Vg, = [BIVy-
We “polarize” Q) to get B,

“tensorize” B to get [B]{%,

and then “linearize” [B]{Y;, to get L.

In this way,
any homogeneous quadratic can be converted into a linear map,
and so “quadratic algebra” is simply a part of linear algebra.

Let V,W € TNSR" and let K € K}/.
Then, since ST —> KV,
we can choose T € STW s.t. K =T(e,0,0).
Then [Ty e WQVRVRV.
So, since LYgygy > W RV RV RV,
we can choose L € LVgyey St [LIVever = [TV
We “polarize” K to get T,
“tensorize” T to get [TV v,
and then “linearize” [T]{% to get L.

In this way,
any homogeneous cubic can be converted into a linear map,
and so “cubic algebra” is simply a part of linear algebra.

In Theorem 89.1 below, we will see that, with some hypotheses,
any function can be approximated by a polynomial.
Any polynomial can be broken up into homogeneous parts,
and each part can then be converted into a linear map.
So linear algebra is the study of EVERYTHING!

88. COMPUTING MULTILINEAR FROM THE TENSOR

THEOREM 88.1. Let V,W € TNSR*, Ac U®V.
Then, Yz € U, Lin\"(z) = A sgyw .

Proof. This is a restatement of Theorem 85.6. U
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THEOREM 88.2. Let U,V,W € TNSR*, Ae WQU®V.
Let S . =UQ®V. Then, Vx e U, Vy eV,
Biling "V (z,9) = A srew (z®vy).

Proof. Unassigned HW. Similar to proof of Theorem 85.6. O

THEOREM 88.3. Let T,U,V, W € TNSR*, Ac WQRTQURV.
Let S :=TRURYV. Then, Vx e T, Vye U, VzeV,
Trilin "YW (z,9) = A srew (r®@y®2).

Proof. Unassigned HW. Similar to proof of Theorem 85.6. U

89. THE CUBIC APPROXIMATION THEOREM

THEOREM 89.1. Let S, Z € TNSR*, f: S --» Z, pe dom[f"].
Let L := Lin?;}z, Q := Bilin3, (e, e), K := Trilimi?sz(o7 o o).

1
QR K
Then: (f5) - (L+ﬁ+§ e 032
Proof. This proof is deferred until later. U

Let S,Z € TNSR", f: S --» Z, pedom[f”], he S.

Let T:=5® S5, U:=5Q05®S.

Then f/:S--»Z®Sand [":S--»ZQ@T and f":S--+ZRU.
Then f,e Z, f,e Z®@S and f/ e Z@®T and f)' e Z@U.

The idea of Theorem 89.1 is:

Up to a subcubic error (in h), we have:

Qn Ky
. fp+h_fp~Lh+§+§a
Bilin7,Z(h,h)  Trilin,°%(h, h, h)
. U b
fp+h ~ fp +L1n}igz(h) + 92l + 3 ’
SO

fp+h ~ fp + [(f;;) *RSZ h]

(f)) *rrz (h®h) N (f)) *rvz (h®h®h)

+ 91 3l

DEFINITION 89.2. Let S € TNSR™.
Then S®° := R and S®!' := S and S®?* == S®S and S = SRS®S.
Also, Vh e S, h®% =1 and h® := h and h®* :== h@ h

and h®® .= h® h® h.
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Let S,Z € TNSR™, f: S --» Z, pedom[f”], z € S.

Let T := S®% U := 5®3,

Then f':S--+Z®S and f":S--+»ZQT and f": S --» ZQU.
Then f,e Z, f,e Z®@S and f/ e Z®T and f)' e ZQU.

The idea of Theorem 89.1 is:

Up to a subcubic error (in x — p), we have:

fa ~ o + [ (fy) *rsz (z—p) ]

(f;;’) *RTZ ((x—p)®2) " (f;;”) *RUZ ((f—p)®3).

* 5 3l

90. DIRECTIONAL AND PARTIAL DERIVATIVES

THEOREM 90.1. Let S, T € TNSR*, f:S--»T, peSs.
Then Lini,)T = D;?Tf.

Proof. Since fi = (st;7)(D5T f), we get (stS7)7(f)) = D3Tf.
Then Lini,)T = (st{")7N(f)) = D5Tf, asdesired. O

p

THEOREM 90.2. Lot .7 € TNSR',  f:§ T, pedom[f].
Then  f] — (DSTf) e o,

Proof. Since p € dom[f’], we get f) # ®.

We have (sl,)(D5Tf) = f1 # @, 80 DT f # ©.

Since ® # D]fo = UE(LINS, f), we get DIfo e LINS, f.

Then fI' — (DJ7f) € of", as desired. O

THEOREM 90.3. Let S,T € TNSR*, f:S--»T.
Assume fo, = Op. Then f(;fs =f.

Proof. Want: Yh e S, fi (h) = f(h).
Given h e S. Want: fi (h) = f(h).
We have fi.(h) = fos+h — fos = fo — 00 = fr = f(h), as desired. [

THEOREM 90.4. Let S, T € TNSR*, f:S5--T, p,qeSs.
Then DfT(f(p +e)) = DST f.

ptq

Proof. Want: LINSS”(f(p + e)) = LINSJT_f.

p+q
Want:  VLe L, [(LeLINS"(f(p+e))) < (LeLINSY f)].
Given L e £L.  Want: ( Le LINSST( f(p+e))

) < (LeLINST f).
We have: ( Le LINS"(f(p+9))) = ((f(p+e) — L e ofT).

p+q
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Also, we have: (LeLINSY f) < (fL_ —Le o).

T T ptq p+q
Want: (f(p+ o) )q = Jptq

Want: Yhe S, (f(p+e))i(h) = fl.,(h).
Given h e S. Want: (f(p+e))5(h) = fL,(h).

We have (f(p+e))F(h) = ((f(p+®)gen) — ((f(p+9))g)
= (flp+q+h)) = (flp+q) = fL,(h). O

THEOREM 90.5. Let Se TNSR", w,veS.
Then U *pgp UV = U g .

Proof. By Theorem 83.6, u #psgr v = Z U;v;.
JE€Ls
By Definition 75.17, u g v = Z Ujv;j.
J€Is
Then u *psgp v = Z Ujv; = U *g . O
J€Ls
DEFINITION 90.6. Let Se€ TNSR*, p,ves.
Then iy : R — S is defined by 1,)(t) = p + vt.

DEFINITION 90.7. Let S TNSR*, wvesS, f:S5--»T.
Then 05T f + S --» T is defined by (057 f), = (f o (i%))5-

p

THEOREM 90.8. Let Se€ TNSR*, f:S--»R, pves.
Then (077 f)y =* (f;) *s v.

p

Proof. By HW#8-4, (357 f), =* (DSTf),.

By Theorem 90.1, (D57 f)(v) = (Lin?g)(v).
By Theorem 88.1, (Lin?g)(v) = f, *RSR V.
By Theorem 90.5, f) *rsr v = (f,) *s v.

Then (357 f), =* (D§Tf)y = (DSTf)(v) = (Lin}/)(v)

= fy msr v = (f}) *s v O
DEFINITION 90.9. Let Se€ TNSR, 7T e TNSR".
Let f:S--»T, jels. Then afo = (?ESST .
THEOREM 90.10. Let S€ TNSR, wveS, jeZs.
Then v g Ef = ;.
Proof. Unassigned HW. O

DEFINITION 90.11. Let S be a set, W € TNSR™.
Let f : S --—-W, p,qebs.
Then f|1 = fy — fp-a
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THEOREM 90.12. Let f: R -—» R and let a,b € R.
Assume that [alb] < dom][f’].
Then 3c e [alb] s.t. fI° = (f) - (b—a).

Proof. This is a restatement of Theorem 73.4. U
THEOREM 90.13. Let V :=R?*, W :=R, R:V --»W.

Letd >0, J:=(=0;9), =x,yel. Assume J* < dom[R'].
Then 3Bel0ly] st RIZY = ((Y"R)(x,8)) -y

Proof. Let i := zgg (1])) By HW#8-3, we have: i/ = CH(QO’U.

Also, we have: VteR, i, = (x,0) +t-(0,1) = (x,1).
Let f:= Rou.

Claim: Vte J, (0YWR),, = [/ # O.
Proof of Claim:
Given te J.  Want: (0YWR);,, = f| # O@.
Since f = R o1, by the Chain Rule,

we have: DIV f =* (DYWR)o (D).
We have i; = (z,t) € J* < dom[R/]. Then DY Re LY.
We have t € R = dom[i']. Then DFVie LY.
It follows that (D} R) o (DfVi) € LY,

and so (DY R) o (DfVi) # ©.

Since DFWf =% (DXWR) o (DEVZ') # O,

we get: DfV f = (DYWR) o (D).
Since DXV f = (DXWR) o (DRVi) e LY, we get (DEV f)(1) e W.
Also, fi = st (DEV ) = (DFY f)(1), 0 f{ = (DEVf)(1).
Then f/ = (DX f)(1) € W.
Then f| # ©. Want: (YW R);,, =* fl.
By HW#8-4, (0% R);, =* (D] R).y
So, since (YW R);, = ((96‘/;/WR)Z'“ we get (05" R);, =* (D} R).y
Want: f; = (D} R).y
We have i, = s/&V(DRVi) = (DFVi)(1).
Since DV f = (DYW R) o (D}Vi) and since (DfV4)(1) = i,

we get (DFY f)(1) = (DY R)(if).
Recall that f/ = (DRWf)(l)
Also, i} = i'(t) = ( )(t) (0,1) = &Y.
Then f{ = (D" )1 ) = DXWR)(%)

= (D" R)(ey) = (D} R).y, as desired.
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End of proof of Claim.

By the Claim, J < dom[f’].
Since 0,y € J and since J is an interval, we get [0|y] < J.
Then [0|y] < J < dom[f’].
So, by Theorem 90.12, choose 8 € [0ly] s.t. fl§ = (f3) - (y—0).
Want: RITH = (@5 R)(@.6)) -y
We have f, = (Roi), = R(iy) = R(x,y).
Also, fy = (Ro i)y = R{in) = R(r.0).
Then f[} = f, — fo = [R(x,y)] — [R(z.0)] = B3,
By the Claim, (0" R);, = f5. Also, ig = (z, 8).
Then fj = (05" R)y, = (05" R)(is) = (0" R)(x, B).
Then RIG) = 8 = (f) - (y—0)
= (fy) -y = (&"R)(z,p), as desired. O

THEOREM 90.14. Let V := R? and W := R. Define f : V — W by
1, if(x=0)v(y=0)

fl@,y) = . (

0, ifx#0#uy.

Then 05 € dom[d; f], 05 € dom[da2f], and f is not continuous at 0.
Proof. Unassigned HW. O

THEOREM 90.15. Let f and g be functions. Then:

(g=2f) <= ( (dom[g] 2dom[f]) & (g|(dom[f])=f) )
s (YD, g =1 )

Proof. Unassigned HW. U
THEOREM 90.16. Let f and g be functions and let S be a set.
Assume that S © dom|[f]. Then:

(g2f) = (VeS, g ="f )
Proof. Unassigned HW. O

On the board, we graphed two partial functions f,g : R --» R
s.t. ¢ 2 f, and discussed Theorem 90.15 and Theorem 90.16 in the
context of those two functions.

THEOREM 90.17. Let S,T € TNSR"* and let f,g: S --»T.
Assume that g 2 f. Then:
(1) ( feDNZL ) = ( geDNZL) and
(2)( feoy ) = (geoy) and
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3)Vpe S, g 2 ' and

(- b = Iy
LINS;"g 2 LINSY' f and
Di'g =* D3Tf  and

g = 1] and
4)9 =21 and
(5)vwesS, 5Tg20d5Tf.
Proof. Unassigned HW. U

THEOREM 90.18. Let S,T € TNSR" and let f,g: S --»T.
Then (f +9) 2 f'+¢.

Proof. This follows from Theorem 81.3. O
THEOREM 90.19. Let S,T € TNSR™, letce R andlet f : S -+ T.
Then (c¢- f) = c- f.

Proof. This follows from Theorem 81.4. O

Let S and T be tensor spaces, let f: S --» T and let £ € Ny. Then
the kth derivative of f is denoted f*). Then f*) : S -—» T ® (S®*).

Let S and T be tensor spaces and let f : S --» T. Then f® = f
and f@ = " and f® = f”. By convention, f(© = f.

THEOREM 90.20. Let S,T € TNSRY, f,g: S -+ T, g€ S, { € Ny.
Assume q € dom[f)] and q € dom[¢g¥)].  Then q € dom[(f + g)“].

Proof. Unassigned HW. ([l

THEOREM 90.21. Let S,T € TNSR*, (e Ny, f:S - T, g€ S.
Let ce R.  Assume q e dom[f¥].  Then q € dom[(c- f)®].

Proof. Unassigned HW. O

THEOREM 90.22. Let R,S,T,U € TNSR", +«¢ BgT,
f:R--»S and g¢g:R--»T.
Then:  (f+=g) 2 (f'*xg9) + (f*9) and
(fxg9)" 2 (f"+g9) +2-(f'=g) + (f=g")

Proof. This follows from Theorem 82.11, but requires careful definitions
of the various bilinear multiplications, all of which are called . U

We will not require Theorem 90.22, so we have not carefully defined
all the multiplications appearing in it, and we omit a detailed proof.
Instead, more important to us is:
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THEOREM 90.23. Let R, S,T,U € TNSR*,  « e BY,,
f:R--+S, g¢g:R---T, peR and keN.

Assume that p € dom[f®)] and that p e dom[g™].

Then p € dom[(f * g)®)].

Proof. We have: p e (dom[f*]) n (dom[g*]).
Want: (dom[f®™]) n (dom[¢g*]) < dom[(f * g)*].
Let I denote the set of all £ € Nj s.t.
YV, W, X,Y € TNSR*, VO e By,
Vo:V - W, VYi:V--2 X,
(dom[¢]) N (dom[¢]) < doml(¢ ©®¢)].
Want: ke 1. Want: I = Nj.
We have: YV, W, X, Y € TNSR", VOe B,
Vo:V - W, VYY:V--+ X,
(dom[¢]) ~ (dom[¥]) = dom[p® ]
It follows that 0 € I. Want: Ve l, (+1€el.
Given (€ I. Want: £+ 1€ 1.
Know: VV,W,X,Y € TNSR*, VOe By,
Vo:V - W, Y:V --5 X,
(dom[$]) A (dom[$®]) < dom[(6© )]
Want: YV, W, X,Y € TNSR*, VOe B,
Vo:V -—» W, Y:V --» X,
(dom[¢D] )~ (dom[$#D]) < dom{(6@e)+V].
Given VW, X,Y e INSR", © e B, ¢:V -—» W, ¢ : V --» X.
Want: (dom[¢“TV]) A (dom[yp“V]) < dom[(¢p ® )+ V].
Want: Vg € (dom[¢p™)]) n (dom[¢p**V]), ¢ e dom[(¢p ® )Y,
Given ¢ € (dom[¢“*V]) A (dom[ypFV]).
Want: ¢ € dom[(¢ ® )Y,
Let S"'=S®R, T':=T®R, U :=UQ®R.
Define @ : 8’ x T — U’ by A®y b = stF((Linfi%) © b).
Define @ : S x T" — U’ by a Or B = st (a © (Link%)).
Then, by Theorem 82.11, (pOY) 2(¢ OLY) + (¢ OrY).
Then:  ((60¥))Y =2 ((¢OLv¥)+(¢90r¥))".
So, since  ((pOY))H = (pO ), we see that:
(6OP)D o ((¢Orv)+ (9OrY))".
Then: dom[ (¢ © )] = dom[ ((¢' Or ¥) + (6 Or ¥')) ].
We have ¢ € dom[¢“*V] and ¢!V = (¢)?), so q € dom[(¢')?].
Also, q € dom[¢p“*V] < dom[¥)], so q € dom[)?].
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Since q € dom[(¢")¥], since ¢ € dom[¢)"],

and since ¢ € I, we get: q € dom[(¢' O ¥)¥].
We have ¢ € dom[¢™1] < dom[¢p?], so ¢ € dom[¢¥)].
Also, g € dom[**D)] and $%41) = (1), 50 g € dom[(1#) "]
Since q € dom[o¥], since ¢ € dom|[(¢')?],

and since (e I, we get: q € dom[(¢ O ¢") D).
Since g dom[(¢/ @, ¥)(%] and g€ dom[(6On )]

by Theorem 90.21, we get: q € dom[(¢/ O ¥ + ¢ Or ¥')?].

Then: ¢ € dom[((¢/ Op¥) + (¢ OrY'))"]
c  dom[ (¢ @)+, as desired. O

Theorem 90.23 above is called the Product Derivatives Domain
Theorem.

THEOREM 90.24. Let S,T,U € TNSR*Y, f: S -+ T, g: T --» U.
Then: (gof) 2 (§of)«[ and
(gof) 2 ((g"of)«f)=f + (g of)=f"

Proof. This follows from Theorem 83.3, but requires careful definitions
of the various bilinear multiplications, all of which are called . U

We will not require Theorem 90.24, so we have not carefully defined
all the multiplications appearing in it, and we omit a detailed proof.
Instead, more important to us is:

THEOREM 90.25. Let S,T,U € TNSR™, f: S -=»T, g: T —-» U.
Assume that p € dom[f®] and that f, € dom[g)].
Then p e dom[(g o f)*].

Proof. We have: p e (dom[f®]) n ( f*(dom[g*¥])).

Want: (dom[f®]) A (f*(dom[g®])) < dom(g o f)¥)].

Let I denote the set of all £ € Ny s.t.

VV,W,X e TNSR", Vo: V —> W, Voo : W ——» X,

(dom[9®]) n (¢*(dom[¥®])) = dom[(s o ¢)®].

Want: ke 1. Want: I = Np.

We have: VYV, W, X € TNSR*, V¢p: V ——» W, V) : W --» X,
(dom[¢]) ~ (¢*(dom[¥])) = domls; o).

It follows that 0 € I. Want: Vlel, {+1€l.

Given £ € I. Want: ¢+ 1€ 1.

Know: VV,W,X e TNSR"Y,Vo:V - W, Vo) : W --» X,
(dom[6©]) n (¢*(dom[¥®])) = dom[(s o ¢)®].
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Want: VYV, W, X e TNSR", V¢ :V - W Voo : W --» X,
(dom[¢“D] )~ (¢*(dom[“V])) < dom[(1rod) D]
Given V, W, X e TNSR*, ¢ : V > W, ) : W --» X
Want: (dom[6]) r (6*(dom[pV])) < dom[( 0 )]
Want: Vg € (dom[s¢“"V]) n (¢*(dom[“"D])),
g € dom[ (¢ 0 ¢)+V)].

Given g & (dom[g*1])  (*(dom[:+)])),
Want: ¢ € dom[(¢) o ¢)“*V].
By Theorem 83.3, (o) 2 o) »ywx ¢.
Then ((¢ 0 ) ) 2 (¢ o) svwx ¢)O.
So, since  ((Yo@) ) = (¢Yop)th), we see that:

(Wod) D 2 ((¢ o) svwx ¢ ).
Then: dom|[ (¢ 0 )V ] 2 dom[( (¢’ 0 ¢) *ywx ¢ )]
We have ¢ € dom[¢p"1] and ¢!V = (¢/)¥, so ¢ e dom[(¢")?].

Also, ¢ € dom[¢*“*V] < dom[¥], so ¢ € dom[¢))].
Since q € dom[(¢") ], since ¢ € dom[y(®],
and since £ € I, we get: q € dom[(¢' 0 ¢)9].

We have ¢ € dom[¢"* V] and ) = (¢/)?, s0 g € dom|[(¢)“].
Since ¢edom[(y) 0 ¢)¥] and qe dom[(z)) ],
by Theorem 90.23, we get: ¢ € dom[( (¢’ 0 @) *ywx ¢ )]
Then: ¢ € dom[( (¥ 0¢) *ywx ¢ )O]
< dom[ (¢ o)V, as desired. O

Theorem 90.25 above is called the Composition Deriviatives Do-
main Theorem.

91. AN INFINTELY DIRECTIONALLY DIFFERENTIABLE FUNCTION
THAT IS NOT CONTINUOUS

You are expected to know the definition of “infinitely directionally
differentiable”, and the fact that there is an infinitely directionally
differentiable function that is not continuous. You are neither expected
to know the proof of that fact nor expected to know the other facts
covered in this section.

Let V:=R2% Forall ke N, forall se V¥ forall ¢ : V --» R, let
Os¢p i= 05, -+ 05, 0. Let S:=V uV2UV3u--.. We will say that a
function ¢ : V' — R is infinitely directionally differentiable if, for
all s € S, we have dom[ds¢] = V.
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Choose an infinitely differentiable function g : R — R such that
(g=0on (—ow,1]u[3,0) )and (¢g(2) =1 ) and ( im[g] < [0,1] ).
g(y/x?), if x #0;

0, if x =0.

FACT 91.1. The function f :V — R is infinitely directionally differ-
entiable, and is discontinuous at Os.

Proof. We define
U = {(z,y)eV|2* <y < 32? and
U = {(z,y)eV|2® <y <3z%).

Then Oy = (0,0) € U. Also, U is the interior in V of U, so V\U is the
closure in V of V\U. Let ® be the set of all ¢ : V — R such that

e p=0o0on V\U and

e forall se S, 0s¢ is continuous on V\{0y }.

Claim 1: f € ®. Proof of Claim 1: By construction, f =0 on V\U.
Let s € S be given. We wish to show that ds¢ is continuous on V\{0y }.

By the Multivariable Chain Rule (to be proved later), Vz,y € R, we
have: if z # 0, then 0, f is continuous at (x,y). Let Y := {(0,y)|y € R}
denote the y-axis. Then 0 f is continuous on V\Y. It therefore suffices
to show that ds¢ is continuous on Y\{Oy}. Let v € Y\{Oy} be given.
We wish to show: 0,¢ is continuous at v.

Let V := V\U. We have v € Y\{0y} < V\U = V;. So, since Vj is
open in V| we see that V4 is an open nbd in V' of v. Since Vj € V\U
and since f = 0 on V\U, we see that f = 0 on V4. So, since V; is open
in V', it follows that ds¢p = 0 on Vj. So, since V is an open nbd in V/
of v, it follows that dys¢ is continuous at v. End of proof of Claim 1.

Claim 2: Let ¢ € ® and let v € V. Then we have (0,¢)(0y) = 0.
Proof of Claim 2: Let L := Rv < V denote the line through v in V,
and give L the relative topology inherited from V. Choose a nbd L
of Oy in L such that Ly € V\U. Since ¢ = 0 on V\U, we conclude that
¢ =0on Lyg. Then (0,0)(0y) = 0, as desired. End of proof of Claim 2.

Claim 3: Let ¢ € ®,let v e V and let s € S. Then 0,0,¢ is continuous
on V\{Oy}. Proof of Claim 3: Because s € S =V uVZ2uV3u---|
choose k € N such that s € V¥ Let t := (s1,...,8,v). Then we
have t € V¥ < S and d,¢ = 0,0,0. Since ¢ € ®, we see that 0,¢ is
continuous on V\{0y}. Then 0,0,¢ is continuous on V\{0y }, as desired.
End of proof of Claim 3.

Define f:V — R by f(z,y) =
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Claim 4: Let ¢ € ® and let v € V. Then we have d,¢ € ®. Proof
of Claim 4: By Claim 3, it suffices to show that d,¢ = 0 on V\U. Since
¢ € ®, we know that ¢ = 0 on V\U. So, since V\U < V\U, it follows
that ¢ = 0 on V\U. So since V\U is open in V, we see that d,¢ = 0
on V\U. By Claim 2, (3,¢)(0y) = 0. Let U* := U\(U u {0y}). It
remains to show that d,¢ = 0 on U*. Let x € U* be given. We wish
to show that (0,¢)(z) = 0.

Asgpe ®andveV < S, we know that 0d,¢ is continuous on V\{0y }.
We have z € U* < V\{Oy}. Then 0,¢ is continuous at x. Also,
x e U\U < V\U, and V\U is the closure in V of V\U. Then z is an
element of the closure in V' of V\U, so, since d,¢ = 0 on V\U and since
0y is continuous at x, we get (0,¢)(z) = 0. End of proof of Claim 4.

Claim 5: Let ¢ € ®. Then we have: Vk € N, Vs € V¥, 0,0 € ®.
Proof of Claim 5: We argue by induction on k. By Claim 4, we have:
Vs € V, 0,0 € ®, proving the base case. Let k € N be given and
make the induction assumption: Vs € V¥ 0,0 € ®. We wish to show:
Vse VEl 0,0 e ®. Let s € VE! be given. We wish to show: d,¢ € ®.

Let 7 := (s2,...,5041) € VFand ¢ = 0,¢. Then 05¢ = 05,0,¢ = 0s,7).
By the induction assumption, 0,¢ € ®. That is, we have 1) € ®. Then,
by Claim 4, ds,¢ € . Then ds¢ = 0,0 € . End of proof of Claim 5.

Let C := {(x,y) € V |y = 22%}. By construction, know both that
f=1on C\{Oy} and that f(0y) = 0. Thus f is discontinuous at Oy.
It remains to show that f is infinitely directionally differentiable. Let
s € S be given. We wish to show that dom[ds¢] = V.

Since se S =V uV2uV3uU---, choose k € N such that s € V*.
By Claim 1, we have f € ®. Then, by Claim 5, we have d,¢ € . Then,
by definition of ®, we see that dom[ds¢] = V', as desired. O

We say a function ¢ : V' — R is directionally differentiable if, for
all v eV, dom[d,¢] = V. Recall: f:V — R is defined by

~Jgly/e?), ifx#0;
f(v)_{o, if 2 = 0.

Let o : V — R be an infinitely differentiable function satisfying ¢ = 0
on V\(B(0z,1)) and 0(03) = 1 and im[o] < [0, 1]. For all € > 0, define
o.: V> Rbyo.(x) =¢e-[o(x/e)]; then 0. = 0 on V\(B(0z,¢)) and
0:(02) = € and im[o.] < [0,¢]. For all € > 0, for all p € V, we define
foe: V> Rby foo(zx) =[o:(x —p)][f(z — p)]; then
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* fpe =0o0n V\(B(pe)),

e im[fpc] < [0,¢€],

e f,. is infinitely directionally differentiable and
e f,. is discontinuous at p.

For any sequence py, po, ... of distinct points in V', there is a sequence
€1,€2,... of positive real numbers s.t. f,, o, + fp,.c, + -+ is both direc-
tionally differentiable and discontinuous at each point of {p1,pa,...}.
In particular, there is a directionally differentiable g : V' — R such that
g is discontinuous at each point of Q2.

A subset S of a topological space X is said to be interior-free in X
if the interior in X of S is empty. A subset S of a topological space X is
said to be meager in X if S is a subset of a countable union of closed
interior-free subsets of X. A subset S of a topological space X is said
to be comeager in X if X\S is meager in X. By the Baire Category
Theorem, for any n € N, any comeager subset of R" is to be dense
in R™; in particular, a comeager subset of R" is nonempty.

For any ¢ : V — R, define Cy := {z € V| ¢ is continuous at z}, and
let Dy := V\Cy be the set of points of discontinuity of ¢.

FACT 91.2. Let ¢ : V — R and assume: Yi € {1,2}, dom[d;¢] = V.

Then Cy is comeager in V.

Proof. For all z € R, the maps ¢(z,e) : R - R and ¢(e,z) : R — R are
both differentiable, hence continuous. Then, by e.g., Namioka, Sepa-
rate continuity and joint continuity, Pacific Journal of Mathematics,
Volume 51, Number 2, 1974, we see that Cy is comeager in V. (l

FACT 91.3. Let ¢ : V — R. Assume: Vi, j € {1,2}, dom|[0;0;¢] = V.
Then Cy contains a dense open subset of V.

Proof. Since Dy = V\Cy, we wish to show that Dy is nowhere dense
in V. Let D be the closure in V of Dy. Let U be the interior in V of D.
We wish to show: U = ¢#. Assume, for a contradiction, that U # (.
For all j € {1,2}, let ¢; := 0;¢. For all i € {1,2}, dom[0;1] =V,
so, by Fact 91.2, we see that Cy, is comeager in V. For all i € {1,2},
dom[0;1p2] = V, so, by Fact 91.2, we see that Cy, is comeager in V.
Let C' := Cy, n Cy,. Then C is comeager in V, so, by the Baire
Category Theorem, C' is dense in V. So, as U is a nonempty open
subset of V', we conclude that C' n U # . Choose x € C' n U. Since
x e C = Cy, nCy,, we see that 1; and 1)y are both continuous at x.
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For all j € {1, 2}, choose an open neighborhood U; in U of x such that
¥; is bounded on U;. Then U; nUs is an open neighborhood in U of z,
so choose open intervals I, J < R such that x € [ x J < U; nUy. Then
11 and 1) are bounded on I x J. That is, d1¢ and dy¢ are bounded
on I x J. Then, by the Mean Value Theorem, ¢ is continuous on [ x J.
Let W:=1xJ. Then W < Cy,s0 WDy = .

We have both z € I x J =W and W =1 x J < Uy nU,. Also,
U, < U and U, < U. Also, by definition of U, we have U < D. Then
reW U nUy,<Uc D. Since I and J are open intervals in R and
since W = I x J, it follows that W is an open subset of V. So, since
x € W, we see that W is an open neighborhood in V' of x. So, since
x € D and since D is the closure in V of Dy, it follows that WDy # .
However, we showed that W n D, = ¢J. Contradiction. U

92. A TENSOR COMPUTATION

DEFINITION 92.1. Let Ty := {}.

VeeR, let vy 1= . Let mjy := idg and let efy := 1.
Vo e N, Yme N7, let m|| :=m and J|m := m.
Define &| & = &.

Note: R # R} = R, We therefore cannot extend the statement
VS e TNSR, S =RIs
to TNSR*. On the other hand, we do have a quantified equivalence
for equality of tensors:

THEOREM 92.2. VS € TNSR*, Yv,w € S, we have:
(v=w) < (VjeZs,vj=w,;).

THEOREM 92.3. Let V,W, X e TNSR*, Ae WQV, Be XQW.
Let i e Iv, ke IW Then: (B WX A)kHi = Z (Bk’H]) : (AjHi).

JEIw
Proof. Unassigned HW. O
THEOREM 92.4. Let V,W € TNSR*, Ae W ®V.
Leti e IV G,ndj € IW Then: (A *RVW €Y) *RWR 5}-/[/ = Ajﬂl
Proof. Let ¥ := A spyw &). Want: = *gwr 5}” = Ajj;. We have:
voawr ) = (T owmwr ol = Y, (@) - (€ e
kEZW
= o @ = (x-(€);) +0 = 3 = g
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= @owvw iig = ) () - ((E)ag)
LeTy,
= 2 (Age) - (D) = ((Age) - (D)) + 0
tet = A as desired. 0

gl
We reviewed Theorem 85.6.

THEOREM 92.5. Let S, T € TNSR*, f:S - T, veS.
Define L € LTgg by: Ly = A spsp v.  Then 057f 2 Lo(f).

Proof. Want: Yz € S, (057 f), =* (Lo (f))a

Given z € S. Want: (057 f), =* (Lo (f'))s.

By HW#9-2, (357 f). =* (f!) #*grsr v.

Then (057 f), =* (f)) *rsr v = L(f.) = (Lo(f"))., as desired. [

THEOREM 92.6. Let S, T € TNSR*, f: S --—+T,veS.
Then dom[f'] < dom[d5T f].

Proof. We have im[f'] € T® S = dom[L], so dom[Lo (f')] = dom[f’].
By Theorem 92.5, 05Tf 2 Lo (f'), so dom[d5Tf] 2 dom[L o (f')].
Then dom[f’] = dom[Lo ()] < dom[d57 f], as desired. O

THEOREM 92.7. Let V,W € TNSR*, Le L}V.
Then V = dom[L'].

Proof. Since L : V — W weget L : V --» W®V, and so dom[L'] < V.
Want: V < dom[L']. Want: Yz e V, x € dom[L'].

Given z € V. Want z € dom|[L/].

Since L € E&V, we get SEXW eW®V.

By HW#6-4, DL = L, and so L, = s¢;"V.

Then L), = sty e W®V, and so L/, # @, and so € dom[L/]. O

THEOREM 92.8. Let S,T ¢ TNSR*, ve S, f: 5 - T.
Then dom[f"] < dom[(d5T f)'].

Proof. Define L € Lgg by: La = A #pgr v.

By Theorem 92.5, 05T f = Lo (f').

Let g := f'. Then 05Tf 2 Log.

Then (057 f) = (Log), sodom[(5Tf)] =2 dom[(L o g)'].
Want: Vo € dom[f”], x € dom[(25T f)].

Given z € dom|[f”]. Want: z € dom[(357 f)'].

Since dom[(L o g)'] < dom[(057 f)],
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it suffices to show: = € dom|[(L o g)'].
By Theorem 90.25, it suffices to show: ( z € dom[¢’] ) & ( ¢, € dom[L'] ).
We have = € dom|[f”] = dom[¢']. Want: g, € dom[L/].
Since = € dom[¢'] < dom]|g], we get g, € im[g].
Since f : S --+» T, we see that f': S --» T® S, and so im[f'| € T®S.
Since L € Lgg, we conclude, by Theorem 92.7, that dom[L'] = T®S.
Then g, € im[g] = im[f'] € T ® S = dom[L’], as desired. O

93. SOME BASIC PROPERTIES OF DIRECTIONAL DERIVATIVES

THEOREM 93.1. Let V,W € TNSR*, f,g:V - W, ueV.
Then 0" (f +g) 2 (0, f) + (2" 9).-

Proof. Want: Yo e V., (YW (f + g9)). =* (VY f) + 0V 9))..
Given z € V. Want: (0YYV(f+ ). =* (VY f) + (VY 9))..
Let ¢:= fo(i%) and let Y= go (i%).
Then oy = (VY f)a and vy = (V" 9).,.
Also, since ¢ + ¢ = (f o (i3)) + (g0 (i7)) = (f + g) o (i),

we get (¢ + )y = (0" (f + 9))a-
By Theorem 81.3, we have (¢ + ¢)y =* ¢y + .
Then (" (f +9)). = (6 +)y =* ¢p + ¥

= ((AYY )+ (0Y™ 9))., as desired. O

THEOREM 93.2. Let V,W € TNSR*, ceR, f:V ——» W, ue V.
Then oYW (c- f) 2c- (oYY f).

Proof. Unassigned HW. U
THEOREM 93.3. Let V :=R?* W :=R, CeC}.

Then: ave = oc = oy.

Proof. Unassigned HW. O

THEOREM 93.4. Let V :=R2, W :=R, \, € R,
Define L € LY by L(x,y) = (A, pn) ov (z,y).
Then: (oYWL = CF) & (oYL = C8).

Proof. Unassigned HW. U
THEOREM 93.5. Let V :=R?, W :=R, a,7, € R.

e
Define Qe QF m Q) = | © 7| wer (@),
Then, Yx,y € R, we have:
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(V" Q)(z,y) = 20z + 2yy and
@V Q)(x,y) = 2yx + 20y.
Proof. Unassigned HW. O

DEFINITION 93.6. Let Ve TNSR', f: R — V.
Then 0 f == .
We paraphrase HW#9-2:

Let V,WW e TNSR", f:V - W, ueV.

Then: AV o f srvw
i.e., Vpe V, (axwf)p =* f; *Ryw U.

THEOREM 93.7. Let V,W,Z € TNSR™.

Let Ac ZQV W, xeV, yeW.

Then: Biliny"VZ(z,y) = A swmvewz (z®y).
Proof. Let B := Bilin},""%. Then B € B, and [B]Z,, = A.
Let = := *R,VQW,Z - Then = € Bg@V@VV,V@W'

We have: Vi e Zy, Vj € Ly, Yk € I,
Awaty = ([Blfw )k = 7 (B(e} . €}) = (B(el e}
Want: Bilin\"4(z,y) = A * (z®y).
Want: Vk e Ty, (Bilin}"VZ(x,y) )x (A = (x®Y) k-
Given ke Z,.  Want: (Biliny""?(2,9) ) = (A *zvewz (*®Y) )

~—

We calculate: Biliny"V?(z,y) = B(z,y)
= B( Z ;&5 , Z JIZ‘SZ‘)
iEIV iEZV
= D D mo oy - (B
iEIV iEIV
Then: (Biliny"?(z,9) )x = Z Z x; - y; cdot (B(éz‘»/,é}/v))k.
’iEIV iEIV

We compute: (A * (xQ@y))r = (A * 2QY) iz
= Z Ape * (2 ®@Y)oz

ZGI\/@W

= Z Apje - (2 ®y)e

ZGI\/@W

- Z Z Agpaly - (z@y)iy

iEIV jGIW

= >0 D Ay - -y

iEIV jEIW

Then(BilinXWZ(iC,y) k= Z 2 Ti = Yj - (B(Ez“/’s}/v) )i

iEIV iEIV
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= > >y Awga

€Ly 1€ly

= >0 Ak -y

iGZV ’iEIV

= (A = (z®Y) ), as desired.

THEOREM 93.8. Let h: R? --» R and let p € dom[h].
Then (1) (hy)1 = (d1h), and  (2) (h,)2 = (O2h),.

Proof. Proof of (1):

Let V := R2

We have (01h), =* hl sy &f = h, sy & = (h)1 # ©.
Then (h;,)1 = (01h),, as desired.

End of proof of (1).

Proof of (2):
Unassigned HW.

End of proof of (2).

THEOREM 93.9. Let V := R? and let W := R.
Let R:V --» W and let z := 05. Assume z € dom[R"].

Assume (61&1}%)2 = (51(92R)Z = (82(92R)Z = ((%R)Z = (52R)Z = RZ

Then R e oy"W.

Proof. Since z € dom[R"], it follows that R’ is defined near z,
so choose B € By(z) s.t. B < dom[R].

Since B € By(z), choose r > 0 s.t. B = By (z,7).

Let § :=71/v/2, J:=(=6,9). Then J? < By(z,7).

Then J? € By(z,7) = B < dom[R'].

Let g := 1R,  h:= 4R, =i,

By HW#9-3, choose o € @}’VW and 7 € @YV s.t.

f = (goiocony) 7w/ + (hoT) -7y near z.
Define = € Blyy, by a = b = ab.
Then f = (goiocony)+n}y + (hoTt) = my near z.
By HW#10-5, we have: goieol'V,
Then goiocom e O‘fVWOC’A)}/VWO@YW c of".

Then (goiooom)«m € ofW « OyW < oyW.

By Theorem 92.8, dom[R"] < dom[(d2R)'].
Then z € dom[R"] < dom[(d2R)'] = dom[A/].
By Theorem 93.8, (Rh.); = (1h). and (k) = (O2h),.

233
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So, since  (01h), = (0102R), =0 and  (02h), = (0202 R), = 0,
we conclude that (h)); =0 and (h))s = 0.

Also, we have W ®V = R R? = R2.

Then hlz = ((hlz)l, (h;)Q) = (0,0) = 0R2 = 0W®V'

So, since h, = (02R ) =0 = Oy, by HW#8-1, we get: he ol

Then hot € of OVV c of".

Also, (hoT) = W;/ e oW « (’)VW c oyW.
So, since (goiocom)) «n{ € o¥W,
we get: (goiooomn) =m + (hot)* 7y € oyW
So, since f = (goiocoony) «n{ + (hoT) * 7y near z,
we conclude that feoyW, as desired. O

THEOREM 93.10. Let V :=R? and let W := R.

Let S :V --» W and let z :== 0,. Assume z € dom[S”].

Assume (51615)z = (62815)2 = (82628)2 = (615)2 = (625)2 = Sz =0.
Then S € oYW

Proof. Define L € LY by L(x,y) = (y,z) Then Lo L = idy.
Let R:= SolL. Then, for all z,y € R, we have R(z,y) = S(y, x).
Unassigned HW: Show:

(0101R), = (0102R), = (0205R), = (01 R), = (2R), =1, = 0.
Then, by Theorem 93.9, we have R € oy V.
Also, RoL=SoLoL=Soidy=S5 and LeL) <OV,
Then S = RoLeo¥" o OV = oYW as desired. O

94. DIRECTIONAL DERIVATIVES COMMUTE WITH ONE ANOTHER

THEOREM 94.1. LetV :=R?>, W:=R, f:V - W, z:=0,.
Assume z € dom[f”]. Then (0102f), = (0201 f)..

Proof. Let  «a:=(0101f)., B :=(0102f)..
Let v = (aQalf)za 1= (aQaZf)z-

Want: § = v Let A := (alf>z7 B (a2f)za p = =
Define CeClf, LellV, P,QeQV by

C(x,y) = p,

L(x7y) = ()‘uu) v (ZL‘,y),

P(z,y) = g ?] vev ((z,9)%).
Qe = | 5 | var (@)
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Let R::f—(C’+L+P> and S::f—<C+L+Q>

2! 2!

By HW#9-5, we have:

(0101R), = (102R), = (0209R), = (1 R), = (02R), = R, = 0.
Then, by Theorem 93.9, R € oy
Unassigned HW:

(01015), = (02015), = (02025), = (1.5), = (025), = S, = 0.
Then, by Theorem 93.10, S € oy
Since z € dom[f”] € dom[f’], we conclude that f is defined near z.

Then f — f = O} near 2. ThenR—Sz—g—k%nearz.
Then 2- (R —S) = Q — P near z.

Since R, S € oy we conclude that 2- (R — S) € oy

Then Q — P e oyW. Since Q, P € Q\Y, we get Q — P e QY.
Then Q — P € (o¥W) n (QV).

So, since (oY) n (QV) = {0{"}, it follows that Q — P = 0}.

Then P =@, so P(1,1) = Q(1,1).

Then o +28+ 5 = P(1,1) = Q(1,1) = a + 2y + 6.

Then 25 = 2v, and so = 7, as desired. O

THEOREM 94.2. Let X, Z e TNSRY, ¢:R --» X.
Let Le L%, tedom[¢]. Then (Lo @), = L(¢}).

Proof. We have (Lo ¢); = (Di(Lo¢))(1) =* ((Dg,L) o (Dip))(1)
= (Lo(Di9))(1) = L((Di9)(1)) = L(¢) # @
Then (Lo ¢), = L(¢,), as desired. O

THEOREM 94.3. Let V, X, Z € TNSR™.
Let  f:V --» X, LGE)Z(, ueV.

Then: Ou(Lof) 2 Lo (0uf).
Proof. Want: Yge V, (0,(Lo f)), =* (L o (Ouf))q-
Given g e V. Want: ( w(Lof))y =% (Lo (0uf))g
Want: ( (L o (0uf))g # ) = ((QuLof))y = (Lo (@uf))g)
Assume (L o (0yf))q # Want: (0u,(Lo f)), = (Lo (0uf)),
Let 0=y, o: f o1.
Then  (0u(L o )) = (Lofol(ig)y = (Lofoi)y = (Log)
Also,  (0uf)g = (f (ZZ))E) = (foi)y = ¢p-  Then ¢f = (0uf)y.
Because (L o (0 f)) ®, it follows that (0,f), # ®
Then ¢y = (Ouf)y # @, and so 0 € dom[¢'].

Then, by Theorem 94.2, we have : (Loog)y = L(¢}).
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Then (0u(Lo f))g = (Lod)y = L(d)
= L((0uf)q) = (Lo (Ouf))e as desired. [

THEOREM 94.4. Let S5, T € TNSR*, f: S > T, ue 5.
Then (1) dom[f"] < dom[(0,.f)'] and
(2) dom[f'] < dom|[d, f].

Proof. By Theorem 92.8, (1) holds. By Theorem 92.6, (2) holds.
Then both (1) and (2) hold, as desired. O

THEOREM 94.5. Let S,T € TNSR™, f:S - T, u,v € S.
Then dom[f"] < dom[(0u0yuf)']-

Proof. Let g := 0, f. By (2) of Theorem 94.4, dom[¢'] < dom[d,g].
By (1) of Theorem 94.4, dom[ "] < dom[(3, )]
Then dom[f”] < dom[(0,f)"] = dom[¢’]

< dom[d,g] = dom[0,0, ], as desired. O

THEOREM 94.6. Let V :=R?, X e TNSR™, f:V - X, z:= 0,.
Assume z € dom|[f"]. Then (010of), = (0201 f)..

Proof. Want: Vj e Ix, ((0102f).); = ((0201f)2);-.

Given j € Zx. Want: ((d102f)z); = ((6201f)2);-
Want: 7% ((0102f)2) = 7 ((02011)=)-

Let L := 7T]X. Want: L((0102f).) = L((0201f)2).

Claim 1: (0102(L o f)), = L((¢102f).).
Proof of Claim 1:
By two applications of Theorem 94.3, we get: d10o(Lo f) 2 Lo(010:2f).
Then (0105(L o f)), =* (Lo (0102f)).
By Theorem 94.5, we get dom[f”] € dom[d;02f].
Then z € dom[f”] € dom[d;0-f],
50 (0102f). # ®, so L((0102):) # @.
Then (0102(L o f)), =* (Lo (0102f)). = L((0102f).) # ®.
Then (3102(L o f)). = L((0102f).).
End of proof of Claim 1.

Claim 2: (0201(Lo f)), = L((0201f).).

Proof of Claim 2:

By two applications of Theorem 94.3, we get: 0201(Lo f) 2 Lo (0201 f).
Then ((3251([/ 9 f))z =* (L @) (&gélf))z
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By Theorem 94.5, we get dom[f”] < dom[d20; f].
Then z € dom[f”] € dom|d20; f],

s0 (0201 f). # ®, so L((0201f).) # ®.
Then (0201 (Lo f)), =* (Lo (0201f)), = L((0201f).) # ®.
Then (0201 (Lo f)), = L((0201f).).
End of proof of Claim 2.

Since L € L%, we see that dom[L"] = X.
Since z € dom|f”] < dom|f], we get f, € im[f].
Since z € dom|f”] and since f, € im[f] € X = dom|[L"],
we conclude, by Theorem 90.25, that z € dom[(L o f)”].
Then, by Theorem 94.1, we have (0102(L o f)), = (0201(L o f))..
By Claim 1, (¢102(L o f)), = L((0102f).).
By Claim 27 L((6261f>z) = <a2al(L © f))z
Then L((0102f).) = (0102(Lo f)), = (0201 (Lo f)). = L((d201f).). O

DEFINITION 94.7. Let S € TNSRY, ¢,v,w e S.
Then jg* - R? — S is defined by Jo¥(a,b) = q +av + bw.

Unassigned HW: S € TNSR*, ¢,v,w e S.
Show: R? = dom[j] = dom[j’] = dom][;"].

THEOREM 94.8. Let S, X e TNSR*, [f:8--»X.
Let  qv,we s, j:=j".
Then: (1) 01(f o j) = (0uf) 0 and
(2) O2(f0j) = (Owf) o J.

Proof. Proof of (1):
Unassigned HW.
End of proof of (1).

Proof of (2):
Want: ¥y € R?, (62(f 7))y = ((Qwf) © )y
Given y € R% Want: (02(f 0 )y = ((Qwf) 0 7)y-

Lot pim j(y) and e = . Want: ((f 0 1))y = (2uf)p
Want: (f o jo(iy))y = (f o (5))-
Want: joliy) = iy

Want: Vt € R, (j o (ig))(t) = (iy))(t).
Given t € R. Want: (j o (i5))(t) = (iy))(t).
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We compute i ( Y=y+te=y+tey = (y1,90) +1-(0,1) = (y1, 40 +1).
We compute (Zp )(t) = prtwand p = j(y) = 72" (y1,%2) = ¢+yv+yw.

Then (jo (ig))(t) = J((@E)E) = Jjy,y2+1)
q+ v+ (Y2 + hw
q + YU + Yow + tw

End of proof of (2). R

THEOREM 94.9. Let S,X e TNSR*, f:S5 --» X.
Let qu,wesS, j:=j".
Then: (1) 0105(f 0 j) = (0u0uf) 0 j and
(2) 0201(f 0 j) = (QuwOuf) 0 j-

Proof. Proof of (1):

By (2) of Theorem 94.8, 05(f 0 j) = (0w f) 0 J.
Let g := 0, f. Then 03(foj)=goj.

By (1) of Theorem 94.8, d;(g o j) = (@ g) 07

Then 0105(f 0 j) = d1(g 0 j) = (Cug) 0 = (Cu0wg) © J.

End of proof of (1).

Proof of (2):
Unassigned HW.

End of proof of (2).

THEOREM 94.10. Let S, X € TNSR*, f:8 —-» X.
Let g € dom[f"], w,weS.
Then (00w f)g = (Cwluf)q-

Proof. Let  j:= Jq"s  z:=0a.
We have j. = jo, = joo)=q¢+0-v+0 -w=q.
Want: ((,0uwf) 0 5)z = ((Culuf) © j)-.
Since z € R? = dom[;j”] and j, = ¢q € dom][f”],

it follows, from Theorem 90.25, that z € dom[(f o j)"].
Then, by Theorem 94.6, we get:  (0102(f 0 ). = (201(f © 7))
By Theorem 94.9, we have:

0102(f 0j) = (0ulu) 0 j and 0201(f 0j) = (0w0y) ©
Then ((0,0uf) © j)» = (0102(f © j)).

prtw = (i))(1), as desired.

O

= (0201(f2J)). = ((CwOypf)oj)., asdesired. O

THEOREM 94.11. Let V :=R?, W := R, 2 := 0,.
Then there exists f : V — W s.t.
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(1) dom[f"] = V., (2) ¥k € N}, dom[f®] = V7,
(3) ((}1(72‘][')2 =0 and (4) ((')201f)z =1.

Proof. Let X :=7 and Y :=m).

Let S := {(r,y)eR?s.t. 2 |z| <]y

Let T:= {(z,y)eR?s.t. 2 |y| <|

Choose f:V — W s.t.
(A) dom[fl] =V, (B) Vk e Nf? dom[f(k)] =V,

(C)f=XYonS and (D) f=0{ onT.

By (A) and (B), we have (1) and (2). Want: (3) and (4).

Since dpf = 07 on R x {0}, we get (0102f). = 0, verifying (3).

Since 01 f =Y on {0} x R, we get (0201 f), = 1, verifying (4).

Then (3) and (4) hold, as desired. O

1y
L.

7|

95. A HIGHER ORDER CHAIN RULE

THEOREM 95.1. Let f,g: R — R.
Then — (gof) (g o f)-(f) and
(gof) (g o f) - ((f)®?) + (g of) - (f").

Proof. Unassigned HW. Follows from: Chain and Product Rules. [

U

THEOREM 95.2. LetV :=R?, S:=VQV, f:R—-V,g:V > R.
Then — (gof) =2 (9of) v (f) and

(gof)" 2 (9" f) s (/%) + (g'of) v (/)
Proof. Unassigned HW. Follows from: Chain and Product Rules, to-
gether with some tensor algebra. O

Let V:i=R% S:=VQV,f:R->V,g:V>RandpeV.
Assume that p € dom[f”] and that f, € dom[g"].
Assume that ¢g has a “critical point” at f,, i.e., assume that g}p = 0.

Then, according to Theorem 95.2, (g0 f); = (g} ) *s ((f;)®?).

In this situation, (g o f); does not depend on f;, only on g;ﬁp and f}.
96. POSITIVE DEFINITE CRITERION

DEFINITION 96.1. Let ne N, Ae R"" me [1..n].

Then: PS.(A) = A|([1.m]?).

In Definition 96.1, PS,,(A) is called the mth principal submatrix
of A. Its determinant is called the the mth principal minor of A.
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1 2 3
THEOREM 96.2. Let A:==| 4 5 6

7 89
Then PS1(A) = [1] and PSy(A) = [ le i } and PS3(A) = A.
THEOREM 96.3. Letne N, V:=R", §:=VQV, z:=0,.
Let A€ S. Assume that A is symmetric.
Then: ( Vue V., Bilin}"®(u,u) > 0 )

< (YueVX A (u®?) >0 )
< ((Vme[l.n], det(PS,,(4)) > 0 ).

That is: a symmetric matrix is positive definite iff
all of its principal minors are positive.

There is a similar criterion for negative definite. However, for positive
and negative semidefinite, the criteria are slightly more complicated.
97. THE SECOND TOTAL DERIVATIVE IS SYMMETRIC

THEOREM 97.1. Let V,W € TNSRY, Ace WQV,ieZy, jecIy.

Proof. Unassigned HW. O

THEOREM 97.2. Let V,W € TNSR* and let f : V -+ W.
LetueV and let W =W RV.
Then  Ouf :V -+ W  and (Ouf) :V --> W' and
froV-—->W and 0O.(f):V -->W"

Proof. Unassigned HW. U
THEOREM 97.3. Let  V,W e TNSR*,  f:V ——» W.

Let p € dom|[f"], ueV.

Then:  (0u(f'))p = (Ouf),-
Proof. Let g:=f', h:=0.f. Want: (0ug), = hy,.

Let W :=WQ®V. We have: g:V --» W and 0,9 : V --» W'.
Since p € dom[f"] = dom[g'] < dom[d,g], we get (0ug), € Im[dyg].
Then (0u9), € im[dug] € W'.

We have: h:V -->» Wand b/ : V --» W'

Since p € dom[f”] = dom[(0,f)'] = dom[h'], we get h;, € im[h/].
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Then h;, € im[A'] = W'
Want: Vk e IW/, ((éug)p)k = (h;)k
Given k € Zy. Want: ((0ug)p)r = (h)k-
Let L:=m"". Want: L((dug)p) = L(h;,).
Want: (Lo (0ug))p = (L o (1),
Since dom|[L] = W’ we get:
dom[d,g] = dom[L o (0,9)] and dom[h'] = dom[L o (R')].
We have p € dom[d,g] = dom[L o (7,9)].
Also, p € dom[h'] = dom[L o (R')].
Then (Lo (0u9))p # ® # (Lo ().
Since k € IW/ Twev, choose i € IV and j € Iy s.t. k = j|i.
Then L = 7Y HZ Let M := 7T
By HW#10-5, both Lo (I') < M ( )andLo(f’)gMo(aif).
By Theorem 94.3, Lo (0,9) <
By Theorem 94.3, M o (0;f) <
and so Ou(M o (0:f)) <
Since Lo (f') < M o (0;f), we
Then Lo(0,g) € 0u(Log) = 0y
and so L
andso (Lo
So, since ® # (L
we see that: (L
By Theorem 94.3, M o
By Theorem 94.3, M o f) (M o f)
and so  0;(M o (0uf)) € 0;0.(M o f).
Then Lo (k') € M o (0;h )Q ,(Moh)—@(Mo(& f)) € 0uou(Mo f),
and so ) < 0.,0,(Mo f),

and so (Lo ( W)y "= ((9 Oi(M o f))p.
So, since @ # (Lo (h))p,
we see that: (Lo (h)), = ( iOu(M o f))p.

Sicne M € L, we get dom[M"] =
Since p € dom[f”] < dom][f], we get fp €im[f].
Then f, € im[f] € W = dom[M"].
Since pedom[f”] and f, e dom[M"],

it follows, by Theorem 90.25, that:  p e dom[(M o f)"].
Then, by Theorem 94.10, we get:  (0,0;(M o f)), = (0:0u(M o f)),.
Then (Lo (dug))p = (Qu@i(M o [)), = (Gi0u(M o f))p = (Lo (I)),. O
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THEOREM 97.4. Let V :=R?, W :=R. Then3f,g:V — W s.t.
G(f") & (Af)  and  (019)" & i(g").

Proof. Define f,g:V — W by f(x,y) = y* |z| and g(z,y) = |y|.
Want:  0,(f') & (1f) and  (dig) & Ai(g).
We have: Vo >0, Vye R, f(z,y) = x>
Then: Vo >0, Vy e R, ((d1f)(z,y), (Gaf)(z,y)) = (y2 , 2zy).
Then: Vo >0, Vy e R,  f'(z,y) = (v?, 2zy).
Then: Vo >0, f'(z,0) = (0,0).
We have: Vo <0, Vy e R, f(z,y) = —zy*
Then: Vz <0, VyeR, ((o1f)(z,y), (Oof)(x,y)) = (—y*, —2zy).
Then: Vo <0, Vy e R, f'(z,y) = (—y?, —2zy).
Then: Yo <0, f'(x,0) = (0,0).
We have f = (7)) - |[xV]| < OYW . OYW < OYW < o¥W < oVW,
and so f/(0,0) = (0,0).
We conclude: Yz e R,  f'(z,0) = (0,0).
Then (d1(f"))(0,0) = (0,0), so (0,0) € dom[0d;(f")].
We have: Yy e Ry, (01f)(0,y) = ®,
and so —( 01f is defined near (0,0) ),
and so (611)'(0,0) = ©,
and so (0,0) ¢ dom[(d1f)].
Since (0,0) € dom[d;(f”)] and (0,0) ¢ dom[(d; f)'],
we conclude that  dom[d;(f')] € dom[(d1f)].
Then o1(f") € (01f). Want: (019)" € 01(¢').
We have: Y,y e R, (d1g)(z,y) =0.
Then: Vo,y e R, ((1drg)(x,y) , (2019)(x,y) ) = (0, 0).
Then: Vz,y e R, (d19)'(z,y) = (0,0).
Then:  (d19)'(0,0) = (0,0), and so  (0,0) € dom[(d19)'].
We have: Vr e R, (029)(z,0) = ®.
Then:  (029)'(0,0) = ®, and so  (0,0) ¢ dom[dag].
So, since dom[d;(¢')] € dom|g'] < dom[d2g],
we get:  (0,0) ¢ dom[d;(g')].
Since (0,0) € dom|(d1g)'] and (0,0) ¢ dom[d;(g')],
we conclude that  dom[(d1g)'] € dom[d1(¢)].
Then (d19) € 01(¢'), as desired. O

You are not required to read through the proof of the next theorem.
You should be aware, however, that it is true.
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THEOREM 97.5. Let V :=R?, W:=R, z:=0,.
Then 3h : V. — W s.t.  h is infinitely differentiable on V.*,
and s.t.  (A1(h')). = (0,0) and (01h) = (0,1).

Proof. Choose 1 : R — R infinitely differentiable s.t.
0<®Y <1lonR,
¥ —1on [-1:1],
1 =0 on R\(—-2;2) and
|Y¥'| <2 onR.
Define h : V' — W by:

(w (1’/\/@)) caxy, ify >0,

h(w,y) = 0, if y = 0,
(¥ (x/v/=y)) -xy, ify<0.
Want: h is infinitely differentiable on V*

and  (01(R)), = (0,0) and (1h), = (0,1).
Let S := {(z,y) s.t. |y| < 2?}.
Then h =0 on S, so h is infinitely differentiable on S.
Let X ;=7 and Y :=7m). Vao,yeR, X(z,y) =2 and Y(z,y) = y.
Let T := {(z,y) € R*|y > 0}.
Then /Y is infinitely differentiable on 7.
So, since h = (o (X/V/Y))- XY on T,
we see that h is infinitely differentiable on T
Let U := {(z,y) e R*|y < 0}.
Then /Y is infinitely differentiable on U.
So, since h = (o (X/v/—=Y))- XY on U,
we see that h is infinitely differentiable on U.
Since h is infinitely differentiable on S, on 7" and on U,
and since SUT v U =V,
we conclude that A is infinitely differentiable on V,*.
Want: (61(h)). = (0,0) and (A1h), = (0,1).
Since he OYW < VW, we see that h'(z) = (0,0).
Let R:={(z,0)|z e R}}. Then R< S.
Since h = 0 on S, we conclude that ' = (0,0) on S.
So, since R < S, we conclude that A’ = (0,0) on R.
So since h'(0,0) = h/(2) = (0,0),
we conclude: Va € R, A/(z,0) = (0,0).
Then (d1(h')). = (0,0). Want: (d1h), = (0,1).
Since sty = (0, 1), it suffices to show: (d;h)] —Y € o}V
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We have: VreR, h(z,0)=0.
Then: Ve eR, (01h)(z,0)=0.
Then (01h), = 0. It follows that (d;h)T = 0,h.
Want: d1h —Y € o]V,
We have: Vx e R, Yy > 0,

@uh)o9) = (0 (5/y8)) - (V) o+ (0 (2/)) -
Recall: Vz € R, (01h)(z,0) = 0.
We have: Vx e R, Yy < 0,

(@) 9) = (' (5/V=0) - (y/=F) - 3y + (6 (/=) -y
Let n:=dh—Y. Want: 7 € o}V
Want: Ve,ye R, |n(z,y)| <2-|z| - /|y| + 22
Recall: Vz e R, (01h)(x,0) =0.  Also, Yz e R, Y (z,0) = 0.
Then: Vz e R, n(z,0) =0—-0 = 0.

Then: VeeR, |n(z,0)] =0=2-|z| +/]|0] + 2%
Want: VeeR, Vye Ry, |n(z,y) <2 |z /|yl + 2%
Given z € R, y e RJ. Want: [n(x,y)| < 2-|z| /|yl + 22

Let x := ¢ — C}.
Since 0 < <1on R, we conclude: —1 < x <0 on R.
Then |x| <1 on R.
We have: If y > 0, then

n(z,y) = (¥ (¢/vy)) =y + (x (2/vy)) -y
We have: If y < 0, then

n(@,y) = — @ (@/v/=y) -z /=y + (x(@/v/~y) - y.
Then [n(z,y)| < [¢¥'(z,y)| - |z] - /1yl + [x(@/A/|yD)] - |yl.
Recall: |[¢'| <2 on R.
Then [n(z,y)| < 2-[z| /|y| + [x(@//|y])|
Want: |x(z/+/|y])] - |y < 2*.
Since |x| < 1 on R, we see that |x( x/«/\ym <1
We have: If |y| < 22, then |x(z/A/|y])| - ly| < 1-|y| = |y| < 2*
Also, if [y| > = ,then A1yl > |zl so x/\/!yH < 1, s0 ¥(z/y/]yl) =

50 x(x/\/|y =0, 50 |x(z//|y])] - [yl = 0 < 2?

Then |x(z/+/|y])| - |y| < 2%, as desired.

THEOREM 97.6. Let V,W e TNSR".
Let f:V --»W, pedom|[f’], wvelV.
Then: Bilin}%vw(u, v) = (Ouluf)p-

Proof. Since p € dom[f"], we see that f e WV ® V.
Then Biling, € By, so Bilings(u,v) € W, so Biling (u,v) # ©.
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By Theorem 97.3, (0,(f"))p = (Ouf),-
Let g:=f, h:=0f and A:=f]
Then A = g and (2ug), = (0u(f"))p = (0o, = H
By Theorem 93.7, Biliny"" (u,v) = A szvevw (u®w).
By HW#10-3, A sgvegvw (u®v) = (A *rvwev V) *rvw u
By HW#9-2, (g,) *rvwev v *= (0u9)p
By HW#9—2, (h;,) *FRVW U *= (8uh)p
We have: Bilin}?}yw(u,v) = Biliny"" (u,v)
= A spyegvw (U®0)
= (A srvwev v) *rRvw U

"= (Cuh)p
= (0uOuf)p-
So, since ® # Bilin}/gv W(u,v), we conclude that
Bilin}?w(u, v) = (Culuf)ps as desired. O

THEOREM 97.7. Let V,W € TNSR™, f:V --» W, p € dom[f”].
Then Bilin}?/w e SBY.

Proof. Since p € dom[f"], we get f/ € W@V ®V, so Biling € By,

Want: Yu,veV, Bilin}?}yw(u,v) = Bilinﬁyw(v,u).
Given u,v eV, Want: Bilin}/;,j,vw(u,v) = Bilin‘fsz(v,u).
By Theorem 97.6, Biling, " (u,v) = (,0uf),

and Bilin}/,/vw(v, u) (CuOuf)p-

By Theorem 94.10, (dﬁvz})p = (0uOuf)p-
Then Bilin}/z,)yw(u,v) = (0uOuf)p
= (0Ouf)p = Bilin}/ng(v,u), as desired. [

98. MULTIVARIABLE CHOICE MEAN VALUE THEOREM

THEOREM 98.1. Let me N, U:=R™ W =R, ¢: U --» W.
Let § :=0, J:=(—0;0), A:=J™.  Assume ¢, = Oy .
Assume: Vi € Iy, A < dom[d;¢].
Then: da : Iy — @?U s.t. p = Z ((6:0) 0 a) - 7Y on A.
€Ly
Proof. Define S : Iy x A — 2% by:
Siey = {cel0lz] st
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(p(x1, ... 21, 2 ,0,---,0))
— (([5(111,...,1‘,'_1, 0 ,0,"' ,0))
= ((ai¢)<l'1,...,Ii_1, C ,0,"' ,0)) ] }
By the one-variable Mean Value Theorem, we have:
Vie Iy, Ve e A, S(i,x) # .
It follows that: Vie Iy, Vre A, CH(S(uq)) € Siig)-
Also, by definition of A, we have:
VieIly,Vxe A, x;€J.
So, since J is an interval and since 0 € J, we get:
Vie ZU; Vo e A, [0|$Z] c J.
By definition of S, we have: VieZy, Vre A, Suu < [0|z].
Then: Vie Zy, Ve e A, CH(Suq)) € Sz < [0]z;] < J.
Define a : Zyy — A? by:
a;(z) = (z1,...,221, CH(S,
We have: Vie Iy, Ve e A,  (ai(x));

Then, Vi€ Iy, Ve e A,  |ay(x)
Then, Vi€ Zy, Ve e A,  |ai(x)|ly <
Then, by HW#9-1, we have: Vi e Iy, «a; € OYY,

Then o : Iy — @{JU Want: ¢ = Z ((6i9) o) - 7Y on A.
ieTy
Want: Vo € A, b = (Z ((0:0) o o) -wgf) :
ieTy .
Given z € A. Want: ¢, = (Z ((G;0) o ;) - 7TZU) .
Want: 6, = 3 (A)e(@) - xi. x

We compute: éizv: be — Ow = ¢ — ¢, = (0(x))— (0(0p)
= (¢(x1,...,2m) — (¢(0,...,0))
= Z ( (¢(£El,...,l’i_1, Z; 707"'a0))

iEIU

— (¢(x1,...,zis1, 0 ,0,...,0)) )
— Z <((@gzﬁ)(xl,...,xi_l,CH(S(m)),O,...,0))~xi )

iEIU

— Z ((0:0)(cs(2))) - i, as desired. 0

iEZU
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DEFINITION 98.2. Let U,V € TNSR™, A\ : Iy — Ty
Then X € LY, is defined by \(x) = Z zie) .

iEIV

THEOREM 98.3. Let U := RS and V := R?*3,

Let A=

uvw]

Then, Yu,v,w, x,y, 2z € R, we have: X(u,v,w,x,y,z) = [ vy -

THEOREM 98.4. Let U := RS and V := R?*3,

Let A=

Then, Yu,v,w, x,y, z € R, we have: X(u,v,w,x,y,z) = [ :j Z) Z ]

THEOREM 98.5. Let U, V,W € TNSR*, A : T, — Ty, j1: Ty — L.
Then pto X = fio\.

Proof. Unassigned HW. U
THEOREM 98.6. Let U € TNSR*, A:=idz,. Then A = idy.
Proof. Unassigned HW. U

THEOREM 98.7. Let U,V € TNSR*, X\ : Iy — Ty.
Assume that X\ : Iy —> Iy .
Then X:U <>V and (\)7'=(\1).

Proof. Unassigned HW. U

THEOREM 98.8. Let U,V € TNSR', \: Iy — Iy, i € Iy.
Then  Mel) =e)y. Also, VrelU, my,(Az)) = 7 (2).

(2 K3

Proof. Unassigned HW. U
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THEOREM 98.9. Let U,V,W € TNSR*.
Let Le LY, f:V -—»W,zeU.
Then 0x(fo L) = (Or@)f)o L.

Proof. Want: Vpe U, (0.(fo L)), = ((Orw) f)oL)
Given pe U. Want: (0(fo L)), = ((Or@)f)o L)y
We have: (0,(foL)), = (fo o(z;f)){)
Let y:=L(z) and let L(p).
Then ((Orw)f)o L)y = ((f%f)OL)p = (%)L

= (0yf)g = (fo (i)
Want: (o Lo () = (f o ()
Want: Lo (iy) = '
Want: VteR, (Lo(if))(t) = (i)(t).
Given t € R. Want: (Lo

SRS

) .
We compute: (Lo (i))(t) = L((i5)(t)) = L(p +tx)
= (L(p)) + t- (L(x))
= qg+ty = (¥¥)(1), as desired. ]

The following is another Choice MVT:

THEOREM 98.10. Let V e TNSRY, W =R, f:V --» W.
Assume fo, = O .
Assume: Vj eIy, 0;f is defined near Oy .

Then: 3B : Iy — o}V s.t. f = Z ((0;f) 0 Bj) - 7TJV near Oy .

JELv
Proof. Let m := #ZIy, U := R™. Then Zyy = [1..m], so #Zy = m
Since #Zy = m = #Z1y, choose \ : Iy —> Ty Let ¢ := fo .

We have: Vi e Iy, X(s?) = Exs)-
Then: VieZy, ;9 = O.w(fol) = (8;\( vyf) o

— (@ X = (@aho
Then: Vie Iy, 0;¢ = (Ox,f)oA
Choose D € By (0y), s.t., VjeIy, D < dom[d;f].
Choose C € By (0y) s.t. X*(C) < D.
Then, Vi e Iy, C < dom[(0y,f) o A] = dom|[0;¢].
Choose 7 > 0 s.t. C' = By(0y,r).
Let § := r/\/m. Then By (0y,d) < (§;0)™ < By(0y, 7).
Let J := (—6;0), A:=J™. Then By(0y,d) < A< By(0y,r).
Then A € By(0y,r) =A< C.
Then, Vi e Iy, A< C < dom[d;¢].

P\
o
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By Theorem 98.1, choose o : Z;y — @?U s.t.
¢ = 2 ((6:) 0 i) - )/ on A.
€Ly
Since A : Ty <> Ty, we see that \: U <> V. Let k= A1
Then x : Iy —> Ty and £ : V <> U and Al =R,
We have 7 e LU = OYU and A e L), < OVV.
Also, Vi € Iy;, we have: «; € @?U
Then, Vi € Zy;, we have: \ o a; o k€ @YV
Define 3 : Zy — oV by: B; = 2 o Q, © R.
Then, Vi € Zy;, we have: Br, = A o a; o R.
Want: f = Z ((0;f) 0 Bj) - 7T;/ near Oy.
1A
Choose B € Bi/((‘)/V) s.t. R«(B) € By(0y,9).
Want: f = Z ((0;1) O/Bj)‘wy on B.

JELv

Want: Vy e B, f, = (Z ((ﬁjf)oﬂj)w@/) :

>

JELy
Given y € B. Want: f, = (2 ((0;f) © B;) 7rjv> .
JELy
Let z := K,. Then N = y. Then f, = f(XQC) =(fo ;\/)m = ¢,.
Want: 6, (2 (:5) 3)- wy)

JeIv b\
Recall that A\ : Zyy —> Zy,.

Want: ¢, = (2 ((@if)oﬂAi)-wX_)A .

iEIU

x

Recall: VieZy, B, = Ao o o R

Want: be = Z ((a)\zf) © X © Q50 /"%) ’ 71-)‘\/1)

’iEIU

S\z
Recall: Yie Iy, 0;¢0 = (0Ox,f) oA
Want: ¢, = Z ((dig) o i oK) - 7T}\i>
iEIU S\z
We have R()\,) = z. Also, Vi € Ty, 7} (A,) = 7¥(z) = (7¥),.
Want: ¢, = > ((6i0) 0 u)a - (7))

iEIU

Since y € B < V = dom[R], we get: y € B n (dom[k]), so ky € k«(B).
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Recall: 2 =%k, and By(0y,6) <A, and K«(B)< By(0y,9).
Then x = Ry € ky(B) < By(0y,0) < A.

Then, by choice of «, Op = Z ((0;0) o ;) - 7TZU> )
iEIU T
Then: ¢, = Z ((0ip 0 i)y - (77 ), as desired. O
iEIU

99. FUNCTIONS WITH SMALL DERIVATIVES ARE SMALL

THEOREM 99.1. Let V,W € TNSR*, f:V > W, pe V.
Then: ( ( ¥Ym e Ty, m" o f is continuous at p)
< ( f is continuous atp ) )

Proof. Unassigned HW. U

THEOREM 99.2. Let V,W € TNSR*, a: V —-» W.
Then: (YgeV, lag—ap,[fy = > |(my 0a)y = (ml) o a)o, *)
mEIW

and ( (Yme Ty, 7 o« is continuous at Oy )
< (.« is continuous at Oy ) )
and (¥Ym e Iy, dom[r)' o a] = dom[a] )
and ((YmeTy, 7V cae DNZY ) = (aeDNZY ))
and  ( (Vm € Iy, (anfoa)ov—O)@(ozovzow))
((
((

and oaeCVZy ) (aeCVZY ))

and W oaeBNZy ) (aeBNZY ) ).

Proof. Unassigned HW. O

THEOREM 99.3. Let V,W € TNSR®, f:V -—» W, k € Ny,
Then: ( (Yme Ty, 10 ofeof®) <« (feof™))
and ((YmeTLy, 1V ofeO/%) = (fe O/ )).

Proof. Unassigned HW. U

DEFINITION 99.4. Let V,IWW € TNSR", f:V - W, Sc V.
Then f is infinitely differentiable on S means:
VkeN, S < dom[f®)].

THEOREM 99.5. 3f : R — R? s.t.
( fis mﬁmtely differentiable on R )
& (fai=hf) (Pce(—1;1) s.t. f1=10,).
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Proof. Define g,h : R — R by g, = 2, hy = t3 — t.
Define f: R — R? by f; = (g¢, he).
Want: (fis inﬁnitely differentiable on R )
& (fa=hf) (fce (=1;1) st fl=10,).

We comprte 1.1 = 0 hs) = (1.0) = (3o} s
Also, Vte R,  fl = (2t,3t> — 1).
Also, Vte R, f/ = (2,6t).
Also, Yte R, f" =(0,6).
Also, Vte R, Vk e [4.0), % =(0,0).
Then f is infinitely differentiable.
Want: fce (—1;1) s.t. f/ = 0,.
Assume: Jce (—1;1) s.t. fl = 0,. Want: Contradiction.
Choose c € (—1;1) s.t. f. = 0s.
Then (2¢,3¢* — 1) = f/ = 05 = (0,0), so 2¢c = 0 and 3¢* — 1 = 0.
Since 2¢ = 0, we conclude that c =0 and so 3¢? —1=3-02—-1= —1.
Then 0 =3c2 —1=—1,500 = —1.

However, 0 # —1.  Contradiction. L]

THEOREM 99.6. Let V,W, X € TNSR™".
Let f:V --»W, LeLy, jeIy.
Then: 0;(Lof) 2 Lo (6;f).

Proof. Let w:=¢). Then d;(Lo f) = du(Lo f) and 0;f = d.f.
By Theorem 94.3, we have d,(Lo f) 2 L o (0,f).
Then 0;(Lo f) = 0u(Lof) 2 Lo (0uf) = Lo (0;f). O

THEOREM 99.7. Let VW € TNSR™, f:V --» W, ke Ny.
Assume fo, = Ow. Assume: Vj € Iy, d;f € ofV'.  Then feopl.

Proof. By Theorem 99.3, it suffices to show: Vm € Iy, m) o f € o]F,.
Given m € IW Want: 7}V o f € ol
Let g :=7V o f. Want: geokJr1
By Theorem 98.10, choose § : Z, — OYV s.t.
g = Z ((0;9) 0 B;) - m)  near Oy.

JELv
Want:  VjeZy,  ((0;9)0p;) ~7rj € o1
Given j € Zy. Want: ((0;9) 0 8;) -7 € o).

So, since ; € OV, it suffices to show: ;9 € of*.

So, since 0,9 = @((WW) of)y2ml o (95 1),

m
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it suffices to show: 7}V o (0;f) € of®.
By assumption, 0;f € OVW.

So, by Theorem 99.3, we have 7V o (0;f) € o}®, as desired. O

THEOREM 99.8. Let V,W € TNSR™Y, f:V --» W, k € N,.
Assume fo,, = Ow . Assume: Vj € IV, (8 oy = Ow.
Assume: Vi, j € Iy, 0;0;f € oy Then f € o y.
Proof. Since fy, = Ow, by Theorem 99.7,

it suffices to show: Vj € Zy,, 0; f e oy Y.

Given j € Zy. Want: 0;f € (O,CJrl
Let g := 0;f. Want: g € o} V.
Since go,, = (0jf)o, = Ow, by Theorem 99.7,
it suffices to show: Vi e Zy, é’,g eoyW.
Given i € Iy . Want: 0;g € o}
We have 0;g = 0,0, f € of"V, as desired. O

100. PROPERTIES OF PARTIALS IMPLY PROPERTIES OF FUNCTION

THEOREM 100.1. Let V,W € TNSR*, f:V > W, pe V.
Then: (1) 0;(f(p+ o)) = (0;f)(p+ o)
and (2) ( pedom|f] ) =
( (@) =@@hHp+e)) & ((f)=FfPp+e)) )
and (3) ( f is defined near p ) = ( f(p+ o) is defined near Oy )
and (4) ( f is continuous at p ) = ( f(p+e) is continuous at Oy ).

Proof. Unassigned HW. U
THEOREM 100.2. Let V,W € TNSR", f:V - W, pe V.
Assume: VieZy, 0;f is defined near p and continuous at p.

Then p € dom|[f'].

Proof. Choose i € Zy.  Then p € dom[d; f] < dom[f].  Let g := fI.
Then go, = Ow and ¢’ = f'(p +e). Then dom[f’] = (dom[¢']) + p.
It suffices to show: 0y € dom[¢'].
By HW#12-5, it suffices to show:

Vj ey, 0,9 is defined near Oy and continuous at Oy .
Given j € Zy. Want: 0; g is defined near 0y and continuous at Oy .
Since p € dom|[f] and g = f,, we get 0j9 = (0;f)(p+ ).
Then dom[d;¢] = (dom[?; f])
So, since 0, f is defined near p,

we see that J;g is defined near Oy .
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Want: 0;g is continuous at Oy.
Since d;g = (0, f)(p + ) and since 0, f is continuous at p,
we see that 0;g is continuous at Oy, as desired. U

DEFINITION 100.3. Let X and Y be metric spaces.

Let f: X --»Y and let pe X.

Then f is continuous near p (from X toY ) means:
iB € Bx(p) s.t. [ is continuous on B from X to Y.

THEOREM 100.4. Let V,W € TNSR", f:V - W, pe V.
Assume:  f' is continuous near p.
Then: VjeZy, 0;f is continuous near p.

Proof. Given j € Zy. Want: 0;f is continuous near p.
Since f’ is continuous near p,
choose B € By (p) s.t. f"is continuous on B.
Want: 0;f is continuous on B.
Want: Vq e B, 0;f is continuous at gq.
Given ¢ € B. Want: d;f is continuous at q.
Define L € Lyjgy by L(z) =  *ryw €] . Then L is continuous.
Also, im[f'] € W®V = dom[L], so im[f’] € dom[L].
We have 0;f 2 f sryw & = Lo (f'), so d;f 2 Lo(f).
Since f’ is continuous on B, we get: B < dom[f’].
So, since im[f'] < dom[L], we conclude: B < dom[L o (f")].
So, since 0;f = Lo (f'), we conclude: d;f = Lo (f')on B.
So, since q € B, by the Recentering Lemma,
we conclude that: d;f = Lo (f’) near gq.
It therefore suffices to show: L o (f’) is continuous at q.
Since g€ B andsince f’is continuous on B,
it follows that: f’ is continuous at g.
We have ¢ € B < dom|[f'], so fy eim[f'].
Since  f; € im[f’] < dom[L] and since L is continuous,
we see that: L is continuous at f;.
So, since f’ is continuous at ¢,
we get: Lo (f’) is continuous at g, as desired. O

101. DEFINED AT TOTAL DERIVATIVES OF EACH PARTIAL
DERIVATIVE

You are not expected to know the result or the proof in this section.
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It shows that definedness of the total derivative of each partial does
not guarantee definedness of the second total derivative.

THEOREM 101.1. Let V :=R?* W :=R, z := 0.
Then: 3f : V. — W s.t. z € dom[(0,f)'], z € dom[(02f)'], 2z ¢ dom[f”].

Proof. Choose an infinitely differentiable function A : R — R s.t.
0<A<lonR and |N] <100 on R and
A=0on (—w0;1/2] U [3/2;0) and A= 1.

Choose an infinitely differentiable function p: R — R s.t.
0<p<lonR and |p'| <100 on R and
p=1on (—w;2| and p =0 on [4;0).

Define 1 : R? — R by

- {((A@/x» (p(a® +4?) @, itz #0
n(e,y) = .
0, if v =0.

Then: Ve,yeR, (22+y*=4) = (n(z,y) =0).

Also: Vee[-1;1], n(z,x) ==

Then: (0a,1ym)(0,0) = 1.
Also: Ve,yeR,  (y ¢ [2/2]32/2]) = (n(z,y) =0).
Also: Vy e Ry, because n = 0 near (0,y),

we conclude: (01n)(z,y) = 0 and (dan)(z,y) = 0.
Also, because n = 0 on R x {0}, we conclude: (d11)(0,0) = 0.
Also, because n = 0 on {0} x R, we conclude: (dan)(0,0) = 0.
Since (d11)(0,0) = 0 and (d21)(0,0) = 0 and (J(1,1)n)(0,0) = 1,

it follows that 7/(z) = @, i.e., that z # dom[n/].
We compute: Vz € R}, Vy € R,
@m)(zy) = N(y/2)) (p(z® +y?)  (—y/z)
+ (My/2) - (' (2% +y?)) - (22?)
+ (My/2)) - (p(2® +9?)) - (1) and
@)(z,y) = (N(y/2) - (pla®+y?) (1)
+ (Ay/z) - (' (@® +y?)) - (22y).
Also: VreR},VyeR, (ly/z|>3/2) = (Ay/z)=0).

Then: VrxeR),VyeR, (ly/z|>3/2)= (n(z,y)=0).
Then: Vx € R}, Vy € R,

(ly/z| > 3/2) = ((0n)(z,y) = (dan)(x, ) )
Also: VzeR},VyeR, (z>2)= (p(z?
Then: VrxeR},VyeR, (z>2)= (n(zr,y) = O)
Then: Yz € R}, Vy € R,

(z>2) = ((&n)(z,y) = (0m)(z,y) = 0).
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Also: VzeR},VyeR, (y>2)= (p(x*+y?) =0).
Then: VzeRj,VyeR, (y>2)= (n(z,y)=0).
Then: Yz € R}, Vy € R,
(y>2) = ((@m)(x9) = (@m)(z,9) = 0).
It follows that: Vx € Rj, Vy € R,
|(01n)(z,y)] < 100-1-(3/2) +1-100-2-22 +1-1-1 = 953.
It also follows that: Vo e R, Vy € R,
(@on)(z,y)| < 100-1-1+1-100-2-2-2 = 900.
So, since d1n = dan = 0 on {0} x R, we get:
Vi,y € R, |(01m)(z,y)| <1000 and  |(d9n)(z,y)| < 1000.
Define ¢, c € RN by ¢; = (1/2)" and ¢; = (1/100)".

Vi e N, define g; : V. — W by g;(z,y) = ¢ - (17 (:c;ql7g>)
Then: Vie N, (¢;,0) ¢ dom|[g.].

Also: Vie N, Vz,y € R,
( - 1000 1000 - ¢; and

@l < @ (1)
(029)(z,y)| < (cf)- (%) 1000 = 1000 - ;.
We have: Vx,y e R, Z
(z<=2) = (n(z,y) =0).
Then: Vie N, Vx,y € R,
(v <q—2¢) = (gi(z,y) =0).
Then: Vie N, Vz,y € R,
(2 <q—2¢) = ((01g:)(@,y) = (G2g:)(w,y) = 0).
We have: Vie N, ¢4 = 1/(27) < (1/2)" — 2 - (1/100)" = ¢; — 2¢;.
Then: Vi e N, Vx,y € R,
(lz] < qir1) = (v < i) = (v <q —2¢)
= ( (), y) = (G2gi)(z,y) =0 )
= ( (|(Ag)(z,y)| < 1000-¢; - (z/qi+1)*) &
(1(029:)(z,y)| < 1000 - ¢; - (2/gi+1)*)
Also: Vie N, Vz,y € R,
([z] = gis1) = ((z/qi1)* = 1)
= ( (|(Ggi)(z,y)| < 1000 ¢; - (z/gi+1)*) &
(1(G2g:) (2, y)| < 1000 ¢; - (2/gs11)*)
We conclude: Vi e N, Vx,y e R,
( (1(0rg:) ()]
([(2g:)(z, )]

<

~—

NN

~—

)

1000 - ¢; - (l’/QHI)Q) &
1000 - ¢; - (x/qis1)?) ).

N IN
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We have: Vie N, ¢; - (1/¢i41)* = (1/100)" - (29)? = (4/100)° < 1.
We conclude: Vi e N, Vx,y € R,
( (1)@ 9)| < 100022) &
(1(20)(,9)] < 10007) ).
We have: Vi e N, ¢ 1 + 2¢i41 = (1/2) + 2+ (1/100)"!
< (1/2)i — 2+ (1/100) = ¢; — 2c;.
Vie N let T; := {(x,y) | ¢; — 2¢; < x < ¢; + 2¢;}.
Then: Vi,jeN, (i#j) = (I, nT; = ).
We have: Vx,y e R,
(2l > 2) = (n(z,y) = 0).
Then: Vie N, Vz,y € R,
(Jz —aql > 2¢;) = (gi(z,y) = 0).
Then: Vie N, Vz,y € R,
(gi@,y) #0) = (o —q] <2;) = (veT).
Vie N, let S; := {(x,y) | g:(z,y) # 0}.
Then: Vie N, S; < T;.
Recall: Vi,jeN, (i#j) = (I;nT; = ).
Let fi=g1+ga+---.
Then, Vp € R?, 3i € N s.t.: f = g; near p.
Then, Vp € R?, 3i € N s.t.
(f'(p) = gi(p) ) & ((01f)(p) = (Argi)(p) ) & ((02f)(p) = (O29:)(p) )-
Then: Vz,y e R,
( (@)@ <
(@2 f)(z,y)| <
Then (91f, (92f S O;/W
Since O1f, of € OYW < oYW we get: (O1f) = z = (0of)'.
Then z € dom[(71 f)'] and z € dom[(d2f)']. Want: z ¢ dom|[f”].
Recall: VieN, (¢,0)¢ dom[g;].
Also: Vie N, f = g; near (g;0).
Then: VieN, (g,0)¢ dom][f’].
So, since ¢, — 0 in R, we see that f’ is not defined near z.
Then z ¢ dom|f”], as desired. O

1
1

102. PARTIAL DERIVATIVE PROPERTIES TO TOTAL DERIVATIVE
PROPERTIES

THEOREM 102.1. Let V,W € TNSR", f:V -—» W.
LetpeV, jely, kely.
Then: my, o (@f) = T © (f/)
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Proof. Want: Vpe V', (m,0(0;f)) =" (750 (f))p-

Given pe V. Want: (7m0 (0;f)) =* (w0 (f))p

Want: ( (w50 (f)p # @) = ((m0(0;f)) = (muyz 0 () )-

Assume: (mg; 0 (f')), # ©. Want: (7, 0 (0;f)) = (7TkH] (f)p-

Let = := sgyw. By HW#9-2, (ajf>p =" (f;ﬁ) * ( )

As 5 (fy) = (T 0 (f'))p # ©, we conclude that f] 7& ®.

Then f) elm[ ]C W&V, so(f)=* (e V)e W, so (fy) = (5 ) #

Then (0;1), =* (fy)*(e]) # ®, 50 ((9f) (fp) = (g5).

Then (w0 (0;f)) = 0k((0;f)p) = m((f;) = (€] )) ((fp) = (€] )
= ((f)* (N = Z (( D) - ((€))ije)

= Z ((f;;)kuz‘) : ((5}/)1')
= (((f;)kj)'((%-v)j))Jr( > ((f;)ki)-((éjv)i))
ieT\(j}
= ((Frg) - 1) + ( Z ((fp)epi) - 0)
ieTy\{j}
= (e = mi(fy) = (mgi o () O

DEFINITION 102.2. Let X and Y be metric spaces.

Let f: X --»Y pe X.

Then f is bounded near p (from X to Y ) means:
iB € Bx(p) s.t. f«(B) is bounded in'Y .

THEOREM 102.3. Let X and Y be metric spaces.
Let f: X --»Y,pe X.

Assume: f is continuous at p from X toY .

Then: f is bounded near p from X toY .

Proof. Want: 3B € Bx(p) s.t. f«(B) is bounded in Y.
Let C := By(fp,1). Then C € By (f,).
So, since f is continuous at p from X to Y,
choose B € Bx(p) s.t. f«(B) < C
Want: f,.(B) is bounded in Y.
Since C' = By (f,,1) € By and since f.(B) < C,
it follows that f.(B) is bounded in Y, as desired. O
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THEOREM 102.4. . Let V,W € TNSR*, f:V > W, pe V.
Then: ( f" is continuous near p)
< (Vjey, 0;f is continuous near p).

Proof. Proof of =: This is Theorem 100.4. End of proof of =.

Proof of <:

Assume: Vj € Zy, 0;f is continuous near p.

Want: f’ is continuous near p.

Choose B € By (p) s.t. Vj € Zy, 0;f is continuous on B.

Want: f’ is continuous on B.  Want: V¢ € B, f’ is continuous at q.
Given ¢ € B. Want: f’ is continuous at q.

By Theorem 99.1,

we wish to show: Y/ € Zyygy, m o (f’) is continuous at q.

Given / € Tyygy . Want: 7, o (f’) is continuous at g.
Since ¢ € Tygy, choose j € Iy, k € Iy s.t. £ = k5.
Want: 7y, o (f’) is continuous at g.

Since 0; f is continuous on B and g € B,

we conclude that J; f is continuous at g.

Then, by Theorem 99.1, 7, o (0;f) is continuous at q.
Also, by Theorem 102.1, we have: m, 0 (0;f) < g, © (f').
So, by Theorem 44.13,

we wish to show: ¢ € dom|[mg; o (f')].

Since im[f'] € W®V = dom|my;], we get: dom[f’] = dom[my;0(f')].
We therefore wish to show: ¢ € dom[f’].
By Theorem 100.2, it suffices to show:

Vie Iy, 0; [ is defined near ¢ and continuous at q.
Given i € Iy . Want: 0, f is defined near ¢ and continuous at g.
Since 0; f is continuous on B and ¢ € B,

we see that J; f is continuous at g.

Want: 0;f is defined near q.
Since g € B € By, by the Recentering Lemma (Theorem 38.16),

choose A € By (q) s.t. A< B.

By the choice of B, we know that 0;f is continuous on B,

so B < dom|0; f].

Since A € By (¢q) and A € B < dom|0; f],

it follows that 0;f is defined near ¢, as desired.

End of proof of <. O
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THEOREM 102.5. Let V,W € TNSR", f:V - W, pe V.
Assume: VieZy, 0,f is defined near p and bounded near p.
Then f is continuous near p.

Proof. Choose B € By (p) s.t., Vj € Iy,
B < dom[d;f] and (0;f)«(B) is bounded in W.

Want: f is continuous on B. Want: Vy € B, f is continuous at y.
Given y € B. Want: f is continuous at y. Let g := f.
Want: ¢ is continuous at Oy Want: g e CVZy,.

Since OYW < oYW = CVZV | it suffices to show: ge OVW.
Then, by HW#12-3, we wish to prove: Vj € Iy, d;g € OYW.
Given j € Zy. Want: 0;g € @XW.
We have 39 = 05(7) = (3,F)(y + ).
Then dom|[d;g] = (dom[d; f]) — . Recall: B < dom|0; f].
Then B — y < (dom|[0; f]) — y = dom[d;g].
Because d;9 = (0;f)(y + o),

we conclude that (0;9)«(B —y) = (0;f)«(B),

so, since (0;f)«(B) is bounded in W,

it follows that (0;9)«(B — y) is bounded in W.
Since Be By, we get: B—yeBy. Also,0y =y—yeB—y.
As Oy € B —y € By, by the Recentering Lemma (Theorem 38.16),

choose A € By (0y) s.t. A< B.
Then A € B —y < dom|[0d;g].
So, as A € By (0y), we see that d;¢ is defined near Oy .
That is, 0,9 € DNZ} .
Als0, (859)2(A) € (039)+(B — ).

so, since (0;¢)«(B —y) is bounded in W,

we conclude that (d;9)«(A) is bounded in W.
So, since A € By (0y) and since d;g € DNZ}/

we see that 0;g € BNZ{/ .

Then ;g € BNZY = OV as desired. O

THEOREM 102.6. Let V,W € TNSR*, f:V > W, pue V.
Assume: Yk € Ty, 0,(m)Y o f) is defined near p.
Then 0, f is defined near p.

Proof. Choose B € By (p) s.t., Vk € Zyy, B < dom[d,(m}" o f)].
Want: B < dom|[d, f]. Want: Vq € B, q € dom|[d, f].
Given g € B. Want: ¢ € dom[d, f].
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We have: Vke Iy, qe€ Bcdom[d, (7} o f)].
Then, by HW#13-2, we get: g € dom|[d, f], as desired. O

Let X and Y be metric spaces, f: X --» Y, pe X.
Recall: If f is continuous at p, the p € dom|f].

Let X and Y be metric spaces, f: X --» Y, S c X.
Assue f is continuous on S.  Then S < dom|f].

THEOREM 102.7. Let V,W € TNSR", f:V - W, pe V.
Assume: VjeZy, 0;f is defined near p and continuous at p.
Then " is continuous at p.

Proof. By Theorem 100.2, we get: p € dom[f'].

Since f:V --» W, weget f/:V -->»WRV.

By Theorem 99.1, we wish to show:
Wely®V, me o (f') is continuous at p.

Given l e Zyy Q V. Want: 7, o (f’) is continuous at p.

Since ¢ € Zyy ® V', choose j € Ty, k € Iy s.t. £ = k|j.

Since 0;f is continuous at p, by Theorem 99.1,
we see that 7, o (0;f) is continuous at p.

Also, p € dom[f'] < dom[m o (f')].

By Theorem 102.1, we get:  mpo (f") < w0 (0;f).

So, since p € dom[m, o (f')] and since 7 o (0;f) is continuous at p,
by Theorem 44.13, we get: m, o (f’) is continuous at p. O

THEOREM 102.8. Let X and Y be metric spaces.
Let f: X --»Y, BeBx, pe B. Assume: f is continuous on B.
Then f is defined near p and continuous at p.

Proof. Since f is continuous on B and p € B,
we conclude that f is continuous at p.

Want: f is defined near p.

By the Recentering Lemma (Theorem 38.16),

choose A € By(p) s.t. A< B. Want: A < dom][f].
Since f is continuous on B, we get: B < dom|f].
Then A € B < dom|f], as desired. O

See Theorem 100.4 for the converse to the next result, Theorem 102.9:
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THEOREM 102.9. Let V,W € TNSR", f:V --s W, qe V.
Assume: Vj eIy, 0;f is continuous near q.
Then: f' is continuous near q.

Proof. Choose B € By(q) s.t., Vj € Iy, d;f is continuous on B.
Want: f’ is continuous on B.  Want: Vp € B, [’ is continuous at p.

Given p € B. Want: f’ is continuous at p.
By Theorem 102.8, it suffices to show:
Vj eIy, 0; f is defined near p and continuous at p.
Given j € Zy. Want: 0;f is defined near p and continuous at p.

By the choice of B, we know that d; f is continuous on B.
Then, by Theorem 102.8, J; f is defined near p and continuous at p. [

The next result is the order two version of Theorem 102.5.

THEOREM 102.10. Let V,W e TNSR™, f:V -—» W, pe V.
Assume: Vi,jeZy, 0;0;f is defined near p and bounded near p.
Then f' is continuous near p.

Proof. By Theorem 102.9, it suffices to show:

Vj eIy, 0;f is continuous near p.
Given j € Zy. Want: 0;f is continuous near p.
Let g := 0, f. Want: ¢ is continuous near p.
By Theorem 102.5, it suffices to show:
Vie Iy, 0;g is defined near p and bounded near p.
Given i € Zy. Want: ;g is defined near p and bounded near p.

By assumption, 0;0; f is defined near p and bounded near p.
So since 0;9 = 0;0; f, we get:
0;g is defined near p and bounded near p, as desired. O

Recall Theorem 99.6.

THEOREM 102.11. Let X be a metric space, Y a set.
Let f,g: X --» Y, pe X.

Assume that f € g and that f is defined near p.
Then f = g near p.

Proof. Unassigned HW. O

THEOREM 102.12. Let X be a metric space, Y a set.

Let f,g: X --»Y, pe X.

Assume that f =g nearp and that f s defined near p.
Then g is defined near p.
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Proof. Unassigned HW.

THEOREM 102.13. Let X and Y be metric spaces.
Let f,g: X --»Y, pe X.

Assume that f =g nearp and that f is continuous at p.

Then g is continuous at p.
Proof. Unassigned HW.

THEOREM 102.14. Let V,WW € TNSR™.
Let f,g:V -—» W, peV,jely.
Assume that f = g near p. Then 0;f = 0;g near p.

Proof. Unassigned HW.

THEOREM 102.15. Let V,W € TNSR™.
Let f,g:V -=>»W,peV.
Assume that f = g near p. Then " = ¢ near p.

Proof. Unassigned HW.

THEOREM 102.16. Let V,W € TNSR*, f,g:V -+ W, pe V.

Assume: Yi,j € Ly, 0;0;f is defined near p and continuous at p.
Then " is continuous at p.

Proof. By Theorem 102.3, Vi, j € Zy, 0;0,f is bounded near p.
Also, by assumption, Vi, j € Zy, 0;0;f is defined near p.

Then, by Theorem 102.10, f’ is continuous near p.

Then: [’ is continuous at p and  f’ is defined near p.

Claim: Let i,5 € Iy, k € Zyy.
Then:  0;(my; 0 (') = mro(0i0;f) near p.
Proof of Claim:
Since f’ is defined near p, and since im[f'] € W ® V' = dom|[my;],
we see that my; o (f') is defined near p.
By Theorem 102.1, 7, o (0;f) 2 mgy; © (f').
Then: my; o (f) < w0 (0;f).
So, since my); o (f) is defined near p, it follows that:
7Tkn; (f) = mo(0;f) near p.
Then:  Oi(mp; 0 (f')) = Gi(mro(d;f)) near p.
Want:  0;(m, 0 (0;f)) = mpo(d;0;f) near p.
By assumption, 0;0; f is defined near p.

0
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So, since im[0;0; f] € W = dom|[my],
we see that 7, o (0;0;f) is defined near p.
By Theorem 94.3, 0;(m; 0 (0;f)) 2 m © (0:0;f).
So, since 7, o (0;0; f) is defined near p, it follows that:
Oi(mi 0 (0;f)) = mpo(0;0;f) mnearp, as desired.
End of proof of Claim.

Let g := f'. Want: ¢’ is continuous at p.
Since f:V --s Wandg=f,wegetg: V --»WQRYV.
By Theorem 102.7, it suffices to show:
Vi ey, 0,9 is defined near p and continuous at p.
Given 7 € Zy. Want:  (A) 0;¢ is defined near p and
(B) ;g is continuous at p.

Proof of (A):
By HW#13-2, it suffices to show:
V0l e Iwgyv, 0Oi(m o g) is defined near p.
Given /€ Tygy . Want: 0;(m; o g) is defined near p.
Since ¢ € Zyygy, choose j € Iy and k € Ly s.t. £ = k| j.
By assumption, 0;0; f is defined near p.
So, since im[0;0; f] € W = dom|[my],
we see that 7, o (0;0;f) is defined near p.
By the claim:  0;(my; 0 (f)) = mo(0;0;f) near p.
So, since ¢ = k||j and g = f’, we see that:
Oi(mpog) = mpo(0;0;f) near p.
So, since 7, © (0;0;f) is defined near p, we conclude:
0i(m 0 g) is defined near p, as desired.

End of proof of (A).

Proof of (B):
By Theorem 99.1, it suffices to show:
YVl e Twgy, meo(0;g)is continuous at p.
Given { € Tyygy . Want: 7 o (0;g) is continuous at p.
By (A), 0,9 is defined near p. Then p € dom[d;g].
So, since im[0;g] € W ® V' = dom|[n],
we see that p € dom|[m, o (0;9)].
By Theorem 94.3, ¢;(m; 0 g) 2 7, 0 (0;9).
Then, by Theorem 44.13, it suffices to show:
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0;(mg o g) is continuous at p.
Since ¢ € Zyygy, choose j € Iy and k € Ty s.t. £ = k| j.
By assumption, 0;0; f is continuous at p.
Then, by Theorem 99.1,
we see that 7, o (0;0;f) is continuous at p.
By the claim,  &;(mgj 0 (f')) = mpo (0:0;f) near p.
So, since ¢ = k||j and g = f’, we see that:
Oi(mpog) = mpo(0;0;f) near p.
So, since 7, 0 (0;0;f) is continuous at p, by Theorem 65.7, we have:
0;(m 0 g) is continuous at p, as desired.
End of proof of (B). d

THEOREM 102.17. Let V,W € TNSR*, f:V --» W.
Leti,j eIy, ke Ty. Then m, 0 (0;0;f) 2 mepaj © (f")-

Proof. Want: Vp e V', (mp 0 (0:0;f))p =* (mrjifj © (f"))p-
Given pe V. Want: (7, 0 (0;0;f))p =" (mjijj o (f"))p-
Want: ((mgj50 (f")p # @) = (o (Gidif))p = (mrpigzo (f"))p )-
Assume: (myyupo (7)), # ©. Want: (mee (B0,0))y = (magyo ()
Since (mg)ip; © (f"))p # @, we get f) # @, and so p € dom[f”].
By Theorem 97.6, we have: Bilin}zfvw(ei,gj) = (0:0;f)p-
Let A:= f] and B := Bilin,"". Then B(e;,g;) = (0:0;f),-
Since Bilin}"" = B, get A = [B]W,, and so Ayij; = mx(B(ei, £5))-
We have (7Tk||iHj o (f”))p = Wk\\iHj(f;;/) = Tkl (A) = AkHiHj'
Then (m 0 (0:05f))p = me((0i0;f)p) = mi(Blei,g;))

= Apji; = (mepagg o (f"))p,  as desired. U

THEOREM 102.18. Let V,WW e TNSR™, f:V --» W, qe V.
Assume: f" is continuous near q.
Then: Yi,j € Ty, 0;0;f is continuous near q.

Proof. This is HW#13-3. 0
THEOREM 102.19. Let V,WW € TNSR", f:V --»W.

Let h, Z,j € I\/, ke IW Then T O (ﬁh(?zﬁjf) = Tk|h|i|j © (f”).
Proof. Unassigned HW. 0

THEOREM 102.20. Let V,WW € TNSR™", f:V --—» W, qe V.
Assume: f" is continuous near q.
Then: Yh,t,j € Ly, 0,0;0;f is continuous near q.
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Proof. Unassigned HW. O

THEOREM 102.21. Let V,W € TNSR™", f:V -—» W, qe V.
Assume: Vi,j € Ly, 0;0;f is continuous near q.
Then: f" is continuous near q.

Proof. Choose B € By(q) s.t., Vi, j € Iy, 0;0;f is continuous on B.
Want: f” is continuous on B.  Want: Vp € B, f” is continuous at p.
Given p € B. Want: f” is continuous at p.
By Theorem 102.16, it suffices to show:

Vi,j eIy, 0;0;f is defined near p and continuous at p.
Given ¢,j € Zy.  Want: 0;0;f is defined near p and continuous at p.
By the choice of B, we know that 0;0; f is continuous on B.
Then, by Theorem 102.8,

0;0; f is defined near p and continuous at p, as desired. U

THEOREM 102.22. Let V,W € TNSR™, f:V -—» W, qe V.
Assume: Yh,i,j € Iy, 0,0;0;f is continuous near q.
Then: " is continuous near q.

Proof. Choose B € By(q) s.t., Yh,i,j € Iy, 0,0;0; f is continuous on B.
Want: f” is continuous on B.  Want: Vp € B, f” is continuous at p.
Given p € B. Want: f” is continuous at p.

By HW+#13-5, it suffices to show:

Vh,i,j €Ly, 0,0;0;f is defined near p and continuous at p.
Given h, 1, j € Zy. Want: 05,0;0; f is defined near p and continuous at p.
By the choice of B, we know that 0,0;0; f is continuous on B.

Then, by Theorem 102.8,
0n0;0; f is defined near p and continuous at p, as desired. O

Recall Theorem 99.7.

THEOREM 102.23. Let V,W € TNSRY, f:V —=» W
Assume fo, = Ow and fi, = Owey. Then f e o¥'W.

Proof. Let L := Dy, f.  Since fj = Owgy, we get: L = 0.

Then L # @, and so fj — Le oy,

Since fo, = Ow, we get fi = f.

Then f = f -0y = f§, — Le oy, as desired. O
THEOREM 102.24. Let V,WW € TNSR", f:V --» W, q € dom[f'].
Then: ( fé = 0W®V ) = ( V] E:Zv, (ajf)q =0 )
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Proof. Since g € dom[f’], we get f; € im[f'].
Then f; e im[f'] € W ® V = dom[mg;], so my; (f;) # ©.
Since <7Tk|\j 9 (f/))q = 7Tk”](fé) #* @,
by Theorem 102.1, we get: (7 0 (0;f))q = (mej 0 (f'))q-
It follows that: ( f;=O0wev )
= ( V] € Iv, Vk e Iw, (ﬂ—kHj ¢} (f/))q =0 )
<= (VjeIV, Vk‘eIW, (Wko(ajf»q:())
< (Vjely, (0jf)g=0w), as desired. [

THEOREM 102.25. Let V,W € TNSR", f: V --» W, g € dom[f"].
Then: ( fé/ = OW@V@V ) <= ( V’l,j S Iv, (ﬁzﬁjf)q =0 )

Proof. Unassigned HW. O

103. SECOND ORDER TAYLOR THEOREM

THEOREM 103.1. Let V,W € TNSR*, f:V --» W.
Assume fo, = Ow, fo, = Owev and f5, = Owgvev. Then f € oyW.

Proof. By Theorem 99.7, it suffices to show:
VieLy, o;feofV.
Given j € Zy. Want: d;f € ofW.
Let g := 0;f. Want: g€ o}V,
Since f:V --» W and g = 0;f, we get g: V --> W.
Since f, = Owgy, by Theorem 102.24, we get (0;f)o, = Ow-.
Then go, = (0;f)o, = Ow.
Then, by Theorem 102.23, it suffices to show: g5 = Owegy.
By Theorem 94.5, we have dom[f”] < dom[(d;f)’].
Then 0y € dom|f”] < dom[(d;f)'] = dom[g¢'].
Then, by Theorem 102.24, we wish to show: Vi € Zy, (0;9)o, = Ow .

Given ¢ € Zy. Want: (0;9)0, = Ow.

By assumption, we have: fo, = Owevev-

Then, by Theorem 102.25, we get: (0:0;f)oy, = Ow.

Then: (0:9)oy = (00 f)oy = Ow, as desired. O

THEOREM 103.2. Let V,W € TNSR", Le LIV, x,ue V.
Then (0,L), = L(u).

Proof. Let i :=1%.  Then (0,L), = (L o1)j.
We calculate: Vt € R,

(Loi)y = L(iy) = L(x + tu) = (L(x)) + t - (L(u)).
Define M € LY by M(h) = h- (L(u)).
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Then st = M(1) =1 (L(u)) = L(u).
We calculate: Vh € R,
(Lot

I
>
5
£
I
=

Then (Loi)l = M. Then (L o)l — M =0} € of".
Then Do(Loi) = M, so (Lo, = st}
Then (0,L), = (L o)y = sty = L(u), as desired. O

THEOREM 103.3. Let V,W € TNSR*, Le LY, z,u,ve V.
Then (040yL), = O .

Proof. Let C := C’é(v). Then (0,C), = Ow .

By Theorem 103.2, we have: Vy e V, (0,L), = L(v).

Then: Yy eV, (0,L), = L(v) = C,,.

Then 0,L = C.  Then (0,0,L), = (6,C), = Ow, as desired. O

THEOREM 103.4. Let V,W € TNSR", Be SBYY, Q := B(e, ).
Let x,ueV. Then (0,Q), = 2 - (B(z,u)).

Proof. Let i := 1%  Then (0,Q). = (Q o i)j.
We calculate: Vi e R,
(Q o) = Q(ir) = Bli, i)

= B(z + tu,x + tu).

= (B(x,x)) + (2t) - (B(x,u)) + (£*) - (B(u, ).

= (Q(x)) + (2t) - (B(z,u)) + (£2) - (Q(u)).
Define M € LY by M(h) = (2h) - (B(z, u)
Then 5" = M(1) = (2-1) - (B(x,u)) =
Define P e QF by P(h) = () - (Q(u)).
We calculate: Vh e R,

(Qoi)y (Qoi)osn — (Qoi)o

)-
2-(B(z,u)).

= ( o} Z)h — ( o Z)()
= ((Q)+ (2h) - (B(z,u)) + (h*) - (Q(w)) )
— ((Q@)) +(2-0) (B(z,u)) + (0°) - (Qw)) )
= (2h) - (B(z,u)) + (h?) - (Q(u))
= M, + P,.
Then (Q o i)l = M + P.
Then (Q o)l — M = Pe QW < OFW < ofW.
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Then Do(Q oi) = M, so (Q o)) = sty .

Then (0,Q), = (Q o i)y = sty =2 (B(x,u)), as desired. O

THEOREM 103.5. Let V,W € TNSR*, Be SBY, Q := B(e, o).
Let x,u,ve V. Then (0,0,Q)z = 2 - (B(u,v)).

Proof. Let L :=2-(B(e,v)). Then L e LY.

By Theorem 103.4, we have: Vy e V, (0,Q), = 2 - (B(y,v)).

Then: Yy eV, (0,Q), =2 (B(y,v)) = Ly,. Then 0,Q = L.

By Theorem 103.2, (0,L), = L(u).

Then (0,0,Q)z = (0uL), = L(u) = 2 (B(u,v)), as desired. O

The following theorem is the Second Order Taylor Theorem:

THEOREM 103.6. Let V,IWW € TNSR*, f:V --» W, z € dom[f"].
Let L := Ling and @ := ((1/2) - (Bilings))(e, e).
Let R:= fI — L -Q. Then R e oV,

Proof. Since x € dom[f”] < dom[f’] < dom[f], we get fI(0y) = Oy.
Let B := (1/2) - (Biling). Then @ = B(e,e).
Since L € LY, we get dom[L"] = V and Lg, = Oy.
Since Q € QV, we get dom[Q”] =V and Qq, = O
We have (fT) = f'(z + o) and (/) = (f'(z + o)) = [z + o).
Also, R = ((f;) —L-Q) 2 (ff) - L' - Q"
Then R' 2 (/T — I - Q) 2 (/1) ~ I/ - Q"
Then R o (f'(x+e)) — L' —Q and R" 2 (f"(x +e)) — L" — Q".
Then dom[R"] 2 dom[(f"(x + )) — L" — Q"].
Since z € dom[f”], we get Oy € dom[f"(x + o)].
So, since Oy € V = dom[L"] and Oy € V' = dom[Q"],
we conclude: Oy € dom[(f"(x + o)) — L" — Q"].
Then Oy € dom|[(f"(z + o)) — L — Q"] < dom[R"].
AISO, ROV = (fg —L— Q)OV = OW - OW - OW = OW
Then, by Theorem 103.1, it suffices to show:
both Ry, = Owey and Ry, = Owgvev-

Proof of (1):

We have Oy € dom[R"] € dom[R/].

By Theorem 102.24, it suffices to show: Vj € Iy, (0;R)o, = Ow .
Given j € Zy. Want: (0;R)o, = Ow.

Let u := 5}/. Then J;R = 0,R.

By Theorem 103.2, (0,L)o, = L(u).
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By Theorem 103.4, (0,Q)o, = B(0v,u).
Since B € B, we get B(0y,u) = Oy .
Since L = Liny , we get L(u) = Ling (u).
By HW#S-4,  (uf)(@) = (Dof)(u).
By Theorem 90.1, (D,f)(u) = Linf/ (u).
Then ((0uf)(z + ))oy = (0uf)(x) =" (Daf)(u) = Ling (u).
Since « € dom[f”] < dom[f'], we get f. eim[f' | W V.
Then Ling, € LY. Then Ling, (u) € W.
Then (Llnfg/c( )) (Lll’lf/( )) - (Ow) = OW
Then (0;R)o, (OuR )
(aU( —L— Q))Ov
au(fT))Ov (3 L) - (auQ)Ov
(@uf)(x + #))o, — (L(u)) = (B(Oy, u))
Ling, (u)) — (Ling (u)) — (Ow).
= Ow # O.
Then (0;R)o, = Ow, as desired.
End of proof of (1).

_*

(
-
(

%

Proof of (2):
We have 0y € dom[R"].
By Theorem 102.25, it suffices to show: Vi, j € Zy, (0;0;R)o, = Ow.
Given 1, j € Zy. Want: (0;0;R)o, = Ow.
Let u:= ¢} and let v := €} Then 0;0;R = 0,0,R.
By Theorem 103.3, (0,0, L)o, = Ow .
By Theorem 103.5, (0,0,Q)o, = 2 - (B(u,v)).
Since x € dom[f”], by Theorem 97.6,
we get:  Bilings(u,v) = (0u0uf)a-
Then ((0u0uf)(x + ®))o, = (Cu0uf)(x) = Biling(u,v).
Since B := (1/2) - (Bilingr), we get 2 - (B(u,v)) = Biling (u, v).
Since x € dom[f”], we get f/ e im[f" < W RV RV.
Then Biling, € BY,. Then Bilingr(u,v) € W.
Then (Biling (u,v)) — (Ow) — (Bilings (u, v)) = Ow.
Then (0;0;R)o, = (Cu0sR)o,
(uu(fT L~ Q)
* (0u0o(f7))oy = (Gu@uL)oy — (0uuQ)oy
((Cu0u f)(x + ))oy — (Ow) — 2 - (B(u, v))
= (Blhnf/( )) — (Ow) — (Bilings (u, v)).
— 0y # O
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Then (0;0;R)o, = Ow, as desired.
End of proof of (2). O

104. SECOND DERIVATIVE THEOREM

THEOREM 104.1. Let V € TNSR™.

Then (V,dy) is a proper metric space.

Proof. Let W := R™.

By Theorem 60.10, (W, dy ) is a proper metric space.

Let m := #Zy. Then #Zy = m = #[1..m].

Choose A : Zy <> [1..m].

Then X : V <»> W is an isometry from (V,dy) to (W, dw).

Then (V,dy) is a proper metric space. O

THEOREM 104.2. Let V € TNSR*, Q € QF.
Assume: Q >0 on V7 . Then: 3e >0 s.t. Q=c-(|o]3) on V.

Proof. Let S :={x eV s.t. |z|y = 1}.
Since Q € QF, it follows that Q is continuous from V to R.
Then @Q|S is continuous from S to R.
Since S = (] o |v)*({1}) and since | e |, : V' — R is continuous
and since {1} is closed in R, we get: S is closed in V.
Moreover, as S < By (0y,2), we see that S is bounded in V.
Since S is closed and bounded in V,
and since (by Theorem 104.1), (V, dy) is proper,
we see that S is compact.
So, since @S is continuous from S to R,
it follows, from the Extreme Value Theorem (Theorem 61.2),
that min(im[Q|S]) # @.
Let € := min(im[Q|S]). Then € € im[Q|S] and im[Q|S] > «.
Since S < V¥ and since @ > 0 on V©, we get:  im[Q|S] > 0.
Then € € im[Q|S] > 0, so € > 0.
Want: Q=¢c-(|e]})) onV.
Since Q € O, we see that @, = 0.
Then Qo, — 0= -0 = 2 (0 2) = (= (| » [})oy-
Want:  Q>¢e-(|e[}) on V.
Want:  Vee Vi, Q.= (c-(|e[}))
Given x € V. Want: Q, = (¢ (| o))
Let a := |z|y. As x eV, we get: a > 0.
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Let u := x/a. Then z = au.

Also, |uly = |z|y/a =a/a=1, souces.

Then Q, € im[Q|S] = ¢, so Q, =

Since @, = ¢ and since a® = 0, we get a?- Q. = a®

Since Q € OQF, we get Quou = -Qu. Recall: a = |z|y.

Then Q, = Qau = a? Qu=ate=c¢- (|ZE‘%/) = (6 ' (‘ ° ’%))1 O

THEOREM 104.3. Let V,WW € TNSR™, a € CVZY/, € > 0.
Then 3B € By (0y) s.t. |ajw < e on B.

Proof. Since a € CVZV , we get: ag, = Ow.

Since a € CVZ;/ < DNZY/, choose C € By (0y) s.t. C < dom[a].
Since o € CVZ;/, we know that « is continuous at Oy from V to W.
Choose D € By (0y) s.t. a.(D) < Bw/(ag,,, ).

Let B:=CnD. Then B € By (Oy).

Want:  |ajw <& on B.
Want: Vre B, (lajw): <e.
Given x € B. Want: (Jo|w). < e.

Since z € B < C < dom|a] and since z € B < D,
it follows that a, € a. (D).
Since a, € a,(D) € Bw(ag,,¢€), we get: |a, — ap, | < e.

Since ap,, = Oy, we get: a, — ap, = Q.
Since (Jo|w )z = |ow|lw = |aw — a0y |w < €,
we get (|a|w). < g, and so (|a|lw). < €, as desired. O

THEOREM 104.4. Let V € TNSR™, f:V --» R, z € dom[f"].
Let L := Ling and B := Biling».

Assume that L =0 onV  andthat DB(e,e) >0 on V.
Then f has a strict local minimum at x.

Proof. Since x € dom[f”] < dom[f], we get: (fI)o, =0
Want: fI has a strict local minimum at Oy .

Let g := fI. Then gy, = 0.

Want: ¢ has a strict local minimum at Oy,.

Want: 3U € By (Oy) s.t. g > go,, on Uy, .

Let @ := ((1/2) - B)(e, ). Then Q = (1/2) - (B(e,)).

So, since B(e,e) >0 on V{7, we see that @ > 0 on V7.
Also, @ = ((1/2) - Bilingr)(e, ).
Let R:= fI' — L - Q. By Theorem 103.6, R € oy &.

Since R e oy® = (CVZy) - (| o |2),
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choose a € CVZy s.t. R=a- (e %).
Since L = 0 on V, we conclude that L = 0.
Theng-Q=9g—-0y-Q=f-L-Q=R
By Theorem 104.2, choose € > 0s.t. Q =¢- (] |¥) on V.
By Theorem 104.3, choose U € By (0y) s.t. |a| <e/2 on U.

Want: g > go,, on Uy, . Want: Yy e Uy, g4 > goy, -
Given y € Uy, . Want: g, > go, -
Since y € Uy, < Vi, and since @ > 0 on V{7,
we conclude that ¢, > 0. Then Q,/2 > 0.
Since y € Uy, = U and since Q@ > ¢ - (| e [3) on U,
we conclude that Q, = - |y|}. Then ¢ - |y} < Q,.

Since y € Uy, € U and since |a| < /2 on U,

we conclude that |oy,| < /2.
Wehave g —Q =R=a-(|e[}), so(g—Q)y=(a-(|e[}))y
Then g, —@Qy=(9—Q)y=(a-(|¢[}))y =y (yf),

and so g, — Qy = - (lyl,), and so 9y — Qyl| = || - yl3-
Recall: |oy| <e/2 and e- |y} <Q,.
Then [g, — Qy| = lay| - [yl < (£/2) -y} = (e [y[)/2 < Q)2
Since |gy _Qy| < Qy/2v we get: Qy - (Qy/2) S gy S Qy + (Qy/Q)
Then g, > Q, — (Q,/2). Recall: @),/2 > 0 and go, = 0.
Then g, > Qy_(Qy/Z) = Qy(l_(l/Q)) = Qy/2 > 0 = go,. U

105. PARTITIONS

DEFINITION 105.1. Let P be a set of sets.
Then P is a partition means:

VP,QeP, ((P=Q) v (PnQ=0) ).

DEFINITION 105.2. Let X be a set and let P be a set of sets.
Then P is a partition of X means:
( (P is a partition) & (JP=X) ).

DEFINITION 105.3. We define: Vj € Ny,
1
I; = m’mf meZ} and
217 2
S; = {IxJ|I,JeI}.

We often refer to elements of a partition P as “legos” or “P-legos”.

Let D := Bgz(0y,+/2) and let j := 101,
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As you can assemble a Star Wars Death Star out of legos,
so, too, you can build a good approximation to D out of S;-legos.

THEOREM 105.4. We have: ¥j € Ny,
Z; is a partition of R and S; is a partition of R2.

DEFINITION 105.5. Let PAbe a partition.
ThenP = {|JA| A< P }.
Note: &, JP € P and P < P.

We often refer to elements of P as “assemblies” or “P-assemblies”.

Let D := Bgz(0y,+/2) and let j := 101,
As you can assemble a Star Wars Death Star out of legos,
so, too, you can find sets in §; that approximate D.

DEFINITION 105.6. Let P and Q be partitions.
Then P << Q means: both P<Q and |JP=]0Q.

THEOREM 105.7. Let P and Q be partitions.
Assume P << Q. Then P < Q.

THEOREM 105.8. We have:
both To<<Ti <<y <<--- and &)<<8 <<8E<<---.

106. PARTITION MEASURES

DEFINITION 106.1. Let i be a function.
Then p is a partition measure means:
both  dom[u] is a partition —and im[u] < [0;0].

DEFINITION 106.2. Let p be a partition measure.

Then we define: P, :=dom[u] and X, :={JP,..
DEFINITION 106.3. Vj € Ny, define o/ : S; — [0; 0] by 04{9 =477,
THEOREM 106.4. Vj € Ny, we have:

ol is a partition measure and Py = S, and X, = R2.

DEFINITION 106.5. Let X be a set and let p be a function.
Then i is a partition measure on X means:
both  p is a partition measure and X, = X.

THEOREM 106.6. Vj € Ny, o’ is a partition measure on R2.
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DEFINITION 106.7. Let i1 be a partition measure.
Then we define i : P, — [0;0] by:  [ip = Z Ip.
PeP,n2B
We call /i the assembly measure of ..

Note: J, X,, € dom[fi] and p < [i.

THEOREM 106.8. Let u be a partition measure and let S, T e 7/3;
Then fisor < fis + fir.

DEFINITION 106.9. Let i1 and v be partition measures.
Then p << v means: both p<v and X,=X,.

THEOREM 106.10. Let i and v be partition measures.
Assume p << v. Then 1 S D.

THEOREM 106.11. We have: o° << a! << a? << ---.

107. APPROXIMATING SETS

DEFINITION 107.1. Let P be a partition, B < | JP.
Then By := | J{P € P|P < B} and B} :=|J{P € P|P n B # &}.

We call B the inner assembly or inner P-assembly of B.
We call B}, the outer assembly or outer P-assembly of B.

Let D := Bpe(0s,4/2).
We drew a picture of D.
We added each of the four squares in {S € Sy | S < D}.
Note that Dg, is the union of those four squares.
Adding five more squares, we displayed

all of the 13 squares in {S € Sy| S n D # &}.
Note that D;fO is the union of those 13 squares. squares.

Let D := Bge(02,4/2), A:=DnQ2%

We discussed how to picture A.

We noted that {S e Sy|S < A} = &.

Therefore, Ag, = .

We noted that {Se Sy|SnA#J} = {SeS|SnD+#J}.
Those nine squares from before are {S € Sy |S N A # &}.
Note that A;fo is the union of those nine squares.
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Let D := Bg(05,4/2), A:=DnQ% ;=101
We discussed why

ng and D;fj are both indistinguishable from D on the board.
We discussed why

As, =, while Agj is indistinguishable from D on the board.

THEOREM 107.2. Let P be a partition, B < | JP.
Then: By < B< Bj.

THEOREM 107.3. Let X be a set, B< X.
Let P and Q be partitions of X. Assume: P << Q.
Then: By, € Bo< B< BS < B,

108. APPROXIMATING MEASURES OF SETS

DEFINITION 108.1. Let i be a partition measure.
Then =, pu* : 2%0 — [0; 0] are defined by:
po(B) = A(Bp)  and  p(B) = ABS,).

We call p~ the inner measure of .
We call u* the outer measure of p.

THEOREM 108.2. Let D := By2(0y,/2).
Then (o)~ (D) = 4 and (a°)*(D) = 13.

It has been known since antiquity that the area of D is 2.

Note that (a®)7(D) =4 < 27 <9 = (a®)"(D).

If we approximate D by Sp-assemblies (from the inside and outside),
we don’t get such a good approximation to the correct area.

= 10100,
< 27+ 0.1.

THEOREM 108.3. Let D := Bpe(0s,4/2),

7
Then: 2m —0.1 < (o)~ (D) < 21 < (a?)7(D)

If we approximate D by S;-assemblies (from the inside and outside),
we get a good approximation to the correct area.

THEOREM 108.4. Let pu be a partition measure and let S,T < X,,.
Then both pg o = pg + pr and pl p < pd + p.

THEOREM 108.5. Let u be a partition measure.
Then: pwoo=p=put on P,
and o< pt on 2%,
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THEOREM 108.6. Let X be a set.
Let pv and v be a partition measures on X.
Then: p~ <v- <vt<put on2X.

THEOREM 108.7. (o)~ < («

il
IN
5
il
N

109. THE DEFINITION OF AREA
DEFINITION 109.1. Define o, o : 28 — [0; 0] by
a”(B) = sup{(a’)"(B)|[j € No}
and ot (B) = inf{(a?)"(B)|j € Ng}.
We call a~(B) the inner area of B.
We call a™(B) the outer area of B.

THEOREM 109.2. Let S,T € M.

Then both ag p > ag + ar and of r < af + af.

THEOREM 109.3. Define F : R* — R? by F(x,y) = (y,z).  Let
SeM.
Then both o~ (Fy(S)) = a=(S) and o™ (F(S)) = a™(9).

THEOREM 109.4. Let D := By2(0y,/2).
Then a (D) =2m =a* (D).
Also, a (DnQ?) =021 =a"(DnQ?.

DEFINITION 109.5. We define:
M = { BcR?| (Bisbounded in R?*) & (ap=af) }.

That is, M is the collection of
bounded subsets of R? whose inner and outer areas agree.
A subset B of R? is Jordan measurable if B € M.

Let D := Bge(02,4/2). Then D e M and D n Q? ¢ M.

THEOREM 109.6. Let S,T € M. Then ST e M.

THEOREM 109.7. Define F : R? —» R? by F(z,y) = (y, ).
Let S € M. Then F,(S) € M.
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Note that o~ |M = a™|M.
DEFINITION 109.8. a := a~ | M.

Note: VB < R? ((Bisbounded in R?) = (az <af<®)).
Also, VBeM, B is bounded in R2.
It follows that im[a] < [0; ). Then o : M — [0; 00).

The function a : M — [0; 0) is called Jordan area.

Note: VB < R?* (B is Jordan measurable) < (ap # ®).
THEOREM 109.9. Let S,T € M. Then asor < ag + ar.

THEOREM 109.10. Define F : R* - R? by F(x,y) = (y,x).
Let S € M. Then a(F.(S)) = a(S).

110. JORDAN/RIEMANN INTEGRATION

In this section, we develop an integration theory that is often called
Riemann integration. It is closely tied to Jordan area, and so might
also be called Jordan integration.

DEFINITION 110.1. Let f: R --» R.
We define Gy :={(x,y) e R* |y = f()},
and O :={(z,y) e R*|0 <y < f(x)}.

In Definition 110.1, G is called the graph of f,

and Oy is called the ordinate set of f.
DEFINITION 110.2. Let f: R --» R.
We define ff = (a(Oyf)) — (a(O_y)).
R

Note that a(Oy) is the Jordan area of the region under f.
Note that a(O_y) is equal to the Jordan area of the region over f.
Thus, the integral of f is the area under f minus the area over f.

DEFINITION 110.3. Let f: R --» R.
Then f is Jordan integrable means: J f # ©.
R

THEOREM 110.4. Let f: R --» R,
Then: ( f is Jordan integrable) < (Of, O_fe M).



278 SCOT ADAMS

That is, f is Jordan integrable iff the regions under and over f are both
Jordan measurable.

Define ¢ : R — R by ¢(z) = 1/(1 + 22).
Then O, is not bounded in R?, so O, ¢ M.
Then ¢ is not Jordan integrable.

Also, the characteristic function y

gj] is not Jordan integrable.

1nQ
DEFINITION 110.5. Let f : R --» R and let a,b € R.

Assume that [a|b] < dom[f].  Let I := JR (fl[alb]).

—r—

) 1, ifa<b
Then we define: J f = <0, ifa=10
¢ —I, ifa>b.

b b
Also, we define: J[a, f = (bia) : <L f).

Note: Vf:]R——»R,Vaedom[f],bothJ f=0andJ[ f=0.

111. CONTINUITY ON A COMPACT IMPLIES UNIFORM CONTINUITY

THEOREM 111.1. Let X be a compact metric space. Let p,qe XV,
Then Istrictly increasing m € NN s.t.
pom and gom are both convergent in X.

Proof. Since X is compact, p is subconvergent in X.
Choose a strictly increasing k € NY s.t. p o k is convergent in X.
Since X is compact, g o k is subconvergent in X.
Choose a strictly increasing £ € NY s.t. go k o £ is convergent in X.
Let m:=kol. Then qom is convergent in X.
Want: pom is convergent in X.
Since pom = po k o/, it follows that p o m is a subsequence of p o k.
Since p o k is convergent in X and since p o m is a subsequence of X,
we conclude that p o m is convergent in X, as desired. U

THEOREM 111.2. Let X and Y be metric spaces.
Let f : X =Y be continuous and let € > 0.
Assume that X is compact.
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Then: 36 > 0 s.t., Vp,q € X,
(dx(p,q) <6 ) = (dy(fp, fo) <€)

Proof. Assume: Vo > 0, dp,q € X s.t.
(dx(p,q) <6 ) & (dy(fp fo) =€)
Want: Contradiction.
By the Axiom of Choice, choose p,qe XV s.t., Vj e N,
( dX(pﬁQj) < 1/] ) & ( dY(fpj’fQj) =€ )
By Theorem 111.1,choose a strictly increasing m € NV s.t.
pom and g om are both convergent in X.
Let a:=pom, b:=qgom. Then a and b are both convergent in X.
Choose «, f € X s.t. both a, — o and b, — [ in X.
Then (dx(a,b))e — dx(c, ) in R.
By our choice of p and ¢, we have: Vj e N, dx(p;,q;) < 1/j.
Then: Vj e N, 0 < (dx(p,q)); < 1/j.
Then, by the Squeeze Theorem, (dx(p,q)). — 0 in R.
Also, dx(a,b) = (dx(p,q))om, so dx(a,b) is a subsequence of dx(p, q).
Then (dx(a,b))s — 0 in R.
So, since (dx(a,b))e — dx(a, ) in R,
we conclude that 0 = dx(a, 8). Then o = .
Since f is continuous, since a, — « in X and since b, — € X,
it follows that both (f oa)e — f, and (fob)e — fgin Y.
Then (dy(f oa, fob))e = dy(fa, fz) in R.
Since a = 3, it follows that dy (fa, f3) = 0.
Then (dy(foa, fob))e — 0in R.
Choose K € N s.t., Vie N,
(i=2K) = ((dy(foa, fob))<e).
Then we have: (dy(foa,fob))k <e.
Let j :=mg. Thenp; = (pom)g = ax and ¢; = (gom)x = bg.
By our choice of p and ¢, we have dy (f,,, f;,) = €, so € < dy(fy,, fy,)-
Then e < dy(fy, fy;) = dy(fax, forr) = (dy(foa, fob))x < e
Then ¢ < e. Contradiction. U

THEOREM 111.3. Leta,be R.  Assume a < b.
Let f : [a;b] — R be continuous. Then a(Gy) = 0.

Proof. Unassigned HW. U

THEOREM 111.4. Let C := Sp2(05,4/2).  Then a(C) = 0.
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Proof. Since a(C') = 0, it suffices to show: a(C) < 0.

Define f : [-v/2,v/2] — R by f(z) = v2 — 22.

Since C' = Gy u G_y, we get: a(C) < (a(Gy)) + (a(G_y)).

By Theorem 111.3, we have both a(Gy) = 0 and o(G_y) = 0.

Then a(C) < (a(Gy)) + (a(G-f)) =0+ 0 = 0, as desired. O

DEFINITION 111.5. Let p,q € R,
Then: [plg] = {(Q—-tp+tg|te0;1]}.

The set [p|q] is called the closed line segment from p to gq.
THEOREM 111.6. Let p,q e R%.  Then a([p|q]) = 0.

Proof. We have p = (p1,p2) and ¢ = (q1, q2)
Exactly one of the following is true:

(D) p1=q or (2) p1 # @1

Case (1):

Define F': R? —» R? by F(z,y) = (y, z).

Define h : [p2|g2] — R by A(t) = p;.  Then [plq] = Fu(Gh).
By Theorem 111.3, o(G},) = 0.

By Theorem 109.10, a(Fy(Gp)) = a(Gy).
Then a([plq]) = a(Fx(Gy)) = a(Gy) = 0, as desired.
End of Case (1).

Case (2):

Define f: [p1|¢1] = R by f(t) = (1 —t)ps + tg2.  Then [plq| = Gy.
By Theorem 111.3, a(Gy) = 0.

Then a([plq]) = a(Gy) = 0, as desired.

End of Case (2). O

112. BOUNDING SETS AND JORDAN MEASURABILITY

DEFINITION 112.1. Let P be a partition and let B,V < [ JP.
Then B P-bounds V' means: VPeP,
(PAnV#£g#P\V) = (PnB#g).

THEOREM 112.2. Let C := Sg2(09,+/2), D := Bge(02,4/2), j € Ny.
Then C S;-bounds D.

Proof. Unassigned HW. U
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THEOREM 112.3. Let P be a partition, B,V < UP.

Assume: B P-bounds V. Then:  VA\V5y < Bf.
Proof. Unassigned HW. O
THEOREM 112.4. Let p be a partition measure, B,V cX,.

Assume: B P,-bounds V. Then: pr — wy < pg.
Proof. Unassigned HW. U
THEOREM 112.5. Let B,V < R?. Assume: ap = 0.

Assume: Vj € Ny, B S;-bounds V.. Then: V e M.

Proof. Want: a5, = of.
Since oy, < a7, it suffices to show: afr < ay.
Want: of, —aj, < 0. Want: Ve > 0, oy — oy, <e.
Given € > 0. Want: of; — oy <e.
Let S:={(a?)5|jeNg}. Then aj :=infS.
By assumption, we have: aj;, = 0.
AsinfS =a}=0<c¢e, weget (e <S). Choosete Sst. t<e.
Since t € S = {(a?) 5| j € Ny}, choose k € Ny s.t. t = (a®) 5.
We have o, = inf{(a’){> | j € No}, so a7 < {(a?){|J € No},

and so ofr < (o).
Also, ay = sup{(a?)y; |7 € No}, so ay = {(a?)}]7 € No},

and so ay; = (o).
Since ofr < (¥)fr and oy, = (aF)y,

we get: air — ay, < (aF)) — (aF)y.
By Theorem 112.4, we have: (a”){; — (Ozk)(/ < (oM.
Then of; — oy, < (o/“){; — (a®) < (a¥)5 =t < ¢, as desired. O
THEOREM 112.6. Let D := Bp2(0,1/2). Then D € M.
Proof. Let C := Sg2(0q,/2). By Theorem 111.4, ac = 0.
By Theorem 112.2, we have: Vj € Ny, C' S;-bounds D.
Then, by Theorem 112.5, D € M, as desired. O
THEOREM 112.7. Let a,b e R. Assume a < b.

Let f : [a;b] — [0;00) be continuous. Then Oy € M.

Proof. Let V := Oy. Want: V e M.

Let b= (U,, 0)7 q: = (a'7 fa)a ri= (bv O)a S = (b7 fb)
Let C:=[plgl, D:=][r[s], E:=][plr].

Let B:=CuDuFEuGy.
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Then a(B) < (a(C)) + (a(D)) + (a(E)) + (a(Gy)).

Unassigned HW:  Show, Vj € Ny, B §;-bounds V.

By Theorem 111.6, we have: a(C) = (D) = a(F) = 0.

By Theorem 111.3, we have: a(Gy) = 0.

Then a(B) < (a(C)) + ((D)) + (a(E)) + (a(Gyf)) =0+0+0+0 = 0.
So, since a(B) = 0, we get: a(B) = 0.

Then, by Theorem 112.5, we have: V € M, as desired. O
THEOREM 112.8. Let a,be R.
Let f : [alb] — R be continuous. Then Oy € M.

Proof. Let  «:=min{a,b} and [ := max{a,b}.

Then ao<f and f:|a;8]—R.

Define g := (f + | f])/2. Then ¢ is continuous.

Also, Vz € [a; 5], we have g, = (fo + | f2])/2 = max{f.,0}.

Then Oy = O,. Also, ¢g: [a; ] — [0;0).

By Theorem 112.7, we have: O, € M.

Then O = O, € M, as desired. O

113. BASIC PROPERTIES OF INTEGRATION

THEOREM 113.1. Let f : R ——» [0; 0], a = 0.

ThenJR(a-f) e a-URf).

THEOREM 113.2. Let f: R --» R, ae R.

o [0 (1)

THEOREM 113.3. Let DC R, f,g: D —

Thenf (f+g) =" (
R
THEOREM 113.4. Let DS R, f,g: D — R.

ThenJR(erg) =" (JR f) ! (L‘q)'

THEOREM 113.5. Let D < R. Let f,g: D — R.
Assume that f and g are both Jordan integrable.

Assume that f < g on D. Thenj f < J g.
R R

THEOREM 113.6. Let a,b,u € R. Assume a <b. Let D := [a,b].
Thenj Ch = u-(b—a).
R
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114. THE FUNDAMENTAL THEOREM OF CALCULUS

THEOREM 114.1. Let a,be R.  Assume a #b.  Let D := [alb].
Let f: R --sR.  Assume that f is continuous on D.

Then: min(f.(D)) < J[ f < max(f«(D)).

Proof. Let o := min{a, b} and let § := max{a, b}.
b B

Then: a<pf and D =|[a;f] and J[ f:J[ f.

Let y := min(f,(D)) and let z := max(f,(D)).

Since f is continuous on D, it follows that D < dom|f].

Theny < f <zon D. Let ¢ := f|D. Then CY¥, < ¢ < Ch.

B
Since ¢ = f|D = flfai p) we gets | f = L¢-

1 B
Want: y < J f < z
ﬁ—OZ «
1
Want: y < fqb < z.
f—alg

Want: y-(B—a) < ng < z-(B—a).
By Theorem 113.6, we get: -

both JC%=y~(B—a) and fC’,%z%(ﬁ—a).
Since C}) < ﬁ < C%, by Theorem 113.5, -

Weseethatj C} < J ¢ < f C%.
R R R
¢ < z-(B

Then: y-(B—a) < J
R

— ), as desired. O

The following theorem is the Fundamental Theorem of Calculus:

THEOREM 114.2. Let a,be R.  Assume that a < b.
Let f : [a;b] — R be continuous.

Define g : [a;0] > R by:  g(z) = J f.
Let p € (a;b). Then g, = fp- ’

Proof. Let m := f,.  Want: g, = m.
Define L € LE by L, = mh.  Then sfi® = m.
Want: g, = s(;". Want: D,g = L. Want, g1 — L € of.

r_r
Let a := adjj (gp

). Thengg—L:a-idR.
1dRr
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Since idg € (’A)]f{R, it suffices to prove: a € ofr.

Since of® = CVZg, it suffices to prove: a € CVZg.

We have o € DNZ& and o = 0.

It remains to show: « is continuous at 0.

Want: Ve > 0, 3U € Bg(0) s.t. a,(U) S (—¢;¢).

Given ¢ > 0. Want: JU € Bg(0) s.t. a,(U) < (—¢;¢).

Since f is continuous, f is continuous at p. Recall: f, = m.
Since p € (a;b), choose V € Br(0) s.t. p+V < (a;b).

Choose U € Bg(0) s.t. U € V and fi(p+U) S (m—¢e;m+¢).
Want: a,(U) € (—e;¢).  We have op = 0 € (—¢;¢).

Want: a,(Uy) € (—€;¢). Want: Yy € o (Uy), y € (—¢,¢).
Given y € a,(Uy'). Want: y € (—¢,¢). Want: —e <y <e.
Since y € a,(Uy'), choose h € Uy n (dom[a]) s.t. y = a(h).

Since U € Bg(0), it follows that U is an interval, so p+ U is an interval.
Since 0,h e U, we get p,p+ hep+U.

So, since p + U is an interval, we get [p|p + h] < p+ U.

We have U € V,sop+Uc<cp+ V.

Thenp+U S p+V < (a;b) < [a;b] = dom][f].

So, since fi(p+U) S (m —e;m +¢),

we conclude that: m—ce<f<m+e onp+U.
Then: —e<f-Cg<e onp+U.
So, since [plp+h] S p+U, weget: —e < f—Cg' <e  on [p|p+h].
p+h
Then, by Theorem 114.1, — < J[ (f=C}) < e
%+h
It therefore suffices to show: y = J[ (f — Cgh.

p

p+h p+h

f and L(h):f cr.

p

We have: both gg(h) = f
P p+h
Thews (g} ~ L)) = | (F- i)
P
T
Since heUy<cRf and a= adjg (gp._>’

we get:  «(h) =
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Then: y = ah ( L)(h) % (Z—L)(h))

(h) = —
prcR]fpfcR =

D‘IH
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absolute value, 46

adjoin, 69

adjustment, 69

alphabetic characters, 6
Archimedean Principle, 47
assembly measure, 274
atomic statement, 7
axiom algorithm, 11
Axiom of Choice, 20
Axiom of Extensionality, 15
Axiom of Specification, 32

ball, 79

bilinear, 201

bound, 38

bounded, 80

bounded above, 67, 101
bounded below, 67, 101
bounded function, 81
bounded near p, 257
bounds, 280

c/d, 177

Cardinal Binding Rule, 38

Cauchy, 101

Cauchy-Schwarz inequality, 76,
208

CH, 71

Chain Rule, 168

Chain Rule, Linearization, 203

Chain Rule, Tensorial, 204

Choice MVT, 183, 248

clopen, 117

closed, 116

closed ball, 107

closed line segment, 280

286

closed mapping, 121

closure, 116

compact, 109

Compensation Principle, 87

complete, 130

completeness of the extended
reals, 36

Composition Deriviatives
Domain Theorem, 225

connected, 117

constant, 176

constant function, 68

constant order, 159

construction devleopment, 9

continuous, 90

continuous at p, 90

continuous near, 253

continuous on S, 90

continuum cardinality, 71

Continuum Hypothesis, 71

convergent, 82

countable, 70

countably infinite, 70

cubic order, 159

defined near, 144

dense, 129, 130
derivative, 148

diamond norm, 86
Difference Quotient, 100
differentiable, 155
differentiable at, 150
differentiable on, 155
double translate, 146

EH, 38
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empty set, 16

existential quantifier, 5
extended integers, 34
extended real numbers, 31
Extreme Value Theorem, 137

Fermat’s Theorem, 173

filled, 69

finite, 70

formal axiom, 11

formal proof, 12

formal sentence, 10

formal sentence algorithm, 10

formal statement, 10

formal statement algorithm, 10

formal theorem, 12

free, 38

function, 49

functional, 73

Fundamental Theorem of
Calculus, 283

GCH, 71

Generalized Continuum
Hypothesis, 71

geometrically bounded, 107

graph, 277

Hausdorft property, 79
homeomorphic, 106
homeomorphism, 106
homogeneous polynomial
functionals, 194
homogeneous polynomials, 195
horizontal line test, 53
horizontal translate, 146

identity function, 55
inclusive or, 42

incomplete, 130

index, 189

inference algorithm, 11

inference ready, 11

infinite, 70

infinitely differentiable, 250

injective, 53

inner area, 276

inner assembly, 274

inner measure, 275

interior, 116

Intermediate Value Theorem,
105

interval, 180

isolated point, 141

isometric, 106

isometry, 106

Jordan area, 277
Jordan integrable, 277
Jordan integration, 277
Jordan measurable, 276

limit point, 141

linear order, 159

linearization, 147

Linearization Chain Rule, 203

Linearization Product Rule,
202

local extremum, 172

local maximum, 172

local minimum, 172

logic purist, 5

matrix, 190

Mean Value Theorem, 179
metric, 77

metric on a metric space, 77
metric space, 77
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monomials, 194
Multivariable Precalculus
Product Rule, 202

negative, 31

neighborhood of a set, 129
nonproper, 130

null true, 41

one-to-one, 53

open, 116

open ball, 79

open mapping, 121
orbit, 58

ordered 2-tuple, 52
ordered 3-tuple, 52
ordered 4-tuple, 52
ordered 5-tuple, 52
ordered 9-tuple, 52
ordered pair, 51
ordered pentatuple, 52
ordered quadruple, 52
ordered triple, 52
ordinate set, 277
outer area, 276

outer assembly, 274
outer measure, 275

partition, 272
partition measure, 273
partition measure on X, 273
partition of X, 272
pidgin axioms, 12
pidgin proofs, 12
pidgin sentences, 12
pidgin statement, 12
pidgin theorems, 12
positive, 31

power set, 57

Precalculus Chain Rule, 167

Precalculus Product Rule, 164

Precalculus Product Rule,
Multivariable, 202

primitive ordered pair, 48

primitive product, 48

principal minor, 239

principal submatrix, 239

Principle of Mathematical
Induction, 64

product, 59, 60

Product Derivatives Domain
Theorem, 224

product metric, 89

Product Rule, 164

Product Rule, High School, 164

Product Rule, Linearization,
202

Product Rule, Tensorial, 202

proper, 109

punctured, 69

quadratic order, 159
quantification development, 8
quantifiers, 5

quartic order, 159

Quotient Rule, 169

rational numbers, 34

Recentering Lemma, Subset, 80

Recentering Lemma, Superset,
80

relation, 48

relative metric, 89

Reverse Archimedean
Principle, 67

Riemann integration, 277

Rolle’s Theorem, 177
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Schroeder-Bernstein Theorem,
70

secant slope function, 151

Second Derivative Test for
Local Maxima, 189

Second Derivative Test for
Local Minima, 188

Second Order Taylor Theorem,
268

semi-decreasing, 100, 176

semi-increasing, 99, 100, 176

semi-monotone, 124

semi-negative, 31

semi-positive, 31

sequence, 80, 81

set of sets, 29

set-valued, 51

shape, 189

singleton, 19

small, 101

special characters, 7

specification triple, 32

sphere, 107

square norm, 86

standard metric, 193

standard metric on R, 77

standard metric on R¥, 77

standard norm on R, 75

standard norm on R¥, 75

starter statements, 7

strict local maximum, 187

strict local minimum, 187

strictly decreasing, 99, 100, 176

strictly increasing, 99, 100, 176

strictly monotone, 124

structuring the proof, 39

subconstant, 159

subconvergent, 108

subcubic, 159

sublinear, 159

subquadratic, 159

subquartic, 159

subsequence, 108

subset, 14

Subset Recentering Lemma, 80

successor closed, 63

superdomain, 53

superimage, H4

superset, 15

Superset Recentering Lemma,
80

target, H4

Taylor’s Theorem to order 2,
186

tensor index, 189

tensor shape, 189

tensor space, 192

Tensorial Chain Rule, 204

Tensorial Product Rule, 202

tensors, 190

Topological Inverse Function
Theorem, 139

topologically bounded, 107

topology, 116

transitivity of inherited
metrics, 94

tuple, 190

uncountable, 70

underlying set of a metric
space, 77

universal quantifier, 5

valued, 81
variables, 6
vertical line test, 50
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void true, 41 weirdo metric, 117
well-ordered, 66
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