MATH 4604 Spring 2019, Midterm \#1
Handout date: Thursday 28 February 2019
Instructor: Scot Adams

PRINT YOUR NAME:

PRINT YOUR @umn.edu EMAIL ADDRESS:

One hour exam.

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind.

Turn off all mobile electronic devices.
I. Definitions
A. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $S \subseteq \operatorname{dom}[f]$.

Then f is strictly decreasing on S means...
B. (5 pts) Let Z be a metric space and let $f: Z \rightarrow \mathbb{R}$.

Then f has a strict local minimum at p in Z means: ...
C. (5 pts) CVZ $:=\cdots$.
D. $(5 \mathrm{pts})$ Let $k \in \mathbb{N}_{0}$. Then $\widehat{\mathcal{O}}_{k}:=\cdots$.
E. (5 pts) Let X be a metric space. Then X is compact means: ...
F. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $p \in \mathbb{R}$. Then $f^{\prime}(p):=\cdots$.
II. True or false (no partial credit):
a. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Assume $\operatorname{dom}\left[f^{\prime}\right]=\mathbb{R}$.

Assume that f is strictly increasing on \mathbb{R}. Then $f^{\prime}>0$ on \mathbb{R}.
b. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Assume $\operatorname{dom}\left[f^{\prime}\right]=\mathbb{R}$.

Assume $f(0)=\max (\operatorname{im}[f]) . \quad$ Then $f^{\prime}(0)=0$.
c. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$.

Assum both $f(0)=0$ and $f^{\prime}=C_{\mathbb{R}}^{0} . \quad$ Then $f=C_{\mathbb{R}}^{0}$.
d. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $p \in \mathbb{R}$. Then $\#\left(\operatorname{LINS}_{p} f\right) \leqslant 1$.
e. (5 pts) We have $\left(\widehat{\mathcal{O}}_{3}\right) \cdot\left(\mathcal{O}_{3}\right) \subseteq \mathcal{O}_{9}$.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE
I. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
I. D,E,F
II. a,b,c,d,e
III. 1
III. 2
III. 3
III. 4
III. Hand-graded problems. Show work.

1. (10 pts) Give an example of two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that: $\left(0 \notin \operatorname{dom}\left[f^{\prime}\right]\right) \&\left(0 \notin \operatorname{dom}\left[g^{\prime}\right]\right) \&\left((f+g)^{\prime}(0)=1\right)$.
2. (10 pts) Let $f, \gamma, h: \mathbb{R} \rightarrow \mathbb{R}$, let $p \in \mathbb{R}$ and let $q:=f_{p}$. Show: $\quad((\gamma \circ f) \cdot h)_{p}^{\prime}=^{*}\left(\gamma_{q}^{\prime}\right) \cdot\left(f_{p}^{\prime}\right) \cdot\left(h_{p}\right)+\left(\gamma_{q}\right) \cdot\left(h_{p}^{\prime}\right)$.
3. (10 pts) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$, let $p \in \operatorname{dom}\left[f^{\prime \prime}\right]$ and let $q:=f_{p}$. Assume: $q \in \operatorname{dom}\left[g^{\prime \prime}\right]$. Prove: $(g \circ f)_{p}^{\prime \prime}=\left(g_{q}^{\prime \prime}\right) \cdot\left(f_{p}^{\prime}\right)^{2}+\left(g_{q}^{\prime}\right) \cdot\left(f_{p}^{\prime \prime}\right)$.
Hint: Let $\phi:=(g \circ f)^{\prime}$ and $\psi:=\left(g^{\prime} \circ f\right) \cdot f^{\prime}$. Show: $\phi=\psi$ near p. You may then conclude, without proof, that $\phi_{p}^{\prime}=\psi_{p}^{\prime}$.
To compute ψ_{p}^{\prime}, use Problem 2 (replacing γ by g^{\prime} and h by f^{\prime}).
4. (15 pts.) Let $g: \mathbb{R} \rightarrow \mathbb{R}$. Assume g^{\prime} is c / d on $[0 ; 3]$.

Assume $g_{0}=g_{0}^{\prime}=0=g_{3} . \quad$ Show: $\exists c \in(0 ; 3)$ s.t. $g_{c}^{\prime \prime}=0$.

