MATH 4604 Spring 2019, Midterm #1 Handout date: Thursday 28 February 2019 Instructor: Scot Adams

PRINT YOUR NAME:

PRINT YOUR @umn.edu EMAIL ADDRESS:

One hour exam.

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind.

Turn off all mobile electronic devices.

I. Definitions

A. (5 pts) Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$ and let $S \subseteq \text{dom}[f]$. Then f is strictly decreasing on S means ...

B. (5 pts) Let Z be a metric space and let $f : Z \dashrightarrow \mathbb{R}$. Then f has a **strict local minimum** at p in Z means: ...

C. (5 pts) $CVZ := \cdots$.

D. (5 pts) Let $k \in \mathbb{N}_0$. Then $\widehat{\mathcal{O}}_k := \cdots$.

E. (5 pts) Let X be a metric space. Then X is **compact** means: ...

F. (5 pts) Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$ and let $p \in \mathbb{R}$. Then $f'(p) := \cdots$.

II. True or false (no partial credit):

a. (5 pts) Let $f : \mathbb{R} \to \mathbb{R}$. Assume dom $[f'] = \mathbb{R}$. Assume that f is strictly increasing on \mathbb{R} . Then f' > 0 on \mathbb{R} .

b. (5 pts) Let $f : \mathbb{R} \to \mathbb{R}$. Assume dom $[f'] = \mathbb{R}$. Assume $f(0) = \max(\operatorname{im}[f])$. Then f'(0) = 0.

c. (5 pts) Let $f : \mathbb{R} \to \mathbb{R}$. Assum both f(0) = 0 and $f' = C^0_{\mathbb{R}}$. Then $f = C^0_{\mathbb{R}}$.

d. (5 pts) Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$ and let $p \in \mathbb{R}$. Then $\#(\text{LINS}_p f) \leq 1$.

e. (5 pts) We have $(\widehat{\mathcal{O}}_3) \cdot (\mathcal{O}_3) \subseteq \mathcal{O}_9$.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

I. A,B,C I. D,E,F II. a,b,c,d,e

III. 1

III. 2

III. 3

III. 4

III. Hand-graded problems. Show work.

1. (10 pts) Give an example of two functions $f, g : \mathbb{R} \to \mathbb{R}$ such that: ($0 \notin \operatorname{dom}[f']$) & ($0 \notin \operatorname{dom}[g']$) & ((f + g)'(0) = 1). 2. (10 pts) Let $f, \gamma, h : \mathbb{R} \dashrightarrow \mathbb{R}$, let $p \in \mathbb{R}$ and let $q := f_p$. Show: $((\gamma \circ f) \cdot h)'_p =^* (\gamma'_q) \cdot (f'_p) \cdot (h_p) + (\gamma_q) \cdot (h'_p)$.

- 3. (10 pts) Let $f, g : \mathbb{R} \dashrightarrow \mathbb{R}$, let $p \in \operatorname{dom}[f'']$ and let $q := f_p$. Assume: $q \in \operatorname{dom}[g'']$. Prove: $(g \circ f)''_p = (g''_q) \cdot (f'_p)^2 + (g'_q) \cdot (f''_p)$.
- $\begin{array}{ll} \mbox{Hint: Let } \phi := (g \circ f)' \mbox{ and } \psi := (g' \circ f) \cdot f'. & \mbox{Show: } \phi = \psi \mbox{ near } p. \\ \mbox{You may then conclude, without proof, that } \phi'_p = \psi'_p. \\ \mbox{To compute } \psi'_p, \mbox{ use Problem 2 (replacing γ by g' and h by f').} \end{array}$

4. (15 pts.) Let $g : \mathbb{R} \dashrightarrow \mathbb{R}$.	Assume g' is c/d on $[0;3]$.
Assume $g_0 = g'_0 = 0 = g_3$.	Show: $\exists c \in (0; 3)$ s.t. $g''_c = 0$.