
Solutions for MATH 4604 (Advanced Calculus II)

Spring 2019

Homework 13: Due on Tuesday 30 April

13-1. Let W P TNSR`, φ : RÑ W .

Assume: @k P IW , 0 P dom rppπWk q ˝ φq
1s.

Show: 0 P dom rφ1s.

Proof: Let x :“
ÿ

kPIW

pppπWk q ˝ φq
1
0q ¨ ε

W
k . Want: φ10 “ x.

We have: @k P IW , xk “ ppπ
W
k q ˝ φq

1
0.

Define L P LWR by Lptq “ tx. Then s`RWL “ Lp1q “ x.

Also, φ10 “ s`RWD0φ
. Want: s`RWD0φ

“ s`RWL .

Want: D0φ “ L. Want: φT0 ´ L P ORW
1 .

Let ψ :“ φT0 ´ L. Want: ψ P ORW
1 .

By HW#12-1, it suffices to show: @k P IW , pπWk q ˝ ψ P ORR
1 .

Given k P IW . Want: pπWk q ˝ ψ P ORR
1 .

Let χ :“ pπWk q ˝ φ. Define M P LR
R by Mptq “ txk.

We have s`RRM “Mp1q “ 1 ¨ xk “ xk “ ppπ
W
k q ˝ φq

1
0 “ χ10 “ s`RRD0χ

.

Then M “ rs`RRM s
R
R “ rs`

RR
D0χ
sRR “ D0χ.

Since D0χ “M , we get χT0 ´M P ORR
1 .

Want: χT0´M “ pπWk q˝ψ. Want: @h P R, pχT0´Mqh “ ppπ
W
k q˝ψqh.

Given h P R. Want: pχT0 ´Mqh “ ppπ
W
k q ˝ ψqh.

We have ψh “ pφ
T
0 ´ Lqh “ φ0`h ´ φ0 ´ Lh “ φh ´ φ0 ´ hx.

Then πWk pψhq “ pπ
W
k pφhqq ´ pπ

W
k pφ0qq ´ hxk.

Then: pχT0 ´Mqh “ χ0`h ´ χ0 ´Mh “ χh ´ χ0 ´Mh

“ ppπWk q ˝ φqh ´ ppπ
W
k q ˝ φq0 ´ hxk

“ pπWk pφhqq ´ pπ
W
k pφ0qq ´ hxk

“ πWk pψhq “ ppπWk q ˝ ψqh, as desired. QED

13-2. Let V,W P TNSR`, f : V 99K W , q, u P V .

Assume: @k P IW , q P dom rBuppπ
W
k q ˝ fqs.

Show: q P dom rBuf s.

Proof: Let φ :“ f ˝ piuq q. Then pBufqq “ φ10. Want: 0 P dom rφ1s.

By HW#13-1, it suffices to show: @k P IW , 0 P dom rppπWk q ˝ φq
1s.

Given k P IW . Want: 0 P dom rppπWk q ˝ φq
1s.

By assumption, q P dom rBuppπ
W
k q ˝ fqs.



So, since pBuppπ
W
k q ˝ fqqq “ ppπ

W
k q ˝ f ˝ pi

u
q qq

1
0,

we get: 0 P dom rppπWk q ˝ f ˝ pi
u
q qq

1s.

Then 0 P dom rppπWk q ˝ f ˝ pi
u
q qq

1s “ dom rppπWk q ˝ φq
1s, as desired. QED

13-3. Let V,W P TNSR`, f : V 99K W , p P V .

Assume: f2 is continuous near p.

Show: @i, j P IV , BiBjf is continuous near p.

Proof: Given i, j P IV . Want: BiBjf is continuous near p.

Choose B P BV ppq s.t. f2 is continuous on B.

Want: BiBjf is continuous on B.

Want: @p P B, BiBjf is continuous at p.

Given p P B. Want: BiBjf is continuous at p.

By Theorem 99.1, it suffices to show:

@k P IW , πk ˝ pBiBjfq is continuous at p.

Given @k P IW . Want: πk ˝ pBiBjfq is continuous at p.

Since f2 is continuous on B, we conclude: B Ď dom rf2s.

So, since im rf2s Ď W b V b V “ dom rπk}i}js,

we conclude that: B Ď dom rπk}i}j ˝ pf
2qs.

By Thoerem 102.17, we have: πk ˝ pBiBjfq Ě πk}i}j ˝ pf
2q.

So, since B Ď dom rπk}i}j ˝ pf
2qs, we get:

πk ˝ pBiBjfq “ πk}i}j ˝ pf
2q on B.

So, since p P B, by the Recentering Lemma (Theorem 38.16), we get:

πk ˝ pBiBjfq “ πk}i}j ˝ pf
2q near p.

Since f2 is continuous on B and p P B,

we see that f2 is continuous at p.

Then, by Theorem 99.1, πk}i}j ˝ pf
2q is continuous at p.

So, as πk ˝ pBiBjfq “ πk}i}j ˝ pf
2q near p,

it follows, from Theorem 65.7,

that πk ˝ pBiBjfq is continuous at p, as desired. QED

13-4. Let V,W P TNSR`, f : V 99K W , p P V .

Assume: @h, i, j P IV ,

BhBiBjf is both defined near p and bounded near p.

Show: f2 is continuous near p.

Proof: By Theorem 102.21, it suffices to show:

@i, j P IV , BiBjf is continuous near p.

Given i, j P IV . Want: BiBjf is continuous near p.



Let g :“ BiBjf . Want: g is continuous near p.

By Theorem 102.5, it suffices to show:

@h P IV , Bhg is defined near p and bounded near p.

Given h P IV . Want: Bhg is defined near p and bounded near p.

By assumption, BhBiBjf is defined near p and bounded near p.

So since Bhg “ BhBiBjf , we get:

Bhg is defined near p and bounded near p, as desired. QED

13-5. Let V,W P TNSR`, f : V 99K W , p P V .

Assume: @h, i, j P IV ,

BhBiBjf is both defined near p and continuous at p.

Show: f3 is continuous at p.

Proof: By Theorem 102.3, @h, i, j P IV , BhBiBjf is bounded near p.

Also, by assumption, @h, i, j P IV , BhBiBjf is defined near p.

Then, by HW#13-4, f2 is continuous near p.

Then: f2 is continuous at p and f2 is defined near p.

Claim: Let h, i, j P IV , k P IW .

Then: Bhpπk}i}j ˝ pf
2qq “ πk ˝ pBhBiBjfq near p.

Proof of Claim:

Since f2 is defined near p, by Theorem 97.3,

we see that Bjpf
1q “ pBjfq

1 near p.

Since f2 is defined near p and since im rf2s Ď WbV bV “ dom rπk}i}js,

we conclude that πk}i}j ˝ pf
2q is defined near p.

Let α :“ f 1 and ` :“ k}i. By Theorem 102.1, π`˝pBjαq Ě π`}j˝pα
1q.

That is, πk}i ˝ pBjpf
1qq Ě πk}i}j ˝ pf

2q.

So, since πk}i}j ˝ pf
2q is defined near p,

it follows that πk}i ˝ pBjpf
1qq “ πk}i}j ˝ pf

2q near p.

Since f2 is defined near p, by Theorem 94.4,

we see that pBjfq
1 is defined near p.

Then, since im rpBjfq
1s Ď W b V “ dom rπk}is,

we conclude that πk}i ˝ ppBjfq
1q is defined near p.

Let β :“ Bjf . By Theorem 102.1, πk ˝ pBiβq Ě πk}i ˝ pβ
1q.

That is, πk ˝ pBiBjfq Ě πk}i ˝ ppBjfq
1q.

So, since πk}i ˝ ppBjfq
1q is defined near p,

it follows that πk ˝ pBiBjfq “ πk}i ˝ ppBjfq
1q near p.

So, since Bjpf
1q “ pBjfq

1 near p,

it follows that πk ˝ pBiBjfq “ πk}i ˝ pBjpf
1qq near p.



So, since πk}i ˝ pBjpf
1qq “ πk}i}j ˝ pf

2q near p.

it follows that πk ˝ pBiBjfq “ πk}i}j ˝ pf
2q near p.

Then: Bhpπk}i}j ˝ pf
2qq “ Bhpπk ˝ pBiBjfqq near p.

Want: Bhpπk ˝ pBiBjfqq “ πk ˝ pBhBiBjfq near p.

By assumption, BhBiBjf is defined near p.

So, since im rBhBiBjf s Ď W “ dom rπks,

we see that πk ˝ pBhBiBjfq is defined near p.

By Theorem 94.3, Bhpπk ˝ pBiBjfqq Ě πk ˝ pBhBiBjfq.

So, since πk ˝ pBhBiBjfq is defined near p, it follows that:

Bhpπk ˝ pBiBjfqq “ πk ˝ pBhBiBjfq near p, as desired.

End of proof of Claim.

Let g :“ f2. Want: g1 is continuous at p.

Since f : V 99K W and g “ f2, we get g : V 99K W b V b V .

By Theorem 102.7, it suffices to show:

@h P IV , Bhg is defined near p and continuous at p.

Given h P IV . Want: (A) Bhg is defined near p and

(B) Bhg is continuous at p.

Proof of (A):

By HW#13-2, it suffices to show:

@` P IWbV , Bhpπ` ˝ gq is defined near p.

Given ` P IWbVbV . Want: Bhpπ` ˝ gq is defined near p.

Since ` P IWbVbV , choose i, j P IV and k P IW s.t. ` “ k}i}j.

By assumption, BhBiBjf is defined near p.

So, since im rBhBiBjf s Ď W “ dom rπks,

we see that πk ˝ pBhBiBjfq is defined near p.

By the claim: Bhpπk}i}j ˝ pf
2qq “ πk ˝ pBhBiBjfq near p.

So, since ` “ k}i}j and g “ f2, we see that:

Bhpπ` ˝ gq “ πk ˝ pBhBiBjfq near p.

So, since πk ˝ pBhBiBjfq is defined near p, we conclude:

Bhpπ` ˝ gq is defined near p, as desired.

End of proof of (A).

Proof of (B):

By Theorem 99.1, it suffices to show:

@` P IWbVbV , π` ˝ pBhgq is continuous at p.

Given ` P IWbVbV . Want: π` ˝ pBhgq is continuous at p.



By (A), Bhg is defined near p. Then p P dom rBhgs.

So, since im rBhgs Ď W b V b V “ dom rπ`s,

we see that p P dom rπ` ˝ pBhgqs.

By Theorem 94.3, Bhpπ` ˝ gq Ě π` ˝ pBhgq.

Then, by Theorem 44.13, it suffices to show:

Bhpπ` ˝ gq is continuous at p.

Since ` P IWbVbV , choose i, j P IV and k P IW s.t. ` “ k}i}j.

By assumption, BhBiBjf is continuous at p.

Then, by Theorem 99.1,

we see that πk ˝ pBhBiBjfq is continuous at p.

By the claim, Bhpπk}i}j ˝ pf
1qq “ πk ˝ pBhBiBjfq near p.

So, since ` “ k}i}j and g “ f2, we see that:

Bhpπ` ˝ gq “ πk ˝ pBhBiBjfq near p.

So, since πk ˝ pBhBiBjfq is continuous at p, by Theorem 65.7, we have:

Bhpπ` ˝ gq is continuous at p, as desired.

End of proof of (B). QED

Homework 12: Due on Tuesday 23 April

12-1. Let V,W P TNSR`, f : V 99K W , k P N0.

Assume: @m P IW , pπWm q ˝ f P OV R
k .

Show: f P OVWk .

Proof:

Claim: f0V “ 0W .

Proof of Claim:

Want: @m P IW , πWm pf0V q “ 0.

Given m P IW . Want: πWm pf0V q “ 0.

Since pπWm q ˝ f P OV R
k Ď OV R

0 “ CVZR
V , we conclude: ppπWm q ˝ fq0V “ 0.

Then πWm pf0V q “ ppπ
W
m q ˝ fq0V “ 0, as desired.

End of proof of Claim.

Let φ :“ adj0W0V

ˆ

f

| ‚ |kV

˙

. Then φ0V “ 0W .

By the claim, f0V “ 0W , and it follows that: φ ¨ p| ‚ |kV q “ f .

Want: f P pCVZWV q ¨ p| ‚ |
k
V q. Want: φ P CVZWV .

Want: @m P IW , pπWm q ˝ φ P CVZR
V .

Given m P IW . Want: pπWm q ˝ φ P CVZR
V .

By assumption, pπWm q ˝ f P OV R
k . Then pπWm q ˝ f P pCVZR

V q ¨ p| ‚ |
k
V q.



Choose ψ P CVZR
V s.t. pπWm q ˝ f “ ψ ¨ p| ‚ |kV q.

Want: pπWm q ˝ φ “ ψ. Want: pπWm q ˝ φ “ ψ on V .

Since ψ P CVZR
V , it follows that ψ0V “ 0.

We have ppπWm q ˝ φq0V “ pπ
W
m qpφ0V q “ πWm p0W q “ 0 “ ψ0.

Want: pπWm q ˝ φ “ ψ on V ˆ0V . Want: @q P V ˆ0V , ppπWm q ˝ φqq “ ψq.

Given q P V ˆ0V . Want: ppπWm q ˝ φqq “ ψq. Want: pπWm qpφqq “ ψq.

Since q P V ˆ0V , we get |q|V ‰ 0, and so |q|kV ‰ 0.

Recall: φ ¨ p| ‚ |kV q “ f and pπWm q ˝ f “ ψ ¨ p| ‚ |kV q.

Then pπWm pφqqq ¨ p|q|
k
V q “ πWm pφq ¨ p|q|

k
V qq “ πWm ppφ ¨ p| ‚ |

k
V qqqq “ πWm pfqq

“ ppπWm q ˝ fqq “ pψ ¨ p| ‚ |
k
V qqq “ ψq ¨ p|q|

k
V q.

So, since |q|kV ‰ 0, dividing by |q|kV , we get: pπWm pφqqq “ ψq. QED

12-2. Let V,W,X P TNSR`, k P N0.

Show: pOWX
k q ˝ p pOVW

1 q Ď OV Xk and

p pOWX
1 q ˝ pOVWk q Ď OV Xk and

p pOWX
k q ˝ p pOVW

1 q Ď pOV X
k .

Proof: Exactly one of the following is true:

(1) k ‰ 0 or (2) k “ 0.

Case (1):

Since k ‰ 0, pOWX
k q ˝ p pOVW

1 q Ď OV Xk¨1 “ OV Xk and

p pOWX
1 q ˝ pOVWk q Ď OV X1¨k “ OV Xk .

Want: p pOWX
k q ˝ p pOVW

1 q Ď pOV X
k .

Since k ‰ 0, p pOWX
k q ˝ p pOVW

1 q Ď pOV X
k¨1 “ pOV X

k .

End of Case (1).

Case (2):

We have pOWX
k q ˝ p pOVW

1 q “ OWX
0 ˝ p pOVW

1 q

Ď pOWX
0 q ˝ pOVW0 q

Ď pCVZXW q ˝ pCVZWV q

Ď CVZXV “ OV X0 Ď OV Xk .

Also, p pOWX
1 q ˝ pOVWk q “ p pOWX

1 q ˝ pOVW0 q

Ď pOWX
0 q ˝ pOVW0 q

Ď pCVZXW q ˝ pCVZWV q

Ď CVZXV “ OV X0 Ď OV Xk .

Want: p pOWX
k q ˝ p pOVW

1 q Ď pOV X
k .

We have p pOWX
k q ˝ p pOVW

1 q “ p pOWX
0 q ˝ p pOVW

1 q



“ p pOWX
0 q ˝ pOVW0 q

“ pBNZXW q ˝ pCVZWV q

Ď BNZXV “ pOV X
0 Ď pOV X

k .

End of Case (2). QED

12-3. Let V,W P TNSR`, f : V 99K W , k P N0.

Assume: f0V “ 0W .

Assume: @j P IV , Bjf P pOVW
k . Show: f P pOVW

k`1 .

Proof: By Theorem 99.2, it suffices to show: @m P IW , πWm ˝ f P pOV R
k`1.

Given m P IW . Want: πWm ˝ f P pOV R
k`1.

Let g :“ πWm ˝ f . Want: g P pOV R
k`1.

By Theorem 98.10, choose β : IV Ñ pOV V
1 s.t.

g “
ÿ

jPIV

ppBjgq ˝ βjq ¨ π
V
j near 0V .

Want: @j P IV , ppBjgq ˝ βjq ¨ π
V
j P pOV R

k`1.

Given j P IV . Want: ppBjgq ˝ βjq ¨ π
V
j P pOV R

k`1.

Since πVj P LWV Ď pOV R
1 , it suffices to show: pBjgq ˝ βj P pOV R

k .

So, since βj P pOV V
1 , it suffices to show: Bjg P pOV R

k .

So, since Bjg “ Bjppπ
W
m q ˝ fq Ě πWm ˝ pBjfq,

it suffices to show: πWm ˝ pBjfq P pOV R
k .

By assumption, Bjf P pOVW
k .

So, by Theorem 99.2, we have πWm ˝ pBjfq P pOV R
k , as desired. QED

12-4. Let V,W P TNSR`, f : V 99K W , k P N0.

Assume: f0V “ 0W . Assume: @j P IV , pBjfq0V “ 0W .

Assume: @i, j P IV , BiBjf P pOVW
k . Show: f P pOVW

k`2 .

Proof: Since f0V “ 0W , by HW#12-3,

it suffices to show: @j P IV , Bjf P pOVW
k`1 .

Given j P IV . Want: Bjf P pOVW
k`1 .

Let g :“ Bjf . Want: g P pOVW
k`1 .

Since g0V “ pBjfq0V “ 0W , by HW#12-3,

it suffices to show: @i P IV , Big P pOVW
k .

Given i P IV . Want: Big P pOVW
k .

We have Big “ BiBjf P pOVW
k , as desired. QED



12-5. Let V,W P TNSR`, f : V 99K W .

Assume: f0V “ 0W .

Assume: @j P IV , Bjf is both defined near 0V and continuous at 0V .

Show: 0V P dom rf 1s.

Proof: Define q : IV Ñ W by qj “ pBjfq0V .

Define L P LWV by Lpxq “
ÿ

jPIV

xjqj. Want: f 10V “ s`VWL .

Want: DVW
0V

f “ L. Want: fT0V ´ L P OVW1 .

Since f0V “ 0W , we see that fT0V “ f . Want: f ´ L P OVW1 .

By Theorem 99.6, it suffices to show: @j P IV , Bjpf ´ Lq P OVW0 .

Given j P IV . Want: Bjpf ´ Lq P OVW0 .

Claim: BjL “ C
qj
V .

Proof of Claim:

Want: @x P V , pBjLqx “ pC
qj
V qx.

Given x P V . Want: pBjLqx “ pC
qj
V qx. Want: pBjLqx “ qj.

Let u :“ εVj . Then BuL “ BjL. Want: pBuLqx “ qj.

Let i :“ iux. Want: pL ˝ iq10 “ qj.

We have Lpuq “
ÿ

iPIV

uiqi “
ÿ

iPIV

pεVj qi ¨ qi

“
`

pεVj qj ¨ qj
˘

`

¨

˝

ÿ

iPIV ztju

pεVj qi ¨ qi

˛

‚

“ p1 ¨ qjq `

¨

˝

ÿ

iPIV ztju

0 ¨ qi

˛

‚“ qj ` 0 “ qj

Then Lpuq “ qj. Let y :“ Lpxq.

Then, @t P R, we have:

pL ˝ iqt “ Lpitq “ Lpx` tuq “ pLpxqq ` t ¨ pLpuqq “ y ` tqj.

Then: @t P R, pL ˝ iqt “ y ` tqj.

Then: @h P R, pL ˝ iqT0 phq “ py`p0`hq ¨ qjq´ py` 0 ¨ qjq “ hqj.

Then pL ˝ iqT0 P LWR . Then: D0pL ˝ iq “ L ˝ i.

Then pL ˝ iq10 “ s`RWL˝i “ pL ˝ iqp1q “ 1 ¨ qj “ qj, as desired.

End of proof of Claim.

We have: Bjpf ´ Lq Ě pBjfq ´ pBjLq.

So, by the claim, Bjpf ´ Lq Ě pBjfq ´ pC
qj
V q.

Want: pBjfq ´ pC
qj
V q P OVW0 . Want: pBjfq ´ pC

qj
V q P CVZWV .



By assumption, Bjf is both defined near 0V and continuous at 0V .

Also, C
qj
V is both defined near 0V and continuous at 0V .

Then pBjfq ´ pC
qj
V q is both defined near 0V and continuous at 0V .

Want: ppBjfq ´ pC
qj
V qq0V “ 0W .

By definition of q, we have qj “ pBjfq0V .

We compute ppBjfq ´ pC
qj
V qq0V “ ppBjfq0V q ´ ppC

qj
V q0V q

“ qj ´ qj “ 0W , as desired. QED

Homework 11: Due on Tuesday 16 April

11-1. Let V :“ R2, S :“ V b V , f : R 99K V , g : V 99K R.

Let p P R. Assume f 1p “ p1, 2q and f2p “ p3, 4q.

Let q :“ fp. Assume g1q “ p5, 6q and g2q “

„

7 8

9 0



.

Compute: pg ˝ fq1p and pg ˝ fq2p.

Solution:

We have pg ˝ fq1p “˚ g1q ‚V f 1p
“ p5, 6q ‚V p1, 2q “ 5 ¨ 1 ` 6 ¨ 2 “ 17 ‰ /.

Then pg ˝ fq1p “ 17.

We have: pf 1pq
b2

“

„

1 ¨ 1 1 ¨ 2

2 ¨ 1 2 ¨ 2



“

„

1 2

2 4



.

Also, pg ˝ fq2p “˚ g2q ‚S ppf
1
pq
b2q ` g1q ‚V f2p

“

„

7 8

9 0



‚S

„

1 2

2 4



` p5, 6q ‚V p3, 4q

“ 7 ¨ 1 ` 8 ¨ 2 ` 9 ¨ 2 ` 0 ¨ 4 ` 5 ¨ 3 ` 6 ¨ 4

“ 7` 16` 18` 0` 15` 24 “ 80 ‰ /.

Then pg ˝ fq2p “ 80.

11-2. Let V :“ R2, S :“ V b V , A :“

„

1 2

2 4



.

Show: @q P V , A ‚S pq
b2q ě 0.

Proof: Given q P V . Want: A ‚S pq
b2q ě 0.

Let x :“ q1 and y :“ q2. Then q “ px, yq.

Then qb2 “

„

x ¨ x x ¨ y

y ¨ x y ¨ y



“

„

x2 xy

xy y2



.



Then A ‚S pq
b2
q “

„

1 2

2 4



‚S

„

x2 xy

xy y2



“ 1 ¨ x2 ` 2 ¨ xy ` 2 ¨ xy ` 4 ¨ y2

“ x2 ` 4xy ` 4y2

“ px` 2yq2 ě 0, as desired. QED

11-3. Let V :“ R2, S :“ V b V , a, b, c P R, A :“

„

a b

b c



, z :“ 02.

Assume: a ą 0 and ac´ b2 ą 0.

Show: @q P V ˆz , A ‚S pq
b2q ą 0.

Proof: Given q P V ˆz . Want: A ‚S pq
b2q ą 0.

Let x :“ q1 and y :“ q2. Then q “ px, yq.

Then qb2 “

„

x ¨ x x ¨ y

y ¨ x y ¨ y



“

„

x2 xy

xy y2



.

We have A ‚S pq
b2
q “

„

a b

b c



‚S

„

x2 xy

xy y2



“ a ¨ x2 ` b ¨ xy ` b ¨ xy ` c ¨ y2

“ ax2 ` 2bxy ` cy2

“ a ¨

ˆ

x2 `
2by

a
x

˙

` cy2

“ a ¨

ˆ

x2 `
2by

a
x `

b2y2

a2

˙

`
acy2

a
´

b2y2

a

“ a ¨

ˆ

x `
by

a

˙2

`
ac´ b2

a
¨ y2.

Since a ą 0 and

ˆ

x`
by

a

˙2

ě 0,

we see that a ¨

ˆ

x `
by

a

˙2

ě 0.

Since a ą 0 and ac´ b2 ą 0 and y2 ě 0,

we see that
ac´ b2

a
¨ y2 ě 0.

Then A ‚S pq
b2
q “ a ¨

ˆ

x `
by

a

˙2

`
ac´ b2

a
¨ y2 ě 0.

Want: A ‚S pq
b2q ‰ 0.

Assume: A ‚S pq
b2q “ 0. Want: Contradiction.



We have a ¨

ˆ

x `
by

a

˙2

`
ac´ b2

a
¨ y2 “ A ‚S pq

b2
q “ 0.

Then
ac´ b2

a
¨ y2 “ ´

˜

a ¨

ˆ

x `
by

a

˙2
¸

ď 0.

So, since
ac´ b2

a
¨ y2 ě 0, we see that

ac´ b2

a
¨ y2 “ 0.

So, since ac´ b2 ą 0 and a ą 0, we see that y2 “ 0, and so y “ 0.

Then A ‚S pq
b2
q “ a ¨

ˆ

x `
b ¨ 0

a

˙2

`
ac´ b2

a
¨ 02

“ ax2.

Then ax2 “ A ‚S pq
b2q “ 0, so ax2 “ 0.

So, since a ą 0, we get x2 “ 0, and so x “ 0.

Since q P V ˆz , we conclude that q ‰ z.

Then 02 “ z ‰ q “ px, yq “ p0, 0q “ 02, so 02 ‰ 02.

Contradiction. QED

11-4. Let V :“ R2, S :“ V b V , f : R 99K V , g : V 99K R.

Let p P R. Assume f 1p ‰ p0, 0q and f2p ‰ /.

Let q :“ fp. Assume g1q “ p0, 0q and g2q “

„

1 2

2 5



.

Show: pg ˝ fq2p ą 0.

Proof: We have: pg ˝ fq2p “
˚ g2q ‚S ppf

1
pq
b2q ` g1q ‚V f2p ‰ /,

so pg ˝ fq2p “ g2q ‚S ppf
1
pq
b2q ` g1q ‚V f2p .

So, since g1q “ p0, 0q, we get pg ˝ fq2p “ g2q ‚S ppf
1
pq
b2q.

Let a :“ 1, b :“ 2, c :“ 5, A :“

„

a b

b c



, z :“ 02.

We have A “

„

1 2

2 5



“ g2q and pg ˝ fq2p “ g2q ‚S ppf
1
pq
b2q.

Then pg ˝ fq2p “ A ‚S ppf
1
pq
b2q.

We have a ą 0 and ac´ b2 “ 1 ¨ 5´ 22 “ 1 ą 0.

Since f2p ‰ /, we get p P dom rf2s Ď dom rf 1s, and so f 1p P im rf 1s.

Then f 1p P im rf 1s Ď V b R “ V .

So, since f 1p ‰ p0, 0q “ 02 “ z, we conclude that f 1p P V
ˆ
z .

Then, by HW#11-3, we have A ‚S ppf
1
pq
b2q ą 0.

Then: pg ˝ fq2p “ A ‚S ppf
1
pq
b2q ą 0, as desired. QED

11-5. Let V,W P TNSR`, f : V 99K W , i P IV , j P IW , W 1 :“ W b V .

Show: pπW
1

j}i q ˝ pf
1q Ď pπWj q ˝ pBifq.



Proof: Want: @x P V , ppπW
1

j}i q ˝ pf
1qqx

˚“ ppπWj q ˝ pBifqqx.

Given x P V . Want: ppπW
1

j}i q ˝ pf
1qqx

˚“ ppπWj q ˝ pBifqqx.

Want: pπW
1

j}i qpf
1
xq

˚“ pπWj qppBifqxq.

Want: r pπW
1

j}i qpf
1
xq ‰ / s ñ r pπW

1

j}i qpf
1
xq “ pπWj qppBifqxq s.

Assume pπW
1

j}i qpf
1
xq ‰ /. Want: pπW

1

j}i qpf
1
xq “ pπWj qppBifqxq.

Let A :“ f 1x. Want: pπW
1

j}i qpAq “ pπWj qppBifqxq.

Since pπW
1

j}i qpf
1
xq ‰ /, we conclude that f 1x ‰ /, and so f 1x P im rf 1s.

Then A “ f 1x P im rf 1s Ď W b V .

By HW#9-2, pf 1xq ˚RVW εVi
˚“ pBεifqx.

So, since A “ f 1x and Bεif “ Bif , we get A ˚RVW εVi
˚“ pBifqx.

Since A P W b V and εVi P V , we get A ˚RVW εVi P W .

In particular, A ˚RVW εVi ‰ /.

Then / ‰ A ˚RVW εVi
˚“ pBifqx, so A ˚RVW εVi “ pBifqx.

Then pπWj qpA ˚RVW εVi q “ pπWj qppBifqxq.

We have pA ˚RVW εVi qj “ pA ˚RVW εVi qj}H

“
ÿ

hPIV

pAj}hq ¨ ppε
V
i qh}Hq

“
ÿ

hPIV

pAj}hq ¨ ppε
V
i qhq

“

¨

˝

ÿ

hPIV ztiu

pAj}hq ¨ ppε
V
i qhq

˛

‚ `
`

pAj}iq ¨ ppε
V
i qi

˘

“

¨

˝

ÿ

hPIV ztiu

pAj}hq ¨ 0

˛

‚ `
`

pAj}iq ¨ 1
˘

“ 0 ` Aj}i “ Aj}i.

Then pπW
1

j}i qpAq “ Aj}i “ pA ˚RVW εVi qj
“ pπWj qpA ˚RVW εVi q “ pπWj qppBifqxq, as desired. QED

Homework 10: Due on Tuesday 9 April

10-1. Let V,W,X P TNSR`, f : V 99K W , g : W 99K X, u P V .

Show: @p P V , pBV Xu pg ˝ fqqp “˚ pg1fpq ˚RVW ppBVWu fqpq.

Proof: Given p P V . Want: pBV Xu pg˝fqqp “˚ pg1fpq ˚RVW ppBVWu fqpq.

Let i :“ ivp. Then i0 “ p` 0 ¨ v “ p. Also, pBVWu fqp “ pf ˝ iq
1
0.

Let φ :“ f ˝ i. Then φ0 “ pf ˝ iq0 “ fi0 “ fp. Also, pBVWu fqp “ φ10.

By the Chain Rule, pg ˝ φq10 “˚ pg1φ0q ˚RVW pφ10q.



Then pBV Xu pg ˝ fqqp “ pg ˝ f ˝ iq10 “ pg ˝ φq10
“˚ pg1φ0q ˚RVW pφ10q “ pg1fpq ˚RVW ppBVWu fqpq. QED

10-2. Let S, V,W,Z P TNSR`, ˚ P BZVW .

Let f : S 99K V , g : S 99K W , u P S.

Show: @p P S, pBSZu pf˚gqqp “
˚ p ppBSVu fqpq˚gp q ` p fp˚ppB

SW
u gqpq q.

Proof: Given p P V .

Want: pBSZu pf ˚ gqqp “
˚ p ppBSVu fqpq ˚ gp q ` p fp ˚ ppB

SW
u gqpq q.

Let i :“ iup . Then i0 “ p` 0 ¨ u “ p.

Also, pBSVu fqp “ pf ˝ iq
1
0 and pBSWu gqp “ pg ˝ iq

1
0.

Let φ :“ f ˝ i and ψ :“ g ˝ i and χ :“ pf ˚ gq ˝ i.

Then pBSVu fqp “ φ10 and pBSWu gqp “ ψ10 and pBSZu pf ˚ gqqp “ χ10.

Also, φ0 “ fi0 “ fp and ψ0 “ gi0 “ gp.

Want: χ10 “
˚ φ10 ˚ χ0 ` φ0 ˚ ψ

1
0.

Claim: χ “ φ ˚ ψ.

Proof of Claim:

Want: @t P R, χt “ pφ ˚ ψqt. Given t P R. Want: χt “ pφ ˚ ψqt.

Let q :“ it. Then φt “ pf ˝ iqt “ fq, ψt “ pg ˝ iqt “ gq and

χt “ ppf ˚ gq ˝ iqt “ pf ˚ gqq.

Then χt “ pf ˚ gqq “ fq ˚ gq “ φt ˚ ψt “ pφ ˚ ψqt, as desired.

End of proof of Claim.

By the Claim and by the Product Rule, we have:

DRZ
0 χ “˚ pDRV

0 φq ˚ ψ0 ` φ0 ˚ pD
RW
0 ψq.

Then: pDRZ
0 χqp1q “˚ ppDRV

0 φqp1qq ˚ ψ0 ` φ0 ˚ ppD
RZ
0 ψqp1qq.

So, since χ10 “ s`RZ‚ pD
RZ
0 χq “ pDRZ

0 χqp1q,

and since φ10 “ s`RV‚ pDRV
0 φq “ pDRV

0 φqp1q,

and since ψ10 “ s`RW‚ pDRW
0 ψq “ pDRW

0 ψqp1q,

we see that: χ10 “
˚ φ10 ˚ χ0 ` φ0 ˚ ψ

1
0, as desired. QED

10-3. Let V,W,X P TNSR`, A P X b V bW , y P V , z P W .

Show: pA ˚R,W,XbV zq ˚RVX y “ A ˚R,VbW,X py b zq.

Proof: Want: @k P IX ,

ppA ˚R,W,XbV zq ˚RVX yqk “ pA ˚R,VbW,X py b zqqk.

Given k P IX .

Want: ppA ˚R,W,XbV zq ˚RVX yqk “ pA ˚R,VbW,X py b zqqk.



We compute:

pA ˚R,VbW,X py b zqqk “ pA ˚R,VbW,X py b zqqk}H

“
ÿ

`PIV bW

Ak}` ¨ py b zq`}H

“
ÿ

`PIV bW

Ak}` ¨ py b zq`

“
ÿ

iPIV

ÿ

jPIW

p Ak}i}j ¨ py b zqi}j q

“
ÿ

iPIV

ÿ

jPIW

p Ak}i}j ¨ py ˚V RW zqi}j q

“
ÿ

iPIV

ÿ

jPIW

˜

Ak}i}j ¨

˜

ÿ

mPIR

yi}m ¨ zm}j

¸ ¸

“
ÿ

iPIV

ÿ

jPIW

p Ak}i}j ¨ yi}H ¨ zH}j q

“
ÿ

iPIV

ÿ

jPIW

p Ak}i}j ¨ yi ¨ zj q.

Then:

ppA ˚R,W,XbV zq ˚RVX yqk “ ppA ˚R,W,XbV zq ˚RVX yqk}H

“
ÿ

iPIV

pA ˚R,W,XbV zqk}i ¨ yi}H

“
ÿ

iPIV

pA ˚R,W,XbV zqk}i ¨ yi

“
ÿ

iPIV

pA ˚R,W,XbV zqk}i}H ¨ yi

“
ÿ

iPIV

˜

ÿ

jPIW

Ak}i}j ¨ zj}H

¸

¨ yi

“
ÿ

iPIV

˜

ÿ

jPIW

Ak}i}j ¨ zj

¸

¨ yi

“
ÿ

iPIV

ÿ

jPIW

p Ak}i}j ¨ yi ¨ zj q

“ pA ˚R,VbW,X py b zqqk, as desired. QED

10-4. Let V,W,X P TNSR`, f : V 99K W , g : W 99K X, u, v P V .

Show: BV Xv BV Xu pg ˝ fq Ě pg2 ˝ fq ˚R,WbW,X ppBVWu fq b pBVWv fqq

` pg1 ˝ fq ˚RWX pBVWv BVWu fq.

Proof: Let χ :“ BV Xv BV Xu pg ˝ fq.

Let φ :“ pg2 ˝ fq ˚R,WbW,X ppBVWu fq b pBVWv fqq.



Let ψ :“ pg1 ˝ fq ˚RWX pBVWv BVWu fq.

Want: χ Ě φ` ψ.

By HW#10-1, BV Xu pg ˝ fq Ě pg1 ˝ fq ˚RWX pBVWu fq.

Then BV Xv BV Xu pg ˝ fq Ě BV Xv p pg1 ˝ fq ˚RWX pBVWu fq q.

Recall: χ “ BV Xv BV Xu pg ˝ fq. Let α :“ g1 ˝ f and κ :“ BVWu f .

Then χ Ě BV Xv p α ˚RWX κ q.

Let ˚ :“ ˚RWX . Then χ Ě BV Xv p α ˚ κ q.

Want: BV Xv p α ˚ κ q Ě φ` ψ.

Let Y :“ X bW . Then ˚ P BXYW .

By HW#10-2, BV Xv p α ˚ κ q Ě p pBV Yv αq ˚ κ q ` pα ˚ pBVWv κq q.

Want: pBV Yv αq ˚ κ Ě φ and α ˚ pBVWv κq “ ψ.

We have α ˚ pBVWv κq “ pg1 ˝ fq ˚RWX pBVWv BVWu fq “ ψ.

Want: pBV Yv αq ˚ κ Ě φ.

Want: @q P V , ppBV Yv αq ˚ κqq “
˚ φq.

Given q P V . Want: ppBV Yv αq ˚ κqq “
˚ φq.

By HW#10-1, BV Yu pg1 ˝ fq Ě pg2 ˝ fq ˚RWY pBVWu fq.

Then pBV Yv αqq “ pBV Yv pg1 ˝ fqqq “
˚ ppg2 ˝ fq ˚RWY pBVWu fqqq.

Let A :“ pg2 ˝ fqq, y :“ pBVWu fqq, z :“ pBVWv fqq.

Then y “ pBVWu fqq “ κq.

Also, φq “ ppg2 ˝ fq ˚R,WbW,X ppBVWu fq b pBVWv fqqqq
“ A ˚R,WbW,X py b zq

By HW#10-3 (with V replaced by W ),

pA ˚R,W,XbW zq ˚RVW y “ A ˚R,WbW,X py b zq.

Then ppBV Yv αq ˚ κqq “ pBV Yv αqq ˚ κq “ pBV Yv αqq ˚ y

“˚ ppg2 ˝ fq ˚RWY pBVWu fqqq ˚ y

“ ppg2 ˝ fqq ˚RWY pBVWu fqqq ˚RWX y.

“ pA ˚R,W,XbW zq ˚RWX y.

“ A ˚R,WbW,X py b zq “ φq. QED

10-5. Let V :“ R2, W :“ R, g : V 99K W , z :“ 02, i :“ i
εV1
z .

Assume: pgz “ 0q & ppBVW1 gqz “ 0q. Show: g ˝ i P OWW
1 .

Proof: We have i0 “ z ` 0 ¨ εV1 “ z and pBVW1 gqz “ pB
VW
εV1

gqz “ pg ˝ iq
1
0.

Then pg ˝ iq0 “ gi0 “ gz “ 0 and pg ˝ iq10 “ pB
VW
1 gqz “ 0.

Since pg ˝ iq0 “ 0 and pg ˝ iq10 “ 0, it follows,

from HW#8-1 (with S and T replaced by W , and R by g ˝ i),

that: g ˝ i P OWW
1 , as desired. QED



Homework 9: Due on Tuesday 2 April

9-1. Let V,W P TNSR`, α : V 99K W , δ ą 0, B :“ BV p0V , δq.

Assume: B Ď dom rαs. Assume: @q P B, |αq|W ď |q|V .

Show: α P pOVW
1 .

Proof: Let z :“ 0V .

Since z P BV pz, δq “ BV p0V , δq “ B, by assumption, |αz|W ď |z|V .

Then |αz|W ď |z|V “ |0V |V “ 0, so |αz|W ď 0.

Then 0 ď |αz|W ď 0, so |αz|W “ 0, so αz “ 0W .

Then α0V “ αz “ 0W , so α0V “ 0W . Let σ :“ adj0W0V

ˆ

α

| ‚ |V

˙

.

As α0V “ 0W , we get: p dom rαs “ dom rσs q & p α “ σ ¨ p| ‚ |V q q.

Want: α P pBNZWV q ¨ p| ‚ |V q. Want: σ P BNZWV .

We have B P dom rαs “ dom rσs and B “ Bp0V , δq P BV p0V q.
Then σ P DNZWV . By definition of σ, we have σ0V “ 0W .

Want: σ˚pBq is bounded in W . Let C :“ BW p0W , 2q.

Since C P BW , it suffices to show: σ˚pBq Ď C.

Want: @q P B X pdom rσsq, σq P C.

Given q P B X pdom rσsq. Want: σq P C.

Exactly one of the following is true:

(1) q “ 0V or (2) q ‰ 0V .

Case (1):

We have σq “ σ0V “ 0W P BW p0, 2q “ C, as desired.

End of Case (1).

Case (2):

By definition of σ, σq “
αq
|q|V

. Then |σq|W “
|αq|W
|q|V

.

Since q P B X pdom rσsq Ď B, by assumption, |αq|W ď |q|V .

Then |σq ´ 0W |W “ |σq|W “
|αq|W
|q|V

ď 1 ă 2, so σq P Bp0W , 2q.

Then σq P Bp0W , 1q “ C, as desired. End of Case (2). QED

9-2. Let S, T P TNSR`, f : S 99K T , x, v P S.

Show: pBSTv fqx “˚ pf 1xq ˚RST v.

Proof: Want: p pf 1xq ˚RST v ‰ / q ñ p pBSTv fqx “ pf 1xq ˚RST v q.

Assume: pf 1xq ˚RST v ‰ /. Want: pBSTv fqx “ pf 1xq ˚RST v.



Since pf 1xq ˚RST v ‰ /, we see that f 1x ‰ /.

Then s`ST‚ pD
ST
x fq “ f 1x ‰ /, so DST

x f ‰ /, so DST
x f P LTS .

Let L :“ DST
x f . Then L P LTS .

We have s`STL “ s`ST‚ pLq “ s`ST‚ pD
ST
x fq “ f 1x.

Since s`STL “ f 1x, by Theorem 85.6, we get Lv “ pf 1xq ˚RST v.

By HW#8-4, pBSTv fqx “
˚ pDST

x fqv.

Then pBSTv fqx “
˚ pDST

x fqv “ Lv “ pf
1
xq ˚RST v ‰ /.

Then pBSTv fqx “ pf 1xq ˚RST v, as desired. QED

9-3. Let V :“ R2, W :“ R, f : V 99K W , z :“ 02.

Assume: pf 1 is defined near zq & pfz “ 0q.

Let g :“ BVW1 f , h :“ BVW2 f , i :“ i
εV1
z .

Show: Dσ P pOWW
1 , Dτ P pOV V

1 s.t.

f “ pg ˝ i ˝ σ ˝ πV1 q ¨ π
V
1 ` ph ˝ τq ¨ πV2 near z.

Proof: Since f 1 is defined near z, choose C P BV pzq s.t. C Ď dom rf 1s.

Since C P BV pzq, choose r ą 0 s.t. C “ BV pz, rq.

Let δ :“ r{
?

2 and J :“ p´δ; δq. Then J2 Ď BV pz, rq.

Then J2 Ď BV pz, rq “ C Ď dom rf s.

Define S : J Ñ 2R and T : J2 Ñ 2R by

Sx “ tα P r0|xs s.t. f |
px,0q
p0,0q “ ppBVW1 fqpα, 0qq ¨ xu and

Tx “ tβ P r0|ys s.t. f |
px,yq
px,0q “ ppBVW2 fqpx, βqq ¨ yu.

Claim 1: @x P J , we have H ‰ Sx Ď J .

Proof of Claim 1:

Given x P J . Want: H ‰ Sx Ď J .

By HW#8-5, we have H ‰ Sx. Want: Sx Ď J .

By definition of Sx, we have Sx Ď r0|xs.

We have 0 P p´δ; δq “ J and x P J .

So, since J is an interval, we get r0|xs Ď J .

Then Sx Ď r0|xs Ď J , as desired.

End of proof of Claim 1.

Claim 2: @x, y P J , we have H ‰ Tpx,yq Ď J .

Proof of Claim 2:

Given x, y P J . Want: H ‰ Tpx,yq Ď J .

By Theorem 90.13, p. 218, we have H ‰ Tpx,yq. Want: Tpx,yq Ď J .

By definition of Tpx,yq, we have Tpx,yq Ď r0|ys.



We have 0 P p´δ; δq “ J and y P J .

So, since J is an interval, we get r0|ys Ď J .

Then Tpx,yq Ď r0|ys Ď J , as desired.

End of proof of Claim 2.

Define σ : J 99K R by σx “ CHpSxq.

By Claim 1, @x P J , we have H ‰ Sx Ď J .

Then σ : J Ñ J and, @x P J , σx P Sx Ď J .

Define µ : J2 99K R by µpx,yq “ CHpTpx,yqq.

By Claim 2, @x, y P J , we have H ‰ Tpx,yq Ď J .

Then µ : J2 Ñ J and, @x, y P J , µpx,yq P Tpx,yq Ď J .

Define τ : J2 Ñ J2 by τpx,yq “ px, µpx,yqq.

Claim 3: σ P pOWW
1 .

Proof of Claim 3:

Since J “ BRp0, δq and J “ dom rσs, by HW#9-1,

it suffices to prove: @x P J , |σx|W ď |x|W .

Given x P J . Want: |σx|W ď |x|W .

By definition of Sx, we have Sx Ď r0|xs.

Then σx P Sx Ď r0|xs.

Then σx P r0|xs, so |σx| ď |x|.

Then |σx|W “ |σx| ď |x| “ |x|W , as desired.

End of proof of Claim 3.

Claim 4: τ P pOV V
1 .

Proof of Claim 4:

Let B :“ BV pz, δq. Then B Ď J2 “ dom rτ s.

By HW#9-1, it suffices to prove: @q P B, |τq|V ď |q|V .

Given q P B. Want: |τq|V ď |q|V .

Let x :“ q1, y :“ q2. Then q “ px, yq and |q|2V “ x2 ` y2.

Since px, yq “ q P B Ď J2, we see that x, y P J .

By definition of Tpx,yq, we have Tpx,yq Ď r0|ys.

Then µpx,yq P Tpx,yq Ď r0|ys.

Then µpx,yq P r0|ys, so |µpx,yq| ď |y|, so pµpx,yqq
2 ď y2.

Then |τq| “ |τpx,yq|
2
V “ |px, µpx,yqq|

2
V “ x2 ` pµpx,yqq

2 ď x2 ` y2 “ |q|2V .

Since 0 ď |τq|
2
V ď |q|

2
V , we get |τq|V ď |q|V , as desired.

End of proof of Claim 4.



By Claim 3 and Claim 4, we have σ P pOWW
1 and σ P pOWW

1 .

Want: f “ pg ˝ i ˝ σ ˝ πV1 q ¨ π
V
1 ` ph ˝ τq ¨ πV2 near z.

Since BV p0, δq P BV pzq, it suffices to prove:

f “ pg ˝ i ˝ σ ˝ πV1 q ¨ π
V
1 ` ph ˝ τq ¨ πV2 on BV p0, δq.

Want: @q P BV p0, δq, fq “ ppg ˝ i ˝ σ ˝ πV1 q ¨ π
V
1 ` ph ˝ τq ¨ πV2 qq.

Given q P BV p0, δq. Want: fq “ ppg ˝ i ˝ σ ˝ πV1 q ¨ π
V
1 ` ph ˝ τq ¨ πV2 qq.

Let B :“ BV pz, δq. Let x :“ q1, y :“ q2. Then q “ px, yq.

Then πV1 pqq “ x and πV2 pqq “ y.

Since px, yq “ q P B Ď J2, we see that x, y P J .

Since i “ i
εV1
z , we have: @t P R, iptq “ z ` tεV1 “ p0, 0q ` tp1, 0q “ pt, 0q.

Then pi ˝ σ ˝ πV1 qq “ pi ˝ σqx “ ipσxq “ pσx, 0q.

Want: fpx,yq “ pgpσx, 0qq ¨ x ` phpτpx,yqqq ¨ y.

Since σx P Sx, by definition of Sx,

we get f |
px,0q
p0,0q “ ppBVW1 fqpσx, 0qq ¨ x.

Then f |
px,0q
p0,0q “ ppBVW1 fqpσx, 0qq ¨ x “ pgpσx, 0qq ¨ x.

Since µpx,yq P Tpx,yq, by definition of Tpx,yq,

we get f |
px,yq
px,0q “ ppBVW1 fqpx, µpx,yqqq ¨ y.

Then f |
px,yq
px,0q “ ppBVW1 fqpx, µpx,yqqq¨y “ phpx, µx,yqq¨y “ phpτx,yqq¨y.

Since fp0,0q “ fz “ 0, we get fpx,yq “ f |
px,yq
p0,0q .

Then fpx,yq “ f |
px,yq
pp0,0q “ p f |

px,0q
p0,0q q ` p f |

px,yq
px,0q q

“ pgpσx, 0qq ¨ x ` phpτpx,yqq ¨ y, as desired. QED

9-4. Let V :“ R2, W :“ R, h : V 99K W , z :“ 02.

Assume: z P dom rh1s. Assume: hz “ pB
VW
1 hqz “ pB

VW
2 hqz “ 0.

Show: h P OVW1 .

Proof: We have h1 : V 99K WbV , so dom rh1s Ď V and im rh1s Ď WbV .

Since z P dom rh1s, we get h1z P im rh1s.

Then h1z P im rh1s Ď W b V “ Rb R2 “ R2.

Then ph1zq1 P R and ph1zq2 P R. Then ph1zq1 ‰ / ‰ ph1zq2.

We have pBVW1 hqz “
˚ ph1zq1 ‰ /, so pBVW1 hqz “ ph1zq1.

Also, pBVW2 hqz “
˚ ph1zq2 ‰ /, so pBVW2 hqz “ ph1zq2.

Then ph1zq1 “ pB
VW
1 hqz “ 0 and ph1zq2 “ pB

VW
2 hqz “ 0.

Then h10V “ h1z “ p0, 0q “ 0WbV . Also, h0V “ hz “ 0 “ 0W .

Then, by HW#8-1, we get h P OVW1 , as desired. QED



9-5. Let V :“ R2, W :“ R, f : V 99K W , z :“ 02.

Let α :“ pB1B1fqz, β :“ pB1B2fqz, δ :“ pB2B2fqz,

λ :“ pB1fqz, µ :“ pB2fqz, ρ :“ fz.

Assume α ‰ /, β ‰ /, δ ‰ /, λ ‰ /, µ ‰ /, ρ ‰ /.

Define C P CWV , L P LWV , Q P QW
V by

Cpx, yq “ ρ, Lpx, yq “ pλ, µq ‚V px, yq,

P px, yq “

„

α β

β δ



‚VbV ppx, yqb2q.

Let R :“ f ´

ˆ

C ` L`
P

2!

˙

.

Show: pB1B1Rqz “ pB1B2Rqz “ pB2B2Rqz “ pB1Rqz “ pB2Rqz “ Rz “ 0.

Proof: We have: @x, y P R,

Cpx,yq “ ρ, pB1Cqpx,yq “ 0, pB2Cqpx,yq “ 0,

pB1B1Cqpx,yq “ 0, pB1B2Cqpx,yq “ 0, pB2B2Cqpx,yq “ 0,

Lpx,yq “ λx` µy, pB1Lqpx,yq “ λ, pB2Lqpx,yq “ µ,

pB1B1Lqpx,yq “ 0, pB1B2Lqpx,yq “ 0, pB2B2Lqpx,yq “ 0,

Ppx,yq “ αx2 ` 2βxy ` δy2,

pB1P qpx,yq “ 2αx` 2βy, pB2P qpx,yq “ 2βx` 2δy,

pB1B1P qpx,yq “ 2α, pB1B2P qpx,yq “ 2β, pB2B2P qpx,yq “ 2δ.

Then, since z “ 02 “ p0, 0q, we get

Cz “ ρ, pB1Cqz “ 0, pB2Cqz “ 0,

pB1B1Cqz “ 0, pB1B2Cqz “ 0, pB2B2Cqz “ 0,

Lz “ 0, pB1Lqz “ λ, pB2Lqz “ µ,

pB1B1Lqz “ 0, pB1B2Lqz “ 0, pB2B2Lqz “ 0,

Pz “ 0,

pB1P qz “ 0, pB2P qz “ z,

pB1B1P qz “ 2α, pB1B2P qz “ 2β, pB2B2P qz “ 2δ.

Then

Rz “
˚ fz ´ pρ` 0` 0q “ ρ´ ρ “ 0 ‰ /,

pB1Rqz “
˚ pB1fqz ´ p0` λ` 0q “ λ´ λ “ 0 ‰ /,

pB2Rqz “
˚ pB2fqz ´ p0` µ` 0q “ µ´ µ “ 0 ‰ /,

pB1B1Rqz “
˚ pB1B1fqz ´ p0` 0` p2α{2qq “ α´ α “ 0 ‰ /,

pB1B2Rqz “
˚ pB1B2fqz ´ p0` 0` p2β{2qq “ β ´ β “ 0 ‰ /,

pB2B2Rqz “
˚ pB2B2fqz ´ p0` 0` p2δ{2qq “ δ ´ δ “ 0 ‰ /.

Then pB1B1Rqz “ pB1B2Rqz “ pB2B2Rqz “ pB1Rqz “ pB2Rqz “ Rz “ 0,

as desired. QED



Homework 8: Due on Tuesday 26 March

8-1. Let S, T P TNSR`, R : S 99K T .

Assume p R0S “ 0T q & p R10S “ 0TbS q. Show: R P OST1 .

Proof: Let L :“ D0SR and A :“ R10S . Then L “ LinSTA and A “ 0TbS.

Then L “ LinST0TbS
“ 0TS . Then L ‰ /.

Since D0SR “ L ‰ /, it follows that RT
0S
´ L P OST1 .

Since R0S “ 0T , it follows that RT
0S
“ R.

Then R “ R ´ 0TS “ RT
0S
´ 0TS “ RT

0S
´ L P OST1 , as desired. QED

8-2. Let S, T P TNSR`, f : S 99K T .

Let p P dom rf 1s, L :“ LinSTf 1
p

, R :“ fTp ´ L.

Show: p R0S “ 0T q & p R10S “ 0TbS q.

Proof: We have R0S “ pf
T
p ´ Lqp0Sq “ rf

T
p p0Sqs ´ rLp0Sqs.

Since p P dom rf 1s Ď dom rf s, we get fTp p0Sq “ 0T .

Since L P LTS , we get Lp0Sq “ 0T .

Then R0S “ Rp0Sq “ pf
T
p ´Lqp0Sq “ rf

T
p p0Sqs´rLp0Sqs “ 0T´0T “ 0T .

Want: R10S “ 0TbS.

We have DST
0S
pfTp q “ DST

p`0S
f “ DST

p f “ LinSTf 1
p
“ L.

Also, since L P LTS , we get DST
0S
L “ L.

Then DST
0S
R “ DST

0S
pfTp ´ Lq “

˚ rDST
0S
pfTp qs ´ rD

ST
0S
pLqs

“ L´ L “ 0TS .

Since D0SR “˚ 0TS ‰ /, it follows that D0SR “ 0TS .

Then R ´ 0S “ s`ST‚ pD0SRq “ s`ST‚ p0
T
S q “ 0TbS. QED

8-3. Let S P TNSR`, p, v P S, i :“ ivp. Show: i1 “ Cv
R.

Proof: We have: @t P R, iptq “ ivpptq “ p` tv.

Want: @t P R, i1ptq “ Cv
Rptq.

Given t P R. Want: i1ptq “ Cv
Rptq. Want i1t “ v.

Define L P LSR by Lphq “ hv. Then s`RS‚ pLq “ s`RSL “ Lp1q “ v.

We have: @h P R, iTt phq “ ript` hqs ´ riptqs

“ rp` pt` hqvs ´ rp` tvs “ hv “ Lphq.

Then iTt “ L, so iTt ´ L “ L´ L “ 0SR P ORS
1 .

Since iTt ´ L P ORS
1 , it follows that L “ DRS

t i.

Then i1t “ s`RS‚ pD
RS
t iq “ s`RS‚ pLq “ v, as desired. QED



8-4. Let S, T P TNSR`, f : S 99K T , p, v P S.

Show: pBSTv fqp “
˚ pDST

p fqv.

Proof: Let i :“ ivp and let g :“ f ˝ i.

Then pBSTv fqp “ pf ˝ iq
1
0 “ g10.

Also, we have: i0 “ ip0q “ ivpp0q “ p` 0 ¨ v “ p.

By the Linearization Chain Rule,

we have DRT
0 pf ˝ iq “˚ pDST

i0
fq ˝ pDRS

0 iq.

Let L :“ DRS
0 i and let M :“ DRT

0 g.

Then M “ DRT
0 pf ˝ iq “˚ pDST

i0
fq ˝ pDRS

0 iq “ pDST
p fq ˝ L.

Then Mp1q “˚ ppDST
p fq ˝ Lqp1q “ pDST

p fqpLp1qq.

We have g10 “ s`RT‚ pD
RT
0 gq “ s`RT‚ pMq “ s`RTM “Mp1q.

By HW#8-3, i1 “ Cv
R. Then i10 “ i1p0q “ Cv

Rp0q “ v.

We have i10 “ s`RS‚ pD
RS
0 iq “ s`RS‚ pLq “ s`RSL “ Lp1q.

Then pBSTv fqp “ g10 “ Mp1q “˚ pDST
p qpLp1qq

“ DST
p pi

1
0q “ DST

p pvq, as desired. QED

8-5. Let V :“ R2, W P R, R : V 99K W ,

δ ą 0, J :“ p´δ; δq, x P J .

Assume: J2 Ď dom rR1s.

Show: Dα P r0|xs s.t. R|
px,0q
p0,0q “ ppBVW1 Rqpα, 0qq ¨ x.

Proof: Let i :“ i
p1,0q
p0,0q. By HW#8-3, we have i1 “ C

p1,0q
R .

Also: @t P R, it “ iptq “ p0, 0q ` t ¨ p1, 0q “ pt, 0q.

Let f :“ R ˝ i. Then fx “ Rpixq “ Rpx, 0q and f0 “ Rpi0q “ Rp0, 0q.

Claim: J Ď dom rf 1s.

Proof of Claim:

Want: @t P J , t P dom rf 1s.

Given t P J . Want: t P dom rf 1s.

Since t P R “ dom rC
p0,1q
R “ i1 and it “ pt, 0q P J

2 Ď dom rR1s,

we conclude that t P dom rpR ˝ iq1s.

Then t P dom rpR ˝ iq1s “ dom rf 1s, as desired.

End of proof of Claim.

Since x P J , by the Claim and the MVT,

choose α P r0|xs s.t. fx ´ f0 “ pf
1
αq ¨ px´ 0q.

Want: R|
px,0q
p0,0q “ ppBVW1 Rqpα, 0qq ¨ x.



We have R|
px,0q
p0,0q “ rRpx, 0qs´rRp0, 0qs “ fx´f0 “ pf

1
αq¨px´0q “ pf 1αq¨x.

Want: f 1α “ pB
VW
1 Rqpα, 0q.

We have DRW
α f “ DRW

α pR ˝ iq “˚ pDVW
ipαqRq ˝ pD

RV
α iq.

Also, f 1α “ pD
RW
α fqp1q and i1α “ pD

RV
α iqp1q. Let u :“ εV1 .

Then pDRV
α iqp1q “ i1α “ i1pαq “ C

p1,0q
R pαq “ p1, 0q “ εV1 “ u.

Then f 1α “ pDRW
α fqp1q “˚ ppDVW

ipαqRq ˝ pD
RV
α iqqp1q “ pDVW

ipαqRqpuq.

Since 0, x P J and since J is an interval, we get r0|xs Ď J .

Then α P r0|xs Ď J . So, as 0 P J , we get pα, 0q P J2.

Then ipαq “ pα, 0q P J2 Ď dom rR1s, so DVW
ipαqR P LWV .

Then pDVW
ipαqRqpuq P W , so pDVW

ipαqRqpuq ‰ /.

Since f 1α “˚ pDVW
ipαqRqpuq ‰ /, we conclude that f 1α “ pDVW

ipαqRqpuq.

Since u “ εV1 , we get BVWu R “ BVW1 R.

We have pBVWu Rqpipαqq “˚ pDVW
ipαqRqu “ pDVW

ipαqRqpuq.

Then pBVWu Rqpipαqq “˚ pDVW
ipαqRqpuq ‰ /,

so pBVWu Rqpipαqq “ pDVW
ipαqRqpuq.

Then f 1α “ pD
VW
ipαqRqpuq “ pB

VW
u Rqpα, 0q “ pBVW1 Rqpα, 0q. QED

Homework 7: Due on Tuesday 12 March

7-1. Let V,W P TNSR and let L,M P LWV .

Assume: rLsWV “ rM sWV . Show: L “M .

Proof: Want: @x P V , Lx “Mx.

Given x P V . Want: Lx “Mx.

Let A :“ s`VWL . By Theorem 85.6, Lx “ A ˚RVW x.

Let B :“ s`VWM . By Theorem 85.6, Mx “ B ˚RVW x.

We have A “ s`VWL “ rLsWV “ rM sWV “ s`VWM “ B, so A “ B.

Then Lx “ A ˚RVW x “ B ˚RVW x “ Mx. QED

7-2. Let V,W P TNSR and let A P W b V .

Show: DL P LWV s.t. rLsWV “ A.

Proof: Define L P LWV by Lx “ A ˚RVW x. Want: rLsWV “ A.

We have rLsWV “ s`VWL “ ps`VW‚ qpLq.

Want: ps`VW‚ qpLq “ A. Want: L “ ps`VW‚ q´1pAq.

Let M :“ ps`VW‚ q´1pAq. Want: L “M .

Want: @x P V , Lx “Mx. Given x P V . Want: Lx “Mx.

Let B :“ s`VWM . By Theorem 85.6, Mx “ B ˚RVW x.



Since M “ ps`VW‚ q´1pAq, we get ps`VW‚ qpMq “ A.

Then B “ s`VWM “ ps`VW‚ qpMq “ A.

Then Lx “ A ˚RVW x “ B ˚RVW x “ Mx, as desired. QED

7-3. Let I be a finite set and let z P RI .

Show:
ÿ

jPI

|zj| ď
a

# I ¨

d

ÿ

jPI

z2j .

Proof: Define x P RI by xj “ 1. Then, @j P I, x2j “ 1.

Then
ÿ

jPI

x2j “ #I, so

d

ÿ

jPI

x2j “
a

#I.

Define y P RI by yj “ |zj|. Then, @j P I, y2j “ z2j .

Then
ÿ

jPI

y2j “
ÿ

jPI

z2j , so

d

ÿ

jPI

y2j “

d

ÿ

jPI

z2j .

We have: @j P I, xjyj “ 1 ¨ |zj| “ |zj|.

Then
ÿ

jPI

xjyj “
ÿ

jPI

|zj|.

By Theorem 84.11,
ÿ

jPI

xjyj ď

d

ÿ

jPI

x2j ¨

d

ÿ

jPI

y2j .

Then
ÿ

jPI

|zj| “
ÿ

jPI

xjyj ď

d

ÿ

jPI

x2j ¨

d

ÿ

jPI

y2j “
a

# I ¨

d

ÿ

jPI

z2j ,

as desired. QED

7-4. Let U, V,W P TNSR and let B P BWUV .

Show: DC ě 0 s.t., @p P U , @q P V ,

|Bpp, qq|W ď C ¨ |p|U ¨ |q|V .

Proof: Let K :“ maxt |BpεUi , ε
V
j q |W s.t. i P IU , j P IV u.

Then K ě 0. Let C :“ K ¨
?

#IU ¨
?

#IV . Then C ě 0.

Want: @p P U , @q P V , |Bpp, qq|W ď C ¨ |p|U ¨ |q|V .

Given p P U , q P V . Want: |Bpp, qq|W ď C ¨ |p|U ¨ |q|V .

Since p “
ÿ

iPIU

piε
U
i and q “

ÿ

jPIV

qjε
V
j , we get

Bpp, qq “
ÿ

iPIU

ÿ

jPIV

ˆ

pi ¨ qj ¨Bpε
U
i , ε

V
j q

˙

.

So, by subadditivity and absolute homogeneity of | ‚ |W , we get

|Bpp, qq |W ď
ÿ

iPIU

ÿ

jPIV

ˆ

|pi| ¨ |qj| ¨ |Bpε
U
i , ε

V
j q |W

˙

.



So, by the choice of K, we get

|Bpp, qq |W ď
ÿ

iPIU

ÿ

jPIV

ˆ

|pi| ¨ |qj| ¨K

˙

.

So, asK ¨

˜

ÿ

iPIU

|pi|

¸

¨

˜

ÿ

jPIV

|qj|

¸

“
ÿ

iPIU

ÿ

jPIV

ˆ

|pi| ¨ |qj| ¨K

˙

, we get

|Bpp, qq |W ď K ¨

˜

ÿ

iPIU

|pi|

¸

¨

˜

ÿ

jPIV

|qj|

¸

.

By HW#7-3, we get
ÿ

iPIU

|pi| ď
a

#IU ¨
d

ÿ

iPIU

p2i .

Also, by HW#7-3, we get
ÿ

jPIV

|qi| ď
a

#IV ¨
d

ÿ

jPIV

q2j .

By definition of | ‚ |U , we have |p|U “

d

ÿ

iPIU

p2i .

By definition of | ‚ |V , we have |q|V “

d

ÿ

jPIV

q2j .

Then |Bpp, qq |W ď K ¨

˜

ÿ

iPIU

|pi|

¸

¨

˜

ÿ

jPIV

|qj|

¸

ď K ¨
a

#IU ¨
d

ÿ

iPIU

p2i ¨
a

#IV ¨
d

ÿ

jPIV

q2j

ď K ¨
a

#IU ¨ |p|U ¨
a

#IV ¨ |q|V
“ K ¨

a

#IU ¨
a

#IV ¨ |p|U ¨ |q|V
“ C ¨ |p|U ¨ |q|V , as desired. QED

7-5. Let T, U, V,W P TNSR and let ˚ P BWUV .

Show: BNZTU ˚ BNZTV Ď BNZTW .

Proof: Want: @α P BNZTU ˚ BNZTV , α P BNZTW .

Given α P BNZTU ˚ BNZTV . Want: α P BNZTW .

Choose β P BNZTU and γ P BNZTV s.t. α “ β ˚ γ.

By HW#7-4, choose K ě 0 s.t. @p P U , @q P V ,

|p ˚ q|W ď K ¨ |p|U ¨ |q|V .

Since β P BNZTU Ď DNZTU , choose B P BT p0T q s.t. B Ď dom rβs.

Since γ P BNZTV Ď DNZTV , choose C P BT p0T q s.t. C Ď dom rγs.

Then B X C Ď pdom rβsq X pdom rαsq “ dom rβ ˚ γs “ dom rαs.

So, since B X C P tB,Cu Ď BT p0T q, we conclude that α P DNZTW .



Want: DA P BT p0T q s.t. α˚pAq is bounded in W .

Since β P BNZTU , choose D P BT p0T q s.t. β˚pDq is bounded in U .

Since β˚pDq is bounded in U , choose E P BU s.t. β˚pDq Ď E.

Since E P BU , by the Superset Recentering Lemma,

choose F P BUp0Uq s.t. E Ď F .

Since F P BUp0Uq, choose r ą 0 s.t. F “ BUp0U , rq.

Since γ P BNZTU , choose X P BT p0T q s.t. γ˚pXq is bounded in V .

Since γ˚pXq is bounded in V , choose Y P BV s.t. γ˚pXq Ď Y .

Since Y P BV , by the Superset Recentering Lemma,

choose Z P BV p0V q s.t. Y Ď Z.

Since Z P BV p0V q, choose s ą 0 s.t. Z “ BV p0V , sq.

Let A :“ D XX. Then A P tD,Xu Ď BT p0T q.
Want: α˚pAq is bounded in W . Want: DQ P BW s.t. α˚pAq Ď Q.

Let Q :“ BW p0W , Krs` 1q. Then Q P BW p0W q Ď BW .

Want: α˚pAq Ď Q. Want: @w P α˚pAq, w P Q.

Given w P α˚pAq. Want: w P Q. Want: |w|W ă Krs` 1.

Since w P α˚pAq, choose t P pdom rαsq X A s.t. αptq “ w.

Since t P pdom rαsq X A, we get t P dom rαs and t P A.

We have t P dom rαs “ dom rβ ˚ γs “ pdom rβsq X pdom rγsq,

so t P dom rβs and t P dom rγs.

Also, we have t P A “ D XX,

so t P D and t P X.

Since t P dom rβs and t P D, we get βptq P β˚pDq.

So, since β˚pDq Ď E Ď F “ BUp0U , rq,

we get βptq P BUp0U , rq, so |βptq|U ă r.

Since t P dom rγs and t P X, we get γptq P γ˚pXq.

So, since γ˚pXq Ď Y Ď Z “ BV p0V , sq,

we get γptq P BV p0V , sq, so |γptq|V ă s.

Since t P dom rβs, we get βptq P im rβs.

Since β P BNZTU , we get im rβs Ď U .

Since t P dom rγs, we get γptq P im rγs.

Since γ P BNZTV , we get im rγs Ď V .

Since βptq P im rβs Ď U and γptq P im rγs Ď V ,

it follows, from the choice of K,

that |pβptqq ˚ pγptqq|W ď K ¨ |βptq|U ¨ |γptq|V .

We have w “ αptq “ pβ ˚ γqptq “ pβptqq ˚ pγptqq.

Then |w|W “ |pβptqq ˚ pγptqq|W ď K ¨ |βptq|U ¨ |γptq|V ď Krs.

Then |w|W ď Krs ă Krs` 1, as desired. QED



Homework 6: Due on Tuesday 5 March

6-1. Let T P TNSR, v P T . Show: v “
ÿ

jPIT

vjε
T
j .

Proof: Let w :“
ÿ

jPIT

vjε
T
j . Want v “ w.

Want: @i P IT , vi “ wi. Given i P IT . Want: vi “ wi.

We have: wi “
ÿ

jPIT

vj ¨ ppε
T
j qiq

“ pvi ¨ ppεiqiqq `

¨

˝

ÿ

jPIT ztiu

vj ¨ ppε
T
j qiq

˛

‚

“ pvi ¨ 1q `

¨

˝

ÿ

jPIT ztiu

vj ¨ 0

˛

‚ “ vi ` 0.

Then vi “ vi ` 0 “ wi, as desired. QED

6-2. Let S, T P TNSR, A P T b S, L :“ LinSTA , i P IS.

Show: LpεSi q “
ÿ

jPIT

Aj}i ¨ ε
T
j .

Proof: Let v :“ LpεSi q. By HW#6-1, we have: v “
ÿ

jPIT

vjε
T
j .

By Theorem 83.5, p. 202, we have: @j P IT , Aj}i “ pLpε
S
i qqj.

Then LpεSi q “ v “
ÿ

jPIT

vjε
T
j “

ÿ

jPIT

pLpεSi qqj ¨ ε
T
j

“
ÿ

jPIT

Aj}i ¨ ε
T
j , as desired. QED

6-3. Let S, T P TNSR`, C P CTS , p P S. Show: DST
p C “ 0TS .

Proof: Since C P CTS , choose w P T s.t. C “ Cw
S .

We have: @h P S, CT
p phq “ rCpp` hqs ´ rCppqs

“ rCw
S pp` hqs ´ rCw

S ppqs

“ w ´ w “ 0T “ 0TS phq.

Then CT
p “ 0TS . Let L :“ 0TS .

Then CT
p ´ L “ 0TS ´ 0TS “ 0TS P OST1 .

Then L P LINSpC, and so DST
p C “ L.

Then DST
p C “ L “ 0TS , as desired. QED



6-4. Let S, T P TNSR`, L P LTS , p P S. Show: DST
p L “ L.

Proof: We have: @h P S, LTp phq “ rLpp` hqs ´ rLppqs

“ rLppqs ` rLphqs ´ rLppqs “ Lphq.

Then LTp “ L. Then LTp ´ L “ 0TS P OST1 .

Then L P LINSpL, and so DST
p L “ L, as desired. QED

6-5. Let V,W P TNSR`, Q P QW
V , B P SBWV .

Assume: Q “ Bp‚, ‚q. Show: @x P V , DVW
x Q “ 2 ¨ pBpx, ‚qq.

Proof: Given x P V . Want: DVW
x Q “ 2 ¨ pBpx, ‚qq.

We have: @h P S,

QT
x phq “ pQpx` hqq ´ pQpxqq

“ pBpx` h, x` hqq ´ pBpx, xqq

“ pBpx, xqq `pBpx, hqq `pBph, xqq ` pBph, hqq ´ pBpx, xqq

“ pBpx, xqq´ pBpx, xqq` pBpx, hqq`pBpx, hqq` pBph, hqq

“ 2 ¨ pBpx, hqq ` pBph, hqq

“ p 2 ¨ pBpx, ‚qq ` pBp‚, ‚qq qphq.

Then QT
x “ 2 ¨ pBpx, ‚qq ` pBp‚, ‚qq.

Let L :“ 2 ¨ pBpx, ‚qq and let R :“ Bp‚, ‚q.

Then QT
x “ L`R and L P LWV and R P QW

V .

Since L P LWV , we get L´ L “ 0TS , and so L´ L`R “ 0TS `R.

Then QT
x ´ L “ L`R ´ L “ L´ L`R “ 0WV `R “ R.

Then QT
x ´ L “ R P QW

V Ď pOVW
2 Ď OVW1 .

So, since L P LWV , we get L P LINSxQ, and so DVW
x Q “ L.

Then DVW
x Q “ L “ 2 ¨ pBpx, ‚qq, as desired. QED

Homework 5: Due on Tuesday 26 February

5-1. Let S :“ R2 and let T :“ R. Show: QST Ď pOST
2 .

Proof: Want: @Q P QST , Q P pOST
2 .

Given Q P QST . Want: Q P pOST
2 .

Since Q P QST , it follows that dom rQs “ S.

Let α :“ adj0T0S

ˆ

Q

| ‚ |2S

˙

. Then αp0Sq “ 0T .

Also, dom rαs “ ppdom rQsqˆ0Sq
`
0S
“ pdom rQsq`0S “ S`0S “ S.

Also, @x P Szt0Su, we have Qpxq “ pαpxqq ¨ p|x|2Sq.



Since Q P QST , it follows that Qp0Sq “ 0T .

Recall that T “ R. Then 0T “ 0.

Then αp0Sq “ 0T “ 0 and Qp0Sq “ 0T “ 0.

Then Qp0Sq “ 0 “ 0 ¨ 02 “ pαp0Sqq ¨ p|0S|
2
Sq.

Then @x P S, we have Qpxq “ pαpxqq ¨ p|x|2Sq. Then Q “ α ¨ p| ‚ |2Sq.

Want: Q P pBNZST q ¨ p| ‚ |
2
Sq. Want: α P BNZST .

Since dom rαs “ S, we see that α P DNZST .

Want: DB P BSp0Sq s.t. α˚pBq is bounded in T .

Want: im rαs is bounded in T .

Recall that T “ R. Want: im rαs is bounded in R.

Want: Dr ą 0 s.t. im rαs Ď BRp0, rq.

Let C :“ tv P S s.t. |v|S “ 1u.

Since C is closed and bounded in S, we see that C is compact.

Since Q P QST , it follows that Q is continuous.

Then Q|C is continuous.

So, since C is compact, by the Extreme Value Theorem,

we conclude: minpQ|Cq ‰ / ‰ maxpQ|Cq.

Let K :“ minpQ|Cq and L :“ maxpQ|Cq.

Then pK,L P R q& pK ď Q ď L on C q.

Let r :“ 1` rmaxt|K|, |L|us. Then r ą 0 and ´r ă K and L ă r.

Want: im rαs Ď BRp0, rq.

Want: @y P im rαs, y P BRp0, rq.

Given y P im rαs. Want: y P BRp0, rq.

Since y P im rαs, choose x P dom rαs s.t. y “ αpxq.

Exactly one of the following is true:

(1) x “ 0S or (2) x ‰ 0S.

Case (1):

We have y “ αpxq “ αp0Sq “ 0 P BRp0, rq, as desired.

End of Case (1).

Case (2):

Since x ‰ 0S, by definition of α, we get: αpxq “
Qpxq

|x|2S
.

Also, since x ‰ 0S, we get |x|S ą 0.

Let b :“ |x|S. Then b ą 0, so
b

|b|
“ 1.



Let u :“
x

b
. Then |u|S “

|x|S
|b|

“
b

|b|
“ 1.

Then u P C, so, since K ď Q ď L on C, we get: K ď Qpuq ď L.

So, since ´r ă K and L ă r, we get: ´r ă Qpuq ă r.

Then Qpuq P p´r; rq “ BRp0, rq.

Since Q P QST , we have Q
´x

b

¯

“
Qpxq

b2
.

Then Qpuq “ Q
´x

b

¯

“
Qpxq

b2
“
Qpxq

|x|2S
“ αpxq.

Then y “ αpxq “ Qpuq P BRp0, rq, as desired.

End of Case (2). QED

5-2. Let S, T P TNSR`. Show: pBNZST q ¨ pCVZSRq Ď CVZST .

Proof: Want: @γ P pBNZST q ¨ pCVZSRq, γ P CVZST .

Given γ P pBNZST q ¨ pCVZSRq. Want: γ P CVZST .

Since γ P pBNZST q ¨ pCVZSRq,

choose α P BNZST , β P CVZSR s.t. γ “ α ¨ β.

Since α P BNZST Ď DNZST and since β P CVZSR Ď DNZSR,

choose P,Q P BSp0Sq s.t. P Ď dom rαs and Q Ď dom rβs.

Then P XQ P tP,Qu Ď BSp0Sq.
So, since P XQ Ď pdom rαsq X pdom rβsq “ dom rα ¨ βs “ dom rγs,

we conclude that γ P DNZST .

Want: γp0Sq “ 0T and γ is continuous at 0S.

Since P P BSp0Sq, we get 0S P P .

Since α P DNZST , we get α : S 99K T .

So, since 0S P P Ď dom rαs, we get αp0Sq P T , so rαp0Sqs ¨ 0 “ 0T .

Since β P CVZSR, we get βp0Sq “ 0.

Then γp0Sq “ pα ¨ βqp0Sq “ rαp0Sqs ¨ rβp0Sqs “ rαp0Sqs ¨ 0 “ 0T .

Want: γ is continuous at 0S.

Want: @ε ą 0, Dδ ą 0 s.t., @x P dom rγs,

r |x´ 0S|S ă δ s ñ r |rγpxqs ´ rγp0Sqs|T ă ε s.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P dom rγs,

r |x´ 0S|S ă δ s ñ r |rγpxqs ´ rγp0Sqs|T ă ε s.

Since α P BNZST , choose A P BSp0Sq s.t. α˚pAq is bounded in T .

Since α˚pAq is bounded in T , choose Y P BT s.t. α˚pAq Ď Y .

By the Superset Recentering Lemma (Theorem 38.17),

choose Z P BT p0T q s.t. Y Ď Z.

Choose r ą 0 s.t. Z “ BT p0T , rq.



Since β P CVZSR, it follows that β is continuous at 0S,

so choose η ą 0 s.t., @x P dom rβs,

r |x´ 0S|S ă η s ñ r |rβpxqs ´ rβp0qs| ă ε{r s.

Let B :“ BSp0S, ηq. Then A,B P BSp0Sq. Let Q :“ AXB.

Then Q P tA,Bu Ď BSp0Sq. Choose δ ą 0 s.t. Q “ BSp0S, δq.

Want: @x P dom rγs, p r |x´0S|S ă δ s ñ r |rγpxqs´rγp0Sqs|T ă ε s q.

Given x P dom rγs.

Want: r |x´ 0S|S ă δ s ñ r |rγpxqs ´ rγp0Sqs|T ă ε s.

Assume: |x´ 0S|S ă δ. Want: |rγpxqs ´ rγp0Sqs|T ă ε.

We have x P dom rγs “ dom rα ¨ βs “ pdom rαsq X pdom rβsq.

Then x P pdom rαsq X pdom rβsq Ď dom rβs.

Also, since |x´ 0S|S ă δ, we have x P BSp0S, δq.

Then x P BSp0S, δq “ Q “ AXB.

Then x P AXB Ď B “ BSp0S, ηq, so |x´ 0S|S ă η.

So, since x P dom rβs, by choice of η, we get: |rβpxqs ´ rβp0Sqs| ă ε{r.

Since β P CVZSR, we get βp0Sq “ 0. Then rβpxqs´rβp0Sqs “ βpxq.

Then |βpxq| “ |rβpxqs ´ rβp0Sqs| ă ε{r, so |βpxq| ă ε{r.

Since x P pdom rαsq X pdom rβsq Ď dom rαs and since x P AXB Ď A,

we conclude that αpxq P α˚pAq.

Then αpxq P α˚pAq Ď Y Ď Z “ BT p0T , rq, so |αpxq|T ă r.

Since 0 ď |αpxq|T ă r and since 0 ď |βpxq| ă ε{r,

it follows that |αpxq|T ¨ |βpxq| ă r ¨ pε{rq.

Recall that γp0Sq “ 0T . We have γpxq “ pα ¨ βqpxq “ rαpxqs ¨ rβpxqs.

Then |rγpxqs ´ rγp0Sqs|T “ |rγpxqs ´ 0T |T “ |γpxq|T “ |rαpxqs ¨ rβpxqs|T
“ |αpxq|T ¨ |βpxq| ă r ¨ pε{rq “ ε, as desired. QED

5-3. Let S P TNSR`, f, g : R 99K S, p P R.

Show: pf ‚ gqTp “ pfTp q ‚ pgpq ` pfpq ‚ pg
T
p q ` pfTp q ‚ pg

T
p q.

Proof: Want: @h P R,

pf ‚ gqTp phq “ ppf
T
p q ‚ pgpq ` pfpq ‚ pg

T
p q ` pf

T
p q ‚ pg

T
p qqphq.

Given h P R.

Want: pf ‚ gqTp phq “ ppf
T
p q ‚ pgpq ` pfpq ‚ pg

T
p q ` pf

T
p q ‚ pg

T
p qqphq.

Let A :“ fp`h, B :“ gp`h.

Then A´ a “ fp`h ´ fp “ fTp phq.

Also, B ´ b “ gp`h ´ gp “ gTp phq.

We have A ‚B ´ a ‚ b “ a ‚ pB ´ bq ` b ‚ pA´ aq

` pA´ aq ‚ pB ´ bq.



Then pf ‚ gqTp phq “ rpf ‚ gqp`hs ´ rpf ‚ gqps “ fp`h ‚ gp`h ´ fp ‚ gp
“ A ‚B ´ a ‚ b “ pA´ aq ‚ b` a ‚ pB ´ bq ` pA´ aq ‚ pB ´ bq

“ pfTp phqq ‚ pgpq ` pfpq ‚ pg
T
p phqq ` pf

T
p phqq ‚ pg

T
p phqq

“ ppfTp q ‚ pgpq ` pfpq ‚ pg
T
p q ` pf

T
p q ‚ pg

T
p qqphq,

as desired. QED

5-4. Let S, T, U P TNSR`, f : S 99K T , g : T 99K U .

Let p P S, q :“ fp. Show: pf ˝ gqTp “ pg
T
q q ˝ pf

T
p q

Proof: Want: @h P S, ppg ˝ fqTp qphq “ ppg
T
q q ˝ pf

T
p qqphq.

Given h P S. Want: ppg ˝ fqTp qphq “ ppg
T
q q ˝ pf

T
p qqphq.

We compute ppg ˝ fqTp qphq “ rpg ˝ fqpp` hqs ´ rpg ˝ fqppqs

“ rgpfp`hqs ´ rgpfpqs “ rgpfp`hqs ´ rgpqqs.

Exactly one of the following is true:

(1) q “ / or (2) q ‰ /.

Case (1):

Since q “ /, we get:

both rgpfp`hqs ´ rgpqqs “ / and ppgTq q ˝ pf
T
p qqphq “ /.

Then ppg ˝ fqTp qphq “ rgpfp`hqs ´ rgpqqs “ / “ ppgTq q ˝ pf
T
p qqphq.

End of Case (1).

Case (2):

Since fp “ q ‰ /, we get fp P im rf s Ď R.

Then q “ fp P T , so q ´ q “ 0T .

Let k :“ pfTp qphq. Then k “ fp`h ´ fp “ fp`h ´ q.

Then q ` k “ q ` pfp`h ´ qq “ fp`h ` pq ´ qq “ fp`h ` 0T “ fp`h.

Then ppg ˝ fqTp qphq “ rgpfp`hqs ´ rgpqqs “ rgpq ` kqs ´ rgpqqs

“ gTq pkq “ pg
T
q qppf

T
p qphqq “ ppg

T
q q ˝ pf

T
p qqphq,

as desired. End of Case (2). QED

5-5. Let S, T P TNSR, i P IS, j P IT . Show: i}j P ISbT .

Proof: Choose σ, τ P N s.t. S P TNSRσ and T P TNSRτ .

Choose m P Rσ and n P Rτ s.t. S “ Rm and T “ Rn.

We have S “ Rm, so IS “ rms.
Also, T “ Rn, so IS “ rns.
Also, S b T “ Rm}n, so ISbT “ rm}ns.
We have: m “ pm1, . . . ,mσq,



and n “ pn1, . . . , nτ q

and m}n “ pm1, . . . ,mσ, n1, . . . , nτ q.

Then: rms “ r1..m1s ˆ ¨ ¨ ¨ ˆ r1..mσs,

and rns “ r1..n1s ˆ ¨ ¨ ¨ ˆ r1..nτ s

and rm}ns “ r1..m1s ˆ ¨ ¨ ¨ ˆ r1..mσs ˆ r1..n1s ˆ ¨ ¨ ¨ ˆ r1..nτ s.

Then: i P IS “ rms “ r1..m1s ˆ ¨ ¨ ¨ ˆ r1..mσs

and j P IT “ rns “ r1..n1s ˆ ¨ ¨ ¨ ˆ r1..nτ s,

and so i}j P r1..m1s ˆ ¨ ¨ ¨ ˆ r1..mσs ˆ r1..n1s ˆ ¨ ¨ ¨ ˆ r1..nτ s.

Then i}j P rm}ns “ ISbT , as desired. QED

Homework 4: Due on Tuesday 19 February

4-1. Let k P N0, α P pOk and λ :“ adj00

ˆ

α

| ‚ |k

˙

. Show: λ P BNZ.

Proof: Since α P pOk “ pBNZq ¨ p| ‚ |kq,

choose µ P BNZ s.t. α “ µ ¨ p| ‚ |kq.

We have dom rαs “ pdom rµsq X pdom r| ‚ |ksq.

So, since dom rµs Ď R “ dom r| ‚ |ks, we see that dom rαs “ dom rµs.

Since µ P BNZ Ď DNZ, choose A P BRp0q s.t. A Ď dom rµs.

Then A Ď dom rµs “ dom rαs, so A Ď dom rαs.

So, since A P BRp0q, we see that α P DNZ.

We have dom rλs “

ˆ

dom

„

α

| ‚ |k

˙`

0

“ ppdom rαsqˆ0 q
`
0 “ pdom rαsq`0 .

Then A Ď dom rαs Ď pdom rαsq`0 “ dom rλs, so A Ď dom rλs.

So, since A P BRp0q, we conclude that λ P DNZ.

Want: DB P BRp0q s.t. λ˚pBq is bounded in R.

Since µ P BNZ, choose C P BRp0q s.t. µ˚pCq is bounded in R.

Since A,C P BRp0q, we get AX C P tA,Cu.

Let B :“ AX C. Then B “ AX C P tA,Cu Ď BRp0q.

Want: λ˚pBq is bounded in R.

Since µ˚pCq is bounded in R, choose D P BR s.t. µ˚pCq Ď D.

By the Superset Recentering Lemma, choose E P BRp0q s.t. D Ď E.

Since E P BRp0q, it follows that 0 P E.

Since µ˚pCq Ď D Ď E and since 0 P E,

we conclude that pµ˚pCqq Y t0u Ď E.

So, as E P BR, it suffices to show: λ˚pBq Ď E.

Want: @y P λ˚pBq, y P E.



Given y P λ˚pBq. Want: y P E.

Since y P λ˚pBq, choose x P B X pdom rλsq s.t. y “ λx.

Exactly one of the following is true:

(1) x “ 0 or (2) x ‰ 0.

Case (1):

We have y “ λx “ λ0 “

ˆ

adj00

ˆ

α

| ‚ |k

˙˙

0

“ 0 P E, as desired.

End of Case (1).

Case (2):

Since x ‰ 0, we have λx “

ˆ

adj00

ˆ

α

| ‚ |k

˙˙

x

“

ˆ

α

| ‚ |k

˙

x

“
αx
|x|k

.

Since α “ µ ¨ p| ‚ |kq, we get: αx “ pµ ¨ p| ‚ |
kqqx.

Then αx “ pµ ¨ p| ‚ |
kqqx “ µx ¨ p|x|

kq.

Since B P BRp0q, we get B Ď R. Then x P B Ď R.

So, since x ‰ 0, we get
|x|k

|x|k
“ 1.

Then λx “
αx
|x|k

“
µx ¨ p|x|

kq

|x|k
“ µx.

We have x P B X pdom rλsq Ď B “ AX C, so x P A and x P C.

Since x P A Ď dom rµs and since x P C, we get µx P µ˚pCq.

Then y “ λx “ µx P µ˚pCq Ď D Ď E, as desired.

End of Case (2). QED

4-2. Let f : R 99K R and let U P R.

Assume that U is open in R and that U Ď dom rf 1s.

Assume that f is semi-increasing on U .

Let T :“ f 1˚pUq. Show: T ě 0.

Proof: Want: @m P T , m ě 0.

Given m P T . Want: m ě 0.

Assume m ă 0. Want: Contradiction.

Since m P T “ f 1˚pUq, choose p P U X pdom rf 1sq s.t. m “ f 1p.

Then p P U X pdom rf sq Ď U , so p P U .

Since U is open in R, we get: U “ IntRU .

Since p P U “ IntRU , choose B P BRppq s.t. B Ď U .

Since B P BRppq, choose r ą 0 s.t. B “ BRpp, rq.

Since f 1p “ m ă 0, by Theorem 71.5, choose δ ą 0 s.t.



(1) f ă fp on pp; p` δq and

(2) f ą fp on pp´ δ; pq.

Let γ :“ r1{2s ¨ rmintδ, rus. Then 0 ă γ ă δ and ´r ă γ ă r.

Let q :“ p` γ. Then p ă q ă p` δ and p´ r ă q ă p` r.

Then q P pp; p` δq and q P pp´ r; p` rq.

We have q P pp´ r; p` rq “ BRpp, rq “ B Ď U .

Then p, q P U and p ď q.

So, since f is semi-increasing on U , we get: fp ď fq.

Since q P pp; p` δq, by (1), we get: fq ă fp.

Then fq ă fp ď fq, so fq ă fq, so fq ‰ fq. Contradiction. QED

4-3. Let f : RÑ R and let J be an interval.

Assume that f is c/d on J . Let I :“ IntRJ and T :“ f 1˚pIq.

Assume T ě 0. Show: f is semi-increasing on J .

Proof: Want: @a, b P J , r p a ď b q ñ p fa ď fb q s.

Given a, b P T. Want: p a ď b q ñ p fa ď fb q.

Assume: a ď b. Want: fa ď fb.

Assume fa ą fb. Want: Contradiction.

Since fa ą fb, we get fa ‰ fb, and so a ‰ b.

Since a ‰ b and a ď b, we get: a ă b. Then b´ a ą 0.

Since fa ą fb, we get: fb ´ fa ă 0.

So, since b´ a ą 0, we get
fb ´ fa
b´ a

ă 0.

Then DQf pa, bq “
fb ´ fa
b´ a

ă 0, so DQf pa, bq ă 0.

By Theorem 72.22, we have DQf pa, bq P f
1
˚pIq.

Then DQf pa, bq P f
1
˚pIq “ T ě 0, so 0 ď DQf pa, bq.

Then 0 ď DQf pa, bq ă 0, so 0 ă 0. Contradiction. QED

4-4. Let f : R 99K R and let p P R.

Show: pfpp` ‚qq1 “ f 1pp` ‚q.

Proof: Let g :“ fpp` ‚q. Want: g1 “ f 1pp` ‚q.

Want: @q P R, g1pqq “ f 1pp` qq.

Given q P R. Want: g1pqq “ f 1pp ` qq. Let R :“ ts`L |L P

LINSqgu, S :“ ts`L |L P LINSp`qfu.

Then g1pqq “ UER and f 1pp` qq “ UES. Want: R “ S.

Want: LINSqg “ LINSp`qf .

Want: tL P L | gTq ´ L P O1u “ tL P L | fTp`q ´ L P O1u.



It suffices to show: gTq “ fTp`q.

Want: @h P R, pgTq qphq “ pf
T
p`qqphq.

Given h P R. Want: pgTq qphq “ pf
T
p`qqphq.

Want: rgpq ` hqs ´ rgpqqs “ rfpp` q ` hqs ´ rfpp` qqs.

We have gpq ` hq “ pfpp` ‚qqpq ` hq “ fpp` q ` hq

and gpqq “ pfpp` ‚qqpqq “ fpp` qq.

Then gpq ` hq “ fpp` q ` hq

and gpqq “ fpp` qq,

so rgpq ` hqs ´ rgpqqs “ rfpp` q ` hqs ´ rfpp` qqs. QED

4-5. Let f : R 99K R and let p P dom rf s.

Show: r p f has a strict local minimum at p in R q
ô p fTp has a strict local minimum at 0 in R q s.

Proof: Let g :“ fTp .

Since p P dom rf s, we get fp P im rf s.

Then fp P im rf s Ď R, so fp P R.

Proof of ñ:

Assume: f has a strict local minimum at p in R.

Want: fTp has a strict local minimum at 0 in R.

Want: g has a strict local minimum at 0 in R.

Choose B P BRppq s.t. f ą fp on Bˆp .

Since B P BRppq, we get B ´ p P BRp0q.

Let A :“ B ´ p. Then A P BRp0q.

It therefore suffices to show: g ą g0 on Aˆ0 .

Want: @h P Aˆ0 , gh ą g0.

Given h P Aˆ0 . Want: gh ą g0.

Since A “ B ´ p, it follows that p` A “ B.

Since h P Aˆ0 , we get h P A and h ‰ 0.

Then p` h P p` A and p` h ‰ p.

Then p` h P B and p` h ‰ p, so p` h P Bˆp .

So, by the choice of B, it follows that fp`h ą fp.

So, since fp P R, we get: fp`h ´ fp ą fp ´ fp.

Then gh “ pf
T
p qh “ fp`h ´ fp ą fp ´ fp “ fp`0 ´ fp “ g0, as desired.

End of proof of ñ.

Proof of ð:

Assume: fTp has a strict local minimum at 0 in R.



Want: f has a strict local minimum at p in R.

Know: g has a strict local minimum at 0 in R.

Choose A P BRp0q s.t. g ą g0 on Aˆ0 .

Since A P BRp0q, we get A` p P BRppq.

Let B :“ A` p. Then B P BRppq.

It therefore suffices to show: f ą fp on Bˆp .

Want: @x P Bˆp , fx ą fp.

Given x P Bˆp . Want: fx ą fp.

Since x P Bˆp , we get x P B and x ‰ p.

Then x´ p P B ´ p and x´ p ‰ 0. Let h :“ x´ p.

Then h P B ´ p and h ‰ 0.

Since B “ A` p, it follows that B ´ p “ A.

Then h P A and h ‰ 0. Then h P Aˆ0 .

So, by the choice of A, it follows that gh ą g0.

So, as fp P R, we get: gh ` fp ą g0 ` fp.

We have gh “ fp`h ´ fp and g0 “ fp`0 ´ fp,

so, as fp P R, we get gh ` fp “ fp`h and g0 ` fp “ fp`0.

Since h “ x´ p, we get p` h “ x.

Then fx “ fp`h “ gh ` fp ą g0 ` fp “ fp`0 “ fp, as desired.

End of proof of ð. QED

Homework 3: Due on Tuesday 12 February

3-1. Define α : R 99K R by αh “
h2

9 ¨ p3` hq
. Show: α P pO2.

Proof: Let λ :“ adj00

ˆ

α

| ‚ |2

˙

.

Since α0 “ 0, it follows, from Theorem 69.5, that α “ λ ¨ p| ‚ |2q.

Want: α P pBNZq ¨ p| ‚ |2q. Want: λ P BNZ.

We have dom rλs “

ˆ

dom

„

α

| ‚ |k

˙`

0

“ ppdom rαsqˆ0 q
`
0 Ě dom rαs.

So, since α P DNZ, it follows that λ P DNZ.

Want: DB P BRp0q s.t. λ˚pBq is bounded in R.

Let B :“ BRp0, 1q. Then B P BRp0q.

Want: λ˚pBq is bounded in R. Want: λ˚pBq Ď BRp0, 100q.

Want: @y P λ˚pBq, y P BRp0, 100q.

Given y P λ˚pBq. Want y P BRp0, 100q.

Since y P λ˚pBq, choose h P B s.t. y “ λh.



Exactly one of the following is true:

(1) h “ 0 or (2) h ‰ 0.

Case (1):

We have y “ λh “ λ0 “

ˆ

adj00

ˆ

α

| ‚ |2

˙˙

0

“ 0 P BRp0, 100q, as desired.

End of Case (1).

Case (2):

We have y “ λh “

ˆ

adj00

ˆ

α

| ‚ |2

˙˙

h

“

ˆ

α

| ‚ |2

˙

h

“
αh
|h|2

.

Then |y| “
|αh|

|h|2
. Also, |αh| “

|h|2

9 ¨ |3` h|
. Then |y| “

1

9 ¨ |3` h|
.

Since h P B “ BRp0, 1q, it follows that dRph, 0q ă 1.

Then |h´ 0| “ dRph, 0q ă 1, so ´1 ă h ă 1.

Then 3´ 1 ă 3` h ă 3` 1, so 2 ă 3` h ă 4.

Since 3` h ą 2 ą 0, we get |3` h| “ 3` h and
1

3` h
ă

1

2
.

Since
1

3` h
ă

1

2
, we see that

1

9
¨

1

3` h
ă

1

9
¨

1

2
.

Then dRpy, 0q “ |y ´ 0| “ |y| “
1

9 ¨ |3` h|
“

1

9 ¨ p3` hq

“
1

9
¨

1

3` h
ă

1

9
¨

1

2
ă 100.

Then y P BRp0, 100q. End of Case (2). QED

3-2. Define r : R 99K R by rx “ 1{x. Show: r13 “ ´1{9.

Proof: Define L P L by Lh “ ´h{9.

Then s`L “ L1 “ ´1{9. Want r13 “ s`L.

By Theorem 64.49, it suffices to show: rT3 ´ L P O1.

Define α : R 99K R by αh “
h2

9 ¨ p3` hq
.

By HW#3-1, α P pO2, so, since pO2 Ď O1, we see that α P O1.

It therefore suffices to show: rT3 ´ L “ α.

Want: @h P R, prT3 ´ Lqh “ αh.

Given h P R. Want: prT3 ´ Lqh “ αh.

We compute: prT3 ´ Lqh “ rprT3 qhs ´ rLhs “ rr3`h ´ r3s ´ r´h{9s

“ r3`h ´ r3 `
h

9
“

1

3` h
´

1

3
`
h

9



“
9

9 ¨ p3` hq
´

3 ¨ p3` hq

9 ¨ p3` hq
`
h ¨ p3` hq

9 ¨ p3` hq

“
9´ 9´ 3h` 3h` h2

9 ¨ p3` hq
“

h2

9 ¨ p3` hq
“ αh, as desired. QED

3-3. Define L P L by Lx “ 7x. Show: L1 “ C7
R.

Proof: Want: @x P R, L1x “ pC
7
Rqx.

Given x P R. Want: L1x “ pC
7
Rqx. Want: L1x “ 7.

We have s`L “ L1 “ 7 ¨ 1 “ 7. Want: L1x “ s`L.

By Theorem 64.49, it suffices to show: LTx ´ L P O1.

Since 0 P O1, it suffices to show: LTx ´ L “ 0.

Want: @h P R, pLTx ´ Lqh “ 0h.

Given h P R. Want: pLTx ´ Lqh “ 0h.

We have pLTx ´ Lqh “ rpL
T
x qhs ´ Lh “ rLx`h ´ Lxs ´ Lh

“ r7 ¨ px` hq ´ 7xs ´ 7h “ 0 “ 0h, as desired. QED

3-4. Let a, b P R. Assume a ă b. Let I :“ pa; bq, J :“ ra; bs.

Show: IntRJ “ I and C`RI “ J .

Proof: We wish to prove all of the following:

(1) IntRJ Ď I and (2) IntRJ Ě I and

(3) C`RI Ď J and (4) C`RI Ě J .

Proof of (1):

Want: @x P IntRJ , x P I. Given x P IntRJ . Want: x P I.

Claim A: x ‰ a.

Proof of Claim A:

Assume x “ a. Want: Contradiction.

Since a “ x P IntRJ , choose U P BRpaq s.t. U Ď J .

Since U P BRpaq, choose r ą 0 s.t. U “ BRpa, rq.

Let y :“ a´ pr{2q. Then y ă a.

Also, dRpy, aq “ |a´ y| “ r{2 ă r, so y P BRpa, rq.

Then y P BRpa, rq “ U Ď J “ ra; bs, so y ě a.

Then y ă a and y ě a. Contradiction.

End of proof of Claim A.

Claim B: x ‰ b.



Proof of Claim B:

Assume x “ b. Want: Contradiction.

Since b “ x P IntRJ , choose U P BRpbq s.t. U Ď J .

Since U P BRpbq, choose r ą 0 s.t. U “ BRpb, rq.

Let y :“ b` pr{2q. Then y ą b.

Also, dRpy, bq “ |b´ y| “ r{2 ă r, so y P BRpb, rq.

Then y P BRpb, rq “ U Ď J “ ra; bs, so y ď b.

Then y ą b and y ď b. Contradiction.

End of proof of Claim B.

Since x P J “ ra; bs, it follows, from Claim A and Claim B,

that x P ra; bszta, bu.

Then x P ra; bszta, bu “ pa; bq “ I, as desired.

End of proof of (1).

Proof of (2):

Want: @x P I, x P IntRJ . Given x P I. Want: x P IntRJ .

Want: DU P BRpxq s.t. U Ď J .

Since x P I “ pa; bq, we have a ă x ă b.

Then x´ a ą 0 and b´ x ą 0, and so mintx´ a, b´ xu ą 0.

Let r :“ mintx´a, b´xu. Then r ą 0 and r ď x´a and r ď b´x.

Let U :“ BRpx, rq. Then U P BRpxq. Want: U Ď J .

Want: @y P U , y P J .

Given y P U . Want: y P J .

Since y P U “ BRpx, rq, we get dRpy, xq ă r.

Then |y ´ x| “ dRpy, xq ă r, so x´ r ă y ă x` r.

Since r ď x´ a, we get x´ r ě x´ px´ aq, and so x´ r ě a.

Since r ď b´ x, we get x` r ď x` pb´ xq, and so x` r ď b.

We have a ď x´ r ă y, so a ă y. Also, y ă x` r ď b, so y ă b.

Then a ă y ă b, so y P pa; bq.

So, since pa; bq “ I, we get y P I, as desired.

End of proof of (2).

Proof of (3):

Want: @x P C`RI, x P J . Given x P C`RI. Want: x P J .

Since x P C`RI, choose s P IN s.t. s‚ Ñ x in R.

We have: @j P N, sj P I “ pa; bq Ď ra; bs, so a ď sj ď b.

Since s‚ Ñ x in R and since, @j P N, sj ď b,



it follows, from Theorem 47.1, that x ď b.

Since s‚ Ñ x in R and since, @j P N, sj ě a,

it follows, from Theorem 47.2, that x ě a.

Since a ď x ď b, we get x P ra; bs.

So, since ra; bs “ J , we get x P J , as desired.

End of proof of (3).

Proof of (4):

Want: @x P J , x P C`RI. Given x P J . Want: x P C`RI.

Want: Ds P IN s.t. s‚ Ñ x in R.

Exactly one of the following is true:

(α) x “ a or (β) x ‰ a.

Case (α):

Since a ă b, we see that b´ a ą 0. Then pb´ aq{2 ą 0.

Let z :“ pb´ aq{2. Then z ą 0.

Also, as b´ a ą 0, we get pb´ aq{2 ă b´ a.

Then z ă b´ a, and so a` z ă b.

Define s P RN by sj “ a` pz{jq.

Claim X: s P IN.

Proof of Claim X:

We have dom rss “ N. Want: im rss Ď I.

Want: @q P im rss, q P I.

Given q P im rss. Want: q P I.

Since q P im rss, choose j P N s.t. sj “ q. Want: sj P I.

We have j ą 0, so, as z ą 0,

we get z{j ą 0, so a` pz{jq ą a` 0.

Then sj “ a` pz{jq ą a` 0 “ a, so a ă sj.

We have j ě 1, so, as z ą 0,

we get z{j ď z{1, so a` pz{jq ď a` pz{1q.

Then sj “ a` pz{jq ď a` pz{q “ a` z ă b, so sj ă b.

Since a ă sj ă b, we get sj P pa; bq. Then sj P pa; bq “ I.

End of proof of Claim X.

By Claim X, s P IN. Want: s‚ Ñ x in R.

By definition of Case (α), we know that x “ a.

Define r P RN by rj “ 1{j. Then, by Theorem 39.7, r‚ Ñ 0 in R.



Then, by Theorem 40.2, pz ¨ rq‚ Ñ z ¨ 0 in R.

Let c :“ Ca
N. Then, by Theorem 40.3, c‚ Ñ a in R.

Then, by Theorem 40.1, pc` pz ¨ rqq‚ Ñ a` pz ¨ 0q in R.

So, since a` pz ¨ 0q “ a` 0 “ a “ x, we get pc` pz ¨ rqq‚ Ñ x in R.

It therefore suffices to show: s “ c` pz ¨ rq.

Want: @j P N, sj “ pc` pz ¨ rqqj.

Given j P N. Want: sj “ pc` pz ¨ rqqj.

We have cj “ pC
a
Nqj “ a.

Also, pz ¨ rqj “ z ¨ prjq “ z ¨ p1{jq “ z{j.

Then sj “ a` pz{jq “ cj ` rpz ¨ rqjs “ pc` pz ¨ rqqj.

End of Case (α).

Case (β):

Since x P J “ ra; bs, we get a ď x ď b.

Since a ď x and x ‰ a, we get a ă x. Then x´ a ą 0.

Then px´ aq{2 ą 0. Let z :“ px´ aq{2. Then z ą 0.

Also, as x´ a ą 0, we get px´ aq{2 ă x´ a.

Then z ă x´ a, and so x´ z ą a.

Define s P RN by sj “ x´ pz{jq.

Claim Y: s P IN.

Proof of Claim Y:

We have dom rss “ N. Want: im rss Ď I.

Want: @q P im rss, q P I.

Given q P im rss. Want: q P I.

Since q P im rss, choose j P N s.t. sj “ q. Want: sj P I.

We have j ą 0, so, as z ą 0,

we get z{j ą 0, so x´ pz{jq ă x´ 0.

Then sj “ x´ pz{jq ă x´ 0 “ x ď b, so sj ă b.

We have j ě 1, so, as z ą 0,

we get z{j ď z{1, so x´ pz{jq ě x´ pz{1q.

Then sj “ x´ pz{jq ě x´ pz{1q “ x´ z ě a, so sj ą a, so a ă sj.

Since a ă sj ă b, we get sj P pa; bq. Then sj P pa; bq “ I.

End of proof of Claim Y.

By Claim Y, s P IN. Want: s‚ Ñ x in R.

Define r P RN by rj “ 1{j. Then, by Theorem 39.7, r‚ Ñ 0 in R.

Then, by Theorem 40.2, p´z ¨ rq‚ Ñ ´z ¨ 0 in R.



Let c :“ Cx
N. Then, by Theorem 40.3, c‚ Ñ x in R.

Then, by Theorem 40.1, pc` p´z ¨ rqq‚ Ñ x´ pz ¨ 0q in R.

So, since x´ pz ¨ 0q “ x´ 0 “ x, we get pc` p´z ¨ rqq‚ Ñ x in R.

It therefore suffices to show: s “ c` p´z ¨ rq.

Want: @j P N, sj “ pc` p´z ¨ rqqj.

Given j P N. Want: sj “ pc` p´z ¨ rqqj.

We have cj “ pC
x
Nqj “ x.

Also, p´z ¨ rqj “ ´z ¨ prjq “ ´z ¨ p1{jq “ ´z{j.

Then sj “ x´ pz{jq “ x` p´z{jq “ cj ` rp´z ¨ rqjs “ pc` p´z ¨ rqqj.

End of Case (β).

End of proof of (4). QED

3-5. Find a continuous function f : RÑ R such that

r fp´2q “ fp2q s & r @x P p´2; 2q, f 1x ‰ 0 s.

Solution: Let f :“ | ‚ |.

Homework 2: Due on Tuesday 5 February

2-1. Let f : R 99K R, a P R, p P dom rf s, S Ď R and q :“ fp.

Show: p f ą a on S q ô p fTp ą a´ q on S ´ p q.

Proof: Proof ofñ: Assume: f ą a on S. Want: fTp ą a´q on S´p.

Want: @h P S ´ p, fTp phq ą a´ q.

Given h P S ´ p. Want: fTp phq ą a´ q.

Since h P S ´ p, choose x P S s.t. h “ x´ p. Then p` h “ x.

Since x P S and since f ą a on S, we get: fx ą a.

Then fx ´ q ą a´ q.

Then fTp phq “ fp`h´fp “ fx´q ą a´q, as desired. End of proof ofñ.

Proof of ð: Assume: fTp ą a´ q on S ´ p. Want: f ą a on S.

Want: @x P S, fx ą a.

Given x P S. Want: fx ą a.

Since x P S, we get: x´ p P S ´ p.

Let h :“ x´ p. Then h P S ´ p and p` h “ x.

Since h P S ´ p and since fTp ą a´ q on S ´ p, we get: fTp phq ą a´ q.

Then rfTp phqs ` q ą a´ q ` q. Also, ´fp ` q “ ´q ` q “ 0.



Then fx “ fx ´ fp ` q “ fp`h ´ fp ` q “ rf
T
p phqs ` q ą a´ q ` q “ a,

as desired. End of proof of ð. QED

2-2. Show: pBNZq ˝ pCVZq Ď BNZ.

Proof: Want: @α P pBNZq ˝ pCVZq, α P BNZ.

Given α P pBNZq ˝ pCVZq. Want: α P BNZ.

Choose β P BNZ, γ P CVZ s.t. α “ β ˝ γ.

Since β P BNZ, we get β P DNZ, so choose A P BRp0q s.t. A Ď dom rβs.

Since γ P CVZ, we get γ P DNZ, so choose D P BRp0q s.t. D Ď dom rγs.

Since γ P CVZ, we get: γ is continuous at 0 and γ0 “ 0.

Since γ is continuous at 0 and A P BRp0q “ BRpγ0q,

choose E P BRp0q s.t. γ˚pEq Ď A.

Let F :“ D X E. Then F P BRp0q.

Claim 1: F Ď dom rαs.

Proof of Claim 1:

Want: @x P F , x P dom rαs.

Given x P F . Want: x P dom rαs.

We have x P F Ď D Ď dom rγs. Also, x P F Ď E.

Since x P dom rγs and since x P E, we get: γpxq P γ˚pEq.

Then γpxq P γ˚pEq Ď A Ď dom rβs, so βpγpxqq ‰ /.

Then αpxq “ pβ ˝ γqpxq “ βpγpxqq ‰ /, so x P dom rαs, as desired.

End of Proof of Claim 1.

Since F P BRp0q, by Claim 1, we conclude that α P DNZ.

Want: DZ P BRp0q s.t. α˚pZq is bounded in R.

Since β P BNZ, choose B P BRp0q s.t. β˚pBq is bounded in R.

Since γ is continuous at 0 and B P BRp0q “ BRpγ0q,

choose Z P BRp0q s.t. γ˚pZq Ď B.

Want: α˚pZq is bounded in R.

Since β˚pBq is bounded in R, it suffices to prove: α˚pZq Ď β˚pBq.

Want: @q P α˚pZq, q P β˚pBq.

Given q P α˚pZq. Want: q P β˚pBq.

Since q P α˚pZq, choose p P Z X pdom rαsq s.t. q “ αppq.

We have: p P Z and p P dom rαs.

Since p P dom rαs, we get: αppq ‰ /.

Also, βpγppqq “ pβ ˝ γqppq “ αppq.

Then βpγppqq “ αppq ‰ /, so γppq P dom rβs.



Then γppq ‰ /, so p P dom rγs.

Since p P dom rγs and since p P Z, we conclude that γppq P γ˚pZq.

So, since γ˚pZq Ď B, it follows that γppq P B.

Since γppq P dom rβs and since γppq P B, we see that βpγppqq P β˚pBq.

Then q “ αppq “ βpγppqq P β˚pBq, as desired. QED

2-3. Let j, k P N. Show: pOj ˝ Ok Ď Ojk.

Proof: Want: @α P pOj ˝ Ok, α P Ojk.

Given α P α P pOj ˝ Ok. Want: α P Ojk.

Choose β P pOj, γ P Ok s.t. α “ β ˝ γ.

Since β P pOj “ pBNZq ¨ p| ‚ |jq, choose φ P BNZ s.t. β “ φ ¨ p| ‚ |jq.

Since γ P Ok “ pCVZq ¨ p| ‚ |kq, choose ψ P CVZ s.t. γ “ ψ ¨ p| ‚ |kq.

We have: @x P R, αpxq “ pβ ˝ γqpxq “ βpγpxqq “ pφ ¨ p| ‚ |jqqpγpxqq

“ rφpγpxqs ¨ r | γpxq |j s

“ rpφ ˝ γqpxqs ¨ r | pψ ¨ p| ‚ |kq qpxq |js

“ rpφ ˝ γqpxqs ¨ r | rψpxqs ¨ r|x|ks |j s

“ rpφ ˝ γqpxqs ¨ r | ψpxq |j s ¨ r | |x|k |j s

“ rpφ ˝ γqpxqs ¨ r|ψpxq|js ¨ r|x|jks

“ prφ ˝ γs ¨ r|ψj|s ¨ r| ‚ |jksqpxq.

Then α “ rφ ˝ γs ¨ r|ψj|s ¨ r| ‚ |jks.

We have φ P BNZ and γ P Ok Ď O0 “ CVZ, so φ ˝ γ P pBNZq ˝ pCVZq.

By HW#2-2, pBNZq ˝ pCVZq Ď BNZ. Then φ ˝ γ P BNZ.

Since ψ P CVZ, we get |ψ| P |CVZ| Ď CVZ.

So, since j P N, it follows that |ψ|j P CVZ.

Then rφ ˝ γs ¨ r|ψj|s P pBNZq ¨ pCVZq.

By HW#1-4, pBNZq ¨ pCVZq Ď CVZ. Then rφ ˝ γs ¨ r|ψj|s P CVZ.

Then α “ rφ ˝ γs ¨ r|ψj|s ¨ r| ‚ |jks P pCVZq ¨ p| ‚ |jkq “ Ojk. QED

2-4. Let φ P CVZ, ε ą 0. Show: DB P BRp0q s.t. |φ| ă ε on B.

Proof: Since φ P CVZ, we know:

φ P DNZ and φ0 “ 0 and φ is continuous at 0.

Let C :“ BRp0, εq. Then C P BRp0q “ BRpφ0q.

So, since φ is continuous at 0, choose A P BRp0q s.t. φ˚pAq Ď C.

Since φ P DNZ, choose D P BRp0q s.t. D Ď dom rφs.

Since A,D P BRp0q, we get AXD P tA,Du.

Let B :“ AXD. Then B P tA,Du Ď BRp0q.

Want: |φ| ă ε on B. Want: @x P B, p|φ|qpxq ă ε.



Given x P B. Want: p|φ|qpxq ă ε.

We have x P B “ AXD Ď D Ď dom rφs.

Also, x P B “ AXD Ď A.

Since x P A and x P dom rφs, we get φpxq P φ˚pAq.

Then φpxq P φ˚pAq Ď C “ BRp0, εq, so |rφpxqs ´ 0| ă ε.

Then p|φ|qpxq “ |φpxq| “ |rφpxqs ´ 0| ă ε, as desired. QED

2-5. Let α P O1, L P Lzt0u. Show: DB P BRp0q s.t. |α| ď |L| on B.

Proof: Since L P L, choose m P R s.t. L “ m ¨ idR.

Then, for all x P R, we have: Lx “ mx.

Since L ‰ 0, we see that m ‰ 0, so m P Rˆ0 , so |m| ą 0.

Let ε :“ |m|. Then ε ą 0.

Since α P O1 “ CVZ ¨ p| ‚ |q, choose φ P CVZ s.t. α “ φ ¨ p| ‚ |q.

By HW#2-4, choose B P BRp0q s.t. |φ| ă ε on B.

Want: |α| ď |L| on B. Want: @x P B, |α|x ď |L|x.

Given x P B. Want: |α|x ď |L|x.

Since x P B and |φ| ă ε on B, we get: |φ|x ă ε.

Since |φ|x ď ε and |x| ě 0, we conclude that |φ|x ¨ |x| ď ε ¨ |x|.

Since α “ φ ¨ p| ‚ |q, it follows that αx “ φx ¨ |x|, and so |αx| “ |φx| ¨ |x|.

Then |α|x “ |αx| “ |φx| ¨ |x| “ |φ|x ¨ |x| ď ε ¨ |x|

“ |m| ¨ |x| “ |mx| “ |Lx| “ |L|x, as desired. QED

Homework 1: Due on Tuesday 29 January

1-1. Let j P N0. Show: Oj Ě pCVZq ¨ p| ‚ |jq.

Proof: Want: @α P pCVZq ¨ p| ‚ |jq, α P Oj.

Given α P pCVZq ¨ p| ‚ |jq. Want: α P Oj. Let β :“
α

| ‚ |j
.

Want: pα P DNZ q& pα0 “ 0 q& p β Ñ 0 near 0 q.

Since α P pCVZq ¨ p| ‚ |jq, choose φ P CVZ s.t. α “ φ ¨ p| ‚ |jq.

Since dom r| ‚ |js “ R, we get | ‚ |j P DNZ.

Then α “ φ ¨ p| ‚ |jq P pDNZq ¨ pDNZq Ď DNZ.

Want: pα0 “ 0 q& p β Ñ 0 near 0 q.

Since φ P CVZ, it follows that φ0 “ 0.

Then α0 “ pφ ¨ | ‚ |
jq0 “ pφ0q ¨ p|0|

jq “ 0 ¨ 0 “ 0.

Want: β Ñ 0 near 0.

Claim: β “ φ on Rˆ0 .



Proof of claim:

Want: @x P Rˆ0 , βx “ φx.

Given x P Rˆ0 . Want: βx “ φx.

Since x P Rˆ0 , it follows that
|x|j

|x|j
“ 1.

We have: αx “ pφ ¨ p| ‚ |
jqqx “ pφxq ¨ p|x|

jq.

Then: βx “

ˆ

α

| ‚ |j

˙

x

“
αx
|x|j

“
pφxq ¨ p|x|

jq

|x|j
“ pφxq ¨ 1 “ φx, as desired.

End of proof of claim.

Since φ P CVZ, it follows that φÑ φ0 near 0.

So, since φ0 “ 0, we get: φÑ 0 near 0.

So, since β “ φ on Rˆ0 ,

we conclude that β Ñ 0 near 0, as desired. QED

1-2. Show: CVZ Ď BNZ.

Proof: Want: @α P CVZ, α P BNZ.

Given α P CVZ. Want: α P BNZ.

We have α P CVZ Ď DNZ.

Want: DB P BRp0q s.t. α˚pBq is bounded in R.

Since α P CVZ, it follows that α is continuous at 0.

Choose B P BRp0q s.t. α˚pBq Ď BRp0, 1q.

Want: α˚pBq is bounded in R.

Since α˚pBq Ď BRp0, 1q, it follows that α˚pBq is bounded in R. QED

1-3. Show: pBNZq ¨ pBNZq Ď BNZ.

Proof: Want: @γ P pBNZq ¨ pBNZq, γ P BNZ.

Given γ P pBNZq ¨ pBNZq. Want: γ P BNZ.

Since γ P pBNZq ¨ pBNZq, choose α, β P BNZ s.t. γ “ α ¨ β.

Since α, β P BNZ Ď DNZ,

choose P,Q P BRp0q s.t. P Ď dom rαs and Q P dom rβs.

Then P XQ P BRp0q.

So, since P XQ Ď pdom rαsq X pdom rβsq “ dom rα ¨ βs “ dom rγs,

we conclude that γ P DNZ.

Want: DC P BRp0q s.t. γ˚pCq is bounded in R.

Since α, β P BNZ, choose A,B P BRp0q s.t.

α˚pAq and β˚pBq are bounded in R.

Let C :“ AXB. Then C P BRp0q.



Want: γ˚pCq is bounded in R.

Since α˚pAq and β˚pBq are bounded in R,

choose T, U P BR s.t. α˚pAq Ď T and β˚pBq Ď U .

By the Superset Recentering Lemma (Theorem 38.17),

choose V,W P BRp0q s.t. T Ď V and U Ď W .

Choose r, s ą 0 s.t. V “ BRp0, rq and W “ BRp0, sq.

Want: γ˚pCq Ď BRp0, rsq.

Want: @y P γ˚pCq, y P BRp0, rsq.

Given y P γ˚pCq. Want: y P BRp0, rsq. Want: |y| ă rs.

Since y P γ˚pCq, choose x P C X pdom rγsq s.t. γpxq “ y.

We have x P dom rγs “ dom rα ¨ βs “ pdom rαsq X pdom rβsq.

Since x P dom rαs and x P C “ AXB Ď A, we get: αpxq P α˚pAq.

Since x P dom rβs and x P C “ AXB Ď B, we get: βpxq P β˚pBq.

Then αpxq P α˚pAq Ď T Ď V “ BRp0, rq, so |αpxq| ă r.

Also, βpxq P β˚pAq Ď U Ď W “ BRp0, sq, so |βpxq| ă s.

Since 0 ď |αpxq| ă r and 0 ď |βpxq| ă s, we get |αpxq| ¨ |βpxq| ă rs.

We have γpxq “ pα ¨ βqpxq “ rαpxqs ¨ rβpxqs, so |γpxq| “ |αpxq| ¨ |βpxq|.

Then |y| “ |γpxq| “ |αpxq| ¨ |βpxq| ă rs, as desired. QED

1-4. Show: pBNZq ¨ pCVZq Ď CVZ.

Proof: Want: @γ P pBNZq ¨ pCVZq, γ P CVZ.

Given γ P pBNZq ¨ pCVZq. Want: γ P CVZ.

Since γ P pBNZq ¨ pCVZq, choose α P BNZ, β P CVZ s.t. γ “ α ¨ β.

Since α P BNZ Ď DNZ and since β P CVZ Ď DNZ,

choose P,Q P BRp0q s.t. P Ď dom rαs and Q Ď dom rβs.

Then P XQ P BRp0q.

So, since P XQ P pdom rαsq X pdom rβsq “ dom rα ¨ βs “ dom rγs,

we conclude that γ P DNZ.

Want: γp0q “ 0 and γ is continuous at 0.

Since P P BRp0q, we get 0 P P .

Since α P DNZ, we get α : R 99K R.

So, since 0 P P Ď dom rαs, we get αp0q P R, so rαp0qs ¨ 0 “ 0.

Since β P CVZ, we get βp0q “ 0.

Then γp0q “ pα ¨ βqp0q “ rαp0qs ¨ rβp0qs “ rαp0qs ¨ 0 “ 0.

Want: γ is continuous at 0.

Want: @ε ą 0, Dδ ą 0 s.t., @x P dom rγs,

r |x´0| ă δ s ñ r |rγpxqs´rγp0qs| ă ε s.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P dom rγs,



r |x´0| ă δ s ñ r |rγpxqs´rγp0qs| ă ε s.

Since α P BNZ, choose A P BRp0q s.t. α˚pAq is bounded in R.

Since α˚pAq is bounded in R,

choose T P BR s.t. α˚pAq Ď T .

By the Superset Recentering Lemma (Theorem 38.17),

choose U P BRp0q s.t. T Ď U .

Choose r ą 0 s.t. U “ BRp0, rq.

Since β P CVZ, it follows that β is continuous at 0,

so choose η ą 0 s.t., @x P dom rβs,

r |x´ 0| ă η s ñ r |rβpxqs ´ rβp0qs| ă ε{r s.

Let B :“ BRp0, ηq. Then A,B P BRp0q. Let Q :“ AXB.

Then Q P BRp0q. Choose δ ą 0 s.t. Q “ BRp0, δq.

Want: @x P dom rγs, p r |x´ 0| ă δ s ñ r |rγpxqs ´ rγp0qs| ă ε s q.

Given x P dom rγs.

Want: r |x´ 0| ă δ s ñ r |rγpxqs ´ rγp0qs| ă ε s.

Assume: |x´ 0| ă δ. Want: |rγpxqs ´ rγp0qs| ă ε.

We have x P dom rγs “ dom rα ¨ βs “ pdom rαsq X pdom rβsq.

Then x P pdom rαsq X pdom rβsq Ď dom rβs.

Also, since |x´ 0| ă δ, we have x P BRp0, δq.

Then x P BRp0, δq “ Q “ AXB.

Then x P AXB Ď B “ BRp0, ηq, so |x´ 0| ă η.

So, since x P dom rβs, by choice of η, we get: |rβpxqs ´ rβp0qs| ă ε{r.

Since β P CVZ, we get βp0q “ 0. Then rβpxqs ´ rβp0qs “ βpxq.

Then |βpxq| “ |rβpxqs ´ rβp0qs| ă ε{r, so |βpxq| ă ε{r.

Since x P pdom rαsq X pdom rβsq Ď dom rαs and since x P AXB Ď A,

we conclude that αpxq P α˚pAq.

Then αpxq P α˚pAq Ď T Ď U “ BRp0, rq, so |αpxq| ă r.

Since 0 ď |αpxq| ă r and since 0 ď |βpxq| ă ε{r,

it follows that |αpxq| ¨ |βpxq| ă r ¨ pε{rq.

Recall that γp0q “ 0. We have γpxq “ pα ¨ βqpxq “ rαpxqs ¨ rβpxqs.

Then |rγpxqs ´ rγp0qs| “ |rγpxqs ´ 0| “ |γpxq| “ |rαpxqs ¨ rβpxqs|

“ |αpxq| ¨ |βpxq| ă r ¨ pε{rq “ ε, as desired. QED

1-5. Let j P N0. Show: Oj Ď pOj.

Proof: By HW#1-2, CVZ Ď BNZ.

Then pCVZq ¨ p| ‚ |jq Ď pBNZq ¨ p| ‚ |jq.

Then Oj Ď pOj, as desired. QED




