Solutions for MATH 4604 (Advanced Calculus II) Spring 2019

Homework 13: Due on Tuesday 30 April
13-1. Let $W \in \text{TNSR}^+$, $\phi : \mathbb{R} \to W$.
Assume: $\forall k \in \mathcal{I}_W, 0 \in \operatorname{dom}\left[((\pi_k^W) \circ \phi)'\right].$
Show: $0 \in \operatorname{dom}[\phi'].$
<i>Proof:</i> Let $x := \sum_{k \in \mathcal{I}_W} (((\pi_k^W) \circ \phi)'_0) \cdot \varepsilon_k^W$. Want: $\phi'_0 = x$.
We have: $\forall k \in \mathcal{I}_W, x_k = ((\pi_k^W) \circ \phi)'_0.$
Define $L \in \mathcal{L}_{\mathbb{R}}^{W}$ by $L(t) = tx$. Then $s\ell_{L}^{\mathbb{R}W} = L(1) = x$.
Also, $\phi'_0 = \mathrm{s}\ell^{\mathbb{R}W}_{D_0\phi}$. Want: $\mathrm{s}\ell^{\mathbb{R}W}_{D_0\phi} = \mathrm{s}\ell^{\mathbb{R}W}_L$.
Want: $D_0 \phi = L$. Want: $\phi_0^T - L \in \mathcal{O}_1^{\mathbb{R}W}$.
Let $\psi := \phi_0^T - L$. Want: $\psi \in \mathcal{O}_1^{\mathbb{R}W}$.
By HW#12-1, it suffices to show: $\forall k \in \mathcal{I}_W, (\pi_k^W) \circ \psi \in \mathcal{O}_1^{\mathbb{RR}}.$
Given $k \in \mathcal{I}_W$. Want: $(\pi_k^W) \circ \psi \in \mathcal{O}_1^{\mathbb{RR}}$.
Let $\chi := (\pi_k^W) \circ \phi$. Define $M \in \mathcal{L}_{\mathbb{R}}^{\mathbb{R}}$ by $M(t) = tx_k$.
We have $\mathfrak{sl}_M^{\mathbb{RR}} = M(1) = 1 \cdot x_k = x_k = ((\pi_k^W) \circ \phi)'_0 = \chi'_0 = \mathfrak{sl}_{D_0 \chi}^{\mathbb{RR}}.$
Then $M = [\mathfrak{s}\ell_M^{\mathbb{R}\mathbb{R}}]_{\mathbb{R}}^{\mathbb{R}} = [\mathfrak{s}\ell_{D_0\chi}^{\mathbb{R}\mathbb{R}}]_{\mathbb{R}}^{\mathbb{R}} = D_0\chi.$
Since $D_0\chi = M$, we get $\chi_0^T - M \in \mathcal{O}_1^{\mathbb{R}\mathbb{R}}$.
Want: $\chi_0^T - M = (\pi_k^W) \circ \psi$. Want: $\forall h \in \mathbb{R}, (\chi_0^T - M)_h = ((\pi_k^W) \circ \psi)_h$.
Given $h \in \mathbb{R}$. Want: $(\chi_0^T - M)_h = ((\pi_k^W) \circ \psi)_h$.
We have $\psi_h = (\phi_0^T - L)_h = \phi_{0+h} - \phi_0 - L_h = \phi_h - \phi_0 - hx.$
Then $\pi_k^W(\psi_h) = (\pi_k^W(\phi_h)) - (\pi_k^W(\phi_0)) - hx_k.$
Then: $(\chi_0^T - M)_h = \chi_{0+h} - \chi_0 - M_h = \chi_h - \chi_0 - M_h$
$= ((\pi_k^W) \circ \phi)_h - ((\pi_k^W) \circ \phi)_0 - hx_k$
$= (\pi_k^W(\phi_h)) - (\pi_k^W(\phi_0)) - hx_k$
$= \pi_k^W(\psi_h) = ((\pi_k^W) \circ \psi)_h$, as desired. QED
13-2. Let $V, W \in \text{TNSR}^+$, $f: V \dashrightarrow W$, $q, u \in V$.
Assume: $\forall k \in \mathcal{I}_W, q \in \text{dom}\left[\partial_u((\pi_k^W) \circ f)\right].$
Show: $q \in \operatorname{dom}[\partial_u f].$
Proof: Let $\phi := f \circ (i_q^u)$. Then $(\partial_u f)_q = \phi'_0$. Want: $0 \in \text{dom} [\phi']$. By HW#13-1, it suffices to show: $\forall k \in \mathcal{I}_W, 0 \in \text{dom} [((\pi_k^W) \circ \phi)']$. Given $k \in \mathcal{I}_W$. Want: $0 \in \text{dom} [((\pi_k^W) \circ \phi)']$. By assumption, $q \in \text{dom} [\partial_u ((\pi_k^W) \circ f)]$.

So, since $(\partial_u((\pi_k^W) \circ f))_q = ((\pi_k^W) \circ f \circ (i_a^u))_0'$ we get: $0 \in \text{dom}\left[\left(\left(\pi_{k}^{W}\right) \circ f \circ \left(i_{a}^{u}\right)\right)'\right]$. Then $0 \in \text{dom}\left[((\pi_k^W) \circ f \circ (i_q^U)'\right] = \text{dom}\left[((\pi_k^W) \circ \phi)'\right]$, as desired. QED $V, W \in \text{TNSR}^+, \qquad f: V \dashrightarrow W,$ $p \in V$. 13-3. Let Assume: f'' is continuous near p. $\forall i, j \in \mathcal{I}_V, \quad \partial_i \partial_j f \text{ is continuous near } p.$ Show: *Proof:* Given $i, j \in \mathcal{I}_V$. Want: $\partial_i \partial_j f$ is continuous near p. Choose $B \in \mathcal{B}_V(p)$ s.t. f'' is continuous on B. Want: $\partial_i \partial_j f$ is continuous on B. Want: $\forall p \in B, \ \partial_i \partial_j f$ is continuous at p. Given $p \in B$. Want: $\partial_i \partial_j f$ is continuous at p. By Theorem 99.1, it suffices to show: $\forall k \in \mathcal{I}_W, \quad \pi_k \circ (\partial_i \partial_j f) \text{ is continuous at } p.$ Given $\forall k \in \mathcal{I}_W$. Want: $\pi_k \circ (\partial_i \partial_j f)$ is continuous at p. Since f'' is continuous on B, we conclude: $B \subseteq \text{dom}[f'']$. So, since $\operatorname{im}[f''] \subseteq W \otimes V \otimes V = \operatorname{dom}[\pi_{k \|i\|_{i}}],$ we conclude that: $B \subseteq \operatorname{dom} [\pi_{k \parallel i \parallel j} \circ (f'')].$ By Thoerem 102.17, we have: $\pi_k \circ (\partial_i \partial_j f) \supseteq \pi_{k \parallel i \parallel j} \circ (f'').$ So, since $B \subseteq \text{dom} [\pi_{k \parallel i \parallel j} \circ (f'')]$, we get: $\pi_k \circ (\partial_i \partial_j f) = \pi_{k \parallel i \parallel j} \circ (f'')$ on B. So, since $p \in B$, by the Recentering Lemma (Theorem 38.16), we get: $\pi_k \circ (\partial_i \partial_j f) = \pi_{k \parallel i \parallel j} \circ (f'')$ near p. Since f'' is continuous on B and $p \in B$, we see that f'' is continuous at p. Then, by Theorem 99.1, $\pi_{k||i||_{j}} \circ (f'')$ is continuous at p. So, as $\pi_k \circ (\partial_i \partial_j f) = \pi_{k \parallel i \parallel j} \circ (f'')$ near p, it follows, from Theorem 65.7, that $\pi_k \circ (\partial_i \partial_j f)$ is continuous at p, as desired. QED $V, W \in \text{TNSR}^+, \quad f: V \dashrightarrow W,$ $p \in V$. 13-4. Let $\forall h, i, j \in \mathcal{I}_V,$ Assume: $\partial_h \partial_i \partial_i f$ is both defined near p and bounded near p. f'' is continuous near p. Show: *Proof:* By Theorem 102.21, it suffices to show: $\partial_i \partial_j f$ is continuous near p. $\forall i, j \in \mathcal{I}_V,$ Given $i, j \in \mathcal{I}_V$. Want: $\partial_i \partial_j f$ is continuous near p.

Let $g := \partial_i \partial_j f$. Want: g is continuous near p. By Theorem 102.5, it suffices to show:

 $\forall h \in \mathcal{I}_V, \qquad \partial_h g \text{ is defined near } p \text{ and bounded near } p.$ Given $h \in \mathcal{I}_V.$ Want: $\partial_h g$ is defined near p and bounded near p. By assumption, $\partial_h \partial_i \partial_j f$ is defined near p and bounded near p. So since $\partial_h g = \partial_h \partial_i \partial_j f$, we get:

 $\partial_h g$ is defined near p and bounded near p, as desired. QED

13-5. Let $V, W \in \text{TNSR}^+$, $f: V \dashrightarrow W$, $p \in V$. Assume: $\forall h, i, j \in \mathcal{I}_V$, $\partial_h \partial_i \partial_j f$ is both defined near p and continuous at p. Show: f''' is continuous at p.

Proof: By Theorem 102.3, $\forall h, i, j \in \mathcal{I}_V$, $\partial_h \partial_i \partial_j f$ is bounded near p. Also, by assumption, $\forall h, i, j \in \mathcal{I}_V$, $\partial_h \partial_i \partial_j f$ is defined near p. Then, by HW#13-4, f'' is continuous near p.

Then: f'' is continuous at p and f'' is defined near p.

Claim: Let $h, i, j \in \mathcal{I}_V, k \in \mathcal{I}_W$.

Then: $\partial_h(\pi_{k\|i\|j} \circ (f'')) = \pi_k \circ (\partial_h \partial_i \partial_j f)$ near p. Proof of Claim:

Since f'' is defined near p, by Theorem 97.3,

we see that $\partial_j(f') = (\partial_j f)'$ near p.

Since f'' is defined near p and since im $[f''] \subseteq W \otimes V \otimes V = \text{dom} [\pi_{k||i||j}]$, we conclude that $\pi_{k||i||j} \circ (f'')$ is defined near p.

Let $\alpha := f'$ and $\ell := k \| i$. By Theorem 102.1, $\pi_{\ell} \circ (\partial_j \alpha) \supseteq \pi_{\ell \| j} \circ (\alpha')$. That is, $\pi_{k \| i} \circ (\partial_j (f')) \supseteq \pi_{k \| i \| j} \circ (f'')$.

So, since $\pi_{k||i||j} \circ (f'')$ is defined near p,

it follows that $\pi_{k\parallel i} \circ (\partial_j(f')) = \pi_{k\parallel i\parallel j} \circ (f'')$ near p.

Since f'' is defined near p, by Theorem 94.4,

we see that $(\partial_j f)'$ is defined near p.

Then, since $\operatorname{im} \left[(\partial_j f)' \right] \subseteq W \otimes V = \operatorname{dom} \left[\pi_{k \parallel i} \right],$

we conclude that $\pi_{k||i} \circ ((\partial_j f)')$ is defined near p.

Let $\beta := \partial_j f$. By Theorem 102.1, $\pi_k \circ (\partial_i \beta) \supseteq \pi_{k \parallel i} \circ (\beta')$. That is, $\pi_k \circ (\partial_i \partial_j f) \supseteq \pi_{k \parallel i} \circ ((\partial_j f)')$.

So, since $\pi_{k||i} \circ ((\partial_j f)')$ is defined near p,

it follows that $\pi_k \circ (\partial_i \partial_j f) = \pi_{k \parallel i} \circ ((\partial_j f)')$ near p. So, since $\partial_j (f') = (\partial_j f)'$ near p,

it follows that $\pi_k \circ (\partial_i \partial_j f) = \pi_{k \parallel i} \circ (\partial_j (f'))$ near p.

So, since $\pi_{k||i} \circ (\partial_j(f')) = \pi_{k||i||j} \circ (f'')$ near p.

it follows that $\pi_k \circ (\partial_i \partial_j f) = \pi_{k \parallel i \parallel j} \circ (f'')$ near p. Then: $\partial_h(\pi_{k \parallel i \parallel j} \circ (f'')) = \partial_h(\pi_k \circ (\partial_i \partial_j f))$ near p. Want: $\partial_h(\pi_k \circ (\partial_i \partial_j f)) = \pi_k \circ (\partial_h \partial_i \partial_j f)$ near p. By assumption, $\partial_h \partial_i \partial_j f$ is defined near p. So, since im $[\partial_h \partial_i \partial_j f] \subseteq W = \text{dom}[\pi_k],$

we see that $\pi_k \circ (\partial_h \partial_i \partial_j f)$ is defined near p. By Theorem 94.3, $\partial_h(\pi_k \circ (\partial_i \partial_j f)) \supseteq \pi_k \circ (\partial_h \partial_i \partial_j f)$. So, since $\pi_k \circ (\partial_h \partial_i \partial_j f)$ is defined near p, it follows that: $\partial_i (\pi_k \circ (\partial_i \partial_i f)) = \pi_k \circ (\partial_i \partial_i \partial_j f)$, near $p \in \mathcal{A}$

 $\partial_h(\pi_k \circ (\partial_i \partial_j f)) = \pi_k \circ (\partial_h \partial_i \partial_j f)$ near p, as desired. End of proof of Claim.

Let g := f''. Want: g' is continuous at p. Since $f : V \dashrightarrow W$ and g = f'', we get $g : V \dashrightarrow W \otimes V \otimes V$. By Theorem 102.7, it suffices to show: $\forall h \in \mathcal{I}_V, \quad \partial_h g$ is defined near p and continuous at p.

Given $h \in \mathcal{I}_V$, $\mathcal{C}_h g$ is defined near p and continuous at p. (A) $\partial_h g$ is defined near p and (B) $\partial_h g$ is continuous at p.

Proof of (A):

By HW#13-2, it suffices to show:

 $\forall \ell \in \mathcal{I}_{W \otimes V}, \quad \partial_h(\pi_\ell \circ g) \text{ is defined near } p.$ Given $\ell \in \mathcal{I}_{W \otimes V \otimes V}.$ Want: $\partial_h(\pi_\ell \circ g)$ is defined near p.Since $\ell \in \mathcal{I}_{W \otimes V \otimes V}$, choose $i, j \in \mathcal{I}_V$ and $k \in \mathcal{I}_W$ s.t. $\ell = k \|i\| j.$ By assumption, $\partial_h \partial_i \partial_j f$ is defined near p.So, since im $[\partial_h \partial_i \partial_j f] \subseteq W = \text{dom} [\pi_k],$

we see that $\pi_k \circ (\partial_h \partial_i \partial_j f)$ is defined near p. By the claim: $\partial_h(\pi_{k\|i\|j} \circ (f'')) = \pi_k \circ (\partial_h \partial_i \partial_j f)$ near p. So, since $\ell = k\|i\|j$ and g = f'', we see that:

 $\partial_h(\pi_\ell \circ g) = \pi_k \circ (\partial_h \partial_i \partial_j f)$ near p.

So, since $\pi_k \circ (\partial_h \partial_i \partial_j f)$ is defined near p, we conclude: $\partial_h(\pi_\ell \circ g)$ is defined near p, as desired.

End of proof of (A).

Proof of (B):

By Theorem 99.1, it suffices to show:

 $\forall \ell \in \mathcal{I}_{W \otimes V \otimes V}, \quad \pi_{\ell} \circ (\partial_{h}g) \text{ is continuous at } p.$ Given $\ell \in \mathcal{I}_{W \otimes V \otimes V}.$ Want: $\pi_{\ell} \circ (\partial_{h}g)$ is continuous at p. By (A), $\partial_h q$ is defined near p. Then $p \in \text{dom} \left[\partial_h q\right]$. So, since $\operatorname{im} \left[\partial_h q\right] \subseteq W \otimes V \otimes V = \operatorname{dom} \left[\pi_\ell\right]$, we see that $p \in \text{dom} [\pi_{\ell} \circ (\partial_h g)].$ By Theorem 94.3, $\partial_h(\pi_\ell \circ g) \supseteq \pi_\ell \circ (\partial_h g)$. Then, by Theorem 44.13, it suffices to show: $\partial_h(\pi_\ell \circ q)$ is continuous at p. Since $\ell \in \mathcal{I}_{W \otimes V \otimes V}$, choose $i, j \in \mathcal{I}_V$ and $k \in \mathcal{I}_W$ s.t. $\ell = k \|i\|_j$. By assumption, $\partial_h \partial_i \partial_j f$ is continuous at p. Then, by Theorem 99.1, we see that $\pi_k \circ (\partial_h \partial_i \partial_i f)$ is continuous at p. $\partial_h(\pi_{k\|i\|j} \circ (f')) = \pi_k \circ (\partial_h \partial_i \partial_j f)$ By the claim, near p. So, since $\ell = k \|i\| j$ and g = f'', we see that: $\partial_h(\pi_\ell \circ g) = \pi_k \circ (\partial_h \partial_i \partial_j f)$ near p. So, since $\pi_k \circ (\partial_h \partial_i \partial_j f)$ is continuous at p, by Theorem 65.7, we have: $\partial_h(\pi_\ell \circ q)$ is continuous at p, as desired. End of proof of (B). QED

Homework 12: Due on Tuesday 23 April

12-1. Let $V, W \in \text{TNSR}^+$, $f: V \dashrightarrow W$, $k \in \mathbb{N}_0$. $\forall m \in \mathcal{I}_W, \quad (\pi_m^W) \circ f \in \mathcal{O}_k^{V\mathbb{R}}.$ Assume: $f \in \mathcal{O}_k^{VW}$. Show: *Proof: Claim:* $f_{0_V} = 0_W$. Proof of Claim: Want: $\forall m \in \mathcal{I}_W, \ \pi_m^W(f_{0_V}) = 0.$ Given $m \in \mathcal{I}_W$. Want: $\pi_m^W(f_{0_V}) = 0$. Since $(\pi_m^W) \circ f \in \mathcal{O}_k^{V\mathbb{R}} \subseteq \mathcal{O}_0^{V\mathbb{R}} = \operatorname{CVZ}_V^{\mathbb{R}}$, we conclude: $((\pi_m^W) \circ f)_{0_V} = 0$. Then $\pi_m^W(f_{0_V}) = ((\pi_m^W) \circ f)_{0_V} = 0$, as desired. End of proof of Claim. Let $\phi := \operatorname{adj}_{0_V}^{0_W} \left(\frac{f}{|\bullet|_V^k} \right)$. Then $\phi_{0_V} = 0_W$. By the claim, $f_{0_V} = 0_W$, and it follows that: $\phi \cdot (|\bullet|_V^k) = f$. Want: $\phi \in \mathrm{CVZ}_V^W$. Want: $f \in (CVZ_V^W) \cdot (|\bullet|_V^k)$. Want: $\forall m \in \mathcal{I}_W, (\pi_m^W) \circ \phi \in \mathrm{CVZ}_V^{\mathbb{R}}.$ Given $m \in \mathcal{I}_W$. Want: $(\pi_m^W) \circ \phi \in \text{CVZ}_V^{\mathbb{R}}$. By assumption, $(\pi_m^W) \circ f \in \mathcal{O}_k^{V\mathbb{R}}$. Then $(\pi_m^W) \circ f \in (\text{CVZ}_V^{\mathbb{R}}) \cdot (|\bullet|_V^k)$. $\begin{array}{l} \text{Choose } \psi \in \text{CVZ}_V^{\mathbb{R}} \text{ s.t. } (\pi_m^W) \circ f = \psi \cdot (| \bullet |_V^k). \\ \text{Want: } (\pi_m^W) \circ \phi = \psi. & \text{Want: } (\pi_m^W) \circ \phi = \psi \text{ on } V. \\ \text{Since } \psi \in \text{CVZ}_V^{\mathbb{R}}, \text{ it follows that } \psi_{0_V} = 0. \\ \text{We have } ((\pi_m^W) \circ \phi)_{0_V} = (\pi_m^W)(\phi_{0_V}) = \pi_m^W(0_W) = 0 = \psi_0. \\ \text{Want: } (\pi_m^W) \circ \phi = \psi \text{ on } V_{0_V}^{\times}. & \text{Want: } \forall q \in V_{0_V}^{\times}, ((\pi_m^W) \circ \phi)_q = \psi_q. \\ \text{Given } q \in V_{0_V}^{\times}. & \text{Want: } ((\pi_m^W) \circ \phi)_q = \psi_q. & \text{Want: } (\pi_m^W)(\phi_q) = \psi_q. \\ \text{Since } q \in V_{0_V}^{\times}, \text{ we get } |q|_V \neq 0, \text{ and so } |q|_V^k \neq 0. \\ \text{Recall: } \phi \cdot (| \bullet |_V^k) = f \text{ and } (\pi_m^W) \circ f = \psi \cdot (| \bullet |_V^k). \\ \text{Then } (\pi_m^W(\phi_q)) \cdot (|q|_V^k) = \pi_m^W(\phi_q \cdot (|q|_V^k)) = \pi_m^W((\phi \cdot (| \bullet |_V^k))_q) = \pi_m^W(f_q) \\ &= ((\pi_m^W) \circ f)_q = (\psi \cdot (| \bullet |_V^k))_q = \psi_q \cdot (|q|_V^k). \\ \text{So, since } |q|_V^k \neq 0, \text{ dividing by } |q|_V^k, \text{ we get: } (\pi_m^W(\phi_q)) = \psi_q. \\ \text{QED} \end{array}$

12-2. Let $V, W, X \in \text{TNSR}^+$, $k \in \mathbb{N}_0$. Show: $(\mathcal{O}_k^{WX}) \circ (\widehat{\mathcal{O}}_1^{VW}) \subseteq \mathcal{O}_k^{VX}$ and $(\widehat{\mathcal{O}}_1^{WX}) \circ (\mathcal{O}_k^{VW}) \subseteq \mathcal{O}_k^{VX}$ and $(\widehat{\mathcal{O}}_k^{WX}) \circ (\widehat{\mathcal{O}}_1^{VW}) \subseteq \widehat{\mathcal{O}}_k^{VX}$.

Proof: Exactly one of the following is true:

(1) $k \neq 0$ or (2) k = 0.

 $\begin{array}{rcl} Case \ (1):\\ \text{Since } k \neq 0, & (\mathcal{O}_{k}^{WX}) \circ (\widehat{\mathcal{O}}_{1}^{VW}) & \subseteq & \mathcal{O}_{k\cdot1}^{VX} & = & \mathcal{O}_{k}^{VX} & \text{and} \\ & & (\widehat{\mathcal{O}}_{1}^{WX}) \circ (\mathcal{O}_{k}^{VW}) & \subseteq & \mathcal{O}_{1\cdot k}^{VX} & = & \mathcal{O}_{k}^{VX}. \\ \text{Want:} & & (\widehat{\mathcal{O}}_{k}^{WX}) \circ (\widehat{\mathcal{O}}_{1}^{VW}) & \subseteq & \widehat{\mathcal{O}}_{k}^{VX}. \\ \text{Since } k \neq 0, & (\widehat{\mathcal{O}}_{k}^{WX}) \circ (\widehat{\mathcal{O}}_{1}^{VW}) & \subseteq & \widehat{\mathcal{O}}_{k\cdot1}^{VX} & = & \widehat{\mathcal{O}}_{k}^{VX}. \\ \text{End of Case } (1). \end{array}$

$$= (\widehat{\mathcal{O}}_{0}^{WX}) \circ (\mathcal{O}_{0}^{VW}) \\ = (BNZ_{W}^{X}) \circ (CVZ_{V}^{W}) \\ \subseteq BNZ_{V}^{X} = \widehat{\mathcal{O}}_{0}^{VX} \subseteq \widehat{\mathcal{O}}_{k}^{VX}.$$

End of Case (2). QED

12-3. Let $V, W \in \text{TNSR}^+$, $f: V \dashrightarrow W$, $k \in \mathbb{N}_0$. Assume: $f_{0_V} = 0_W$. Assume: $\forall j \in \mathcal{I}_V, \ \partial_j f \in \widehat{\mathcal{O}}_k^{VW}.$ Show: $f \in \widehat{\mathcal{O}}_{k+1}^{VW}$. *Proof:* By Theorem 99.2, it suffices to show: $\forall m \in \mathcal{I}_W, \pi_m^W \circ f \in \widehat{\mathcal{O}}_{k+1}^{V\mathbb{R}}$. Given $m \in \mathcal{I}_W$. Want: $\pi_m^W \circ f \in \widehat{\mathcal{O}}_{k+1}^{V\mathbb{R}}$. Let $g := \pi_m^W \circ f$. Want: $g \in \widehat{\mathcal{O}}_{k+1}^{V\mathbb{R}}$. By Theorem 98.10, choose $\beta : \mathcal{I}_V \to \widehat{\mathcal{O}}_1^{VV}$ s.t. $g = \sum_{j \in \mathcal{I}_V} ((\partial_j g) \circ \beta_j) \cdot \pi_j^V$ near 0_V . $\forall j \in \mathcal{I}_V, \qquad ((\partial_i g) \circ \beta_i) \cdot \pi_i^V \in \widehat{\mathcal{O}}_{k+1}^{V\mathbb{R}}.$ Want: Given $j \in \mathcal{I}_V$. Want: $((\partial_j g) \circ \beta_j) \cdot \pi_i^V \in \widehat{\mathcal{O}}_{k+1}^{V\mathbb{R}}$. Since $\pi_j^V \in \mathcal{L}_V^W \subseteq \widehat{\mathcal{O}}_1^{V\mathbb{R}}$, it suffices to show: $(\partial_j g) \circ \beta_j \in \widehat{\mathcal{O}}_k^{V\mathbb{R}}$. So, since $\beta_j \in \widehat{\mathcal{O}}_1^{VV}$, it suffices to show: $\partial_j g \in \widehat{\mathcal{O}}_k^{V\mathbb{R}}$. So, since $\partial_j g = \partial_j ((\pi_m^W) \circ f) \supseteq \pi_m^W \circ (\partial_j f)$, it suffices to show: $\pi_m^W \circ (\partial_j f) \in \widehat{\mathcal{O}}_k^{V\mathbb{R}}$. By assumption, $\partial_i f \in \widehat{\mathcal{O}}_k^{VW}$. So, by Theorem 99.2, we have $\pi_m^W \circ (\partial_j f) \in \widehat{\mathcal{O}}_k^{V\mathbb{R}}$, as desired. QED 12-4. Let $V, W \in \text{TNSR}^+$, $f: V \dashrightarrow W$, $k \in \mathbb{N}_0$. Assume: $f_{0_V} = 0_W$. Assume: $\forall j \in \mathcal{I}_V, \ (\partial_j f)_{0_V} = 0_W$. Assume: $\forall i, j \in \mathcal{I}_V, \ \partial_i \partial_j f \in \widehat{\mathcal{O}}_k^{VW}.$ Show: $f \in \widehat{\mathcal{O}}_{k+2}^{VW}$. *Proof:* Since $f_{0_V} = 0_W$, by HW#12-3, it suffices to show: $\forall j \in \mathcal{I}_V, \ \partial_j f \in \widehat{\mathcal{O}}_{k+1}^{VW}$. Given $j \in \mathcal{I}_V$. Want: $\partial_j f \in \hat{\mathcal{O}}_{k+1}^{VW}$. Let $g := \partial_j f$. Want: $g \in \widehat{\mathcal{O}}_{k+1}^{VW}$. Since $g_{0_V} = (\partial_i f)_{0_V} = 0_W$, by HW#12-3, it suffices to show: $\forall i \in \mathcal{I}_V, \ \partial_i g \in \widehat{\mathcal{O}}_k^{VW}$. Given $i \in \mathcal{I}_V$. Want: $\partial_i g \in \widehat{\mathcal{O}}_k^{VW}$. We have $\partial_i g = \partial_i \partial_j f \in \widehat{\mathcal{O}}_k^{VW}$, as desired. QED

12-5. Let $V, W \in \text{TNSR}^+$, $f : V \dashrightarrow W$. Assume: $f_{0_V} = 0_W$. Assume: $\forall j \in \mathcal{I}_V$, $\partial_j f$ is both defined near 0_V and continuous at 0_V . Show: $0_V \in \text{dom} [f']$.

 $\begin{array}{l} Proof: \text{ Define } q: \mathcal{I}_V \to W \text{ by } q_j = (\partial_j f)_{0_V}.\\ \text{Define } L \in \mathcal{L}_V^W \text{ by } L(x) = \sum_{j \in \mathcal{I}_V} x_j q_j. \quad \text{Want: } f_{0_V}' = \mathrm{s}\ell_L^{VW}.\\ \text{Want: } D_{0_V}^{VW} f = L. \qquad \text{Want: } f_{0_V}^T - L \in \mathcal{O}_1^{VW}.\\ \text{Since } f_{0_V} = 0_W, \text{ we see that } f_{0_V}^T = f. \qquad \text{Want: } f - L \in \mathcal{O}_1^{VW}.\\ \text{By Theorem 99.6, it suffices to show: } \forall j \in \mathcal{I}_V, \ \partial_j (f - L) \in \mathcal{O}_0^{VW}.\\ \text{Given } j \in \mathcal{I}_V. \qquad \text{Want: } \partial_j (f - L) \in \mathcal{O}_0^{VW}. \end{array}$

 $\begin{aligned} Claim: \ \partial_{j}L &= C_{V}^{q_{j}}.\\ Proof of Claim:\\ \text{Want: } \forall x \in V, \ (\partial_{j}L)_{x} &= (C_{V}^{q_{j}})_{x}.\\ \text{Given } x \in V. \qquad \text{Want: } (\partial_{j}L)_{x} &= (C_{V}^{q_{j}})_{x}. \qquad \text{Want: } (\partial_{j}L)_{x} &= q_{j}.\\ \text{Let } u &:= \varepsilon_{j}^{V}. \qquad \text{Then } \partial_{u}L &= \partial_{j}L. \qquad \text{Want: } (\partial_{u}L)_{x} &= q_{j}.\\ \text{Let } i &:= i_{x}^{u}. \qquad \text{Want: } (L \circ i)_{0}^{\prime} &= q_{j}.\\ \text{We have } L(u) &= \sum_{i \in \mathcal{I}_{V}} u_{i}q_{i} &= \sum_{i \in \mathcal{I}_{V}} (\varepsilon_{j}^{V})_{i} \cdot q_{i}\\ &= \left((\varepsilon_{j}^{V})_{j} \cdot q_{j}\right) + \left(\sum_{i \in \mathcal{I}_{V} \setminus \{j\}} (\varepsilon_{j}^{V})_{i} \cdot q_{i}\right)\\ &= (1 \cdot q_{j}) + \left(\sum_{i \in \mathcal{I}_{V} \setminus \{j\}} 0 \cdot q_{i}\right) = q_{j} + 0 = q_{j}\end{aligned}$

Then $L(u) = q_j$. Let y := L(x). Then, $\forall t \in \mathbb{R}$, we have:

 $\begin{array}{ll} (L \circ i)_t = L(i_t) = L(x+tu) = (L(x)) + t \cdot (L(u)) = y + tq_j.\\ \text{Then:} & \forall t \in \mathbb{R}, \quad (L \circ i)_t = y + tq_j.\\ \text{Then:} & \forall h \in \mathbb{R}, \quad (L \circ i)_0^T(h) = (y + (0+h) \cdot q_j) - (y + 0 \cdot q_j) = hq_j.\\ \text{Then} & (L \circ i)_0^T \in \mathcal{L}_{\mathbb{R}}^W. \quad \text{Then:} & D_0(L \circ i) = L \circ i.\\ \text{Then} & (L \circ i)_0' = s\ell_{L \circ i}^{\mathbb{R}W} = (L \circ i)(1) = 1 \cdot q_j = q_j, \text{ as desired.}\\ & End of proof of Claim. \end{array}$

We have: $\partial_j(f - L) \supseteq (\partial_j f) - (\partial_j L)$. So, by the claim, $\partial_j(f - L) \supseteq (\partial_j f) - (C_V^{q_j})$. Want: $(\partial_j f) - (C_V^{q_j}) \in \mathcal{O}_0^{VW}$. Want: $(\partial_j f) - (C_V^{q_j}) \in \text{CVZ}_V^W$. By assumption, $\partial_j f$ is both defined near 0_V and continuous at 0_V . Also, $C_V^{q_j}$ is both defined near 0_V and continuous at 0_V . Then $(\partial_j f) - (C_V^{q_j})$ is both defined near 0_V and continuous at 0_V . Want: $((\partial_j f) - (C_V^{q_j}))_{0_V} = 0_W$. By definition of q, we have $q_j = (\partial_j f)_{0_V}$. We compute $((\partial_j f) - (C_V^{q_j}))_{0_V} = ((\partial_j f)_{0_V}) - ((C_V^{q_j})_{0_V})$ $= q_j - q_j = 0_W$, as desired. QED

11-2. Let $V := \mathbb{R}^2$, $S := V \otimes V$, $A := \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. Show: $\forall q \in V$, $A \bullet_S (q^{\otimes 2}) \ge 0$. *Proof:* Given $q \in V$. Want: $A \bullet_S (q^{\otimes 2}) \ge 0$. Let $x := q_1$ and $y := q_2$. Then q = (x, y). Then $q^{\otimes 2} = \begin{bmatrix} x \cdot x & x \cdot y \\ y \cdot x & y \cdot y \end{bmatrix} = \begin{bmatrix} x^2 & xy \\ xy & y^2 \end{bmatrix}$. Then $A \bullet_S (q^{\otimes 2}) = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \bullet_S \begin{bmatrix} x^2 & xy \\ xy & y^2 \end{bmatrix}$ = $1 \cdot x^2 + 2 \cdot xy + 2 \cdot xy + 4 \cdot y^2$ = $x^2 + 4xy + 4y^2$ = $(x + 2y)^2 \ge 0$, as desired. QED

11-3. Let $V := \mathbb{R}^2$, $S := V \otimes V$, $a, b, c \in \mathbb{R}$, $A := \begin{bmatrix} a & b \\ b & c \end{bmatrix}$, $z := 0_2$. a > 0 and $ac - b^2 > 0$. Assume: $\forall q \in V_{z}^{\times}, \quad A \bullet_{S} (q^{\otimes 2}) > 0.$ Show: Proof: Given $q \in V_z^{\times}$. Want: $A \bullet_S (q^{\otimes 2}) > 0$. Let $x := q_1$ and $y := q_2$. Then q = (x, y). Then $q^{\otimes 2} = \begin{bmatrix} x \cdot x & x \cdot y \\ y \cdot x & y \cdot y \end{bmatrix} = \begin{bmatrix} x^2 & xy \\ xy & y^2 \end{bmatrix}$. We have $A \bullet_S (q^{\otimes 2}) = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \bullet_S \begin{bmatrix} x^2 & xy \\ xy & y^2 \end{bmatrix}$ $= a \cdot x^{2} + b \cdot xy + b \cdot xy + c \cdot y^{2}$ $= ax^{2} + 2bxy + cy^{2}$ $= a \cdot \left(x^2 + \frac{2by}{a}x \right) + cy^2$ $= a \cdot \left(x^2 + \frac{2by}{a}x + \frac{b^2y^2}{a^2} \right)$ $+ \frac{ac\dot{y^2}}{a} - \frac{b^2y^2}{a}$ $= a \cdot \left(x + \frac{by}{a}\right)^2 + \frac{ac - b^2}{a} \cdot y^2.$ Since a > 0 and $\left(x + \frac{by}{a}\right)^2 \ge 0$, we see that $a \cdot \left(x + \frac{by}{a}\right)^2 \ge 0.$ Since a > 0 and $ac - b^2 > 0$ and $y^2 \ge 0$, we see that $\frac{ac - b^2}{a} \cdot y^2 \ge 0$. Then $A \bullet_S (q^{\otimes 2}) = a \cdot \left(x + \frac{by}{a}\right)^2 + \frac{ac - b^2}{a} \cdot y^2 \ge 0.$ Want: $A \bullet_S (q^{\otimes 2}) \neq 0.$ Assume: $A \bullet_S (q^{\otimes 2}) = 0$. Want: Contradiction.

We have $a \cdot \left(x + \frac{by}{a}\right)^2 + \frac{ac - b^2}{a} \cdot y^2 = A \bullet_S (q^{\otimes 2}) =$ 0. Then $\frac{ac-b^2}{a} \cdot y^2 = -\left(a \cdot \left(x + \frac{by}{a}\right)^2\right) \leqslant 0.$ So, since $\frac{ac-b^2}{a} \cdot y^2 \ge 0$, we see that $\frac{ac-b^2}{a} \cdot y^2 = 0$. So, since $ac - b^2 > 0$ and a > 0, we see that $y^2 = 0$, and so y = 0. Then $A \bullet_S (q^{\otimes 2}) = a \cdot \left(x + \frac{b \cdot 0}{a}\right)^2 + \frac{ac - b^2}{a} \cdot 0^2 = ax^2.$ Then $ax^2 = A \bullet_S (q^{\otimes 2}) = 0$, so $ax^2 = 0$. So, since a > 0, we get $x^2 = 0$, and so x = 0. Since $q \in V_z^{\times}$, we conclude that $q \neq z$. Then $0_2 = z \neq q = (x, y) = (0, 0) = 0_2$, so $0_2 \neq 0_2$. Contradiction. QED 11-4. Let $V := \mathbb{R}^2$, $S := V \otimes V$, $f : \mathbb{R} \dashrightarrow V$, $g : V \dashrightarrow \mathbb{R}$. Assume $f'_n \neq (0,0)$ and $f''_n \neq \odot$. Let $p \in \mathbb{R}$. Assume $g'_q = (0,0)$ and $g''_q = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$. Let $q := f_p$. $(g \circ f)_n'' > 0.$ Show: $\begin{array}{rcl} \textit{Proof: We have: } (g \circ f)''_p &=^* g''_q \bullet_S ((f'_p)^{\otimes 2}) &+ g'_q \bullet_V f''_p \neq @, \\ & \text{so} & (g \circ f)''_p &= g''_q \bullet_S ((f'_p)^{\otimes 2}) &+ g'_q \bullet_V f''_p. \\ & \text{So, since } g'_q = (0,0), \text{ we get } (g \circ f)''_p &= g''_q \bullet_S ((f'_p)^{\otimes 2}). \end{array}$ Let $a := 1, b := 2, c := 5, A := \begin{bmatrix} a & b \\ b & c \end{bmatrix}, z := 0_2.$ We have $A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} = g''_q$ and $(g \circ f)''_p = g''_q \bullet_S ((f'_p)^{\otimes 2}).$ Then $(g \circ f)''_p = A \bullet_S ((f'_p)^{\otimes 2}).$ We have a > 0 and $ac - b^2 = 1 \cdot 5 - 2^2 = 1 > 0.$ Since $f''_p \neq \odot$, we get $p \in \text{dom}[f''] \subseteq \text{dom}[f']$, and so $f'_p \in \text{im}[f']$. Then $f'_p \in \operatorname{im} [f'] \subseteq V \otimes \mathbb{R} = V.$ So, since $f'_p \neq (0,0) = 0_2 = z$, we conclude that $f'_p \in V_z^{\times}$. Then, by HW#11-3, we have $A \bullet_S ((f'_n)^{\otimes 2}) > 0$. $(g \circ f)_n'' = A \bullet_S ((f_n')^{\otimes 2}) > 0,$ Then: as desired. QED 11-5. Let $V, W \in \text{TNSR}^+$, $f: V \dashrightarrow W$, $i \in \mathcal{I}_V$, $j \in \mathcal{I}_W$, $W' := W \otimes V$. $(\pi_{i\parallel i}^{W'}) \circ (f') \subseteq (\pi_i^W) \circ (\partial_i f).$ Show:

Proof: Want: $\forall x \in V, ((\pi_{i|i}^{W'}) \circ (f'))_x * = ((\pi_i^W) \circ (\partial_i f))_x.$ Given $x \in V$. Want: $((\pi_{i|i}^{W'}) \circ (f'))_x * = ((\pi_j^W) \circ (\partial_i f))_x$. Want: $(\pi_{j|i}^{W'})(f'_x) *= (\pi_j^W)((\partial_i f)_x).$ Want: $\left[(\pi_{j\parallel i}^{W'})(f'_x) \neq \odot \right] \Rightarrow \left[(\pi_{j\parallel i}^{W'})(f'_x) = (\pi_j^W)((\partial_i f)_x) \right].$ Assume $(\pi_{j||i}^{W'})(f'_x) \neq \odot$. Let $A := f'_x$. Want: $(\pi_{j||i}^{W'})(f'_x) = (\pi_j^W)((\partial_i f)_x)$. Want: $(\pi_{j||i}^{W'})(A) = (\pi_j^W)((\partial_i f)_x)$. Since $(\pi_{i||i}^{W'})(f'_x) \neq \odot$, we conclude that $f'_x \neq \odot$, and so $f'_x \in \operatorname{im}[f']$. Then $A = f'_x \in \operatorname{im} [f'] \subseteq W \otimes V$. By HW#9-2, $(f'_r) *_{\mathbb{R}VW} \varepsilon_i^V *= (\partial_{\varepsilon_i} f)_x$. So, since $A = f'_x$ and $\partial_{\varepsilon_i} f = \partial_i f$, we get $A *_{\mathbb{R} V W} \varepsilon_i^V * = (\partial_i f)_x$. Since $A \in W \otimes V$ and $\varepsilon_i^V \in V$, we get $A *_{\mathbb{R}VW} \varepsilon_i^V \in W$. In particular, $A *_{\mathbb{R}VW} \varepsilon_i^V \neq \odot$. Then $\mathfrak{S} \neq A \ast_{\mathbb{R}VW} \varepsilon_i^V \ast = (\partial_i f)_x$, so $A \ast_{\mathbb{R}VW} \varepsilon_i^V = (\partial_i f)_x$. Then $(\pi_j^W)(A \ast_{\mathbb{R}VW} \varepsilon_i^V) = (\pi_j^W)((\partial_i f)_x)$. We have $(A *_{\mathbb{R}VW} \varepsilon_i^V)_j = (A *_{\mathbb{R}VW} \varepsilon_i^V)_{j \parallel \emptyset}$ $= \sum_{h \in \mathcal{I}_V} (A_{j \parallel h}) \cdot ((\varepsilon_i^V)_{h \parallel \emptyset})$ $= \sum_{i=1}^{N} (A_{j\parallel h}) \cdot ((\varepsilon_i^V)_h)$ $= \left(\sum_{h \in \mathcal{I}_V \setminus \{i\}} (A_{j\|h}) \cdot ((\varepsilon_i^V)_h)\right) + ((A_{j\|i}) \cdot ((\varepsilon_i^V)_i)$ $= \left(\sum_{h \in \mathcal{I}_V \setminus \{i\}} (A_{j\|h}) \cdot 0\right) + ((A_{j\|i}) \cdot 1)$ $= 0 + A_{i||i|} = A_{i||i|}$ Then $(\pi_{j|i}^{W'})(A) = A_{j|i} = (A *_{\mathbb{R}VW} \varepsilon_i^V)_j$ $= (\pi_i^W)(A *_{\mathbb{R}VW} \varepsilon_i^V) = (\pi_i^W)((\partial_i f)_x),$ as desired. QED

Homework 10: Due on Tuesday 9 April

10-1. Let $V, W, X \in \text{TNSR}^+$, $f: V \longrightarrow W$, $g: W \longrightarrow X$, $u \in V$. Show: $\forall p \in V$, $(\partial_u^{VX}(g \circ f))_p =^* (g'_{f_p}) *_{\mathbb{R}VW} ((\partial_u^{VW}f)_p)$. Proof: Given $p \in V$. Want: $(\partial_u^{VX}(g \circ f))_p =^* (g'_{f_p}) *_{\mathbb{R}VW} ((\partial_u^{VW}f)_p)$. Let $i:=i_p^v$. Then $i_0 = p + 0 \cdot v = p$. Also, $(\partial_u^{VW}f)_p = (f \circ i)'_0$. Let $\phi := f \circ i$. Then $\phi_0 = (f \circ i)_0 = f_{i_0} = f_p$. Also, $(\partial_u^{VW}f)_p = \phi'_0$. By the Chain Rule, $(g \circ \phi)'_0 =^* (g'_{\phi_0}) *_{\mathbb{R}VW} (\phi'_0)$.

Then
$$(\partial_u^{VX}(g \circ f))_p = (g \circ f \circ i)'_0 = (g \circ \phi)'_0$$

=* $(g'_{\phi_0}) *_{\mathbb{R}VW} (\phi'_0) = (g'_{f_p}) *_{\mathbb{R}VW} ((\partial_u^{VW}f)_p).$ QED

10-2. Let $S, V, W, Z \in \text{TNSR}^+$, $* \in \mathcal{B}_{VW}^Z$. Let $f: S \dashrightarrow V$, $g: S \dashrightarrow W$, $u \in S$. Show: $\forall p \in S, \ (\partial_u^{SZ}(f \ast g))_p =^* (((\partial_u^{SV} f)_p) \ast g_p) + (f_p \ast ((\partial_u^{SW} g)_p)).$ *Proof:* Given $p \in V$. $(\partial_u^{SZ}(f*g))_p =^* (((\partial_u^{SV}f)_p)*g_p) + (f_p*((\partial_u^{SW}g)_p)).$ Want: $i := i_p^u. \quad \text{Then } i_0 = p + 0 \cdot u = p.$ $(\partial_u^{SV} f)_p = (f \circ i)_0' \quad \text{and} \quad (\partial_u^{SW} g)_p = (g \circ i)_0'.$ Let Also, $\phi := f \circ i$ and $\psi := g \circ i$ and $\chi := (f * g) \circ i$. Let Then $(\partial_u^{SV} f)_p = \phi'_0$ and $(\partial_u^{SW} g)_p = \psi'_0$ and $(\partial_u^{SZ} (f * g))_p = \chi'_0$. $\phi_0 = f_{i_0} = f_p$ and $\psi_0 = g_{i_0} = g_p$. Also, $\chi'_0 =^* \phi'_0 * \chi_0 + \phi_0 * \psi'_0.$ Want:

End of proof of Claim.

By the Claim and by the Product Rule, we have: $D_{0}^{\mathbb{R}Z}\chi =^{*} (D_{0}^{\mathbb{R}V}\phi) * \psi_{0} + \phi_{0} * (D_{0}^{\mathbb{R}W}\psi).$ Then: $(D_{0}^{\mathbb{R}Z}\chi)(1) =^{*} ((D_{0}^{\mathbb{R}V}\phi)(1)) * \psi_{0} + \phi_{0} * ((D_{0}^{\mathbb{R}Z}\psi)(1)).$ So, since $\chi'_{0} = s\ell_{\bullet}^{\mathbb{R}Z}(D_{0}^{\mathbb{R}Z}\chi) = (D_{0}^{\mathbb{R}Z}\chi)(1),$ and since $\phi'_{0} = s\ell_{\bullet}^{\mathbb{R}V}(D_{0}^{\mathbb{R}V}\phi) = (D_{0}^{\mathbb{R}V}\phi)(1),$ we see that: $\chi'_{0} =^{*} \phi'_{0} * \chi_{0} + \phi_{0} * \psi'_{0}$, as desired. QED 10-3. Let $V, W, X \in \text{TNSR}^{+}$, $A \in X \otimes V \otimes W, \quad y \in V, \quad z \in W.$ Show: $(A *_{\mathbb{R},W,X \otimes V} z) *_{\mathbb{R}VX} y = A *_{\mathbb{R},V \otimes W,X} (y \otimes z).$ Proof: Want: $\forall k \in \mathcal{I}_{X},$ $((A *_{\mathbb{R},W,X \otimes V} z) *_{\mathbb{R}VX} y)_{k} = (A *_{\mathbb{R},V \otimes W,X} (y \otimes z))_{k}.$ Given $k \in \mathcal{I}_{X}.$ Want: $((A *_{\mathbb{R},W,X \otimes V} z) *_{\mathbb{R}VX} y)_{k} = (A *_{\mathbb{R},V \otimes W,X} (y \otimes z))_{k}.$ We compute:

$$\begin{array}{rcl} (A \ast_{\mathbb{R}, V \otimes W, X} & (y \otimes z))_k &= & (A \ast_{\mathbb{R}, V \otimes W, X} & (y \otimes z))_{k \parallel \varnothing} \\ &= & \sum_{\ell \in \mathcal{I}_{V \otimes W}} A_{k \parallel \ell} & \cdot & (y \otimes z)_{\ell \parallel \varnothing} \\ &= & \sum_{\ell \in \mathcal{I}_{V \otimes W}} \sum_{j \in \mathcal{I}_{W}} & (A_{k \parallel i \parallel j} & \cdot & (y \otimes z)_{i \parallel j} &) \\ &= & \sum_{i \in \mathcal{I}_{V}} \sum_{j \in \mathcal{I}_{W}} & (A_{k \parallel i \parallel j} & \cdot & (y \ast_{V \mathbb{R}W} & z)_{i \parallel j} &) \\ &= & \sum_{i \in \mathcal{I}_{V}} \sum_{j \in \mathcal{I}_{W}} & (A_{k \parallel i \parallel j} & \cdot & (\sum_{m \in \mathcal{I}_{\mathbb{R}}} y_{i \parallel m} & \cdot & z_{m \parallel j} &) &) \\ &= & \sum_{i \in \mathcal{I}_{V}} \sum_{j \in \mathcal{I}_{W}} & (A_{k \parallel i \parallel j} & \cdot & y_{i \parallel \varnothing} & \cdot & z_{\emptyset \parallel j} &) &) \\ &= & \sum_{i \in \mathcal{I}_{V}} \sum_{j \in \mathcal{I}_{W}} & (A_{k \parallel i \parallel j} & \cdot & y_{i \parallel \varnothing} & \cdot & z_{\emptyset \parallel j} &) &) \end{array}$$

Then:

$$\begin{array}{rcl} ((A \ast_{\mathbb{R},W,X\otimes V} z) \ast_{\mathbb{R}VX} y)_k &= & ((A \ast_{\mathbb{R},W,X\otimes V} z) \ast_{\mathbb{R}VX} y)_k \|_{\varnothing} \\ &= & \sum_{i\in \mathcal{I}_V} & (A \ast_{\mathbb{R},W,X\otimes V} z)_k \|_i \cdot y_i \\ &= & \sum_{i\in \mathcal{I}_V} & (A \ast_{\mathbb{R},W,X\otimes V} z)_k \|_i \|_{\varnothing} \cdot y_i \\ &= & \sum_{i\in \mathcal{I}_V} & \left(\sum_{j\in \mathcal{I}_W} A_k \|_i \|_j \cdot z_j \|_{\varnothing} \right) \cdot y_i \\ &= & \sum_{i\in \mathcal{I}_V} & \left(\sum_{j\in \mathcal{I}_W} A_k \|_i \|_j \cdot z_j \right) \cdot y_i \\ &= & \sum_{i\in \mathcal{I}_V} \sum_{j\in \mathcal{I}_W} & (A_k \|_i \|_j \cdot y_i \cdot z_j) \\ &= & (A \ast_{\mathbb{R},V\otimes W,X} (y\otimes z))_k, & \text{as desired.} \end{array}$$

 $\begin{array}{l} \textit{Proof: Let } \chi := \partial_v^{VX} \partial_u^{VX}(g \circ f). \\ \textit{Let } \phi := (g'' \circ f) \quad *_{\mathbb{R}, W \otimes W, X} \quad ((\partial_u^{VW} f) \otimes (\partial_v^{VW} f)). \end{array}$

Let $\psi := (q' \circ f) \ast_{\mathbb{R}WX} (\partial_v^{VW} \partial_u^{VW} f).$ Want: $\chi \supseteq \phi + \psi$. $\partial_u^{VX}(g \circ f) \supseteq (g' \circ f) *_{\mathbb{R}WX} (\partial_u^{VW} f).$ By HW#10-1, $\partial_v^{VX}\partial_u^{VX}(g\circ f) \ \supseteq \ \partial_v^{VX}((g\circ f) \ast_{\mathbb{R}WX} (\partial_u^{VW}f)).$ Then Recall: $\chi = \partial_v^{VX} \partial_u^{VX} (g \circ f)$. Let $\alpha := g' \circ f$ and $\kappa := \partial_u^{VW} f$. Then $\chi \supseteq \partial_v^{VX} (\alpha *_{\mathbb{R}WX} \kappa).$ Then $\chi \supseteq \partial_v^{VX}(\alpha * \kappa).$ Let $* := *_{\mathbb{R}WX}$. $\partial_v^{VX}(\alpha * \kappa) \supseteq \phi + \psi.$ Want: Let $Y := X \otimes W$. Then $* \in \mathcal{B}_{YW}^X$. By HW#10-2, $\partial_v^{VX}(\alpha * \kappa) \supseteq ((\partial_v^{VY}\alpha) * \kappa) + (\alpha * (\partial_v^{VW}\kappa)).$ $\begin{array}{lll} (\partial_v^{VY}\alpha) \ast \kappa \ \supseteq \ \phi & \text{and} & \alpha \ast (\partial_v^{VW}\kappa) \ = \ \psi. \\ \alpha \ast (\partial_v^{VW}\kappa) & = & (g' \circ f) \ \ast_{\mathbb{R}WX} & (\partial_v^{VW}\partial_u^{VW}f) \ = & \psi. \end{array}$ Want: We have $(\partial_v^{VY}\alpha) * \kappa \supseteq \phi.$ Want: $\forall q \in V, \quad ((\partial_v^{VY} \alpha) * \kappa)_q =^* \phi_q.$ Want: Given $q \in V$. Want: $((\partial_v^{VY} \alpha) * \kappa)_q =^* \phi_q$. By HW#10-1, $\partial_u^{VY}(g' \circ f) \supseteq (g'' \circ f) *_{\mathbb{R}WY} (\partial_u^{VW} f).$ Then $(\partial_v^{VY} \alpha)_q = (\partial_v^{VY}(g' \circ f))_q = * ((g'' \circ f) *_{\mathbb{R}WY} (\partial_u^{VW} f))_q.$ Let $A := (g'' \circ f)_q, \quad y := (\partial_u^{VW} f)_q, \quad z := (\partial_v^{VW} f)_q.$ Then $y = (\partial_u^{VW} f)_q = \kappa_q.$ Also, $\phi_q = ((g'' \circ f) *_{\mathbb{R}, W \otimes W, X} ((\partial_u^{VW} f) \otimes (\partial_v^{VW} f)))_q$ $= A \ast_{\mathbb{R},W\otimes W,X} (y\otimes z)$ By HW#10-3 (with V replaced by W), $(A *_{\mathbb{R},W,X\otimes W} z) *_{\mathbb{R}VW} y = A *_{\mathbb{R},W\otimes W,X} (y\otimes z).$ Then $((\partial_v^{VY}\alpha)*\kappa)_q = (\partial_v^{VY}\alpha)_q * \kappa_q = (\partial_v^{VY}\alpha)_q * y$ =* $((g'' \circ f) *_{\mathbb{R}WY} (\partial_u^{VW}f))_q * y$ = $((g'' \circ f)_q *_{\mathbb{R}WY} (\partial_u^{VW}f)_q) *_{\mathbb{R}WX} y.$ $= (A *_{\mathbb{R},W,X\otimes W} z) *_{\mathbb{R}WX} y.$ $= A *_{\mathbb{R}, W \otimes W, X} (y \otimes z) = \phi_q.$ QED 10-5. Let $V := \mathbb{R}^2$, $W := \mathbb{R}$, $g: V \dashrightarrow W$, $z := 0_2$, $i := i_z^{\varepsilon_1^V}$. Assume: $(g_z = 0)$ & $((\partial_1^{VW} g)_z = 0)$. Show: $g \circ i \in \mathcal{O}_1^{WW}$. Proof: We have $i_0 = z + 0 \cdot \varepsilon_1^V = z$ and $(\partial_1^{VW}g)_z = (\partial_{\varepsilon_1}^{VW}g)_z = (g \circ i)'_0$. Then $(g \circ i)_0 = g_{i_0} = g_z = 0$ and $(g \circ i)'_0 = (\partial_1^{VW}g)_z = 0$.

Since $(g \circ i)_0 = 0$ and $(g \circ i)'_0 = 0$, it follows, from HW#8-1 (with S and T replaced by W, and R by $g \circ i$), that: $g \circ i \in \mathcal{O}_1^{WW}$, as desired. QED

Homework 9: Due on Tuesday 2 April

9-1. Let $V, W \in \text{TNSR}^+$, $\alpha : V \dashrightarrow W$, $\delta > 0$, $B := B_V(0_V, \delta)$. Assume: $B \subseteq \operatorname{dom}[\alpha]$. Assume: $\forall q \in B, \ |\alpha_q|_W \leq |q|_V.$ Show: $\alpha \in \widehat{\mathcal{O}}_1^{VW}$. Proof: Let $z := 0_V$. Since $z \in B_V(z, \delta) = B_V(0_V, \delta) = B$, by assumption, $|\alpha_z|_W \leq |z|_V$. Then $|\alpha_z|_W \leq |z|_V = |0_V|_V = 0$, so $|\alpha_z|_W \leq 0$. Then $0 \leq |\alpha_z|_W \leq 0$, so $|\alpha_z|_W = 0$, so $\alpha_z = 0_W$. Then $\alpha_{0_V} = \alpha_z = 0_W$, so $\alpha_{0_V} = 0_W$. Let $\sigma := \operatorname{adj}_{0_V}^{0_W} \left(\frac{\alpha}{|\bullet|_V} \right)$. As $\alpha_{0_V} = 0_W$, we get: $(\operatorname{dom} [\alpha] = \operatorname{dom} [\sigma]) \& (\alpha = \sigma \cdot (|\bullet|_V))$. Want: $\alpha \in (BNZ_V^W) \cdot (|\bullet|_V)$. Want: $\sigma \in BNZ_V^W$. We have $B \in \text{dom}[\alpha] = \text{dom}[\sigma]$ and $B = B(0_V, \delta) \in \mathcal{B}_V(0_V)$. Then $\sigma \in \text{DNZ}_V^W$. By definition of σ , we have $\sigma_{0_V} = 0_W$. Want: $\sigma_*(B)$ is bounded in W. Let $C := B_W(0_W, 2)$. Since $C \in \mathcal{B}_W$, it suffices to show: $\sigma_*(B) \subseteq C$. Want: $\forall q \in B \cap (\operatorname{dom}[\sigma]), \sigma_q \in C.$ Given $q \in B \cap (\operatorname{dom}[\sigma])$. Want: $\sigma_q \in C$. Exactly one of the following is true: (1) $q = 0_V$ (2) $q \neq 0_V$. or

Case (1): We have $\sigma_q = \sigma_{0_V} = 0_W \in B_W(0, 2) = C$, as desired. End of Case (1).

Case (2): By definition of σ , $\sigma_q = \frac{\alpha_q}{|q|_V}$. Then $|\sigma_q|_W = \frac{|\alpha_q|_W}{|q|_V}$. Since $q \in B \cap (\operatorname{dom} [\sigma]) \subseteq B$, by assumption, $|\alpha_q|_W \leq |q|_V$. Then $|\sigma_q - 0_W|_W = |\sigma_q|_W = \frac{|\alpha_q|_W}{|q|_V} \leq 1 < 2$, so $\sigma_q \in B(0_W, 2)$. Then $\sigma_q \in B(0_W, 1) = C$, as desired. End of Case (2). QED

9-2. Let $S, T \in \text{TNSR}^+$, $f: S \dashrightarrow T$, $x, v \in S$. Show: $(\partial_v^{ST} f)_x =^* (f'_x) *_{\mathbb{R}ST} v$.

Proof: Want: $((f'_x) *_{\mathbb{R}ST} v \neq \odot) \Rightarrow ((\partial_v^{ST} f)_x = (f'_x) *_{\mathbb{R}ST} v).$ Assume: $(f'_x) *_{\mathbb{R}ST} v \neq \odot.$ Want: $(\partial_v^{ST} f)_x = (f'_x) *_{\mathbb{R}ST} v.$ Since $(f'_x) *_{\mathbb{R}ST} v \neq \odot$, we see that $f'_x \neq \odot$. Then $s\ell_{\bullet}^{ST}(D_x^{ST}f) = f'_x \neq \odot$, so $D_x^{ST}f \neq \odot$, so $D_x^{ST}f \in \mathcal{L}_S^T$. Let $L := D_x^{ST}f$. Then $L \in \mathcal{L}_S^T$. We have $s\ell_L^{ST} = s\ell_{\bullet}^{ST}(L) = s\ell_{\bullet}^{ST}(D_x^{ST}f) = f'_x$. Since $s\ell_L^{ST} = f'_x$, by Theorem 85.6, we get $L_v = (f'_x) *_{\mathbb{R}ST} v$. By HW#8-4, $(\partial_v^{ST}f)_x = (D_x^{ST}f)_v$. Then $(\partial_v^{ST}f)_x = (D_x^{ST}f)_v = L_v = (f'_x) *_{\mathbb{R}ST} v \neq \odot$. Then $(\partial_v^{ST}f)_x = (f'_x) *_{\mathbb{R}ST} v$, as desired. QED

9-3. Let
$$V := \mathbb{R}^2$$
, $W := \mathbb{R}$, $f : V \dashrightarrow W$, $z := 0_2$.
Assume: $(f' \text{ is defined near } z) \& (f_z = 0)$.
Let $g := \partial_1^{VW} f$, $h := \partial_2^{VW} f$, $i := i_z^{\varepsilon_1^V}$.
Show: $\exists \sigma \in \widehat{\mathcal{O}}_1^{WW}, \exists \tau \in \widehat{\mathcal{O}}_1^{VV} \text{ s.t.}$
 $f = (g \circ i \circ \sigma \circ \pi_1^V) \cdot \pi_1^V + (h \circ \tau) \cdot \pi_2^V$ near z .

Proof: Since f' is defined near z, choose $C \in \mathcal{B}_V(z)$ s.t. $C \subseteq \text{dom} [f']$. Since $C \in \mathcal{B}_V(z)$, choose r > 0 s.t. $C = B_V(z, r)$. Let $\delta := r/\sqrt{2}$ and $J := (-\delta; \delta)$. Then $J^2 \subseteq B_V(z, r)$. Then $J^2 \subseteq B_V(z, r) = C \subseteq \text{dom} [f]$. Define $S : J \to 2^{\mathbb{R}}$ and $T : J^2 \to 2^{\mathbb{R}}$ by $S_x = \{\alpha \in [0|x] \text{ s.t. } f|_{(0,0)}^{(x,0)} = ((\partial_1^{VW} f)(\alpha, 0)) \cdot x\}$ and $T_x = \{\beta \in [0|y] \text{ s.t. } f|_{(x,0)}^{(x,y)} = ((\partial_2^{VW} f)(x, \beta)) \cdot y\}.$

Claim 1: $\forall x \in J$, we have $\emptyset \neq S_x \subseteq J$. Proof of Claim 1: Given $x \in J$. Want: $\emptyset \neq S_x \subseteq J$. By HW#8-5, we have $\emptyset \neq S_x$. Want: $S_x \subseteq J$. By definition of S_x , we have $S_x \subseteq [0|x]$. We have $0 \in (-\delta; \delta) = J$ and $x \in J$. So, since J is an interval, we get $[0|x] \subseteq J$. Then $S_x \subseteq [0|x] \subseteq J$, as desired. End of proof of Claim 1.

Claim 2: $\forall x, y \in J$, we have $\emptyset \neq T_{(x,y)} \subseteq J$. Proof of Claim 2: Given $x, y \in J$. Want: $\emptyset \neq T_{(x,y)} \subseteq J$. By Theorem 90.13, p. 218, we have $\emptyset \neq T_{(x,y)}$. Want: $T_{(x,y)} \subseteq J$. By definition of $T_{(x,y)}$, we have $T_{(x,y)} \subseteq [0|y]$. We have $0 \in (-\delta; \delta) = J$ and $y \in J$. So, since J is an interval, we get $[0|y] \subseteq J$. Then $T_{(x,y)} \subseteq [0|y] \subseteq J$, as desired. End of proof of Claim 2.

Define $\sigma: J \dashrightarrow \mathbb{R}$ by $\sigma_x = \operatorname{CH}(S_x)$. By Claim 1, $\forall x \in J$, we have $\emptyset \neq S_x \subseteq J$. Then $\sigma: J \to J$ and, $\forall x \in J, \sigma_x \in S_x \subseteq J$. Define $\mu: J^2 \dashrightarrow \mathbb{R}$ by $\mu_{(x,y)} = \operatorname{CH}(T_{(x,y)})$. By Claim 2, $\forall x, y \in J$, we have $\emptyset \neq T_{(x,y)} \subseteq J$. Then $\mu: J^2 \to J$ and, $\forall x, y \in J, \ \mu_{(x,y)} \in T_{(x,y)} \subseteq J$. Define $\tau: J^2 \to J^2$ by $\tau_{(x,y)} = (x, \mu_{(x,y)})$.

 $\begin{array}{l} Claim \ 3: \ \sigma \in \widehat{\mathcal{O}}_1^{WW}.\\ Proof \ of \ Claim \ 3:\\ \text{Since } J = B_{\mathbb{R}}(0,\delta) \ \text{and } J = \mathrm{dom} \ [\sigma], \ \text{by } \mathrm{HW} \# 9\text{-}1,\\ \text{ it suffices to prove: } \quad \forall x \in J, \quad |\sigma_x|_W \leqslant |x|_W.\\ \text{Given } x \in J. \qquad \text{Want: } |\sigma_x|_W \leqslant |x|_W.\\ \text{By definition of } S_x, \ \text{we have } S_x \subseteq [0|x].\\ \text{Then } \sigma_x \in S_x \subseteq [0|x].\\ \text{Then } \sigma_x \in [0|x], \ \text{so } |\sigma_x| \leqslant |x|.\\ \text{Then } |\sigma_x|_W = |\sigma_x| \leqslant |x| = |x|_W, \ \text{as desired}.\\ End \ of \ proof \ of \ Claim \ 3. \end{array}$

Claim 4: $\tau \in \widehat{\mathcal{O}}_1^{VV}$. Proof of Claim 4: Then $B \subseteq J^2 = \operatorname{dom}[\tau]$. Let $B := B_V(z, \delta)$. $\forall q \in B, \quad |\tau_q|_V \leq |q|_V.$ By HW#9-1, it suffices to prove: Want: $|\tau_q|_V \leq |q|_V$. Given $q \in B$. Let $x := q_1, y := q_2$. Then q = (x, y) and $|q|_V^2 = x^2 + y^2$. Since $(x, y) = q \in B \subseteq J^2$, we see that $x, y \in J$. By definition of $T_{(x,y)}$, we have $T_{(x,y)} \subseteq [0|y]$. Then $\mu_{(x,y)} \in T_{(x,y)} \subseteq \lfloor 0 | y \rfloor$. Then $\mu_{(x,y)} \in [0|y]$, so $|\mu_{(x,y)}| \leq |y|$, so $(\mu_{(x,y)})^2 \leq y^2$. Then $|\tau_q| = |\tau_{(x,y)}|_V^2 = |(x,\mu_{(x,y)})|_V^2 = x^2 + (\mu_{(x,y)})^2 \le x^2 + y^2 = |q|_V^2.$ Since $0 \leq |\tau_q|_V^2 \leq |q|_V^2$, we get $|\tau_q|_V \leq |q|_V$, as desired. End of proof of Claim 4.

By Claim 3 and Claim 4, we have $\sigma \in \widehat{\mathcal{O}}_1^{WW}$ and $\sigma \in \widehat{\mathcal{O}}_1^{WW}$. Want: $f = (g \circ i \circ \sigma \circ \pi_1^V) \cdot \pi_1^V + (h \circ \tau) \cdot \pi_2^V$ near z. Since $B_V(0, \delta) \in \mathcal{B}_V(z)$, it suffices to prove:

 $f = (g \circ i \circ \sigma \circ \pi_1^V) \cdot \pi_1^V + (h \circ \tau) \cdot \pi_2^V$ on $B_V(0,\delta)$. Want: $\forall q \in B_V(0, \delta), \quad f_q = ((g \circ i \circ \sigma \circ \pi_1^V) \cdot \pi_1^V + (h \circ \tau) \cdot \pi_2^V)_q.$ Given $q \in B_V(0, \delta)$. Want: $f_q = ((g \circ i \circ \sigma \circ \pi_1^V) \cdot \pi_1^V + (h \circ \tau) \cdot \pi_2^V)_q$. Let $x := q_1, y := q_2$. Then q = (x, y). Let $B := B_V(z, \delta)$. Then $\pi_1^V(q) = x$ and $\pi_2^V(q) = y$. Since $(x, y) = q \in B \subseteq J^2$, we see that $x, y \in J$. Since $i = i_z^{\varepsilon_1^V}$, we have: $\forall t \in \mathbb{R}, i(t) = z + t\varepsilon_1^V = (0,0) + t(1,0) = (t,0).$ Then $(i \circ \sigma \circ \pi_1^V)_q = (i \circ \sigma)_x = i(\sigma_x) = (\sigma_x, 0).$ Want: $f_{(x,y)} = (g(\sigma_x, 0)) \cdot x + (h(\tau_{(x,y)})) \cdot y.$ Since $\sigma_x \in S_x$, by definition of S_x , we get $f|_{(0,0)}^{(x,0)} = ((\partial_1^{VW} f)(\sigma_x, 0)) \cdot x.$ Then $f|_{(0,0)}^{(x,0)} = ((\partial_1^{VW} f)(\sigma_x, 0)) \cdot x = (g(\sigma_x, 0)) \cdot x.$ Since $\mu_{(x,y)} \in T_{(x,y)}$, by definition of $T_{(x,y)}$, we get $f|_{(x,0)}^{(x,y)} = ((\partial_1^{VW} f)(x,\mu_{(x,y)})) \cdot y.$ Then $f|_{(x,0)}^{(x,y)} = ((\partial_1^{VW} f)(x,\mu_{(x,y)})) \cdot y = (h(x,\mu_{x,y})) \cdot y = (h(\tau_{x,y})) \cdot y.$ Since $f_{(0,0)} = f_z = 0$, we get $f_{(x,y)} = f|_{(0,0)}^{(x,y)}$. Then $f_{(x,y)} = f|_{((0,0))}^{(x,y)} = (f|_{(0,0)}^{(x,0)}) + (f|_{(x,0)}^{(x,y)})$ $= (g(\sigma_x, 0)) \cdot x + (h(\tau_{(x,y)}) \cdot y)$ as desired. QED 9-4. Let $V := \mathbb{R}^2$, $W := \mathbb{R}$, $h: V \dashrightarrow W$, $z := 0_2$. Assume: $z \in \text{dom}[h']$. Assume: $h_z = (\partial_1^{VW} h)_z = (\partial_2^{VW} h)_z = 0$. $h \in \mathcal{O}_1^{VW}$. Show:

Proof: We have $h': V \to W \otimes V$, so dom $[h'] \subseteq V$ and im $[h'] \subseteq W \otimes V$. Since $z \in \text{dom} [h']$, we get $h'_z \in \text{im} [h']$. Then $h'_z \in \text{im} [h'] \subseteq W \otimes V = \mathbb{R} \otimes \mathbb{R}^2 = \mathbb{R}^2$. Then $(h'_z)_1 \in \mathbb{R}$ and $(h'_z)_2 \in \mathbb{R}$. Then $(h'_z)_1 \neq \odot \neq (h'_z)_2$. We have $(\partial_1^{VW}h)_z =^* (h'_z)_1 \neq \odot$, so $(\partial_1^{VW}h)_z = (h'_z)_1$. Also, $(\partial_2^{VW}h)_z =^* (h'_z)_2 \neq \odot$, so $(\partial_2^{VW}h)_z = (h'_z)_2$. Then $(h'_z)_1 = (\partial_1^{VW}h)_z = 0$ and $(h'_z)_2 = (\partial_2^{VW}h)_z = 0$. Then $h'_{0_V} = h'_z = (0, 0) = 0_{W \otimes V}$. Also, $h_{0_V} = h_z = 0 = 0_W$. Then, by HW#8-1, we get $h \in \mathcal{O}_1^{VW}$, as desired. QED

9-5. Let $V := \mathbb{R}^2$, $W := \mathbb{R}$, $f : V \dashrightarrow W$, $z := 0_2$. Let $\alpha := (\partial_1 \partial_1 f)_z$, $\beta := (\partial_1 \partial_2 f)_z$, $\delta := (\partial_2 \partial_2 f)_z$, $\lambda := (\partial_1 f)_z, \qquad \mu := (\partial_2 f)_z, \qquad \rho := f_z.$ Assume $\alpha \neq \odot$, $\beta \neq \odot$, $\delta \neq \odot$, $\lambda \neq \odot$, $\mu \neq \odot$, $\rho \neq \odot$. $C \in \mathcal{C}_V^W, \quad L \in \mathcal{L}_V^W, \quad Q \in \mathcal{Q}_V^W \quad \text{by}$ Define $C(x,y) = \rho, \qquad L(x,y) = (\lambda,\mu) \bullet_V (x,y),$ $P(x,y) = \begin{bmatrix} \alpha & \beta \\ \beta & \delta \end{bmatrix} \bullet_{V \otimes V} ((x,y)^{\otimes 2}).$ Let $R := f - \left(C + L + \frac{P}{2!}\right).$ Show: $(\partial_1 \partial_1 R)_z = (\partial_1 \partial_2 R)_z = (\partial_2 \partial_2 R)_z = (\partial_1 R)_z = (\partial_2 R)_z = R_z = 0.$ *Proof:* We have: $\forall x, y \in \mathbb{R}$, $C_{(x,y)} = \rho, \quad (\partial_1 C)_{(x,y)} = 0, \quad (\partial_2 C)_{(x,y)} = 0,$ $(\partial_1 \partial_1 C)_{(x,y)} = 0, \quad (\partial_1 \partial_2 C)_{(x,y)} = 0, \quad (\partial_2 \partial_2 C)_{(x,y)} = 0,$ $L_{(x,y)} = \lambda x + \mu y, \quad (\partial_1 L)_{(x,y)} = \lambda, \quad (\partial_2 L)_{(x,y)} = \mu,$ $(\partial_1 \partial_1 L)_{(x,y)} = 0, \quad (\partial_1 \partial_2 L)_{(x,y)} = 0, \quad (\partial_2 \partial_2 L)_{(x,y)} = 0,$ $P_{(x,y)} = \alpha x^2 + 2\beta xy + \delta y^2,$ $(\partial_1 P)_{(x,y)} = 2\alpha x + 2\beta y, \quad (\partial_2 P)_{(x,y)} = 2\beta x + 2\delta y,$ $(\partial_1 \partial_1 P)_{(x,y)} = 2\alpha, \quad (\partial_1 \partial_2 P)_{(x,y)} = 2\beta, \quad (\partial_2 \partial_2 P)_{(x,y)} = 2\delta.$ Then, since $z = 0_2 = (0, 0)$, we get $C_z = \rho, \quad (\partial_1 C)_z = 0, \quad (\partial_2 C)_z = 0,$ $(\partial_1\partial_1C)_z = 0, \quad (\partial_1\partial_2C)_z = 0, \quad (\partial_2\partial_2C)_z = 0,$ $L_z = 0, \quad (\partial_1 L)_z = \lambda, \quad (\partial_2 L)_z = \mu,$ $(\partial_1 \partial_1 L)_z = 0, \quad (\partial_1 \partial_2 L)_z = 0, \quad (\partial_2 \partial_2 L)_z = 0,$ $P_{z} = 0,$ $(\partial_1 P)_z = 0, \quad (\partial_2 P)_z = z,$ $(\partial_1 \partial_1 P)_z = 2\alpha, \quad (\partial_1 \partial_2 P)_z = 2\beta, \quad (\partial_2 \partial_2 P)_z = 2\delta.$ Then $R_z = f_z - (\rho + 0 + 0) = \rho - \rho = 0 \neq \odot,$ $(\partial_1 R)_z =^* (\partial_1 f)_z - (0 + \lambda + 0) = \lambda - \lambda = 0 \neq \odot,$ $(\partial_2 R)_z =^* (\partial_2 f)_z - (0 + \mu + 0) = \mu - \mu = 0 \neq \odot,$ $(\partial_1 \partial_1 R)_z =^* (\partial_1 \partial_1 f)_z - (0 + 0 + (2\alpha/2)) = \alpha - \alpha = 0 \neq \odot,$ $(\partial_1 \partial_2 R)_z =^* (\partial_1 \partial_2 f)_z - (0 + 0 + (2\beta/2)) = \beta - \beta = 0 \neq \odot,$ $(\partial_2 \partial_2 R)_z =^* (\partial_2 \partial_2 f)_z - (0 + 0 + (2\delta/2)) = \delta - \delta = 0 \neq \odot.$ Then $(\partial_1 \partial_1 R)_z = (\partial_1 \partial_2 R)_z = (\partial_2 \partial_2 R)_z = (\partial_1 R)_z = (\partial_2 R)_z = R_z = 0$, as desired. QED

Homework 8: Due on Tuesday 26 March

8-1. Let $S, T \in \text{TNSR}^+$, $R: S \dashrightarrow T$. Show: $R \in \mathcal{O}_1^{ST}$. Assume ($R_{0_S} = 0_T$) & ($R'_{0_S} = 0_{T \otimes S}$). *Proof:* Let $L := D_{0_S}R$ and $A := R'_{0_S}$. Then $L = \text{Lin}_A^{ST}$ and $A = 0_{T \otimes S}$. Then $L = \operatorname{Lin}_{0_{T\otimes S}}^{ST} = \mathbf{0}_{S}^{T}$. Then $L \neq \odot$. Since $D_{0_S}R = L \neq \odot$, it follows that $R_{0_S}^T - L \in \mathcal{O}_1^{ST}$. Since $R_{0_S} = 0_T$, it follows that $R_{0_S}^T = R$. Then $R = R - \mathbf{0}_S^T = R_{0_S}^T - \mathbf{0}_S^T = R_{0_S}^T - L \in \mathcal{O}_1^{ST}$, as desired. QED 8-2. Let $S, T \in \text{TNSR}^+$, $f: S \dashrightarrow T$. Let $p \in \text{dom}[f']$, $L := \text{Lin}_{f'_p}^{ST}$, $R := f_p^T - L$. Show: $(R_{0_S} = 0_T) \& (R'_{0_S} = 0_{T \otimes S}).$ *Proof:* We have $R_{0_S} = (f_p^T - L)(0_S) = [f_p^T(0_S)] - [L(0_S)].$ Since $p \in \text{dom}[f'] \subseteq \text{dom}[f]$, we get $f_n^T(0_S) = 0_T$. Since $L \in \mathcal{L}_S^T$, we get $L(0_S) = 0_T$. Then $R_{0_S} = R(0_S) = (f_p^T - L)(0_S) = [f_p^T(0_S)] - [L(0_S)] = 0_T - 0_T = 0_T.$ Want: $R'_{0_S} = 0_{T \otimes S}$. We have $D_{0_S}^{ST}(f_p^T) = D_{p+0_S}^{ST}f = D_p^{ST}f = \text{Lin}_{f'_{\perp}}^{ST} = L.$ Also, since $L \in \mathcal{L}_{S}^{T}$, we get $D_{0_{S}}^{ST}L = L$. Then $D_{0_{S}}^{ST}R = D_{0_{S}}^{ST}(f_{p}^{T} - L) =^{*} [D_{0_{S}}^{ST}(f_{p}^{T})] - [D_{0_{S}}^{ST}(L)]$ $= L - L = \mathbf{0}_{S}^{T}$ Since $D_{0_S}R =^* \mathbf{0}_S^T \neq \odot$, it follows that $D_{0_S}R = \mathbf{0}_S^T$. Then $R - 0_S = s\ell_{\bullet}^{ST}(D_{0_S}R) = s\ell_{\bullet}^{ST}(\mathbf{0}_S^T) = 0_{T\otimes S}$. QED 8-3. Let $S \in \text{TNSR}^+$, $p, v \in S$, $i := i_p^v$. Show: $i' = C_{\mathbb{R}}^v$. *Proof:* We have: $\forall t \in \mathbb{R}, i(t) = i_n^v(t) = p + tv.$ Want: $\forall t \in \mathbb{R}, \quad i'(t) = C^v_{\mathbb{R}}(t).$ Want: $i'(t) = C^v_{\mathbb{R}}(t)$. Want $i'_t = v$. Given $t \in \mathbb{R}$. Define $L \in \mathcal{L}^S_{\mathbb{R}}$ by L(h) = hv. Then $s\ell^{\mathbb{R}S}_{\bullet}(L) = s\ell^{\mathbb{R}S}_L = L(1) = v$. We have: $\forall h \in \mathbb{R}, \quad i_t^T(h) = [i(t+h)] - [i(t)]$ = [p + (t+h)v] - [p+tv] = hv = L(h).Then $i_t^T = L$, so $i_t^T - L = L - \tilde{L} = \mathbf{0}_{\mathbb{R}}^S \in \mathcal{O}_1^{\mathbb{R}S}$. Since $i_t^T - L \in \mathcal{O}_1^{\mathbb{R}^S}$, it follows that $L = D_t^{\mathbb{R}^S} i$. Then $i_t' = s\ell_{\bullet}^{\mathbb{R}^S}(D_t^{\mathbb{R}^S}i) = s\ell_{\bullet}^{\mathbb{R}^S}(L) = v$, as desired. QED

8-4. Let $S, T \in \text{TNSR}^+$, $f: S \dashrightarrow T$, $p, v \in S$. Show: $(\partial_v^{ST} f)_p =^* (D_p^{ST} f)_v$.

 $\begin{array}{l} Proof: \mbox{ Let } i:=i_p^v \mbox{ and let } g:=f\circ i.\\ \mbox{Then } (\partial_v^{ST}f)_p=(f\circ i)_0'=g_0'.\\ \mbox{Also, we have: } i_0=i(0)=i_p^v(0)=p+0\cdot v=p.\\ \mbox{By the Linearization Chain Rule,}\\ \mbox{ we have } D_0^{\mathbb{R}^T}(f\circ i)=^*(D_{i_0}^{ST}f)\circ(D_0^{\mathbb{R}^S}i).\\ \mbox{Let } L:=D_0^{\mathbb{R}^S}i \mbox{ and let } M:=D_0^{\mathbb{R}^T}g.\\ \mbox{Then } M=D_0^{\mathbb{R}^T}(f\circ i)=^*(D_{i_0}^{ST}f)\circ(D_0^{\mathbb{R}^S}i)=(D_p^{ST}f)\circ L.\\ \mbox{Then } M(1)=^*((D_p^{ST}f)\circ L)(1)=(D_p^{ST}f)(L(1)).\\ \mbox{We have } g_0'=s\ell_{\bullet}^{\mathbb{R}^T}(D_0^{\mathbb{R}^T}g)=s\ell_{\bullet}^{\mathbb{R}^T}(M)=s\ell_M^{\mathbb{R}^T}=M(1).\\ \mbox{By HW}\#8\text{-}3, i'=C_v^v. \qquad \mbox{Then } i_0'=i'(0)=C_v^v(0)=v.\\ \mbox{We have } i_0'=s\ell_{\bullet}^{\mathbb{R}^S}(D_0^{\mathbb{R}^S}i)=s\ell_{\bullet}^{\mathbb{R}^S}(L)=s\ell_L^{\mathbb{R}^S}=L(1).\\ \mbox{Then } (\partial_v^{ST}f)_p=g_0'=M(1)=^*(D_p^{ST}(v), \mbox{ as desired. QED} \end{array}$

8-5. Let
$$V := \mathbb{R}^2$$
, $W \in \mathbb{R}$, $R : V \to W$,
 $\delta > 0$, $J := (-\delta; \delta)$, $x \in J$.
Assume: $J^2 \subseteq \text{dom} [R']$.
Show: $\exists \alpha \in [0|x]$ s.t. $R|_{(0,0)}^{(x,0)} = ((\partial_1^{VW}R)(\alpha, 0)) \cdot x$.
Proof: Let $i := i_{(0,0)}^{(1,0)}$. By HW#8-3, we have $i' = C_{\mathbb{R}}^{(1,0)}$.
Also: $\forall t \in \mathbb{R}, i_t = i(t) = (0, 0) + t \cdot (1, 0) = (t, 0)$.
Let $f := R \circ i$. Then $f_x = R(i_x) = R(x, 0)$ and $f_0 = R(i_0) = R(0, 0)$.

Claim: $J \subseteq \text{dom} [f']$. Proof of Claim: Want: $\forall t \in J, t \in \text{dom} [f']$. Given $t \in J$. Want: $t \in \text{dom} [f']$. Since $t \in \mathbb{R} = \text{dom} [C_{\mathbb{R}}^{(0,1)} = i' \text{ and } i_t = (t,0) \in J^2 \subseteq \text{dom} [R']$, we conclude that $t \in \text{dom} [(R \circ i)']$. Then $t \in \text{dom} [(R \circ i)'] = \text{dom} [f']$, as desired. End of proof of Claim.

Since $x \in J$, by the Claim and the MVT, choose $\alpha \in [0|x]$ s.t. $f_x - f_0 = (f'_{\alpha}) \cdot (x - 0)$. Want: $R|_{(0,0)}^{(x,0)} = ((\partial_1^{VW} R)(\alpha, 0)) \cdot x$. We have $R|_{(0,0)}^{(x,0)} = [R(x,0)] - [R(0,0)] = f_x - f_0 = (f'_{\alpha}) \cdot (x-0) = (f'_{\alpha}) \cdot x.$ Want: $f'_{\alpha} = (\partial_1^{VW} R)(\alpha, 0).$ We have $D_{\alpha}^{\mathbb{R}W} f = D_{\alpha}^{\mathbb{R}W} (R \circ i) =^* (D_{i(\alpha)}^{VW} R) \circ (D_{\alpha}^{\mathbb{R}V} i).$ Also, $f'_{\alpha} = (D_{\alpha}^{\mathbb{R}W} f)(1)$ and $i'_{\alpha} = (D_{\alpha}^{\mathbb{R}V} i)(1).$ Let $u := \varepsilon_1^V.$ Then $(D_{\alpha}^{\mathbb{R}V} i)(1) = i'_{\alpha} = i'(\alpha) = C_{\mathbb{R}}^{(1,0)}(\alpha) = (1,0) = \varepsilon_1^V = u.$ Then $f'_{\alpha} = (D_{\alpha}^{\mathbb{R}W} f)(1) =^* ((D_{i(\alpha)}^{VW} R) \circ (D_{\alpha}^{\mathbb{R}V} i))(1) = (D_{i(\alpha)}^{VW} R)(u).$ Since $0, x \in J$ and since J is an interval, we get $[0|x] \subseteq J.$ Then $\alpha \in [0|x] \subseteq J.$ So, as $0 \in J$, we get $(\alpha, 0) \in J^2$. Then $(\alpha) = (\alpha, 0) \in J^2 \subseteq \text{dom} [R']$, so $D_{i(\alpha)}^{VW} R \in \mathcal{L}_V^W.$ Then $(D_{i(\alpha)}^{VW} R)(u) \in W$, so $(D_{i(\alpha)}^{VW} R)(u) \neq \odot.$ Since $f'_{\alpha} =^* (D_{i(\alpha)}^{VW} R)(u) \neq \odot$, we conclude that $f'_{\alpha} = (D_{i(\alpha)}^{VW} R)(u).$ Since $u = \varepsilon_1^V$, we get $\partial_u^{VW} R = \partial_1^{VW} R.$ We have $(\partial_u^{VW} R)(i(\alpha)) =^* (D_{i(\alpha)}^{VW} R)_u = (D_{i(\alpha)}^{VW} R)(u).$ Then $(\partial_u^{VW} R)(i(\alpha)) =^* (D_{i(\alpha)}^{VW} R)(u) \neq \odot,$ so $(\partial_u^{VW} R)(i(\alpha)) = (D_{i(\alpha)}^{VW} R)(u).$

Homework 7: Due on Tuesday 12 March

7-1. Let $V, W \in \text{TNSR}$ and let $L, M \in \mathcal{L}_V^W$. Assume: $[L]_V^W = [M]_V^W$. Show: L = M. Proof: Want: $\forall x \in V, L_x = M_x$. Given $x \in V$. Want: $L_x = M_x$. Let $A := s \ell_L^{VW}$. By Theorem 85.6, $L_x = A *_{\mathbb{R}VW} x$. Let $B := \mathfrak{s}\ell_M^{VW}$. By Theorem 85.6, $M_x = B \ast_{\mathbb{R}VW} x$. We have $A = \mathfrak{s}\ell_L^{VW} = [L]_V^W = [M]_V^W = \mathfrak{s}\ell_M^{VW} = B$, so A = B. Then $L_x = A *_{\mathbb{R}VW} x = B *_{\mathbb{R}VW} x = M_x$. QED 7-2. Let $V, W \in \text{TNSR}$ and let $A \in W \otimes V$. Show: $\exists L \in \mathcal{L}_V^W$ s.t. $[L]_V^W = A$. Proof: Define $L \in \mathcal{L}_V^W$ by $L_x = A *_{\mathbb{R}VW} x$. We have $[L]_V^W = \mathrm{s}\ell_L^{VW} = (\mathrm{s}\ell_{\bullet}^{VW})(L)$. Want: $[L]_V^W = A$. Want: $(s\ell_{\bullet}^{VW})(L) = A.$ Want: $L = (\mathrm{s}\ell_{\bullet}^{VW})^{-1}(A)$. Want: L = M. Let $M := (s\ell_{\bullet}^{VW})^{-1}(A).$ Want: $\forall x \in V, L_x = M_x$. Given $x \in V$. Want: $L_x = M_x$. Let $B := \mathrm{s}\ell_M^{VW}$. By Theorem 85.6, $M_x = B *_{\mathbb{R}VW} x$. Since $M = (\mathfrak{s}\ell_{\bullet}^{VW})^{-1}(A)$, we get $(\mathfrak{s}\ell_{\bullet}^{VW})(M) = A$. Then $B = \mathfrak{s}\ell_{M}^{VW} = (\mathfrak{s}\ell_{\bullet}^{VW})(M) = A$. Then $L_{x} = A *_{\mathbb{R}VW} x = B *_{\mathbb{R}VW} x = M_{x}$, as desired. QED

7-3. Let I be a finite set and let $z \in \mathbb{R}^{I}$. $\sum_{j \in I} |z_j| \quad \leqslant \quad \sqrt{\# I} \, \cdot \, \sqrt{\sum_{j \in I} z_j^2}.$ Show: *Proof:* Define $x \in \mathbb{R}^I$ by $x_j = 1$. Then, $\forall j \in I, x_j^2 = 1.$ $\sum_{j \in I} x_j^2 = \#I,$ so $\sqrt{\sum_{j \in I} x_j^2} = \sqrt{\#I}.$ Then Define $y \in \mathbb{R}^I$ by $y_j = |z_j|$. Then, $\forall j \in I, y_j^2 = z_j^2$. $\sum_{j \in I} y_j^2 = \sum_{j \in I} z_j^2, \quad \text{so} \quad \sqrt{\sum_{j \in I} y_j^2} = \sqrt{\sum_{j \in I} z_j^2}.$ Then e: $\forall j \in I, x_j y_j = 1 \cdot |z_j| = |z_j|.$ $\sum_{j \in I} x_j y_j = \sum_{i \in I} |z_j|.$ We have: Then By Theorem 84.11, $\sum_{i \in I} x_j y_j \leqslant \sqrt{\sum_{j \in I} x_j^2} \cdot \sqrt{\sum_{j \in I} y_j^2}.$ Then $\sum_{j \in I} |z_j| = \sum_{j \in I} x_j y_j \leqslant \sqrt{\sum_{j \in I} x_j^2} \cdot \sqrt{\sum_{j \in I} y_j^2} = \sqrt{\# I} \cdot \sqrt{\sum_{j \in I} z_j^2},$ as desired. QED

7-4. Let
$$U, V, W \in \text{TNSR}$$
 and let $B \in \mathcal{B}_{UV}^W$.
Show: $\exists C \ge 0 \text{ s.t.}, \forall p \in U, \forall q \in V, |B(p,q)|_W \le C \cdot |p|_U \cdot |q|_V.$

 $\begin{array}{ll} Proof: \mbox{ Let } K := \max\{ \mid B(\varepsilon_i^U, \varepsilon_j^V) \mid_W \mbox{ s.t. } i \in \mathcal{I}_U, \ j \in \mathcal{I}_V \}. \\ \mbox{Then } K \ge 0. & \mbox{ Let } C := K \cdot \sqrt{\#\mathcal{I}_U} \cdot \sqrt{\#\mathcal{I}_V}. & \mbox{Then } C \ge 0. \\ \mbox{Want: } \forall p \in U, \ \forall q \in V, & |B(p,q)|_W \ \leqslant \ C \cdot |p|_U \cdot |q|_V. \\ \mbox{Given } p \in U, \ q \in V. & \mbox{Want: } |B(p,q)|_W \ \leqslant \ C \cdot |p|_U \cdot |q|_V. \\ \mbox{Since } p = \sum_{i \in \mathcal{I}_U} p_i \varepsilon_i^U \mbox{ and } q = \sum_{j \in \mathcal{I}_V} q_j \varepsilon_j^V, \mbox{ we get} \\ & B(p,q) \ = \sum_{i \in \mathcal{I}_U} \sum_{j \in \mathcal{I}_V} \left(p_i \cdot q_j \cdot B(\varepsilon_i^U, \varepsilon_j^V) \right). \\ \mbox{So, by subadditivity and absolute homogeneity of } |\bullet|_W, \mbox{ we get} \end{array}$

$$|B(p,q)|_{W} \leq \sum_{i \in \mathcal{I}_{U}} \sum_{j \in \mathcal{I}_{V}} \left(|p_{i}| \cdot |q_{j}| \cdot |B(\varepsilon_{i}^{U},\varepsilon_{j}^{V})|_{W} \right)$$

So, by the choice of K, we get

$$\begin{split} |B(p,q)|_{W} &\leq \sum_{i \in \mathcal{I}_{U}} \sum_{j \in \mathcal{I}_{V}} \left(|p_{i}| \cdot |q_{j}| \cdot K \right). \\ \text{So, as } K \cdot \left(\sum_{i \in \mathcal{I}_{U}} |p_{i}| \right) \cdot \left(\sum_{j \in \mathcal{I}_{V}} |q_{j}| \right) = \sum_{i \in \mathcal{I}_{U}} \sum_{j \in \mathcal{I}_{V}} \left(|p_{i}| \cdot |q_{j}| \cdot K \right), \text{ we get} \\ |B(p,q)|_{W} &\leq K \cdot \left(\sum_{i \in \mathcal{I}_{U}} |p_{i}| \right) \cdot \left(\sum_{j \in \mathcal{I}_{V}} |q_{j}| \right). \\ \text{By HW#7-3, we get } \sum_{i \in \mathcal{I}_{U}} |p_{i}| \leq \sqrt{\#\mathcal{I}_{U}} \cdot \sqrt{\sum_{i \in \mathcal{I}_{U}} p_{i}^{2}}. \\ \text{Also, by HW#7-3, we get } \sum_{j \in \mathcal{I}_{V}} |q_{i}| \leq \sqrt{\#\mathcal{I}_{V}} \cdot \sqrt{\sum_{j \in \mathcal{I}_{V}} q_{j}^{2}}. \\ \text{By definition of } |\bullet|_{U}, \text{ we have } |p|_{U} = \sqrt{\sum_{i \in \mathcal{I}_{U}} p_{i}^{2}}. \\ \text{By definition of } |\bullet|_{V}, \text{ we have } |q|_{V} = \sqrt{\sum_{i \in \mathcal{I}_{V}} q_{j}^{2}}. \\ \text{Then } |B(p,q)|_{W} \leq K \cdot \left(\sum_{i \in \mathcal{I}_{U}} |p_{i}| \right) \cdot \left(\sum_{j \in \mathcal{I}_{V}} |q_{j}| \right) \\ &\leq K \cdot \sqrt{\#\mathcal{I}_{U}} \cdot \sqrt{\sum_{i \in \mathcal{I}_{U}} p_{i}^{2}} \cdot \sqrt{\#\mathcal{I}_{V}} \cdot \sqrt{\sum_{j \in \mathcal{I}_{V}} q_{j}^{2}} \\ &\leq K \cdot \sqrt{\#\mathcal{I}_{U}} \cdot |p|_{U} \cdot \sqrt{\#\mathcal{I}_{V}} \cdot |q|_{V} \\ &= K \cdot \sqrt{\#\mathcal{I}_{U}} \cdot \sqrt{\#\mathcal{I}_{V}} \cdot |p|_{U} \cdot |q|_{V} \\ &= C \cdot |p|_{U} \cdot |q|_{V}, \text{ as desired. QED} \end{split}$$

7-5. Let $T, U, V, W \in \text{TNSR}$ and let $* \in \mathcal{B}_{UV}^W$. Show: $\text{BNZ}_{TU} * \text{BNZ}_{TV} \subseteq \text{BNZ}_{TW}$.

Proof: Want: $\forall \alpha \in BNZ_{TU} * BNZ_{TV}, \alpha \in BNZ_{TW}.$ Given $\alpha \in BNZ_{TU} * BNZ_{TV}.$ Want: $\alpha \in BNZ_{TW}.$ Choose $\beta \in BNZ_{TU}$ and $\gamma \in BNZ_{TV}$ s.t. $\alpha = \beta * \gamma.$ By HW#7-4, choose $K \ge 0$ s.t. $\forall p \in U, \forall q \in V,$ $|p * q|_W \le K \cdot |p|_U \cdot |q|_V.$ Since $\beta \in BNZ_{TU} \subseteq DNZ_{TU}$, choose $B \in \mathcal{B}_T(0_T)$ s.t. $B \subseteq \text{dom} [\beta].$ Since $\gamma \in BNZ_{TV} \subseteq DNZ_{TV}$, choose $C \in \mathcal{B}_T(0_T)$ s.t. $C \subseteq \text{dom} [\gamma].$ Then $B \cap C \subseteq (\text{dom} [\beta]) \cap (\text{dom} [\alpha]) = \text{dom} [\beta * \gamma] = \text{dom} [\alpha].$ So, since $B \cap C \in \{B, C\} \subseteq \mathcal{B}_T(0_T)$, we conclude that $\alpha \in DNZ_{TW}.$ Want: $\exists A \in \mathcal{B}_T(0_T)$ s.t. $\alpha_*(A)$ is bounded in W. Since $\beta \in BNZ_{TU}$, choose $D \in \mathcal{B}_T(0_T)$ s.t. $\beta_*(D)$ is bounded in U. Since $\beta_*(D)$ is bounded in U, choose $E \in \mathcal{B}_U$ s.t. $\beta_*(D) \subseteq E$. Since $E \in \mathcal{B}_U$, by the Superset Recentering Lemma, choose $F \in \mathcal{B}_U(0_U)$ s.t. $E \subseteq F$. Since $F \in \mathcal{B}_U(0_U)$, choose r > 0 s.t. $F = B_U(0_U, r)$. Since $\gamma \in BNZ_{TU}$, choose $X \in \mathcal{B}_T(0_T)$ s.t. $\gamma_*(X)$ is bounded in V. Since $\gamma_*(X)$ is bounded in V, choose $Y \in \mathcal{B}_V$ s.t. $\gamma_*(X) \subseteq Y$. Since $Y \in \mathcal{B}_V$, by the Superset Recentering Lemma, choose $Z \in \mathcal{B}_V(0_V)$ s.t. $Y \subseteq Z$. Since $Z \in \mathcal{B}_V(0_V)$, choose s > 0 s.t. $Z = B_V(0_V, s)$. Then $A \in \{D, X\} \subseteq \mathcal{B}_T(0_T)$. Let $A := D \cap X$. Want: $\alpha_*(A)$ is bounded in W. Want: $\exists Q \in \mathcal{B}_W$ s.t. $\alpha_*(A) \subseteq Q$. Then $Q \in \mathcal{B}_W(0_W) \subseteq \mathcal{B}_W$. Let $Q := B_W(0_W, Krs + 1)$. Want: $\alpha_*(A) \subseteq Q$. Want: $\forall w \in \alpha_*(A), w \in Q$. Given $w \in \alpha_*(A)$. Want: $w \in Q$. Want: $|w|_W < Krs + 1$. Since $w \in \alpha_*(A)$, choose $t \in (\operatorname{dom} [\alpha]) \cap A$ s.t. $\alpha(t) = w$. Since $t \in (\operatorname{dom} [\alpha]) \cap A$, we get $t \in \operatorname{dom} [\alpha]$ and $t \in A$. We have $t \in \text{dom} [\alpha] = \text{dom} [\beta * \gamma] = (\text{dom} [\beta]) \cap (\text{dom} [\gamma]),$ $t \in \operatorname{dom}[\beta]$ and $t \in \operatorname{dom}[\gamma]$. \mathbf{SO} Also, we have $t \in A = D \cap X$, $t \in D$ and $t \in X$. \mathbf{SO} Since $t \in \text{dom}[\beta]$ and $t \in D$, we get $\beta(t) \in \beta_*(D)$. So, since $\beta_*(D) \subseteq E \subseteq F = B_U(0_U, r)$, we get $\beta(t) \in B_U(0_U, r)$, so $|\beta(t)|_U < r$. Since $t \in \text{dom}[\gamma]$ and $t \in X$, we get $\gamma(t) \in \gamma_*(X)$. So, since $\gamma_*(X) \subseteq Y \subseteq Z = B_V(0_V, s)$, we get $\gamma(t) \in B_V(0_V, s)$, so $|\gamma(t)|_V < s$. Since $t \in \text{dom}[\beta]$, we get $\beta(t) \in \text{im}[\beta]$. Since $\beta \in BNZ_{TU}$, we get im $[\beta] \subseteq U$. Since $t \in \text{dom}[\gamma]$, we get $\gamma(t) \in \text{im}[\gamma]$. Since $\gamma \in BNZ_{TV}$, we get im $[\gamma] \subseteq V$. Since $\beta(t) \in \operatorname{im} [\beta] \subseteq U$ and $\gamma(t) \in \operatorname{im} [\gamma] \subseteq V$, it follows, from the choice of K, that $|(\beta(t)) * (\gamma(t))|_W \leq K \cdot |\beta(t)|_U \cdot |\gamma(t)|_V$. We have $w = \alpha(t) = (\beta * \gamma)(t) = (\beta(t)) * (\gamma(t)).$ Then $|w|_W = |(\beta(t)) * (\gamma(t))|_W \leq K \cdot |\beta(t)|_U \cdot |\gamma(t)|_V \leq Krs.$ Then $|w|_W \leq Krs < Krs + 1$, as desired. QED

Homework 6: Due on Tuesday 5 March

6-1. Let $T \in \text{TNSR}$, $v \in T$. Show: $v = \sum_{j \in \mathcal{I}_T} v_j \varepsilon_j^T$. *Proof:* Let $w := \sum_{j \in \mathcal{I}_T} v_j \varepsilon_j^T$. Want v = w. Want: $\forall i \in \mathcal{I}_T, v_i = w_i$. Given $i \in \mathcal{I}_T$. Want: $v_i = w_i$. We have: $w_i = \sum_{j \in \mathcal{I}_T} v_j \cdot ((\varepsilon_j^T)_i)$ $= (v_i \cdot ((\varepsilon_i)_i)) + \left(\sum_{j \in \mathcal{I}_T \setminus \{i\}} v_j \cdot ((\varepsilon_j^T)_i)\right)$ $= (v_i \cdot 1) + \left(\sum_{j \in \mathcal{I}_T \setminus \{i\}} v_j \cdot 0\right) = v_i + 0.$ Then $v_i = v_i + 0$, we as desired OFD

Then $v_i = v_i + 0 = w_i$, as desired. QED

6-2. Let
$$S, T \in \text{TNSR}$$
, $A \in T \otimes S$, $L := \text{Lin}_A^{ST}$, $i \in \mathcal{I}_S$.
Show: $L(\varepsilon_i^S) = \sum_{j \in \mathcal{I}_T} A_{j \parallel i} \cdot \varepsilon_j^T$.

 $\begin{array}{ll} \textit{Proof: Let } v := L(\varepsilon_i^S). & \text{By HW}\#6\text{-}1, \text{ we have: } v = \sum_{j \in \mathcal{I}_T} v_j \varepsilon_j^T. \\ \text{By Theorem 83.5, p. 202, we have: } \forall j \in \mathcal{I}_T, \quad A_{j \parallel i} = (L(\varepsilon_i^S))_j. \\ \text{Then } L(\varepsilon_i^S) = v = \sum_{j \in \mathcal{I}_T} v_j \varepsilon_j^T = \sum_{j \in \mathcal{I}_T} (L(\varepsilon_i^S))_j \cdot \varepsilon_j^T \\ &= \sum_{j \in \mathcal{I}_T} A_{j \parallel i} \cdot \varepsilon_j^T, & \text{as desired. } \end{array}$

6-3. Let $S, T \in \text{TNSR}^+$, $C \in \mathcal{C}_S^T$, $p \in S$. Show: $D_p^{ST}C = \mathbf{0}_S^T$. Proof: Since $C \in \mathcal{C}_S^T$, choose $w \in T$ s.t. $C = C_S^w$. We have: $\forall h \in S$, $C_p^T(h) = [C(p+h)] - [C(p)]$ $= [C_S^w(p+h)] - [C_S^w(p)]$ $= w - w = 0_T = \mathbf{0}_S^T(h)$. Then $C_p^T = \mathbf{0}_S^T$. Let $L := \mathbf{0}_S^T$. Then $C_p^T - L = \mathbf{0}_S^T - \mathbf{0}_S^T = \mathbf{0}_S^T \in \mathcal{O}_1^{ST}$. Then $L \in \text{LINS}_pC$, and so $D_p^{ST}C = L$. Then $D_p^{ST}C = L = \mathbf{0}_S^T$, as desired. QED

6-4. Let $S, T \in \text{TNSR}^+$, $L \in \mathcal{L}_S^T$, $p \in S$. Show: $D_n^{ST}L = L$. *Proof:* We have: $\forall h \in S$, $L_p^T(h) = [L(p+h)] - [L(p)]$ = [L(p)] + [L(h)] - [L(p)] = L(h).Then $L_p^T = L$. Then $L_p^T - L = \mathbf{0}_S^T \in \mathcal{O}_1^{ST}$. Then $L \in \text{LINS}_pL$, and so $D_p^{ST}L = L$, as desired. QED 6-5. Let $V, W \in \text{TNSR}^+$, $Q \in \mathcal{Q}_V^W$, $B \in \mathcal{SB}_V^W$. Assume: $Q = B(\bullet, \bullet)$. Show: $\forall x \in V, D_x^{VW}Q = 2 \cdot (B(x, \bullet))$. *Proof:* Given $x \in V$. Want: $D_x^{VW}Q = 2 \cdot (B(x, \bullet))$. We have: $\forall h \in S$, $Q_x^T(h) = (Q(x+h)) - (Q(x))$ = (B(x+h, x+h)) - (B(x, x))= (B(x,x)) + (B(x,h)) + (B(h,x)) + (B(h,h)) - (B(x,x))= (B(x,x)) - (B(x,x)) + (B(x,h)) + (B(x,h)) + (B(h,h)) $= 2 \cdot (B(x,h)) + (B(h,h))$ $= (2 \cdot (B(x, \bullet)) + (B(\bullet, \bullet)))(h).$ Then $Q_x^T = 2 \cdot (B(x, \bullet)) + (B(\bullet, \bullet)).$ Let $L := 2 \cdot (B(x, \bullet))$ and let $R := B(\bullet, \bullet)$. Then $Q_x^T = L + R$ and $L \in \mathcal{L}_V^W$ and $R \in \mathcal{Q}_V^W$. Since $L \in \mathcal{L}_V^W$, we get $L - L = \mathbf{0}_S^T$, and so $L - L + R = \mathbf{0}_S^T + R$. Then $Q_x^T - L = L + R - L = L - L + R = \mathbf{0}_V^W + R = R.$ Then $Q_x^T - L = R \in \mathcal{Q}_V^W \subseteq \widehat{\mathcal{O}}_2^{VW} \subseteq \mathcal{O}_1^{VW}$. So, since $L \in \mathcal{L}_V^W$, we get $L \in \text{LINS}_x Q$, and so $D_x^{VW} Q = L$. Then $D_x^{VW}Q = L = 2 \cdot (B(x, \bullet))$, as desired. QED

Homework 5: Due on Tuesday 26 February

5-1. Let $S := \mathbb{R}^2$ and let $T := \mathbb{R}$. Show: $\mathcal{Q}_{ST} \subseteq \widehat{\mathcal{O}}_2^{ST}$. *Proof:* Want: $\forall Q \in \mathcal{Q}_{ST}, \ Q \in \widehat{\mathcal{O}}_2^{ST}$. Given $Q \in \mathcal{Q}_{ST}$. Want: $Q \in \widehat{\mathcal{O}}_2^{ST}$. Since $Q \in \mathcal{Q}_{ST}$, it follows that dom [Q] = S. Let $\alpha := \operatorname{adj}_{0_S}^{0_T} \left(\frac{Q}{|\bullet|_S^2}\right)$. Then $\alpha(0_S) = 0_T$. Also, dom $[\alpha] = ((\operatorname{dom} [Q])_{0_S}^{\times})_{0_S}^+ = (\operatorname{dom} [Q])_{0_S}^+ = S_{0_S}^+ = S$. Also, $\forall x \in S \setminus \{0_S\}$, we have $Q(x) = (\alpha(x)) \cdot (|x|_S^2)$. Since $Q \in \mathcal{Q}_{ST}$, it follows that $Q(0_S) = 0_T$. Recall that $T = \mathbb{R}$. Then $0_T = 0$. Then $\alpha(0_S) = 0_T = 0$ and $Q(0_S) = 0_T = 0$. Then $Q(0_S) = 0 = 0 \cdot 0^2 = (\alpha(0_S)) \cdot (|0_S|_S^2)$. Then $\forall x \in S$, we have $Q(x) = (\alpha(x)) \cdot (|x|_S^2)$. Then $Q = \alpha \cdot (|\bullet|_S^2)$. Want: $Q \in (BNZ_{ST}) \cdot (|\bullet|_{S}^{2}).$ Want: $\alpha \in BNZ_{ST}$. Since dom $[\alpha] = S$, we see that $\alpha \in \text{DNZ}_{ST}$. Want: $\exists B \in \mathcal{B}_S(0_S)$ s.t. $\alpha_*(B)$ is bounded in T. Want: $\operatorname{im} [\alpha]$ is bounded in T. Recall that $T = \mathbb{R}$. Want: im $[\alpha]$ is bounded in \mathbb{R} . Want: $\exists r > 0$ s.t. im $[\alpha] \subseteq B_{\mathbb{R}}(0, r)$. Let $C := \{ v \in S \text{ s.t. } |v|_S = 1 \}.$ Since C is closed and bounded in S, we see that C is compact. Since $Q \in \mathcal{Q}_{ST}$, it follows that Q is continuous. Then Q|C is continuous. So, since C is compact, by the Extreme Value Theorem, we conclude: $\min(Q|C) \neq \odot \neq \max(Q|C).$ Let $K := \min(Q|C)$ and $L := \max(Q|C)$. Then $(K, L \in \mathbb{R}) \& (K \leq Q \leq L \text{ on } C).$ Let $r := 1 + [\max\{|K|, |L|\}].$ Then r > 0 and -r < K and L < r. Want: im $[\alpha] \subseteq B_{\mathbb{R}}(0, r)$. Want: $\forall y \in \operatorname{im} [\alpha], y \in B_{\mathbb{R}}(0, r).$ Want: $y \in B_{\mathbb{R}}(0, r)$. Given $y \in \operatorname{im}[\alpha]$. Since $y \in \operatorname{im} [\alpha]$, choose $x \in \operatorname{dom} [\alpha]$ s.t. $y = \alpha(x)$. Exactly one of the following is true: (2) $x \neq 0_S$. (1) $x = 0_S$ or Case (1): We have $y = \alpha(x) = \alpha(0_S) = 0 \in B_{\mathbb{R}}(0, r)$, as desired. End of Case (1).

Case (2):

Since $x \neq 0_S$, by definition of α , we get: $\alpha(x) = \frac{Q(x)}{|x|_S^2}$. Also, since $x \neq 0_S$, we get $|x|_S > 0$. Let $b := |x|_S$. Then b > 0, so $\frac{b}{|b|} = 1$. Let $u := \frac{x}{b}$. Then $|u|_S = \frac{|x|_S}{|b|} = \frac{b}{|b|} = 1$. Then $u \in C$, so, since $K \leq Q \leq L$ on C, we get: $K \leq Q(u) \leq L.$ So, since -r < K and L < r, we get: -r < Q(u) < r. Then $Q(u) \in (-r; r) = B_{\mathbb{R}}(0, r).$ Since $Q \in \mathcal{Q}_{ST}$, we have $Q\left(\frac{x}{h}\right) = \frac{Q(x)}{h^2}$. Then $Q(u) = Q\left(\frac{x}{b}\right) = \frac{Q(x)}{b^2} = \frac{Q(x)}{|x|_{c}^2} = \alpha(x).$ Then $y = \alpha(x) = Q(u) \in B_{\mathbb{R}}(0, r)$, as desired. End of Case (2). QED Show: $(BNZ_{ST}) \cdot (CVZ_{S\mathbb{R}}) \subseteq CVZ_{ST}$. 5-2. Let $S, T \in \text{TNSR}^+$. *Proof:* Want: $\forall \gamma \in (BNZ_{ST}) \cdot (CVZ_{S\mathbb{R}}), \quad \gamma \in CVZ_{ST}.$ Given $\gamma \in (BNZ_{ST}) \cdot (CVZ_{S\mathbb{R}})$. Want: $\gamma \in \text{CVZ}_{ST}$. Since $\gamma \in (BNZ_{ST}) \cdot (CVZ_{S\mathbb{R}})$, choose $\alpha \in BNZ_{ST}$, $\beta \in CVZ_{S\mathbb{R}}$ s.t. $\gamma = \alpha \cdot \beta$. Since $\alpha \in BNZ_{ST} \subseteq DNZ_{ST}$ and since $\beta \in CVZ_{S\mathbb{R}} \subseteq DNZ_{S\mathbb{R}}$, choose $P, Q \in \mathcal{B}_S(0_S)$ s.t. $P \subseteq \text{dom}[\alpha]$ and $Q \subseteq \text{dom}[\beta]$. Then $P \cap Q \in \{P, Q\} \subseteq \mathcal{B}_S(0_S)$. So, since $P \cap Q \subseteq (\operatorname{dom} [\alpha]) \cap (\operatorname{dom} [\beta]) = \operatorname{dom} [\alpha \cdot \beta] = \operatorname{dom} [\gamma]$, we conclude that $\gamma \in \text{DNZ}_{ST}$. Want: $\gamma(0_S) = 0_T$ and γ is continuous at 0_S . Since $P \in \mathcal{B}_S(0_S)$, we get $0_S \in P$. Since $\alpha \in \text{DNZ}_{ST}$, we get $\alpha : S \dashrightarrow T$. So, since $0_S \in P \subseteq \text{dom}[\alpha]$, we get $\alpha(0_S) \in T$, so $[\alpha(0_S)] \cdot 0 = 0_T$. Since $\beta \in \text{CVZ}_{S\mathbb{R}}$, we get $\beta(0_S) = 0$. Then $\gamma(0_S) = (\alpha \cdot \beta)(0_S) = [\alpha(0_S)] \cdot [\beta(0_S)] = [\alpha(0_S)] \cdot 0 = 0_T.$ Want: γ is continuous at 0_S . Want: $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}, \forall x \in \text{dom}[\gamma],$ $[|x - 0_S|_S < \delta] \implies [|[\gamma(x)] - [\gamma(0_S)]|_T < \varepsilon].$ Want: $\exists \delta > 0 \text{ s.t.}, \forall x \in \text{dom}[\gamma],$ Given $\varepsilon > 0$. $[|x - 0_S|_S < \delta] \Rightarrow [|[\gamma(x)] - [\gamma(0_S)]|_T < \varepsilon].$ Since $\alpha \in BNZ_{ST}$, choose $A \in \mathcal{B}_S(0_S)$ s.t. $\alpha_*(A)$ is bounded in T. Since $\alpha_*(A)$ is bounded in T, choose $Y \in \mathcal{B}_T$ s.t. $\alpha_*(A) \subseteq Y$. By the Superset Recentering Lemma (Theorem 38.17), choose $Z \in \mathcal{B}_T(0_T)$ s.t. $Y \subseteq Z$. Choose r > 0 s.t. $Z = B_T(0_T, r)$.

Since $\beta \in CVZ_{S\mathbb{R}}$, it follows that β is continuous at 0_S ,

so choose $\eta > 0$ s.t., $\forall x \in \text{dom}[\beta]$, $[|x - 0_S|_S < \eta] \implies [|[\beta(x)] - [\beta(0)]| < \varepsilon/r].$ Then $A, B \in \mathcal{B}_S(0_S)$. Let $B := B_S(0_S, \eta)$. Let $Q := A \cap B$. Then $Q \in \{A, B\} \subseteq \mathcal{B}_S(0_S)$. Choose $\delta > 0$ s.t. $Q = B_S(0_S, \delta)$. Want: $\forall x \in \operatorname{dom}[\gamma], ([|x-0_S|_S < \delta]] \Rightarrow [|[\gamma(x)] - [\gamma(0_S)]|_T < \varepsilon]).$ Given $x \in \operatorname{dom}[\gamma]$. Want: $[|x - 0_S|_S < \delta] \Rightarrow [|[\gamma(x)] - [\gamma(0_S)]|_T < \varepsilon].$ Want: $|[\gamma(x)] - [\gamma(0_S)]|_T < \varepsilon$. Assume: $|x - 0_S|_S < \delta$. We have $x \in \text{dom}[\gamma] = \text{dom}[\alpha \cdot \beta] = (\text{dom}[\alpha]) \cap (\text{dom}[\beta]).$ Then $x \in (\operatorname{dom} [\alpha]) \cap (\operatorname{dom} [\beta]) \subseteq \operatorname{dom} [\beta].$ Also, since $|x - 0_S|_S < \delta$, we have $x \in B_S(0_S, \delta)$. Then $x \in B_S(0_S, \delta) = Q = A \cap B$. Then $x \in A \cap B \subseteq B = B_S(0_S, \eta)$, so $|x - 0_S|_S < \eta$. So, since $x \in \text{dom}[\beta]$, by choice of η , we get: $|[\beta(x)] - [\beta(0_S)]| < \varepsilon/r$. Since $\beta \in \text{CVZ}_{S\mathbb{R}}$, we get $\beta(0_S) = 0$. Then $[\beta(x)] - [\beta(0_S)] = \beta(x)$. Then $|\beta(x)| = |[\beta(x)] - [\beta(0_S)]| < \varepsilon/r$, so $|\beta(x)| < \varepsilon/r$. Since $x \in (\operatorname{dom} [\alpha]) \cap (\operatorname{dom} [\beta]) \subseteq \operatorname{dom} [\alpha]$ and since $x \in A \cap B \subseteq A$, we conclude that $\alpha(x) \in \alpha_*(A)$. Then $\alpha(x) \in \alpha_*(A) \subseteq Y \subseteq Z = B_T(0_T, r)$, so $|\alpha(x)|_T < r$. Since $0 \leq |\alpha(x)|_T < r$ and since $0 \leq |\beta(x)| < \varepsilon/r$, it follows that $|\alpha(x)|_T \cdot |\beta(x)| < r \cdot (\varepsilon/r)$. Recall that $\gamma(0_S) = 0_T$. We have $\gamma(x) = (\alpha \cdot \beta)(x) = [\alpha(x)] \cdot [\beta(x)]$. Then $|[\gamma(x)] - [\gamma(0_S)]|_T = |[\gamma(x)] - 0_T|_T = |\gamma(x)|_T = |[\alpha(x)] \cdot [\beta(x)]|_T$ $|\alpha(x)|_T \cdot |\beta(x)| < r \cdot (\varepsilon/r) = \varepsilon$, as desired. QED 5-3. Let $S \in \text{TNSR}^+$, $f, q : \mathbb{R} \dashrightarrow S$, $p \in \mathbb{R}$. Show: $(f \bullet g)_p^T = (f_p^T) \bullet (g_p) + (f_p) \bullet (g_p^T) + (f_p^T) \bullet (g_p^T).$ *Proof:* Want: $\forall h \in \mathbb{R}$, $(f \bullet g)_p^T(h) = ((f_p^T) \bullet (g_p) + (f_p) \bullet (g_p^T) + (f_p^T) \bullet (g_p^T))(h).$ Given $h \in \mathbb{R}$. Want: $(f \bullet g)_p^T(h) = ((f_p^T) \bullet (g_p) + (f_p) \bullet (g_p^T) + (f_p^T) \bullet (g_p^T))(h).$ Let $A := f_{p+h}, B := g_{p+h}.$

Then $A - a = f_{p+h} - f_p = f_p^T(h)$. Also, $B - b = g_{p+h} - g_p = g_p^T(h)$. We have $A \cdot B - a \cdot b = a \cdot (B - b) + b \cdot (A - a) + (A - a) \cdot (B - b)$.

Then
$$(f \bullet g)_p^T(h) = [(f \bullet g)_{p+h}] - [(f \bullet g)_p] = f_{p+h} \bullet g_{p+h} - f_p \bullet g_p$$

 $= A \bullet B - a \bullet b = (A - a) \bullet b + a \bullet (B - b) + (A - a) \bullet (B - b)$
 $= (f_p^T(h)) \bullet (g_p) + (f_p) \bullet (g_p^T(h)) + (f_p^T(h)) \bullet (g_p^T(h))$
 $= ((f_p^T) \bullet (g_p) + (f_p) \bullet (g_p^T) + (f_p^T) \bullet (g_p^T))(h),$
as desired. QED

5-4. Let $S, T, U \in \text{TNSR}^+$, $f: S \dashrightarrow T$, $g: T \dashrightarrow U$. Let $p \in S$, $q := f_p$. Show: $(f \circ g)_p^T = (g_q^T) \circ (f_p^T)$ Proof: Want: $\forall h \in S$, $((g \circ f)_p^T)(h) = ((g_q^T) \circ (f_p^T))(h)$. Want: $((g \circ f)_p^T)(h) = ((g_q^T) \circ (f_p^T))(h).$ Given $h \in S$. We compute $((g \circ f)_p^T)(h) = [(g \circ f)(p+h)] - [(g \circ f)(p)]$ $= [g(f_{p+h})] - [g(f_p)] = [g(f_{p+h})] - [g(q)].$ Exactly one of the following is true: (1) $q = \Im$ (2) $q \neq \odot$. or Case (1): Since $q = \odot$, we get: $[g(f_{p+h})] - [g(q)] = \textcircled{o} \quad \text{and} \quad ((g_q^T) \circ (f_p^T))(h) = \textcircled{o}.$ both Then $((g \circ f)_p^T)(h) = [g(f_{p+h})] - [g(q)] = \textcircled{S} = ((g_q^T) \circ (f_p^T))(h).$ End of Case (1). Case (2): Since $f_p = q \neq \odot$, we get $f_p \in \operatorname{im}[f] \subseteq \mathbb{R}$. Then $q = f_p \in T$, so $q - q = 0_T$. Let $k := (f_p^T)(h)$. Then $k = f_{p+h} - f_p = f_{p+h} - q$. Then $q + k = q + (f_{p+h} - q) = f_{p+h} + (q - q) = f_{p+h} + 0_T = f_{p+h}$. Then $((g \circ f)_p^T)(h) = [g(f_{p+h})] - [g(q)] = [g(q+k)] - [g(q)]$ = $g_q^T(k) = (g_q^T)((f_p^T)(h)) = ((g_q^T) \circ (f_p^T))(h),$ as desired. End of Case (2). QED 5-5. Let $S, T \in \text{TNSR}$, $i \in \mathcal{I}_S$, $j \in \mathcal{I}_T$. Show: $i \| j \in \mathcal{I}_{S \otimes T}$. *Proof:* Choose $\sigma, \tau \in \mathbb{N}$ s.t. $S \in \text{TNSR}_{\sigma}$ and $T \in \text{TNSR}_{\tau}$. Choose $m \in \mathbb{R}^{\sigma}$ and $n \in \mathbb{R}^{\tau}$ s.t. $S = \mathbb{R}^{m}$ and $T = \mathbb{R}^{n}$.

We have $S = \mathbb{R}^m$, so $\mathcal{I}_S = [m]$. Also, $T = \mathbb{R}^n$, so $\mathcal{I}_S = [n]$. Also, $S \otimes T = \mathbb{R}^{m \parallel n}$, so $\mathcal{I}_{S \otimes T} = [m \parallel n]$. We have: $m = (m_1, \dots, m_{\sigma})$,

```
n = (n_1, \ldots, n_{\tau})
         and
                       m \| n = (m_1, \ldots, m_{\sigma}, n_1, \ldots, n_{\tau}).
         and
                         [m] = [1..m_1] \times \cdots \times [1..m_\sigma],
Then:
                          [n] = [1..n_1] \times \cdots \times [1..n_{\tau}]
          and
                     [m||n] = [1..m_1] \times \cdots \times [1..m_{\sigma}] \times [1..n_1] \times \cdots \times [1..n_{\tau}].
         and
                   i \in \mathcal{I}_S = [m] = [1..m_1] \times \cdots \times [1..m_\sigma]
Then:
         and j \in \mathcal{I}_T = [n] = [1..n_1] \times \cdots \times [1..n_\tau],
         and so
                       i||j \in [1..m_1] \times \cdots \times [1..m_{\sigma}] \times [1..n_1] \times \cdots \times [1..n_{\tau}].
Then i \| j \in [m \| n] = \mathcal{I}_{S \otimes T}, as desired. QED
```

Homework 4: Due on Tuesday 19 February 4-1. Let $k \in \mathbb{N}_0$, $\alpha \in \widehat{\mathcal{O}}_k$ and $\lambda := \operatorname{adj}_0^0\left(\frac{\alpha}{|\bullet|^k}\right)$. Show: $\lambda \in BNZ$. Proof: Since $\alpha \in \widehat{\mathcal{O}}_k = (BNZ) \cdot (|\bullet|^k)$, choose $\mu \in \text{BNZ s.t. } \alpha = \mu \cdot (|\bullet|^k).$ We have dom $[\alpha] = (\operatorname{dom} [\mu]) \cap (\operatorname{dom} [|\bullet|^k]).$ So, since dom $[\mu] \subseteq \mathbb{R} = \text{dom} [|\bullet|^k]$, we see that dom $[\alpha] = \text{dom} [\mu]$. Since $\mu \in BNZ \subseteq DNZ$, choose $A \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $A \subseteq dom[\mu]$. Then $A \subseteq \operatorname{dom}[\mu] = \operatorname{dom}[\alpha]$, so $A \subseteq \operatorname{dom}[\alpha]$. So, since $A \in \mathcal{B}_{\mathbb{R}}(0)$, we see that $\alpha \in DNZ$. We have dom $[\lambda] = \left(\operatorname{dom} \left[\frac{\alpha}{|\bullet|^k} \right] \right)_0^+ = \left((\operatorname{dom} [\alpha])_0^{\times} \right)_0^+ = (\operatorname{dom} [\alpha])_0^+.$ Then $A \subseteq \operatorname{dom} [\alpha] \subseteq (\operatorname{dom} [\alpha])_0^+ = \operatorname{dom} [\lambda]$, so $A \subseteq \operatorname{dom} [\lambda]$. So, since $A \in \mathcal{B}_{\mathbb{R}}(0)$, we conclude that $\lambda \in \text{DNZ}$. Want: $\exists B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\lambda_*(B)$ is bounded in \mathbb{R} . Since $\mu \in BNZ$, choose $C \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\mu_*(C)$ is bounded in \mathbb{R} . Since $A, C \in \mathcal{B}_{\mathbb{R}}(0)$, we get $A \cap C \in \{A, C\}$. Let $B := A \cap C$. Then $B = A \cap C \in \{A, C\} \subseteq \mathcal{B}_{\mathbb{R}}(0).$ Want: $\lambda_*(B)$ is bounded in \mathbb{R} . Since $\mu_*(C)$ is bounded in \mathbb{R} , choose $D \in \mathcal{B}_{\mathbb{R}}$ s.t. $\mu_*(C) \subseteq D$. By the Superset Recentering Lemma, choose $E \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $D \subseteq E$. Since $E \in \mathcal{B}_{\mathbb{R}}(0)$, it follows that $0 \in E$. Since $\mu_*(C) \subseteq D \subseteq E$ and since $0 \in E$, we conclude that $(\mu_*(C)) \cup \{0\} \subseteq E$. So, as $E \in \mathcal{B}_{\mathbb{R}}$, it suffices to show: $\lambda_*(B) \subseteq E$. Want: $\forall y \in \lambda_*(B), y \in E$.

Given $y \in \lambda_*(B)$. Want: $y \in E$. Since $y \in \lambda_*(B)$, choose $x \in B \cap (\operatorname{dom} [\lambda])$ s.t. $y = \lambda_x$. Exactly one of the following is true:

(1) x = 0 or (2) $x \neq 0$.

Case (1):

We have $y = \lambda_x = \lambda_0 = \left(\operatorname{adj}_0^0 \left(\frac{\alpha}{|\bullet|^k} \right) \right)_0 = 0 \in E$, as desired. End of Case (1).

Case (2):

Since $x \neq 0$, we have $\lambda_x = \left(\operatorname{adj}_0^0 \left(\frac{\alpha}{|\bullet|^k} \right) \right)_x = \left(\frac{\alpha}{|\bullet|^k} \right)_x = \frac{\alpha_x}{|x|^k}$. Since $\alpha = \mu \cdot (|\bullet|^k)$, we get: $\alpha_x = (\mu \cdot (|\bullet|^k))_x$. Then $\alpha_x = (\mu \cdot (|\bullet|^k))_x = \mu_x \cdot (|x|^k).$ Since $B \in \mathcal{B}_{\mathbb{R}}(0)$, we get $B \subseteq \mathbb{R}$. Then $x \in B \subseteq \mathbb{R}$. So, since $x \neq 0$, we get $\frac{|x|^k}{|x|^k} = 1$. Then $\lambda_x = \frac{\alpha_x}{|x|^k} = \frac{\mu_x \cdot (|x|^k)}{|x|^k} = \mu_x.$ We have $x \in B \cap (\operatorname{dom} [\lambda]) \subseteq B = A \cap C$, so $x \in A$ and $x \in C$. Since $x \in A \subseteq \text{dom}[\mu]$ and since $x \in C$, we get $\mu_x \in \mu_*(C)$. Then $y = \lambda_x = \mu_x \in \mu_*(C) \subseteq D \subseteq E$, as desired. End of Case (2). QED 4-2. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$ and let $U \in \mathbb{R}$. Assume that U is open in \mathbb{R} and that $U \subseteq \operatorname{dom}[f']$. Assume that f is semi-increasing on U. Let $T := f'_{*}(U)$. Show: $T \ge 0$. *Proof:* Want: $\forall m \in T, m \ge 0$. Given $m \in T$. Want: $m \ge 0$. Assume m < 0. Want: Contradiction. Since $m \in T = f'_*(U)$, choose $p \in U \cap (\operatorname{dom} [f'])$ s.t. $m = f'_n$. Then $p \in U \cap (\operatorname{dom}[f]) \subseteq U$, so $p \in U$. Since U is open in \mathbb{R} , we get: $U = \text{Int}_{\mathbb{R}}U$. Since $p \in U = \operatorname{Int}_{\mathbb{R}} U$, choose $B \in \mathcal{B}_{\mathbb{R}}(p)$ s.t. $B \subseteq U$. Since $B \in \mathcal{B}_{\mathbb{R}}(p)$, choose r > 0 s.t. $B = B_{\mathbb{R}}(p, r)$. Since $f'_p = m < 0$, by Theorem 71.5, choose $\delta > 0$ s.t.

(1) $f < f_p$ on $(p; p + \delta)$ and (2) $f > f_p$ on $(p - \delta; p)$. Then $0 < \gamma < \delta$ and $-r < \gamma < r$. Let $\gamma := \lfloor 1/2 \rfloor \cdot \lfloor \min\{\delta, r\} \rfloor$. Let $q := p + \gamma$. Then $p < q < p + \delta$ and p - r < q < p + r. Then $q \in (p; p + \delta)$ and $q \in (p - r; p + r)$. We have $q \in (p - r; p + r) = B_{\mathbb{R}}(p, r) = B \subseteq U$. Then $p, q \in U$ and $p \leq q$. So, since f is semi-increasing on U, we get: $f_p \leq f_q$. Since $q \in (p; p + \delta)$, by (1), we get: $f_q < f_p$. Then $f_q < f_p \leq f_q$, so $f_q < f_q$, so $f_q \neq f_q$. Contradiction. QED 4-3. Let $f : \mathbb{R} \to \mathbb{R}$ and let J be an interval. Assume that f is c/d on J. Let $I := \operatorname{Int}_{\mathbb{R}} J$ and $T := f'_*(I)$. Show: f is semi-increasing on J. Assume $T \ge 0$. *Proof:* Want: $\forall a, b \in J$, $[(a \leq b) \Rightarrow (f_a \leq f_b)]$. Want: $(a \leq b) \Rightarrow (f_a \leq f_b).$ Given $a, b \in \mathbb{T}$. Assume: $a \leq b$. Want: $f_a \leq f_b$. Assume $f_a > f_b$. Want: Contradiction. Since $f_a > f_b$, we get $f_a \neq f_b$, and so $a \neq b$. Since $a \neq b$ and $a \leq b$, we get: a < b. Then b - a > 0. Since $f_a > f_b$, we get: $f_b - f_a < 0$. So, since b - a > 0, we get $\frac{f_b - f_a}{b - a} < 0$. Then $DQ_f(a,b) = \frac{f_b - f_a}{b-a} < 0$, so $DQ_f(a,b) < 0$. By Theorem 72.22, we have $DQ_f(a, b) \in f'_*(I)$. Then $DQ_f(a, b) \in f'_*(I) = T \ge 0$, so $0 \le DQ_f(a, b)$. Then $0 \leq DQ_f(a, b) < 0$, so 0 < 0. QED Contradiction. 4-4. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$ and let $p \in \mathbb{R}$. Show: $(f(p + \bullet))' = f'(p + \bullet).$ *Proof:* Let $q := f(p + \bullet)$. Want: $q' = f'(p + \bullet)$. Want: $\forall q \in \mathbb{R}, g'(q) = f'(p+q).$ Given $q \in \mathbb{R}$. Want: g'(q) = f'(p+q). Let $R := \{ \mathrm{s}\ell_L \mid L \in$ $LINS_{q}g\}, S := \{s\ell_L \mid L \in LINS_{p+q}f\}.$ Then q'(q) = UE R and f'(p+q) = UE S. Want: R = S. Want: $\text{LINS}_q g = \text{LINS}_{p+q} f$. Want: $\{L \in \mathcal{L} \mid g_q^T - L \in \mathcal{O}_1\} = \{L \in \mathcal{L} \mid f_{p+q}^T - L \in \mathcal{O}_1\}.$

It suffices to show: $g_q^T = f_{p+q}^T$. Want: $\forall h \in \mathbb{R}, (g_q^T)(h) = (f_{p+q}^T)(h)$. Given $h \in \mathbb{R}$. Want: $(g_q^T)(h) = (f_{p+q}^T)(h)$. Want: [g(q+h)] - [g(q)] = [f(p+q+h)] - [f(p+q)]. We have $g(q+h) = (f(p+\bullet))(q+h) = f(p+q+h)$ and $g(q) = (f(p+\bullet))(q) = f(p+q)$. Then g(q+h) = f(p+q+h)and g(q) = f(p+q+h)so [g(q+h)] - [g(q)] = [f(p+q+h)] - [f(p+q)]. QED

4-5. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$ and let $p \in \text{dom}[f]$. Show: $[(f \text{ has a strict local minimum at } p \text{ in } \mathbb{R})$ $\Leftrightarrow (f_p^T \text{ has a strict local minimum at } 0 \text{ in } \mathbb{R})].$ *Proof:* Let $g := f_p^T$. Since $p \in \text{dom}[f]$, we get $f_p \in \text{im}[f]$.

Then $f_p \in \operatorname{im}[f] \subseteq \mathbb{R}$, so $f_p \in \mathbb{R}$.

Proof of \Rightarrow :

Assume: f has a strict local minimum at p in \mathbb{R} . Want: f_n^T has a strict local minimum at 0 in \mathbb{R} . Want: g has a strict local minimum at 0 in \mathbb{R} . Choose $B \in \mathcal{B}_{\mathbb{R}}(p)$ s.t. $f > f_p$ on B_p^{\times} . Since $B \in \mathcal{B}_{\mathbb{R}}(p)$, we get $B - p \in \mathcal{B}_{\mathbb{R}}(0)$. Let A := B - p. Then $A \in \mathcal{B}_{\mathbb{R}}(0)$. It therefore suffices to show: $g > g_0$ on A_0^{\times} . Want: $\forall h \in A_0^{\times}, g_h > g_0$. Given $h \in A_0^{\times}$. Want: $g_h > g_0$. Since A = B - p, it follows that p + A = B. Since $h \in A_0^{\times}$, we get $h \in A$ and $h \neq 0$. Then $p + h \in p + A$ and $p + h \neq p$. Then $p + h \in B$ and $p + h \neq p$, so $p + h \in B_p^{\times}$. So, by the choice of B, it follows that $f_{p+h} > f_p$. So, since $f_p \in \mathbb{R}$, we get: $f_{p+h} - f_p > f_p - f_p$. Then $g_h = (f_p^T)_h = f_{p+h} - f_p > f_p - f_p = f_{p+0} - f_p = g_0$, as desired. End of proof of \Rightarrow .

Proof of \Leftarrow : Assume: f_p^T has a strict local minimum at 0 in \mathbb{R} . Want: f has a strict local minimum at p in \mathbb{R} . Know: q has a strict local minimum at 0 in \mathbb{R} . Choose $A \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $g > g_0$ on A_0^{\times} . Since $A \in \mathcal{B}_{\mathbb{R}}(0)$, we get $A + p \in \mathcal{B}_{\mathbb{R}}(p)$. Let B := A + p. Then $B \in \mathcal{B}_{\mathbb{R}}(p)$. It therefore suffices to show: $f > f_p$ on B_p^{\times} . Want: $\forall x \in B_p^{\times}, f_x > f_p$. Given $x \in B_p^{\times}$. Want: $f_x > f_p$. Since $x \in B_p^{\times}$, we get $x \in B$ and $x \neq p$. Then $x - p \in B - p$ and $x - p \neq 0$. Let h := x - p. Then $h \in B - p$ and $h \neq 0$. Since B = A + p, it follows that B - p = A. Then $h \in A$ and $h \neq 0$. Then $h \in A_0^{\times}$. So, by the choice of A, it follows that $g_h > g_0$. So, as $f_p \in \mathbb{R}$, we get: $g_h + f_p > g_0 + f_p$. We have $g_h = f_{p+h} - f_p$ and $g_0 = f_{p+0} - f_p$, so, as $f_p \in \mathbb{R}$, we get $g_h + f_p = f_{p+h}$ and $g_0 + f_p = f_{p+0}$. Since h = x - p, we get p + h = x. Then $f_x = f_{p+h} = g_h + f_p > g_0 + f_p = f_{p+0} = f_p$, as desired. End of proof of \Leftarrow . QED

Homework 3: Due on Tuesday 12 February

3-1. Define $\alpha : \mathbb{R} \dashrightarrow \mathbb{R}$ by $\alpha_h = \frac{h^2}{9 \cdot (3+h)}$. Show: $\alpha \in \widehat{\mathcal{O}}_2$. *Proof:* Let $\lambda := \operatorname{adj}_0^0 \left(\frac{\alpha}{|\bullet|^2}\right)$. Since $\alpha_0 = 0$, it follows, from Theorem 69.5, that $\alpha = \lambda \cdot (|\bullet|^2)$. Want: $\alpha \in (\operatorname{BNZ}) \cdot (|\bullet|^2)$. Want: $\lambda \in \operatorname{BNZ}$. We have dom $[\lambda] = \left(\operatorname{dom} \left[\frac{\alpha}{|\bullet|^k}\right]\right)_0^+ = ((\operatorname{dom} [\alpha])_0^{\times})_0^+ \supseteq \operatorname{dom} [\alpha]$. So, since $\alpha \in \operatorname{DNZ}$, it follows that $\lambda \in \operatorname{DNZ}$. Want: $\exists B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\lambda_*(B)$ is bounded in \mathbb{R} . Let $B := B_{\mathbb{R}}(0, 1)$. Then $B \in \mathcal{B}_{\mathbb{R}}(0)$. Want: $\lambda_*(B)$ is bounded in \mathbb{R} . Want: $\lambda_*(B) \subseteq B_{\mathbb{R}}(0, 100)$. Want: $\forall y \in \lambda_*(B), y \in B_{\mathbb{R}}(0, 100)$. Given $y \in \lambda_*(B)$. Want $y \in B_{\mathbb{R}}(0, 100)$. Since $y \in \lambda_*(B)$, choose $h \in B$ s.t. $y = \lambda_h$. Exactly one of the following is true:

(1)
$$h = 0$$
 or (2) $h \neq 0$

Case (1):

We have $y = \lambda_h = \lambda_0 = \left(\operatorname{adj}_0^0 \left(\frac{\alpha}{|\bullet|^2} \right) \right)_0 = 0 \in B_{\mathbb{R}}(0, 100)$, as desired. End of Case (1).

Case (2):

We have $y = \lambda_h = \left(\operatorname{adj}_0^0 \left(\frac{\alpha}{|\bullet|^2} \right) \right)_h = \left(\frac{\alpha}{|\bullet|^2} \right)_h = \frac{\alpha_h}{|h|^2}.$ Then $|y| = \frac{|\alpha_h|}{|h|^2}$. Also, $|\alpha_h| = \frac{|h|^2}{9 \cdot |3+h|}$. Then $|y| = \frac{1}{9 \cdot |3+h|}$. Since $h \in B = B_{\mathbb{R}}(0, 1)$, it follows that $d_{\mathbb{R}}(h, 0) < 1$. Then $|h - 0| = d_{\mathbb{R}}(h, 0) < 1$, so -1 < h < 1. Then 3 - 1 < 3 + h < 3 + 1, so 2 < 3 + h < 4. Since 3 + h > 2 > 0, we get |3 + h| = 3 + h and $\frac{1}{3 + h} < \frac{1}{2}$. Since $\frac{1}{3+h} < \frac{1}{2}$, we see that $\frac{1}{9} \cdot \frac{1}{3+h} < \frac{1}{9} \cdot \frac{1}{2}$. Then $d_{\mathbb{R}}(y,0) = |y-0| = |y| = \frac{1}{9 \cdot |3+h|} = \frac{1}{9 \cdot (3+h)}$ $= \frac{1}{9} \cdot \frac{1}{3+h} < \frac{1}{9} \cdot \frac{1}{2} < 100.$ Then $y \in B_{\mathbb{R}}(0, 100)$. End of Case (2). QED 3-2. Define $r : \mathbb{R} \dashrightarrow \mathbb{R}$ by $r_x = 1/x$. Show: $r'_3 = -1/9$. *Proof:* Define $L \in \mathcal{L}$ by $L_h = -h/9$. Then $s\ell_L = L_1 = -1/9$. Want $r'_3 = s\ell_L$. By Theorem 64.49, it suffices to show: $r_3^T - L \in \mathcal{O}_1$. Define $\alpha : \mathbb{R} \dashrightarrow \mathbb{R}$ by $\alpha_h = \frac{h^2}{9 \cdot (3+h)}$. By HW#3-1, $\alpha \in \widehat{\mathcal{O}}_2$, so, since $\widehat{\mathcal{O}}_2 \subseteq \mathcal{O}_1$, we see that $\alpha \in \mathcal{O}_1$. It therefore suffices to show: $r_3^T - L = \alpha$. Want: $\forall h \in \mathbb{R}, (r_3^T - L)_h = \alpha_h.$ Want: $(r_3^T - L)_h = \alpha_h$. Given $h \in \mathbb{R}$. We compute: $(r_3^T - L)_h = [(r_3^T)_h] - [L_h] = [r_{3+h} - r_3] - [-h/9]$ = $r_{3+h} - r_3 + \frac{h}{9} = \frac{1}{3+h} - \frac{1}{3} + \frac{h}{9}$

$$= \frac{9}{9 \cdot (3+h)} - \frac{3 \cdot (3+h)}{9 \cdot (3+h)} + \frac{h \cdot (3+h)}{9 \cdot (3+h)}$$
$$= \frac{9 - 9 - 3h + 3h + h^2}{9 \cdot (3+h)} = \frac{h^2}{9 \cdot (3+h)}$$
$$= \alpha_h, \qquad \text{as desired. QED}$$

3-3. Define $L \in \mathcal{L}$ by $L_x = 7x$. Show: $L' = C_{\mathbb{R}}^7$. *Proof:* Want: $\forall x \in \mathbb{R}, L'_x = (C_{\mathbb{R}}^7)_x$. Given $x \in \mathbb{R}$. Want: $L'_x = (C_{\mathbb{R}}^7)_x$. Want: $L'_x = 7$. We have $s\ell_L = L_1 = 7 \cdot 1 = 7$. Want: $L'_x = s\ell_L$. By Theorem 64.49, it suffices to show: $L_x^T - L \in \mathcal{O}_1$. Since $\mathbf{0} \in \mathcal{O}_1$, it suffices to show: $L_x^T - L = \mathbf{0}$. Want: $\forall h \in \mathbb{R}, (L_x^T - L)_h = \mathbf{0}_h$. Given $h \in \mathbb{R}$. Want: $(L_x^T - L)_h = \mathbf{0}_h$. We have $(L_x^T - L)_h = [(L_x^T)_h] - L_h = [L_{x+h} - L_x] - L_h$ $= [7 \cdot (x+h) - 7x] - 7h = \mathbf{0} = \mathbf{0}_h$, as desired. QED

3-4. Let $a, b \in \mathbb{R}$. Assume a < b. Let I := (a; b), J := [a; b]. Show: $\operatorname{Int}_{\mathbb{R}} J = I$ and $C\ell_{\mathbb{R}} I = J$.

Proof: We wish to prove all of the following:

(1) $\operatorname{Int}_{\mathbb{R}}J \subseteq I$	and	(2) $\operatorname{Int}_{\mathbb{R}} J \supseteq I$	and
(3) $\mathrm{C}\ell_{\mathbb{R}}I \subseteq J$	and	(4) $\mathrm{C}\ell_{\mathbb{R}}I \supseteq J.$	

Proof of (1): Want: $\forall x \in \operatorname{Int}_{\mathbb{R}} J, x \in I$. Given $x \in \operatorname{Int}_{\mathbb{R}} J$. Want: $x \in I$.

Claim A: $x \neq a$. Proof of Claim A: Assume x = a. Want: Contradiction. Since $a = x \in \operatorname{Int}_{\mathbb{R}} J$, choose $U \in \mathcal{B}_{\mathbb{R}}(a)$ s.t. $U \subseteq J$. Since $U \in \mathcal{B}_{\mathbb{R}}(a)$, choose r > 0 s.t. $U = B_{\mathbb{R}}(a, r)$. Let y := a - (r/2). Then y < a. Also, $d_{\mathbb{R}}(y, a) = |a - y| = r/2 < r$, so $y \in B_{\mathbb{R}}(a, r)$. Then $y \in B_{\mathbb{R}}(a, r) = U \subseteq J = [a; b]$, so $y \ge a$. Then y < a and $y \ge a$. Contradiction. End of proof of Claim A.

Claim B: $x \neq b$.

Proof of Claim B: Assume x = b. Want: Contradiction. Since $b = x \in \operatorname{Int}_{\mathbb{R}} J$, choose $U \in \mathcal{B}_{\mathbb{R}}(b)$ s.t. $U \subseteq J$. Since $U \in \mathcal{B}_{\mathbb{R}}(b)$, choose r > 0 s.t. $U = B_{\mathbb{R}}(b, r)$. Let y := b + (r/2). Then y > b. Also, $d_{\mathbb{R}}(y,b) = |b - y| = r/2 < r$, so $y \in B_{\mathbb{R}}(b,r)$. Then $y \in B_{\mathbb{R}}(b,r) = U \subseteq J = [a;b]$, so $y \leq b$. Then y > b and $y \leq b$. Contradiction. End of proof of Claim B.

Since $x \in J = [a; b]$, it follows, from Claim A and Claim B, that $x \in [a; b] \setminus \{a, b\}$. Then $x \in [a; b] \setminus \{a, b\} = (a; b) = I$, as desired. End of proof of (1).

Proof of (2): Want: $\forall x \in I, x \in \text{Int}_{\mathbb{R}} J$. Given $x \in I$. Want: $x \in \text{Int}_{\mathbb{R}} J$. Want: $\exists U \in \mathcal{B}_{\mathbb{R}}(x)$ s.t. $U \subseteq J$. Since $x \in I = (a; b)$, we have a < x < b. Then x - a > 0 and b - x > 0, and so $\min\{x - a, b - x\} > 0$. Let $r := \min\{x-a, b-x\}.$ Then r > 0 and $r \leq x - a$ and $r \leq b - x$. Let $U := B_{\mathbb{R}}(x, r)$. Then $U \in \mathcal{B}_{\mathbb{R}}(x)$. Want: $U \subseteq J$. Want: $\forall y \in U, y \in J$. Given $y \in U$. Want: $y \in J$. Since $y \in U = B_{\mathbb{R}}(x, r)$, we get $d_{\mathbb{R}}(y, x) < r$. Then $|y - x| = d_{\mathbb{R}}(y, x) < r$, so x - r < y < x + r. Since $r \leq x - a$, we get $x - r \geq x - (x - a)$, and so $x - r \geq a$. Since $r \leq b - x$, we get $x + r \leq x + (b - x)$, and so $x + r \leq b$. We have $a \leq x - r < y$, so a < y. Also, $y < x + r \leq b$, so y < b. Then a < y < b, so $y \in (a; b)$. So, since (a; b) = I, we get $y \in I$, as desired. End of proof of (2).

Proof of (3): Want: $\forall x \in C\ell_{\mathbb{R}}I, x \in J$. Given $x \in C\ell_{\mathbb{R}}I$. Want: $x \in J$. Since $x \in C\ell_{\mathbb{R}}I$, choose $s \in I^{\mathbb{N}}$ s.t. $s_{\bullet} \to x$ in \mathbb{R} . We have: $\forall j \in \mathbb{N}, s_j \in I = (a; b) \subseteq [a; b]$, so $a \leq s_j \leq b$. Since $s_{\bullet} \to x$ in \mathbb{R} and since, $\forall j \in \mathbb{N}, s_j \leq b$, it follows, from Theorem 47.1, that $x \leq b$. Since $s_{\bullet} \to x$ in \mathbb{R} and since, $\forall j \in \mathbb{N}, s_j \geq a$, it follows, from Theorem 47.2, that $x \geq a$. Since $a \leq x \leq b$, we get $x \in [a; b]$. So, since [a; b] = J, we get $x \in J$, as desired. End of proof of (3).

Proof of (4): Want: $\forall x \in J, x \in C\ell_{\mathbb{R}}I$. Given $x \in J$. Want: $x \in C\ell_{\mathbb{R}}I$. Want: $\exists s \in I^{\mathbb{N}}$ s.t. $s_{\bullet} \to x$ in \mathbb{R} . Exactly one of the following is true: (α) x = a or (β) $x \neq a$.

 $\begin{array}{l} Case \ (\alpha):\\ \text{Since } a < b, \text{ we see that } b-a > 0. \qquad \text{Then } (b-a)/2 > 0.\\ \text{Let } z := (b-a)/2. \qquad \text{Then } z > 0.\\ \text{Also, as } b-a > 0, \text{ we get } (b-a)/2 < b-a.\\ \text{Then } z < b-a, \text{ and so } a+z < b.\\ \text{Define } s \in \mathbb{R}^{\mathbb{N}} \text{ by } s_j = a + (z/j). \end{array}$

Claim X: $s \in I^{\mathbb{N}}$. Proof of Claim X: We have dom $[s] = \mathbb{N}$. Want: im $[s] \subseteq I$. Want: $\forall q \in \text{im}[s], q \in I$. Given $q \in \operatorname{im}[s]$. Want: $q \in I$. Since $q \in \text{im}[s]$, choose $j \in \mathbb{N}$ s.t. $s_j = q$. Want: $s_j \in I$. We have j > 0, so, as z > 0, we get z/j > 0, so a + (z/j) > a + 0. Then $s_j = a + (z/j) > a + 0 = a$, so $a < s_j$. We have $j \ge 1$, so, as z > 0, we get $z/j \leq z/1$, so $a + (z/j) \leq a + (z/1)$. Then $s_i = a + (z/j) \le a + (z/) = a + z < b$, so $s_i < b$. Since $a < s_j < b$, we get $s_j \in (a; b)$. Then $s_j \in (a; b) = I$. End of proof of Claim X.

By Claim X, $s \in I^{\mathbb{N}}$. Want: $s_{\bullet} \to x$ in \mathbb{R} . By definition of Case (α), we know that x = a. Define $r \in \mathbb{R}^{\mathbb{N}}$ by $r_j = 1/j$. Then, by Theorem 39.7, $r_{\bullet} \to 0$ in \mathbb{R} . Then, by Theorem 40.2, $(z \cdot r)_{\bullet} \to z \cdot 0$ in \mathbb{R} . Let $c := C_{\mathbb{N}}^{a}$. Then, by Theorem 40.3, $c_{\bullet} \to a$ in \mathbb{R} . Then, by Theorem 40.1, $(c + (z \cdot r))_{\bullet} \to a + (z \cdot 0)$ in \mathbb{R} . So, since $a + (z \cdot 0) = a + 0 = a = x$, we get $(c + (z \cdot r))_{\bullet} \to x$ in \mathbb{R} . It therefore suffices to show: $s = c + (z \cdot r)$. Want: $\forall j \in \mathbb{N}, s_{j} = (c + (z \cdot r))_{j}$. Given $j \in \mathbb{N}$. Want: $s_{j} = (c + (z \cdot r))_{j}$. We have $c_{j} = (C_{\mathbb{N}}^{a})_{j} = a$. Also, $(z \cdot r)_{j} = z \cdot (r_{j}) = z \cdot (1/j) = z/j$. Then $s_{j} = a + (z/j) = c_{j} + [(z \cdot r)_{j}] = (c + (z \cdot r))_{j}$. End of Case (α) .

Case (β) : Since $x \in J = [a; b]$, we get $a \leq x \leq b$. Since $a \leq x$ and $x \neq a$, we get a < x. Then x - a > 0. Then (x - a)/2 > 0. Let z := (x - a)/2. Then z > 0. Also, as x - a > 0, we get (x - a)/2 < x - a. Then z < x - a, and so x - z > a. Define $s \in \mathbb{R}^{\mathbb{N}}$ by $s_j = x - (z/j)$.

Claim $Y: s \in I^{\mathbb{N}}$. Proof of Claim Y: We have dom $[s] = \mathbb{N}$. Want: im $[s] \subseteq I$. Want: $\forall q \in \text{im}[s], q \in I$. Given $q \in \operatorname{im}[s]$. Want: $q \in I$. Since $q \in \text{im}[s]$, choose $j \in \mathbb{N}$ s.t. $s_j = q$. Want: $s_i \in I$. We have j > 0, so, as z > 0, we get z/j > 0, so x - (z/j) < x - 0. Then $s_j = x - (z/j) < x - 0 = x \leq b$, so $s_j < b$. We have $j \ge 1$, so, as z > 0, we get $z/j \leq z/1$, so $x - (z/j) \geq x - (z/1)$. Then $s_j = x - (z/j) \ge x - (z/1) = x - z \ge a$, so $s_j > a$, so $a < s_j$. Since $a < s_i < b$, we get $s_i \in (a; b)$. Then $s_i \in (a; b) = I$. End of proof of Claim Y.

By Claim Y, $s \in I^{\mathbb{N}}$. Want: $s_{\bullet} \to x$ in \mathbb{R} . Define $r \in \mathbb{R}^{\mathbb{N}}$ by $r_j = 1/j$. Then, by Theorem 39.7, $r_{\bullet} \to 0$ in \mathbb{R} . Then, by Theorem 40.2, $(-z \cdot r)_{\bullet} \to -z \cdot 0$ in \mathbb{R} . Let $c := C_{\mathbb{N}}^x$. Then, by Theorem 40.3, $c_{\bullet} \to x$ in \mathbb{R} . Then, by Theorem 40.1, $(c + (-z \cdot r))_{\bullet} \to x - (z \cdot 0)$ in \mathbb{R} . So, since $x - (z \cdot 0) = x - 0 = x$, we get $(c + (-z \cdot r))_{\bullet} \to x$ in \mathbb{R} . It therefore suffices to show: $s = c + (-z \cdot r)$. Want: $\forall j \in \mathbb{N}, s_j = (c + (-z \cdot r))_j$. Given $j \in \mathbb{N}$. Want: $s_j = (c + (-z \cdot r))_j$. We have $c_j = (C_{\mathbb{N}}^x)_j = x$. Also, $(-z \cdot r)_j = -z \cdot (r_j) = -z \cdot (1/j) = -z/j$. Then $s_j = x - (z/j) = x + (-z/j) = c_j + [(-z \cdot r)_j] = (c + (-z \cdot r))_j$. End of Case (β) .

End of proof of (4). QED

3-5. Find a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $[f(-2) = f(2)] \& [\forall x \in (-2; 2), f'_x \neq 0].$

Solution: Let $f := |\bullet|$.

Homework 2: Due on Tuesday 5 February

2-1. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $a \in \mathbb{R}$, $p \in \text{dom}[f]$, $S \subseteq \mathbb{R}$ and $q := f_p$. Show: $(f > a \text{ on } S) \Leftrightarrow (f_p^T > a - q \text{ on } S - p).$ *Proof:* Proof of \Rightarrow : Assume: f > a on S. Want: $f_p^T > a - q$ on S - p. Want: $\forall h \in S - p, f_p^T(h) > a - q.$ Given $h \in S - p$. Want: $f_p^T(h) > a - q$. Since $h \in S - p$, choose $x \in S$ s.t. h = x - p. Then p + h = x. Since $x \in S$ and since f > a on S, we get: $f_x > a$. Then $f_x - q > a - q$. Then $f_n^T(h) = f_{p+h} - f_p = f_x - q > a - q$, as desired. End of proof of \Rightarrow . Proof of \Leftarrow : Assume: $f_p^T > a - q$ on S - p. Want: f > a on S. Want: $\forall x \in S, f_x > a$. Given $x \in S$. Want: $f_x > a$. Since $x \in S$, we get: $x - p \in S - p$. Then $h \in S - p$ and p + h = x. Let h := x - p. Since $h \in S - p$ and since $f_p^T > a - q$ on S - p, we get: $f_p^T(h) > a - q$. Then $[f_p^T(h)] + q > a - q + q$. Also, $-f_p + q = -q + q = 0$.

Then $f_x = f_x - f_p + q = f_{p+h} - f_p + q = [f_p^T(h)] + q > a - q + q = a$, as desired. End of proof of \leftarrow . QED

2-2. Show: $(BNZ) \circ (CVZ) \subseteq BNZ$.

 $\begin{array}{ll} Proof: \mbox{ Want: } \forall \alpha \in (\mbox{BNZ}) \circ (\mbox{CVZ}), \ \alpha \in \mbox{BNZ.}\\ \mbox{Given } \alpha \in (\mbox{BNZ}) \circ (\mbox{CVZ}). & \mbox{Want: } \alpha \in \mbox{BNZ.}\\ \mbox{Choose } \beta \in \mbox{BNZ, } \gamma \in \mbox{CVZ s.t. } \alpha = \beta \circ \gamma.\\ \mbox{Since } \beta \in \mbox{BNZ, we get } \beta \in \mbox{DNZ, so choose } A \in \mathcal{B}_{\mathbb{R}}(0) \mbox{ s.t. } A \subseteq \mbox{dom } [\beta].\\ \mbox{Since } \gamma \in \mbox{CVZ, we get } \gamma \in \mbox{DNZ, so choose } D \in \mathcal{B}_{\mathbb{R}}(0) \mbox{ s.t. } D \subseteq \mbox{dom } [\gamma].\\ \mbox{Since } \gamma \in \mbox{CVZ, we get: } \gamma \mbox{ is continuous at } 0 \mbox{ and } \gamma_0 = 0.\\ \mbox{Since } \gamma \mbox{ is continuous at } 0 \mbox{ and } A \in \mathcal{B}_{\mathbb{R}}(0) = \mathcal{B}_{\mathbb{R}}(\gamma_0),\\ \mbox{choose } E \in \mathcal{B}_{\mathbb{R}}(0) \mbox{ s.t. } \gamma_*(E) \subseteq A.\\ \mbox{Let } F := D \cap E. & \mbox{Then } F \in \mathcal{B}_{\mathbb{R}}(0). \end{array}$

Claim 1: $F \subseteq \text{dom} [\alpha]$. Proof of Claim 1: Want: $\forall x \in F, x \in \text{dom} [\alpha]$. Given $x \in F$. Want: $x \in \text{dom} [\alpha]$. We have $x \in F \subseteq D \subseteq \text{dom} [\gamma]$. Also, $x \in F \subseteq E$. Since $x \in \text{dom} [\gamma]$ and since $x \in E$, we get: $\gamma(x) \in \gamma_*(E)$. Then $\gamma(x) \in \gamma_*(E) \subseteq A \subseteq \text{dom} [\beta]$, so $\beta(\gamma(x)) \neq \odot$. Then $\alpha(x) = (\beta \circ \gamma)(x) = \beta(\gamma(x)) \neq \odot$, so $x \in \text{dom} [\alpha]$, as desired. End of Proof of Claim 1.

Since $F \in \mathcal{B}_{\mathbb{R}}(0)$, by Claim 1, we conclude that $\alpha \in \text{DNZ}$. Want: $\exists Z \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\alpha_*(Z)$ is bounded in \mathbb{R} . Since $\beta \in \text{BNZ}$, choose $B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\beta_*(B)$ is bounded in \mathbb{R} . Since γ is continuous at 0 and $B \in \mathcal{B}_{\mathbb{R}}(0) = \mathcal{B}_{\mathbb{R}}(\gamma_0)$, choose $Z \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\gamma_*(Z) \subseteq B$. Want: $\alpha_*(Z)$ is bounded in \mathbb{R} . Since $\beta_*(B)$ is bounded in \mathbb{R} , it suffices to prove: $\alpha_*(Z) \subseteq \beta_*(B)$. Want: $\forall q \in \alpha_*(Z), q \in \beta_*(B)$. Given $q \in \alpha_*(Z)$. Want: $q \in \beta_*(B)$. Since $q \in \alpha_*(Z)$, choose $p \in Z \cap (\text{dom} [\alpha])$ s.t. $q = \alpha(p)$. We have: $p \in Z$ and $p \in \text{dom} [\alpha]$. Since $p \in \text{dom} [\alpha]$, we get: $\alpha(p) \neq \odot$. Also, $\beta(\gamma(p)) = (\beta \circ \gamma)(p) = \alpha(p)$. Then $\beta(\gamma(p)) = \alpha(p) \neq \odot$, so $\gamma(p) \in \text{dom} [\beta]$. Then $\gamma(p) \neq \odot$, so $p \in \text{dom}[\gamma]$. Since $p \in \text{dom}[\gamma]$ and since $p \in Z$, we conclude that $\gamma(p) \in \gamma_*(Z)$. So, since $\gamma_*(Z) \subseteq B$, it follows that $\gamma(p) \in B$. Since $\gamma(p) \in \text{dom}[\beta]$ and since $\gamma(p) \in B$, we see that $\beta(\gamma(p)) \in \beta_*(B)$. Then $q = \alpha(p) = \beta(\gamma(p)) \in \beta_*(B)$, as desired. QED

2-3. Let $j, k \in \mathbb{N}$. Show: $\widehat{\mathcal{O}}_j \circ \mathcal{O}_k \subseteq \mathcal{O}_{jk}$.

Proof: Want: $\forall \alpha \in \widehat{\mathcal{O}}_i \circ \mathcal{O}_k, \ \alpha \in \mathcal{O}_{ik}.$ Given $\alpha \in \alpha \in \widehat{\mathcal{O}}_i \circ \mathcal{O}_k$. Want: $\alpha \in \mathcal{O}_{ik}$. Choose $\beta \in \widehat{\mathcal{O}}_i, \gamma \in \mathcal{O}_k$ s.t. $\alpha = \beta \circ \gamma$. Since $\beta \in \widehat{\mathcal{O}}_i = (BNZ) \cdot (|\bullet|^j)$, choose $\phi \in BNZ$ s.t. $\beta = \phi \cdot (|\bullet|^j)$. Since $\gamma \in \mathcal{O}_k = (\text{CVZ}) \cdot (|\bullet|^k)$, choose $\psi \in \text{CVZ s.t. } \gamma = \psi \cdot (|\bullet|^k)$. We have: $\forall x \in \mathbb{R}, \ \alpha(x) = (\beta \circ \gamma)(x) = \beta(\gamma(x)) = (\phi \cdot (|\bullet|^j))(\gamma(x))$ $= \left[\phi(\gamma(x)) \cdot \left[\mid \gamma(x) \mid^{j} \right] \right]$ $= \left[(\phi \circ \gamma)(x) \right] \cdot \left[| (\psi \cdot (|\bullet|^k))(x) |^j \right]$ $= \left[(\phi \circ \gamma)(x) \right] \cdot \left[| [\psi(x)] \cdot [|x|^k] |^j \right]$ $= \left[(\phi \circ \gamma)(x) \right] \cdot \left[\begin{array}{c} | \psi(x) |^{j} \\ | \psi(x) |^{j} \end{array} \right] \cdot \left[\begin{array}{c} | x|^{k} |^{j} \\ | x|^{k} \\ | y \end{array} \right]$ $= \left[(\phi \circ \gamma)(x) \right] \cdot \left[|\psi(x)|^{j} \right] \cdot \left[|x|^{jk} \right]$ $= (\left[\phi \circ \gamma\right] \cdot \left[\left|\psi^{j}\right|\right] \cdot \left[\left|\bullet\right|^{jk}\right])(x).$ Then $\alpha = [\phi \circ \gamma] \cdot [|\psi^j|] \cdot [|\bullet|^{jk}].$ We have $\phi \in BNZ$ and $\gamma \in \mathcal{O}_k \subseteq \mathcal{O}_0 = CVZ$, so $\phi \circ \gamma \in (BNZ) \circ (CVZ)$. By HW#2-2, (BNZ) \circ (CVZ) \subseteq BNZ. Then $\phi \circ \gamma \in BNZ$. Since $\psi \in CVZ$, we get $|\psi| \in |CVZ| \subseteq CVZ$. So, since $j \in \mathbb{N}$, it follows that $|\psi|^j \in \text{CVZ}$. Then $[\phi \circ \gamma] \cdot [|\psi^j|] \in (BNZ) \cdot (CVZ).$ By HW#1-4, (BNZ) \cdot (CVZ) \subseteq CVZ. Then $[\phi \circ \gamma] \cdot [|\psi^j|] \in \text{CVZ}.$ Then $\alpha = [\phi \circ \gamma] \cdot [|\psi^j|] \cdot [|\bullet|^{jk}] \in (\text{CVZ}) \cdot (|\bullet|^{jk}) = \mathcal{O}_{jk}$. QED 2-4. Let $\phi \in \text{CVZ}$, $\varepsilon > 0$. Show: $\exists B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $|\phi| < \varepsilon$ on B.

Proof: Since $\phi \in CVZ$, we know:

 $\phi \in \text{DNZ} \quad \text{and} \quad \phi_0 = 0 \quad \text{and} \quad \phi \text{ is continuous at } 0.$ Let $C := B_{\mathbb{R}}(0, \varepsilon)$. Then $C \in \mathcal{B}_{\mathbb{R}}(0) = \mathcal{B}_{\mathbb{R}}(\phi_0)$. So, since ϕ is continuous at 0, choose $A \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\phi_*(A) \subseteq C$. Since $\phi \in \text{DNZ}$, choose $D \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $D \subseteq \text{dom} [\phi]$. Since $A, D \in \mathcal{B}_{\mathbb{R}}(0)$, we get $A \cap D \in \{A, D\}$. Let $B := A \cap D$. Then $B \in \{A, D\} \subseteq \mathcal{B}_{\mathbb{R}}(0)$. Want: $|\phi| < \varepsilon$ on B. Want: $\forall x \in B, (|\phi|)(x) < \varepsilon$. Given $x \in B$. Want: $(|\phi|)(x) < \varepsilon$. We have $x \in B = A \cap D \subseteq D \subseteq \operatorname{dom}[\phi]$. Also, $x \in B = A \cap D \subseteq A$. Since $x \in A$ and $x \in \text{dom}[\phi]$, we get $\phi(x) \in \phi_*(A)$. Then $\phi(x) \in \phi_*(A) \subseteq C = B_{\mathbb{R}}(0,\varepsilon)$, so $|[\phi(x)] - 0| < \varepsilon$. Then $(|\phi|)(x) = |\phi(x)| = |[\phi(x)] - 0| < \varepsilon$, as desired. QED 2-5. Let $\alpha \in \mathcal{O}_1$, $L \in \mathcal{L} \setminus \{\mathbf{0}\}$. Show: $\exists B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $|\alpha| \leq |L|$ on B. *Proof:* Since $L \in \mathcal{L}$, choose $m \in \mathbb{R}$ s.t. $L = m \cdot \mathrm{id}_{\mathbb{R}}$. Then, for all $x \in \mathbb{R}$, we have: $L_x = mx$. Since $L \neq \mathbf{0}$, we see that $m \neq 0$, so $m \in \mathbb{R}_0^{\times}$, so |m| > 0. Then $\varepsilon > 0$. Let $\varepsilon := |m|$. Since $\alpha \in \mathcal{O}_1 = \text{CVZ} \cdot (|\bullet|)$, choose $\phi \in \text{CVZ}$ s.t. $\alpha = \phi \cdot (|\bullet|)$. By HW#2-4, choose $B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $|\phi| < \varepsilon$ on B. Want: $|\alpha| \leq |L|$ on B. Want: $\forall x \in B, \ |\alpha|_x \leq |L|_x.$ Given $x \in B$. Want: $|\alpha|_x \leq |L|_x$. Since $x \in B$ and $|\phi| < \varepsilon$ on B, we get: $|\phi|_x < \varepsilon$. Since $|\phi|_x \leq \varepsilon$ and $|x| \geq 0$, we conclude that $|\phi|_x \cdot |x| \leq \varepsilon \cdot |x|$. Since $\alpha = \phi \cdot (|\bullet|)$, it follows that $\alpha_x = \phi_x \cdot |x|$, and so $|\alpha_x| = |\phi_x| \cdot |x|$. Then $|\alpha|_x = |\alpha_x| = |\phi_x| \cdot |x| = |\phi|_x \cdot |x| \leq \varepsilon \cdot |x|$ $= |m| \cdot |x| = |mx| = |L_x| = |L|_x$, as desired. QED

Homework 1: Due on Tuesday 29 January

1-1. Let $j \in \mathbb{N}_0$. Show: $\mathcal{O}_j \supseteq (CVZ) \cdot (|\bullet|^j)$. *Proof:* Want: $\forall \alpha \in (CVZ) \cdot (|\bullet|^j)$, $\alpha \in \mathcal{O}_j$. Given $\alpha \in (CVZ) \cdot (|\bullet|^j)$. Want: $\alpha \in \mathcal{O}_j$. Let $\beta := \frac{\alpha}{|\bullet|^j}$. Want: $(\alpha \in DNZ) \& (\alpha_0 = 0) \& (\beta \to 0 \text{ near } 0)$. Since $\alpha \in (CVZ) \cdot (|\bullet|^j)$, choose $\phi \in CVZ$ s.t. $\alpha = \phi \cdot (|\bullet|^j)$. Since dom $[|\bullet|^j] = \mathbb{R}$, we get $|\bullet|^j \in DNZ$. Then $\alpha = \phi \cdot (|\bullet|^j) \in (DNZ) \cdot (DNZ) \subseteq DNZ$. Want: $(\alpha_0 = 0) \& (\beta \to 0 \text{ near } 0)$. Since $\phi \in CVZ$, it follows that $\phi_0 = 0$. Then $\alpha_0 = (\phi \cdot |\bullet|^j)_0 = (\phi_0) \cdot (|0|^j) = 0 \cdot 0 = 0$. Want: $\beta \to 0$ near 0.

Claim: $\beta = \phi$ on \mathbb{R}_0^{\times} .

Proof of claim: Want: $\forall x \in \mathbb{R}_0^{\times}, \ \beta_x = \phi_x.$ Given $x \in \mathbb{R}_0^{\times}$. Want: $\beta_x = \phi_x.$ Since $x \in \mathbb{R}_0^{\times}$, it follows that $\frac{|x|^j}{|x|^j} = 1.$ We have: $\alpha_x = (\phi \cdot (| \bullet |^j))_x = (\phi_x) \cdot (|x|^j).$ Then: $\beta_x = \left(\frac{\alpha}{|\bullet|^j}\right)_x = \frac{\alpha_x}{|x|^j} = \frac{(\phi_x) \cdot (|x|^j)}{|x|^j} = (\phi_x) \cdot 1 = \phi_x$, as desired. End of proof of claim.

Since $\phi \in \text{CVZ}$, it follows that $\phi \to \phi_0$ near 0. So, since $\phi_0 = 0$, we get: $\phi \to 0$ near 0. So, since $\beta = \phi$ on \mathbb{R}_0^{\times} , we conclude that $\beta \to 0$ near 0, as desired. QED

1-2. Show: $CVZ \subseteq BNZ$.

Proof: Want: $\forall \alpha \in \text{CVZ}, \ \alpha \in \text{BNZ}.$ Given $\alpha \in \text{CVZ}$. Want: $\alpha \in \text{BNZ}.$ We have $\alpha \in \text{CVZ} \subseteq \text{DNZ}.$ Want: $\exists B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\alpha_*(B)$ is bounded in \mathbb{R} . Since $\alpha \in \text{CVZ}$, it follows that α is continuous at 0. Choose $B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\alpha_*(B) \subseteq B_{\mathbb{R}}(0, 1)$. Want: $\alpha_*(B)$ is bounded in \mathbb{R} . Since $\alpha_*(B) \subseteq B_{\mathbb{R}}(0, 1)$, it follows that $\alpha_*(B)$ is bounded in \mathbb{R} . QED

1-3. Show: $(BNZ) \cdot (BNZ) \subseteq BNZ$.

 $\begin{array}{ll} Proof: \mbox{ Want: } \forall \gamma \in (\mbox{BNZ}) \cdot (\mbox{BNZ}), & \gamma \in \mbox{BNZ}.\\ \mbox{Given } \gamma \in (\mbox{BNZ}) \cdot (\mbox{BNZ}), & \mbox{Want: } \gamma \in \mbox{BNZ}.\\ \mbox{Since } \gamma \in (\mbox{BNZ}) \cdot (\mbox{BNZ}), & \mbox{choose } \alpha, \beta \in \mbox{BNZ s.t. } \gamma = \alpha \cdot \beta.\\ \mbox{Since } \alpha, \beta \in \mbox{BNZ} \subseteq \mbox{DNZ}, & \mbox{choose } P, Q \in \mathcal{B}_{\mathbb{R}}(0) \mbox{ s.t. } P \subseteq \mbox{dom} \left[\alpha\right] \mbox{ and } Q \in \mbox{dom} \left[\beta\right].\\ \mbox{Then } P \cap Q \in \mathcal{B}_{\mathbb{R}}(0).\\ \mbox{So, since } P \cap Q \subseteq (\mbox{dom} \left[\alpha\right]) \cap (\mbox{dom} \left[\beta\right]) = \mbox{dom} \left[\alpha \cdot \beta\right] = \mbox{dom} \left[\gamma\right], & \mbox{we conclude that } \gamma \in \mbox{DNZ}.\\ \mbox{Want: } \exists C \in \mathcal{B}_{\mathbb{R}}(0) \mbox{ s.t. } \gamma_*(C) \mbox{ is bounded in } \mathbb{R}.\\ \mbox{Since } \alpha, \beta \in \mbox{BNZ}, & \mbox{choose } A, B \in \mathcal{B}_{\mathbb{R}}(0) \mbox{ s.t. } \\ \alpha_*(A) \mbox{ and } \beta_*(B) \mbox{ are bounded in } \mathbb{R}.\\ \mbox{Let } C := A \cap B. & \mbox{Then } C \in \mathcal{B}_{\mathbb{R}}(0). \end{array}$

Want: $\gamma_*(C)$ is bounded in \mathbb{R} .

Since $\alpha_*(A)$ and $\beta_*(B)$ are bounded in \mathbb{R} , choose $T, U \in \mathcal{B}_{\mathbb{R}}$ s.t. $\alpha_*(A) \subseteq T$ and $\beta_*(B) \subseteq U$. By the Superset Recentering Lemma (Theorem 38.17), choose $V, W \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $T \subseteq V$ and $U \subseteq W$. Choose r, s > 0 s.t. $V = B_{\mathbb{R}}(0, r)$ and $W = B_{\mathbb{R}}(0, s)$. Want: $\gamma_*(C) \subseteq B_{\mathbb{R}}(0, rs).$ Want: $\forall y \in \gamma_*(C), y \in B_{\mathbb{R}}(0, rs).$ Given $y \in \gamma_*(C)$. Want: $y \in B_{\mathbb{R}}(0, rs)$. Want: |y| < rs. Since $y \in \gamma_*(C)$, choose $x \in C \cap (\operatorname{dom}[\gamma])$ s.t. $\gamma(x) = y$. We have $x \in \text{dom}[\gamma] = \text{dom}[\alpha \cdot \beta] = (\text{dom}[\alpha]) \cap (\text{dom}[\beta]).$ Since $x \in \text{dom}[\alpha]$ and $x \in C = A \cap B \subseteq A$, we get: $\alpha(x) \in \alpha_*(A)$. Since $x \in \text{dom}[\beta]$ and $x \in C = A \cap B \subseteq B$, we get: $\beta(x) \in \beta_*(B)$. Then $\alpha(x) \in \alpha_*(A) \subseteq T \subseteq V = B_{\mathbb{R}}(0, r)$, so $|\alpha(x)| < r$. Also, $\beta(x) \in \beta_*(A) \subseteq U \subseteq W = B_{\mathbb{R}}(0,s)$, so $|\beta(x)| < s$. Since $0 \leq |\alpha(x)| < r$ and $0 \leq |\beta(x)| < s$, we get $|\alpha(x)| \cdot |\beta(x)| < rs$. We have $\gamma(x) = (\alpha \cdot \beta)(x) = [\alpha(x)] \cdot [\beta(x)]$, so $|\gamma(x)| = |\alpha(x)| \cdot |\beta(x)|$. Then $|y| = |\gamma(x)| = |\alpha(x)| \cdot |\beta(x)| < rs$, as desired. QED

1-4. Show: $(BNZ) \cdot (CVZ) \subseteq CVZ$.

Proof: Want: $\forall \gamma \in (BNZ) \cdot (CVZ)$, $\gamma \in CVZ.$ Given $\gamma \in (BNZ) \cdot (CVZ)$. Want: $\gamma \in CVZ$. Since $\gamma \in (BNZ) \cdot (CVZ)$, choose $\alpha \in BNZ$, $\beta \in CVZ$ s.t. $\gamma = \alpha \cdot \beta$. Since $\alpha \in BNZ \subseteq DNZ$ and since $\beta \in CVZ \subseteq DNZ$, choose $P, Q \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $P \subseteq \text{dom}[\alpha]$ and $Q \subseteq \text{dom}[\beta]$. Then $P \cap Q \in \mathcal{B}_{\mathbb{R}}(0)$. So, since $P \cap Q \in (\operatorname{dom} [\alpha]) \cap (\operatorname{dom} [\beta]) = \operatorname{dom} [\alpha \cdot \beta] = \operatorname{dom} [\gamma]$, we conclude that $\gamma \in DNZ$. Want: $\gamma(0) = 0$ and γ is continuous at 0. Since $P \in \mathcal{B}_{\mathbb{R}}(0)$, we get $0 \in P$. Since $\alpha \in DNZ$, we get $\alpha : \mathbb{R} \dashrightarrow \mathbb{R}$. So, since $0 \in P \subseteq \text{dom}[\alpha]$, we get $\alpha(0) \in \mathbb{R}$, so $[\alpha(0)] \cdot 0 = 0$. Since $\beta \in CVZ$, we get $\beta(0) = 0$. Then $\gamma(0) = (\alpha \cdot \beta)(0) = [\alpha(0)] \cdot [\beta(0)] = [\alpha(0)] \cdot 0 = 0.$ Want: γ is continuous at 0. Want: $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}, \forall x \in \text{dom}[\gamma],$ $[|x-0| < \delta] \implies [|[\gamma(x)] - [\gamma(0)]| < \varepsilon].$ Given $\varepsilon > 0$. Want: $\exists \delta > 0 \text{ s.t.}, \forall x \in \text{dom}[\gamma],$

 $[|x-0| < \delta] \implies [|[\gamma(x)] - [\gamma(0)]| < \varepsilon].$ Since $\alpha \in BNZ$, choose $A \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\alpha_*(A)$ is bounded in \mathbb{R} . Since $\alpha_*(A)$ is bounded in \mathbb{R} , choose $T \in \mathcal{B}_{\mathbb{R}}$ s.t. $\alpha_*(A) \subseteq T$. By the Superset Recentering Lemma (Theorem 38.17), choose $U \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $T \subseteq U$. Choose r > 0 s.t. $U = B_{\mathbb{R}}(0, r)$. Since $\beta \in CVZ$, it follows that β is continuous at 0, so choose $\eta > 0$ s.t., $\forall x \in \text{dom}[\beta]$, $[|x-0| < \eta] \Rightarrow [|[\beta(x)] - [\beta(0)]| < \varepsilon/r].$ Let $B := B_{\mathbb{R}}(0, \eta)$. Then $A, B \in \mathcal{B}_{\mathbb{R}}(0)$. Let $Q := A \cap B$. Choose $\delta > 0$ s.t. $Q = B_{\mathbb{R}}(0, \delta)$. Then $Q \in \mathcal{B}_{\mathbb{R}}(0)$. Want: $\forall x \in \text{dom}[\gamma], ([|x-0| < \delta]] \Rightarrow [|[\gamma(x)] - [\gamma(0)]| < \varepsilon]).$ Given $x \in \operatorname{dom}[\gamma]$. Want: $[|x-0| < \delta] \Rightarrow [|[\gamma(x)] - [\gamma(0)]| < \varepsilon].$ Assume: $|x - 0| < \delta$. Want: $|[\gamma(x)] - [\gamma(0)]| < \varepsilon$. We have $x \in \text{dom}[\gamma] = \text{dom}[\alpha \cdot \beta] = (\text{dom}[\alpha]) \cap (\text{dom}[\beta]).$ Then $x \in (\operatorname{dom} [\alpha]) \cap (\operatorname{dom} [\beta]) \subseteq \operatorname{dom} [\beta].$ Also, since $|x - 0| < \delta$, we have $x \in B_{\mathbb{R}}(0, \delta)$. Then $x \in B_{\mathbb{R}}(0, \delta) = Q = A \cap B$. Then $x \in A \cap B \subseteq B = B_{\mathbb{R}}(0,\eta)$, so $|x-0| < \eta$. So, since $x \in \text{dom}[\beta]$, by choice of η , we get: $|[\beta(x)] - [\beta(0)]| < \varepsilon/r$. Since $\beta \in CVZ$, we get $\beta(0) = 0$. Then $\left[\beta(x)\right] - \left[\beta(0)\right] = \beta(x)$. Then $|\beta(x)| = |[\beta(x)] - [\beta(0)]| < \varepsilon/r$, so $|\beta(x)| < \varepsilon/r$. Since $x \in (\operatorname{dom} [\alpha]) \cap (\operatorname{dom} [\beta]) \subseteq \operatorname{dom} [\alpha]$ and since $x \in A \cap B \subseteq A$, we conclude that $\alpha(x) \in \alpha_*(A)$. Then $\alpha(x) \in \alpha_*(A) \subseteq T \subseteq U = B_{\mathbb{R}}(0, r)$, so $|\alpha(x)| < r$. Since $0 \leq |\alpha(x)| < r$ and since $0 \leq |\beta(x)| < \varepsilon/r$, it follows that $|\alpha(x)| \cdot |\beta(x)| < r \cdot (\varepsilon/r)$. We have $\gamma(x) = (\alpha \cdot \beta)(x) = [\alpha(x)] \cdot [\beta(x)].$ Recall that $\gamma(0) = 0$. Then $|[\gamma(x)] - [\gamma(0)]| = |[\gamma(x)] - 0| = |\gamma(x)| = |[\alpha(x)] \cdot [\beta(x)]|$ $|\alpha(x)| \cdot |\beta(x)| < r \cdot (\varepsilon/r) = \varepsilon$, as desired. QED 1-5. Let $j \in \mathbb{N}_0$. Show: $\mathcal{O}_j \subseteq \widehat{\mathcal{O}}_j$. *Proof:* By HW#1-2, $CVZ \subseteq BNZ$. Then $(CVZ) \cdot (|\bullet|^j) \subseteq (BNZ) \cdot (|\bullet|^j).$ Then $\mathcal{O}_i \subseteq \widehat{\mathcal{O}}_i$, as desired. QED