## Solutions for MATH 4604 (Advanced Calculus II) Spring 2019

Homework 13: Due on Tuesday 30 April
13-1. Let $\quad W \in \mathrm{TNSR}^{+}, \quad \phi: \mathbb{R} \rightarrow W$.
Assume: $\quad \forall k \in \mathcal{I}_{W}, \quad 0 \in \operatorname{dom}\left[\left(\left(\pi_{k}^{W}\right) \circ \phi\right)^{\prime}\right]$.
Show: $\quad 0 \in \operatorname{dom}\left[\phi^{\prime}\right]$.
Proof: Let $x:=\sum_{k \in \mathcal{I}_{W}}\left(\left(\left(\pi_{k}^{W}\right) \circ \phi\right)_{0}^{\prime}\right) \cdot \varepsilon_{k}^{W}$. Want: $\phi_{0}^{\prime}=x$.
We have: $\quad \forall k \in \mathcal{I}_{W}, \quad x_{k}=\left(\left(\pi_{k}^{W}\right) \circ \phi\right)_{0}^{\prime}$.
Define $L \in \mathcal{L}_{\mathbb{R}}^{W}$ by $L(t)=t x$. Then $\mathrm{s} \ell_{L}^{\mathbb{R} W}=L(1)=x$.
Also, $\phi_{0}^{\prime}=\mathrm{s} \ell_{D_{0} \phi}^{\mathbb{R} W} . \quad$ Want: $\mathrm{s} \ell_{D_{0} \phi}^{\mathbb{R} W}=\mathrm{s} \ell_{L}^{\mathbb{R} W}$.
Want: $D_{0} \phi=L . \quad$ Want: $\phi_{0}^{T}-L \in \mathcal{O}_{1}^{\mathbb{R} W}$.
Let $\psi:=\phi_{0}^{T}-L . \quad$ Want: $\psi \in \mathcal{O}_{1}^{\mathbb{R} W}$.
By HW\#12-1, it suffices to show: $\quad \forall k \in \mathcal{I}_{W}, \quad\left(\pi_{k}^{W}\right) \circ \psi \in \mathcal{O}_{1}^{\mathbb{R} \mathbb{R}}$.
Given $k \in \mathcal{I}_{W}$. Want: $\left(\pi_{k}^{W}\right) \circ \psi \in \mathcal{O}_{1}^{\mathbb{R} \mathbb{R}}$.
Let $\chi:=\left(\pi_{k}^{W}\right) \circ \phi . \quad$ Define $M \in \mathcal{L}_{\mathbb{R}}^{\mathbb{R}}$ by $M(t)=t x_{k}$.
We have s $\ell_{M}^{\mathbb{R R}}=M(1)=1 \cdot x_{k}=x_{k}=\left(\left(\pi_{k}^{W}\right) \circ \phi\right)_{0}^{\prime}=\chi_{0}^{\prime}=\mathrm{s} \ell_{D_{0} \chi}^{\mathbb{R R}}$.
Then $M=\left[\mathrm{s} \ell_{M}^{\mathbb{R} \mathbb{R}}\right]_{\mathbb{R}}^{\mathbb{R}}=\left[\mathrm{s} \ell_{D_{0} \chi}^{\mathbb{R} \mathbb{R}}\right]_{\mathbb{R}}^{\mathbb{R}}=D_{0} \chi$.
Since $D_{0} \chi=M$, we get $\chi_{0}^{T}-M \in \mathcal{O}_{1}^{\mathbb{R} \mathbb{R}}$.
Want: $\chi_{0}^{T}-M=\left(\pi_{k}^{W}\right) \circ \psi . \quad$ Want: $\forall h \in \mathbb{R},\left(\chi_{0}^{T}-M\right)_{h}=\left(\left(\pi_{k}^{W}\right) \circ \psi\right)_{h}$.
Given $h \in \mathbb{R}$. Want: $\left(\chi_{0}^{T}-M\right)_{h}=\left(\left(\pi_{k}^{W}\right) \circ \psi\right)_{h}$.
We have $\psi_{h}=\left(\phi_{0}^{T}-L\right)_{h}=\phi_{0+h}-\phi_{0}-L_{h}=\phi_{h}-\phi_{0}-h x$.
Then $\pi_{k}^{W}\left(\psi_{h}\right)=\left(\pi_{k}^{W}\left(\phi_{h}\right)\right)-\left(\pi_{k}^{W}\left(\phi_{0}\right)\right)-h x_{k}$.
Then: $\left(\chi_{0}^{T}-M\right)_{h}=\chi_{0+h}-\chi_{0}-M_{h}=\chi_{h}-\chi_{0}-M_{h}$

$$
=\left(\left(\pi_{k}^{W}\right) \circ \phi\right)_{h}-\left(\left(\pi_{k}^{W}\right) \circ \phi\right)_{0}-h x_{k}
$$

$$
=\left(\pi_{k}^{W}\left(\phi_{h}\right)\right)-\left(\pi_{k}^{W}\left(\phi_{0}\right)\right)-h x_{k}
$$

$$
=\pi_{k}^{W}\left(\psi_{h}\right)=\left(\left(\pi_{k}^{W}\right) \circ \psi\right)_{h}, \quad \text { as desired. } \quad \text { QED }
$$

13-2. Let $\quad V, W \in \mathrm{TNSR}^{+}, \quad f: V \rightarrow W, \quad q, u \in V$.
Assume: $\quad \forall k \in \mathcal{I}_{W}, \quad q \in \operatorname{dom}\left[\partial_{u}\left(\left(\pi_{k}^{W}\right) \circ f\right)\right]$.
Show: $\quad q \in \operatorname{dom}\left[\partial_{u} f\right]$.
Proof: Let $\phi:=f \circ\left(i_{q}^{u}\right)$. Then $\left(\partial_{u} f\right)_{q}=\phi_{0}^{\prime}$. Want: $0 \in \operatorname{dom}\left[\phi^{\prime}\right]$.
By HW\#13-1, it suffices to show: $\forall k \in \mathcal{I}_{W}, 0 \in \operatorname{dom}\left[\left(\left(\pi_{k}^{W}\right) \circ \phi\right)^{\prime}\right]$.
Given $k \in \mathcal{I}_{W}$. Want: $0 \in \operatorname{dom}\left[\left(\left(\pi_{k}^{W}\right) \circ \phi\right)^{\prime}\right]$.
By assumption, $q \in \operatorname{dom}\left[\partial_{u}\left(\left(\pi_{k}^{W}\right) \circ f\right)\right]$.

So, since $\left(\partial_{u}\left(\left(\pi_{k}^{W}\right) \circ f\right)\right)_{q}=\left(\left(\pi_{k}^{W}\right) \circ f \circ\left(i_{q}^{u}\right)\right)_{0}^{\prime}$,
we get: $0 \in \operatorname{dom}\left[\left(\left(\pi_{k}^{W}\right) \circ f \circ\left(i_{q}^{u}\right)\right)^{\prime}\right]$.
Then $0 \in \operatorname{dom}\left[\left(\left(\pi_{k}^{W}\right) \circ f \circ\left(i_{q}^{u}\right)\right)^{\prime}\right]=\operatorname{dom}\left[\left(\left(\pi_{k}^{W}\right) \circ \phi\right)^{\prime}\right]$, as desired. QED
13-3. Let $\quad V, W \in \mathrm{TNSR}^{+}, \quad f: V \rightarrow W, \quad p \in V$.
Assume: $\quad f^{\prime \prime}$ is continuous near $p$.
Show: $\quad \forall i, j \in \mathcal{I}_{V}, \quad \partial_{i} \partial_{j} f$ is continuous near $p$.
Proof: Given $i, j \in \mathcal{I}_{V}$. Want: $\partial_{i} \partial_{j} f$ is continuous near $p$.
Choose $B \in \mathcal{B}_{V}(p)$ s.t. $f^{\prime \prime}$ is continuous on $B$.
Want: $\partial_{i} \partial_{j} f$ is continuous on $B$.
Want: $\forall p \in B, \partial_{i} \partial_{j} f$ is continuous at $p$.
Given $p \in B$. Want: $\partial_{i} \partial_{j} f$ is continuous at $p$.
By Theorem 99.1, it suffices to show:
$\forall k \in \mathcal{I}_{W}, \quad \pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)$ is continuous at $p$.
Given $\forall k \in \mathcal{I}_{W}$. Want: $\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)$ is continuous at $p$.
Since $f^{\prime \prime}$ is continuous on $B$, we conclude: $B \subseteq \operatorname{dom}\left[f^{\prime \prime}\right]$.
So, since im $\left[f^{\prime \prime}\right] \subseteq W \otimes V \otimes V=\operatorname{dom}\left[\pi_{k\|i\| j}\right]$,
we conclude that: $\quad B \subseteq \operatorname{dom}\left[\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right)\right]$.
By Thoerem 102.17, we have: $\quad \pi_{k} \circ\left(\partial_{i} \partial_{j} f\right) \supseteq \pi_{k|i| j j} \circ\left(f^{\prime \prime}\right)$.
So, since $B \subseteq \operatorname{dom}\left[\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right)\right]$, we get:
$\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)=\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right) \quad$ on $B$.
So, since $p \in B$, by the Recentering Lemma (Theorem 38.16), we get:
$\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)=\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right) \quad$ near $p$.
Since $f^{\prime \prime}$ is continuous on $B$ and $p \in B$, we see that $f^{\prime \prime}$ is continuous at $p$.
Then, by Theorem 99.1, $\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right)$ is continuous at $p$.
So, as
$\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)=\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right) \quad$ near $p$,
it follows, from Theorem 65.7,
that $\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)$ is continuous at $p, \quad$ as desired. QED

| 13-4. Let | $V, W \in \mathrm{TNSR}^{+}, \quad f: V \rightarrow W, \quad p \in V$. |
| :--- | :--- |
| Assume: | $\forall h, i, j \in \mathcal{I}_{V}$, |
|  | $\quad \partial_{h} \partial_{i} \partial_{j} f$ is both defined near $p$ and bounded near $p$. |
| Show: | $f^{\prime \prime}$ is continuous near $p$. |

Proof: By Theorem 102.21, it suffices to show:
$\forall i, j \in \mathcal{I}_{V}, \quad \partial_{i} \partial_{j} f$ is continuous near $p$.
Given $i, j \in \mathcal{I}_{V}$. Want: $\partial_{i} \partial_{j} f$ is continuous near $p$.

Let $g:=\partial_{i} \partial_{j} f$. Want: $g$ is continuous near $p$.
By Theorem 102.5, it suffices to show:
$\forall h \in \mathcal{I}_{V}, \quad \partial_{h} g$ is defined near $p$ and bounded near $p$.
Given $h \in \mathcal{I}_{V}$. Want: $\partial_{h} g$ is defined near $p$ and bounded near $p$.
By assumption, $\partial_{h} \partial_{i} \partial_{j} f$ is defined near $p$ and bounded near $p$.
So since $\partial_{h} g=\partial_{h} \partial_{i} \partial_{j} f$, we get:
$\partial_{h} g$ is defined near $p$ and bounded near $p, \quad$ as desired. QED
13-5. Let $\quad V, W \in \mathrm{TNSR}^{+}, \quad f: V \rightarrow W, \quad p \in V$.
Assume: $\quad \forall h, i, j \in \mathcal{I}_{V}$, $\partial_{h} \partial_{i} \partial_{j} f$ is both defined near $p$ and continuous at $p$.
Show: $\quad f^{\prime \prime \prime}$ is continuous at $p$.
Proof: By Theorem 102.3, $\forall h, i, j \in \mathcal{I}_{V}, \partial_{h} \partial_{i} \partial_{j} f$ is bounded near $p$.
Also, by assumption, $\forall h, i, j \in \mathcal{I}_{V}, \partial_{h} \partial_{i} \partial_{j} f$ is defined near $p$.
Then, by HW\#13-4, $f^{\prime \prime}$ is continuous near $p$.
Then: $\quad f^{\prime \prime}$ is continuous at $p$ and $\quad f^{\prime \prime}$ is defined near $p$.
Claim: Let $h, i, j \in \mathcal{I}_{V}, k \in \mathcal{I}_{W}$.
Then: $\quad \partial_{h}\left(\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right)\right)=\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right) \quad$ near $p$.
Proof of Claim:
Since $f^{\prime \prime}$ is defined near $p$, by Theorem 97.3, we see that $\partial_{j}\left(f^{\prime}\right)=\left(\partial_{j} f\right)^{\prime}$ near $p$.
Since $f^{\prime \prime}$ is defined near $p$ and since $\operatorname{im}\left[f^{\prime \prime}\right] \subseteq W \otimes V \otimes V=\operatorname{dom}\left[\pi_{k\|i\| j}\right]$, we conclude that $\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right)$ is defined near $p$.
Let $\alpha:=f^{\prime}$ and $\ell:=k \| i . \quad$ By Theorem 102.1, $\pi_{\ell} \circ\left(\partial_{j} \alpha\right) \supseteq \pi_{\ell \mid j} \circ\left(\alpha^{\prime}\right)$.
That is, $\pi_{k \| i} \circ\left(\partial_{j}\left(f^{\prime}\right)\right) \supseteq \pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right)$.
So, since $\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right)$ is defined near $p$,
it follows that $\pi_{k \| i} \circ\left(\partial_{j}\left(f^{\prime}\right)\right)=\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right)$ near $p$.
Since $f^{\prime \prime}$ is defined near $p$, by Theorem 94.4,
we see that $\left(\partial_{j} f\right)^{\prime}$ is defined near $p$.
Then, since $\operatorname{im}\left[\left(\partial_{j} f\right)^{\prime}\right] \subseteq W \otimes V=\operatorname{dom}\left[\pi_{k \| i}\right]$,
we conclude that $\pi_{k \| i} \circ\left(\left(\partial_{j} f\right)^{\prime}\right)$ is defined near $p$.
Let $\beta:=\partial_{j} f . \quad$ By Theorem 102.1, $\pi_{k} \circ\left(\partial_{i} \beta\right) \supseteq \pi_{k \| i} \circ\left(\beta^{\prime}\right)$.
That is, $\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right) \supseteq \pi_{k \| i} \circ\left(\left(\partial_{j} f\right)^{\prime}\right)$.
So, since $\pi_{k \| i} \circ\left(\left(\partial_{j} f\right)^{\prime}\right)$ is defined near $p$, it follows that $\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)=\pi_{k \| i} \circ\left(\left(\partial_{j} f\right)^{\prime}\right)$ near $p$.
So, since $\partial_{j}\left(f^{\prime}\right)=\left(\partial_{j} f\right)^{\prime}$ near $p$,
it follows that $\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)=\pi_{k \| i} \circ\left(\partial_{j}\left(f^{\prime}\right)\right)$ near $p$.

So, since $\pi_{k \| i} \circ\left(\partial_{j}\left(f^{\prime}\right)\right)=\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right)$ near $p$.
it follows that $\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)=\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right)$ near $p$.
Then: $\quad \partial_{h}\left(\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right)\right)=\partial_{h}\left(\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)\right)$ near $p$.
Want: $\quad \partial_{h}\left(\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)\right)=\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right) \quad$ near $p$.
By assumption, $\partial_{h} \partial_{i} \partial_{j} f$ is defined near $p$.
So, since im $\left[\partial_{h} \partial_{i} \partial_{j} f\right] \subseteq W=\operatorname{dom}\left[\pi_{k}\right]$,
we see that $\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right)$ is defined near $p$.
By Theorem 94.3, $\partial_{h}\left(\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)\right) \supseteq \pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right)$.
So, since $\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right)$ is defined near $p$, it follows that:
$\partial_{h}\left(\pi_{k} \circ\left(\partial_{i} \partial_{j} f\right)\right)=\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right) \quad$ near $p, \quad$ as desired.
End of proof of Claim.

Let $g:=f^{\prime \prime} . \quad$ Want: $g^{\prime}$ is continuous at $p$.
Since $f: V \rightarrow W$ and $g=f^{\prime \prime}$, we get $g: V \rightarrow W \otimes V \otimes V$.
By Theorem 102.7, it suffices to show:
$\forall h \in \mathcal{I}_{V}, \quad \partial_{h} g$ is defined near $p$ and continuous at $p$.
Given $h \in \mathcal{I}_{V}$. Want: (A) $\partial_{h} g$ is defined near $p$ and (B) $\partial_{h} g$ is continuous at $p$.

Proof of (A):
By HW\#13-2, it suffices to show:
$\forall \ell \in \mathcal{I}_{W \otimes V}, \quad \partial_{h}\left(\pi_{\ell} \circ g\right)$ is defined near $p$.
Given $\ell \in \mathcal{I}_{W \otimes V \otimes V}$. Want: $\partial_{h}\left(\pi_{\ell} \circ g\right)$ is defined near $p$.
Since $\ell \in \mathcal{I}_{W \otimes V \otimes V}$, choose $i, j \in \mathcal{I}_{V}$ and $k \in \mathcal{I}_{W}$ s.t. $\ell=k\|i\| j$.
By assumption, $\partial_{h} \partial_{i} \partial_{j} f$ is defined near $p$.
So, since im $\left[\partial_{h} \partial_{i} \partial_{j} f\right] \subseteq W=\operatorname{dom}\left[\pi_{k}\right]$,
we see that $\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right)$ is defined near $p$.
By the claim: $\quad \partial_{h}\left(\pi_{k\|i\| j} \circ\left(f^{\prime \prime}\right)\right)=\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right)$ near $p$.
So, since $\ell=k\|i\| j$ and $g=f^{\prime \prime}$, we see that:

$$
\partial_{h}\left(\pi_{\ell} \circ g\right)=\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right) \quad \text { near } p .
$$

So, since $\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right)$ is defined near $p$, we conclude:
$\partial_{h}\left(\pi_{\ell} \circ g\right)$ is defined near $p, \quad$ as desired.
End of proof of (A).
Proof of (B):
By Theorem 99.1, it suffices to show:
$\forall \ell \in \mathcal{I}_{W \otimes V \otimes V}, \quad \pi_{\ell} \circ\left(\partial_{h} g\right)$ is continuous at $p$.
Given $\ell \in \mathcal{I}_{W \otimes V \otimes V}$. Want: $\pi_{\ell} \circ\left(\partial_{h} g\right)$ is continuous at $p$.

By (A), $\partial_{h} g$ is defined near $p$. Then $p \in \operatorname{dom}\left[\partial_{h} g\right]$.
So, since im $\left[\partial_{h} g\right] \subseteq W \otimes V \otimes V=\operatorname{dom}\left[\pi_{\ell}\right]$,
we see that $p \in \operatorname{dom}\left[\pi_{\ell} \circ\left(\partial_{h} g\right)\right]$.
By Theorem 94.3, $\partial_{h}\left(\pi_{\ell} \circ g\right) \supseteq \pi_{\ell} \circ\left(\partial_{h} g\right)$.
Then, by Theorem 44.13, it suffices to show:

$$
\partial_{h}\left(\pi_{\ell} \circ g\right) \text { is continuous at } p \text {. }
$$

Since $\ell \in \mathcal{I}_{W \otimes V \otimes V}$, choose $i, j \in \mathcal{I}_{V}$ and $k \in \mathcal{I}_{W}$ s.t. $\ell=k\|i\| j$.
By assumption, $\partial_{h} \partial_{i} \partial_{j} f$ is continuous at $p$.
Then, by Theorem 99.1,
we see that $\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right)$ is continuous at $p$.
By the claim, $\quad \partial_{h}\left(\pi_{k\|i\| j} \circ\left(f^{\prime}\right)\right)=\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right) \quad$ near $p$.
So, since $\ell=k\|i\| j$ and $g=f^{\prime \prime}$, we see that:

$$
\partial_{h}\left(\pi_{\ell} \circ g\right)=\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right) \quad \text { near } p
$$

So, since $\pi_{k} \circ\left(\partial_{h} \partial_{i} \partial_{j} f\right)$ is continuous at $p$, by Theorem 65.7, we have:
$\partial_{h}\left(\pi_{\ell} \circ g\right)$ is continuous at $p, \quad$ as desired.
End of proof of (B). QED

Homework 12: Due on Tuesday 23 April
12-1. Let $V, W \in \mathrm{TNSR}^{+}, f: V \rightarrow W, k \in \mathbb{N}_{0}$.
Assume: $\quad \forall m \in \mathcal{I}_{W}, \quad\left(\pi_{m}^{W}\right) \circ f \in \mathcal{O}_{k}^{V \mathbb{R}}$.
Show: $\quad f \in \mathcal{O}_{k}^{V W}$.
Proof:
Claim: $f_{0_{V}}=0_{W}$.
Proof of Claim:
Want: $\forall m \in \mathcal{I}_{W}, \pi_{m}^{W}\left(f_{0_{V}}\right)=0$.
Given $m \in \mathcal{I}_{W}$. Want: $\pi_{m}^{W}\left(f_{0_{V}}\right)=0$.
Since $\left(\pi_{m}^{W}\right) \circ f \in \mathcal{O}_{k}^{V \mathbb{R}} \subseteq \mathcal{O}_{0}^{V \mathbb{R}}=\mathrm{CVZ} \mathbb{R}_{V}^{\mathbb{R}}$, we conclude: $\left(\left(\pi_{m}^{W}\right) \circ f\right)_{0_{V}}=0$.
Then $\pi_{m}^{W}\left(f_{0_{V}}\right)=\left(\left(\pi_{m}^{W}\right) \circ f\right)_{0_{V}}=0$, as desired.
End of proof of Claim.
Let $\phi:=\operatorname{adj}_{0_{V}}^{0_{W}}\left(\frac{f}{|\bullet|_{V}^{k}}\right)$. Then $\phi_{0_{V}}=0_{W}$.
By the claim, $f_{0_{V}}=0_{W}$, and it follows that: $\phi \cdot\left(|\bullet|_{V}^{k}\right)=f$.
Want: $f \in\left(\mathrm{CVZ}_{V}^{W}\right) \cdot\left(|\bullet|_{V}^{k}\right)$. Want: $\phi \in \mathrm{CVZ}_{V}^{W}$.
Want: $\forall m \in \mathcal{I}_{W},\left(\pi_{m}^{W}\right) \circ \phi \in \mathrm{CVZ}_{V}^{\mathbb{R}}$.
Given $m \in \mathcal{I}_{W}$. Want: $\left(\pi_{m}^{W}\right) \circ \phi \in \mathrm{CVZ}_{V}^{\mathbb{R}}$.
By assumption, $\left(\pi_{m}^{W}\right) \circ f \in \mathcal{O}_{k}^{V \mathbb{R}}$. Then $\left(\pi_{m}^{W}\right) \circ f \in\left(\mathrm{CVZ}_{V}^{\mathbb{R}}\right) \cdot\left(|\bullet| \begin{array}{l}k \\ V\end{array}\right)$.

Choose $\psi \in \mathrm{CVZ}_{V}^{\mathbb{R}}$ s.t. $\left(\pi_{m}^{W}\right) \circ f=\psi \cdot\left(|\bullet| \begin{array}{|}V \\ V\end{array}\right)$.
Want: $\left(\pi_{m}^{W}\right) \circ \phi=\psi$. Want: $\left(\pi_{m}^{W}\right) \circ \phi=\psi$ on $V$.
Since $\psi \in \mathrm{CVZ}_{V}^{\mathbb{R}}$, it follows that $\psi_{0_{V}}=0$.
We have $\left(\left(\pi_{m}^{W}\right) \circ \phi\right)_{0_{V}}=\left(\pi_{m}^{W}\right)\left(\phi_{0_{V}}\right)=\pi_{m}^{W}\left(0_{W}\right)=0=\psi_{0}$.
Want: $\left(\pi_{m}^{W}\right) \circ \phi=\psi$ on $V_{0_{V}}^{\times}$. Want: $\forall q \in V_{0_{V}}^{\times},\left(\left(\pi_{m}^{W}\right) \circ \phi\right)_{q}=\psi_{q}$.
Given $q \in V_{0_{V}}^{\times}$. Want: $\left(\left(\pi_{m}^{W}\right) \circ \phi\right)_{q}=\psi_{q}$. Want: $\left(\pi_{m}^{W}\right)\left(\phi_{q}\right)=\psi_{q}$.
Since $q \in V_{0_{V}}^{\times}$, we get $|q|_{V} \neq 0$, and so $|q|_{V}^{k} \neq 0$.
Recall: $\phi \cdot\left(|\bullet|_{V}^{k}\right)=f$ and $\left(\pi_{m}^{W}\right) \circ f=\psi \cdot\left(|\bullet|_{V}^{k}\right)$.
Then $\left(\pi_{m}^{W}\left(\phi_{q}\right)\right) \cdot\left(|q|_{V}^{k}\right)=\pi_{m}^{W}\left(\phi_{q} \cdot\left(|q|_{V}^{k}\right)\right)=\pi_{m}^{W}\left(\left(\phi \cdot\left(|\bullet|_{V}^{k}\right)\right)_{q}\right)=\pi_{m}^{W}\left(f_{q}\right)$ $=\left(\left(\pi_{m}^{W}\right) \circ f\right)_{q}=\left(\psi \cdot\left(|\bullet|_{V}^{k}\right)\right)_{q}=\psi_{q} \cdot\left(|q|_{V}^{k}\right)$.
So, since $|q|_{V}^{k} \neq 0$, dividing by $|q|_{V}^{k}$, we get: $\left(\pi_{m}^{W}\left(\phi_{q}\right)\right)=\psi_{q}$. QED
12-2. Let $V, W, X \in \mathrm{TNSR}^{+}, k \in \mathbb{N}_{0}$.
Show: $\quad\left(\mathcal{O}_{k}^{W X}\right) \circ\left(\widehat{\mathcal{O}}_{1}^{V W}\right) \subseteq \mathcal{O}_{k}^{V X} \quad$ and

$$
\left(\widehat{\mathcal{O}}_{1}^{W X}\right) \circ\left(\mathcal{O}_{k}^{V W}\right) \subseteq \mathcal{O}_{k}^{V X} \quad \text { and }
$$

$$
\left(\widehat{\mathcal{O}}_{k}^{W X}\right) \circ\left(\widehat{\mathcal{O}}_{1}^{V W}\right) \subseteq \widehat{\mathcal{O}}_{k}^{V X}
$$

Proof: Exactly one of the following is true:

$$
\begin{array}{lll}
(1) & k \neq 0 & \text { or }
\end{array} \quad \text { (2) } k=0
$$

Case (1):
Since $k \neq 0, \quad\left(\mathcal{O}_{k}^{W X}\right) \circ\left(\widehat{\mathcal{O}}_{1}^{V W}\right) \subseteq \mathcal{O}_{k \cdot 1}^{V X}=\mathcal{O}_{k}^{V X} \quad$ and

$$
\left(\hat{\mathcal{O}}_{1}^{W X}\right) \circ\left(\mathcal{O}_{k}^{V W}\right) \subseteq \mathcal{O}_{1 \cdot k}^{V X}=\mathcal{O}_{k}^{V} X
$$

Want: $\left(\widehat{\mathcal{O}}_{k}^{W X}\right) \circ\left(\widehat{\mathcal{O}}_{1}^{V W}\right) \subseteq \widehat{\mathcal{O}}_{k}^{V X}$.
Since $k \neq 0,\left(\widehat{\mathcal{O}}_{k}^{W X}\right) \circ\left(\widehat{\mathcal{O}}_{1}^{V W}\right) \subseteq \widehat{\mathcal{O}}_{k \cdot 1}^{V X}=\widehat{\mathcal{O}}_{k}^{V X}$.
End of Case (1).

Case (2):
We have $\left(\mathcal{O}_{k}^{W X}\right) \circ\left(\widehat{\mathcal{O}}_{1}^{V W}\right)=\mathcal{O}_{0}^{W X} \circ\left(\widehat{\mathcal{O}}_{1}^{V W}\right)$

$$
\subseteq\left(\mathcal{O}_{0}^{W X}\right) \circ\left(\mathcal{O}_{0}^{V W}\right)
$$

$$
\subseteq\left(\mathrm{CVZ}_{W}^{X}\right) \circ\left(\mathrm{CVZ}_{V}^{W}\right)
$$

$$
\subseteq \mathrm{CVZ}_{V}^{X}=\mathcal{O}_{0}^{V X} \subseteq \mathcal{O}_{k}^{V X}
$$

Also, $\left(\widehat{\mathcal{O}}_{1}^{W X}\right) \circ\left(\mathcal{O}_{k}^{V W}\right)=\left(\widehat{\mathcal{O}}_{1}^{W X}\right) \circ\left(\mathcal{O}_{0}^{V W}\right)$

$$
\subseteq\left(\mathcal{o}_{0}^{W X}\right) \circ\left(\mathcal{O}_{0}^{V W}\right)
$$

$$
\subseteq\left(\mathrm{CVZ}_{V}^{X}\right) \circ\left(\mathrm{CVZ}_{V}^{W}\right)
$$

$$
\subseteq \mathrm{CVZ}_{V}^{X}=\mathcal{O}_{0}^{V X} \subseteq \mathcal{O}_{k}^{V X}
$$

Want: $\left(\widehat{\mathcal{O}}_{k}^{W X}\right) \circ\left(\widehat{\mathcal{O}}_{1}^{V W}\right) \subseteq \widehat{\mathcal{O}}_{k}^{V X}$.
We have $\left(\widehat{\mathcal{O}}_{k}^{W X}\right) \circ\left(\widehat{\mathcal{O}}_{1}^{V W}\right)=\left(\widehat{\mathcal{O}}_{0}^{W X}\right) \circ\left(\widehat{\mathcal{O}}_{1}^{V W}\right)$

$$
\begin{aligned}
& =\left(\widehat{\mathcal{O}}_{0}^{W X}\right) \circ\left(\mathcal{O}_{0}^{V W}\right) \\
& =\left(\mathrm{BNZ}_{W}^{X}\right) \circ(\mathrm{CVZ} \\
& \subseteq \mathrm{BNZ}_{V}^{X}=\widehat{\mathcal{O}}_{0}^{V X} \subseteq \widehat{\mathcal{O}}_{k}^{V X} .
\end{aligned}
$$

End of Case (2). QED
12-3. Let $V, W \in \operatorname{TNSR}^{+}, f: V \rightarrow W, k \in \mathbb{N}_{0}$.
Assume: $f_{0_{V}}=0_{W}$.
Assume: $\forall j \in \mathcal{I}_{V}, \partial_{j} f \in \widehat{\mathcal{O}}_{k}^{V W}$. Show: $f \in \widehat{\mathcal{O}}_{k+1}^{V W}$.
Proof: By Theorem 99.2, it suffices to show: $\forall m \in \mathcal{I}_{W}, \pi_{m}^{W} \circ f \in \widehat{\mathcal{O}}_{k+1}^{V \mathbb{R}}$.
Given $m \in \mathcal{I}_{W}$. Want: $\pi_{m}^{W} \circ f \in \widehat{\mathcal{O}}_{k+1}^{V \mathbb{R}}$.
Let $g:=\pi_{m}^{W} \circ f . \quad$ Want: $g \in \widehat{\mathcal{O}}_{k+1}^{V \mathbb{R}}$.
By Theorem 98.10, choose $\beta: \mathcal{I}_{V} \rightarrow \widehat{\mathcal{O}}_{1}^{V V}$ s.t.

$$
g=\sum_{j \in \mathcal{I}_{V}}\left(\left(\partial_{j} g\right) \circ \beta_{j}\right) \cdot \pi_{j}^{V} \quad \text { near } 0_{V} .
$$

Want: $\quad \forall j \in \mathcal{I}_{V}, \quad\left(\left(\partial_{j} g\right) \circ \beta_{j}\right) \cdot \pi_{j}^{V} \in \widehat{\mathcal{O}}_{k+1}^{V \mathbb{R}}$.
Given $j \in \mathcal{I}_{V}$. Want: $\left(\left(\partial_{j} g\right) \circ \beta_{j}\right) \cdot \pi_{j}^{V} \in \widehat{\mathcal{O}}_{k+1}^{V \mathbb{R}}$.
Since $\pi_{j}^{V} \in \mathcal{L}_{V}^{W} \subseteq \widehat{\mathcal{O}}_{1}^{V \mathbb{R}}$, it suffices to show: $\left(\partial_{j} g\right) \circ \beta_{j} \in \widehat{\mathcal{O}}_{k}^{V \mathbb{R}}$.
So, since $\beta_{j} \in \widehat{\mathcal{O}}_{1}^{V V}$, it suffices to show: $\partial_{j} g \in \widehat{\mathcal{O}}_{k}^{V \mathbb{R}}$.
So, since $\partial_{j} g=\partial_{j}\left(\left(\pi_{m}^{W}\right) \circ f\right) \supseteq \pi_{m}^{W} \circ\left(\partial_{j} f\right)$,
it suffices to show: $\pi_{m}^{W} \circ\left(\partial_{j} f\right) \in \widehat{\mathcal{O}}_{k}^{V \mathbb{R}}$.
By assumption, $\partial_{j} f \in \widehat{\mathcal{O}}_{k}^{V W}$.
So, by Theorem 99.2, we have $\pi_{m}^{W} \circ\left(\partial_{j} f\right) \in \widehat{\mathcal{O}}_{k}^{V \mathbb{R}}$, as desired. QED
12-4. Let $V, W \in \mathrm{TNSR}^{+}, f: V \rightarrow W, k \in \mathbb{N}_{0}$.
Assume: $f_{0_{V}}=0_{W}$. Assume: $\forall j \in \mathcal{I}_{V},\left(\partial_{j} f\right)_{0_{V}}=0_{W}$.
Assume: $\forall i, j \in \mathcal{I}_{V}, \partial_{i} \partial_{j} f \in \widehat{\mathcal{O}}_{k}^{V W}$. Show: $f \in \widehat{\mathcal{O}}_{k+2}^{V W}$.
Proof: Since $f_{0_{V}}=0_{W}$, by HW\#12-3,
it suffices to show: $\forall j \in \mathcal{I}_{V}, \partial_{j} f \in \widehat{\mathcal{O}}_{k+1}^{V W}$.
Given $j \in \mathcal{I}_{V}$. Want: $\partial_{j} f \in \widehat{\mathcal{O}}_{k+1}^{V W}$.
Let $g:=\partial_{j} f$. Want: $g \in \widehat{\mathcal{O}}_{k+1}^{V W}$.
Since $g_{0_{V}}=\left(\partial_{j} f\right)_{0_{V}}=0_{W}$, by HW\#12-3,
it suffices to show: $\forall i \in \mathcal{I}_{V}, \partial_{i} g \in \widehat{\mathcal{O}}_{k}^{V W}$.
Given $i \in \mathcal{I}_{V}$. Want: $\partial_{i} g \in \widehat{\mathcal{O}}_{k}^{V W}$.
We have $\partial_{i} g=\partial_{i} \partial_{j} f \in \widehat{\mathcal{O}}_{k}^{V W}$, as desired. QED

12-5. Let $V, W \in \operatorname{TNSR}^{+}, f: V \rightarrow W$.
Assume: $f_{0_{V}}=0_{W}$.
Assume: $\forall j \in \mathcal{I}_{V}, \partial_{j} f$ is both defined near $0_{V}$ and continuous at $0_{V}$.
Show: $0_{V} \in \operatorname{dom}\left[f^{\prime}\right]$.
Proof: Define $q: \mathcal{I}_{V} \rightarrow W$ by $q_{j}=\left(\partial_{j} f\right)_{0_{V}}$.
Define $L \in \mathcal{L}_{V}^{W}$ by $L(x)=\sum_{j \in \mathcal{I}_{V}} x_{j} q_{j}$. Want: $f_{0_{V}}^{\prime}=\mathrm{s} \ell_{L}^{V W}$.
Want: $D_{0_{V}}^{V W} f=L . \quad$ Want: $f_{0_{V}}^{T}-L \in \mathcal{O}_{1}^{V W}$.
Since $f_{0_{V}}=0_{W}$, we see that $f_{0_{V}}^{T}=f$. Want: $f-L \in \mathcal{O}_{1}^{V W}$.
By Theorem 99.6, it suffices to show: $\forall j \in \mathcal{I}_{V}, \partial_{j}(f-L) \in \mathcal{O}_{0}^{V W}$.
Given $j \in \mathcal{I}_{V}$. Want: $\partial_{j}(f-L) \in \mathcal{O}_{0}^{V W}$.
Claim: $\partial_{j} L=C_{V}^{q_{j}}$.
Proof of Claim:
Want: $\forall x \in V,\left(\partial_{j} L\right)_{x}=\left(C_{V}^{q_{j}}\right)_{x}$.
Given $x \in V$. Want: $\left(\partial_{j} L\right)_{x}=\left(C_{V}^{q_{j}}\right)_{x} \quad$ Want: $\left(\partial_{j} L\right)_{x}=q_{j}$.
Let $u:=\varepsilon_{j}^{V}$. Then $\partial_{u} L=\partial_{j} L$. Want: $\left(\partial_{u} L\right)_{x}=q_{j}$.
Let $i:=i_{x}^{u}$. Want: $(L \circ i)_{0}^{\prime}=q_{j}$.
We have $L(u)=\sum_{i \in \mathcal{I}_{V}} u_{i} q_{i}=\sum_{i \in \mathcal{I}_{V}}\left(\varepsilon_{j}^{V}\right)_{i} \cdot q_{i}$

$$
\begin{aligned}
& =\left(\left(\varepsilon_{j}^{V}\right)_{j} \cdot q_{j}\right)+\left(\sum_{i \in \mathcal{\mathcal { I } _ { V } \backslash \{ j \}}}\left(\varepsilon_{j}^{V}\right)_{i} \cdot q_{i}\right) \\
& =\left(1 \cdot q_{j}\right)+\left(\sum_{i \in \mathcal{I}_{V} \backslash\{j\}} 0 \cdot q_{i}\right)=q_{j}+0=q_{j}
\end{aligned}
$$

Then $L(u)=q_{j} . \quad$ Let $y:=L(x)$.
Then, $\forall t \in \mathbb{R}$, we have:

$$
(L \circ i)_{t}=L\left(i_{t}\right)=L(x+t u)=(L(x))+t \cdot(L(u))=y+t q_{j} .
$$

Then: $\quad \forall t \in \mathbb{R}, \quad(L \circ i)_{t}=y+t q_{j}$.
Then: $\quad \forall h \in \mathbb{R}, \quad(L \circ i)_{0}^{T}(h)=\left(y+(0+h) \cdot q_{j}\right)-\left(y+0 \cdot q_{j}\right)=h q_{j}$.
Then $(L \circ i)_{0}^{T} \in \mathcal{L}_{\mathbb{R}}^{W}$. Then: $D_{0}(L \circ i)=L \circ i$.
Then $(L \circ i)_{0}^{\prime}=s \ell_{L \circ i}^{\mathbb{R} W}=(L \circ i)(1)=1 \cdot q_{j}=q_{j}$, as desired.
End of proof of Claim.

We have: $\partial_{j}(f-L) \supseteq\left(\partial_{j} f\right)-\left(\partial_{j} L\right)$.
So, by the claim, $\partial_{j}(f-L) \supseteq\left(\partial_{j} f\right)-\left(C_{V}^{q_{j}}\right)$.
Want: $\left(\partial_{j} f\right)-\left(C_{V}^{q_{j}}\right) \in \mathcal{O}_{0}^{V W}$. Want: $\left(\partial_{j} f\right)-\left(C_{V}^{q_{j}}\right) \in \mathrm{CVZ}_{V}^{W}$.

By assumption, $\partial_{j} f$ is both defined near $0_{V}$ and continuous at $0_{V}$.
Also, $C_{V}^{q_{j}}$ is both defined near $0_{V}$ and continuous at $0_{V}$.
Then $\left(\partial_{j} f\right)-\left(C_{V}^{q_{j}}\right)$ is both defined near $0_{V}$ and continuous at $0_{V}$.
Want: $\left(\left(\partial_{j} f\right)-\left(C_{V}^{q_{j}}\right)\right)_{0_{V}}=0_{W}$.
By definition of $q$, we have $q_{j}=\left(\partial_{j} f\right)_{0_{V}}$.
We compute $\left(\left(\partial_{j} f\right)-\left(C_{V}^{q_{j}}\right)\right)_{0_{V}}=\left(\left(\partial_{j} f\right)_{0_{V}}\right)-\left(\left(C_{V}^{q_{j}}\right)_{0_{V}}\right)$

$$
=q_{j}-q_{j}=0_{W}, \text { as desired. QED }
$$

Homework 11: Due on Tuesday 16 April
11-1. Let $V:=\mathbb{R}^{2}, \quad S:=V \otimes V, f: \mathbb{R} \rightarrow V, g: V \rightarrow \mathbb{R}$.
Let $p \in \mathbb{R}$. Assume $\quad f_{p}^{\prime}=(1,2) \quad$ and $\quad f_{p}^{\prime \prime}=(3,4)$.
Let $q:=f_{p}$. Assume $\quad g_{q}^{\prime}=(5,6) \quad$ and $\quad g_{q}^{\prime \prime}=\left[\begin{array}{ll}7 & 8 \\ 9 & 0\end{array}\right]$.
Compute: $\quad(g \circ f)_{p}^{\prime} \quad$ and $\quad(g \circ f)_{p}^{\prime \prime}$.

## Solution:

We have $(g \circ f)_{p}^{\prime}={ }^{*} g_{q}^{\prime} \cdot{ }^{\prime} \quad f_{p}^{\prime}$

$$
=(5,6) \cdot V(1,2)=5 \cdot 1+6 \cdot 2=17 \neq \oplus .
$$

$$
\text { Then }(g \circ f)_{p}^{\prime}=17
$$

We have: $\left(f_{p}^{\prime}\right)^{\otimes 2}=\left[\begin{array}{ll}1 \cdot 1 & 1 \cdot 2 \\ 2 \cdot 1 & 2 \cdot 2\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$.
Also, $(g \circ f)_{p}^{\prime \prime} \quad=^{*} \quad g_{q}^{\prime \prime} \bullet_{S}\left(\left(f_{p}^{\prime}\right)^{\otimes 2}\right)+\quad g_{q}^{\prime} \bullet V f_{p}^{\prime \prime}$

$$
\begin{gathered}
=\left[\begin{array}{ll}
7 & 8 \\
9 & 0
\end{array}\right] \cdot{ }_{S}\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]+(5,6) \cdot{ }_{V}(3,4) \\
=7 \cdot 1+8 \cdot 2+9 \cdot 2+0 \cdot 4+5 \cdot 3+6 \cdot 4 \\
=7+16+18+0+15+24=80 \neq(3 . \\
\text { Then }(g \circ f)_{p}^{\prime \prime}=80 .
\end{gathered}
$$

11-2. Let $\quad V:=\mathbb{R}^{2}, \quad S:=V \otimes V, \quad A:=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$.
Show: $\quad \forall q \in V, \quad A \cdot{ }_{S}\left(q^{\otimes 2}\right) \geqslant 0$.
Proof: Given $q \in V$. Want: $A \bullet_{S}\left(q^{\otimes 2}\right) \geqslant 0$.
Let $x:=q_{1}$ and $y:=q_{2} . \quad$ Then $q=(x, y)$.
Then $q^{\otimes 2}=\left[\begin{array}{ll}x \cdot x & x \cdot y \\ y \cdot x & y \cdot y\end{array}\right]=\left[\begin{array}{cc}x^{2} & x y \\ x y & y^{2}\end{array}\right]$.

Then $A \cdot{ }_{S}\left(q^{\otimes 2}\right)=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right] \cdot{ }_{S}\left[\begin{array}{cc}x^{2} & x y \\ x y & y^{2}\end{array}\right]$
$=1 \cdot x^{2}+2 \cdot x y+2 \cdot x y+4 \cdot y^{2}$
$=x^{2}+4 x y+4 y^{2}$
$=(x+2 y)^{2} \geqslant 0$, as desired. QED
11-3. Let $V:=\mathbb{R}^{2}, S:=V \otimes V, a, b, c \in \mathbb{R}, A:=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right], z:=0_{2}$.
Assume: $\quad a>0$ and $a c-b^{2}>0$.
Show:

$$
\forall q \in V_{z}^{\times}, \quad A \cdot{ }_{S}\left(q^{\otimes 2}\right)>0
$$

Proof: Given $q \in V_{z}^{\times}$. Want: $A \bullet_{S}\left(q^{\otimes 2}\right)>0$.
Let $x:=q_{1}$ and $y:=q_{2} . \quad$ Then $q=(x, y)$.
Then $q^{\otimes 2}=\left[\begin{array}{ll}x \cdot x & x \cdot y \\ y \cdot x & y \cdot y\end{array}\right]=\left[\begin{array}{ll}x^{2} & x y \\ x y & y^{2}\end{array}\right]$.
We have $A \cdot{ }_{S}\left(q^{\otimes 2}\right)=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right] \cdot S\left[\begin{array}{ll}x^{2} & x y \\ x y & y^{2}\end{array}\right]$

$$
=a \cdot x^{2}+b \cdot x y+b \cdot x y+c \cdot y^{2}
$$

$$
=a x^{2}+2 b x y+c y^{2}
$$

$$
=a \cdot\left(x^{2}+\frac{2 b y}{a} x\right)+c y^{2}
$$

$$
=a \cdot\left(x^{2}+\frac{2 b y}{a} x+\frac{b^{2} y^{2}}{a^{2}}\right)
$$

$$
+\frac{a c y^{2}}{a}-\frac{b^{2} y^{2}}{a}
$$

$$
=a \cdot\left(x+\frac{b y}{a}\right)^{2}+\frac{a c-b^{2}}{a} \cdot y^{2} .
$$

Since $a>0$ and $\left(x+\frac{b y}{a}\right)^{2} \geqslant 0$,
we see that $a \cdot\left(x+\frac{b y}{a}\right)^{2} \geqslant 0$.
Since $a>0$ and $a c-b^{2}>0$ and $y^{2} \geqslant 0$,
we see that $\frac{a c-b^{2}}{a} \cdot y^{2} \geqslant 0$.
Then $A \cdot{ }_{S}\left(q^{\otimes 2}\right)=a \cdot\left(x+\frac{b y}{a}\right)^{2}+\frac{a c-b^{2}}{a} \cdot y^{2} \geqslant 0$.
Want: $A \cdot S\left(q^{\otimes 2}\right) \neq 0$.
Assume: $A \bullet_{S}\left(q^{\otimes 2}\right)=0$. Want: Contradiction.

We have $a \cdot\left(x+\frac{b y}{a}\right)^{2}+\frac{a c-b^{2}}{a} \cdot y^{2}=A \cdot S\left(q^{\otimes 2}\right)=0$.
Then $\frac{a c-b^{2}}{a} \cdot y^{2}=-\left(a \cdot\left(x+\frac{b y}{a}\right)^{2}\right) \leqslant 0$.
So, since $\frac{a c-b^{2}}{a} \cdot y^{2} \geqslant 0$, we see that $\frac{a c-b^{2}}{a} \cdot y^{2}=0$.
So, since $a c-b^{2}>0$ and $a>0$, we see that $y^{2}=0$, and so $y=0$.
Then $A \cdot{ }_{S}\left(q^{\otimes 2}\right)=a \cdot\left(x+\frac{b \cdot 0}{a}\right)^{2}+\frac{a c-b^{2}}{a} \cdot 0^{2}=a x^{2}$.
Then $a x^{2}=A \cdot{ }_{S}\left(q^{\otimes 2}\right)=0, \quad$ so $a x^{2}=0$.
So, since $a>0$, we get $x^{2}=0, \quad$ and so $x=0$.
Since $q \in V_{z}^{\times}, \quad$ we conclude that $q \neq z$.
Then $0_{2}=z \neq q=(x, y)=(0,0)=0_{2}, \quad$ so $0_{2} \neq 0_{2}$.
Contradiction.
QED
11-4. Let $V:=\mathbb{R}^{2}, \quad S:=V \otimes V, \quad f: \mathbb{R} \rightarrow V, g: V \rightarrow \mathbb{R}$.
Let $p \in \mathbb{R}$. Assume $f_{p}^{\prime} \neq(0,0)$ and $f_{p}^{\prime \prime} \neq \oplus$.
Let $q:=f_{p}$. Assume $\quad g_{q}^{\prime}=(0,0) \quad$ and $\quad g_{q}^{\prime \prime}=\left[\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right]$.
Show:

$$
(g \circ f)_{p}^{\prime \prime}>0
$$

Proof: We have: $(g \circ f)_{p}^{\prime \prime}={ }^{*} g_{q}^{\prime \prime} \bullet_{S}\left(\left(f_{p}^{\prime}\right)^{\otimes 2}\right)+g_{q}^{\prime} \bullet_{V} f_{p}^{\prime \prime} \neq \oplus$, so $\quad(g \circ f)_{p}^{\prime \prime}=g_{q}^{\prime \prime} \bullet_{S}\left(\left(f_{p}^{\prime}\right)^{\otimes 2}\right)+g_{q}^{\prime} \bullet_{V} f_{p}^{\prime \prime}$.
So, since $g_{q}^{\prime}=(0,0)$, we get $(g \circ f)_{p}^{\prime \prime}=g_{q}^{\prime \prime} \bullet S\left(\left(f_{p}^{\prime}\right)^{\otimes 2}\right)$.
Let $a:=1, b:=2, c:=5, A:=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right], z:=0_{2}$.
We have $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right]=g_{q}^{\prime \prime} \quad$ and $\quad(g \circ f)_{p}^{\prime \prime}=g_{q}^{\prime \prime} \bullet_{S}\left(\left(f_{p}^{\prime}\right)^{\otimes 2}\right)$.

$$
\text { Then } \quad(g \circ f)_{p}^{\prime \prime}=A \bullet S\left(\left(f_{p}^{\prime}\right)^{\otimes 2}\right)
$$

We have $a>0$ and $a c-b^{2}=1 \cdot 5-2^{2}=1>0$.
Since $f_{p}^{\prime \prime} \neq \odot$, we get $p \in \operatorname{dom}\left[f^{\prime \prime}\right] \subseteq \operatorname{dom}\left[f^{\prime}\right]$, and so $f_{p}^{\prime} \in \operatorname{im}\left[f^{\prime}\right]$.
Then $f_{p}^{\prime} \in \operatorname{im}\left[f^{\prime}\right] \subseteq V \otimes \mathbb{R}=V$.
So, since $f_{p}^{\prime} \neq(0,0)=0_{2}=z$, we conclude that $f_{p}^{\prime} \in V_{z}^{\times}$.
Then, by HW\#11-3, we have $A \bullet_{S}\left(\left(f_{p}^{\prime}\right)^{\otimes 2}\right)>0$.
Then: $\quad(g \circ f)_{p}^{\prime \prime}=A \bullet_{S}\left(\left(f_{p}^{\prime}\right)^{\otimes 2}\right)>0, \quad$ as desired. $\quad$ QED
11-5. Let $V, W \in \operatorname{TNSR}^{+}, f: V \rightarrow W, i \in \mathcal{I}_{V}, j \in \mathcal{I}_{W}, W^{\prime}:=W \otimes V$.
Show: $\quad\left(\pi_{j \| i}^{W \prime}\right) \circ\left(f^{\prime}\right) \subseteq\left(\pi_{j}^{W}\right) \circ\left(\partial_{i} f\right)$.

Proof: Want: $\forall x \in V,\left(\left(\pi_{j \| i}^{W^{\prime}}\right) \circ\left(f^{\prime}\right)\right)_{x}^{*}=\left(\left(\pi_{j}^{W}\right) \circ\left(\partial_{i} f\right)\right)_{x}$.
Given $x \in V$. Want: $\left(\left(\pi_{j \| i}^{W^{\prime}}\right) \circ\left(f^{\prime}\right)\right)_{x}{ }^{*}=\left(\left(\pi_{j}^{W}\right) \circ\left(\partial_{i} f\right)\right)_{x}$.
Want: $\left(\pi_{j \| i}^{W^{\prime}}\right)\left(f_{x}^{\prime}\right)^{*}=\left(\pi_{j}^{W}\right)\left(\left(\partial_{i} f\right)_{x}\right)$.
Want: $\left[\left(\pi_{j \| i}^{W^{\prime}}\right)\left(f_{x}^{\prime}\right) \neq \odot\right] \Rightarrow\left[\left(\pi_{j \| i}^{W^{\prime}}\right)\left(f_{x}^{\prime}\right)=\left(\pi_{j}^{W}\right)\left(\left(\partial_{i} f\right)_{x}\right)\right]$.
Assume $\left(\pi_{j \| i}^{W^{\prime}}\right)\left(f_{x}^{\prime}\right) \neq \odot . \quad$ Want: $\left(\pi_{j \| i}^{W^{\prime}}\right)\left(f_{x}^{\prime}\right)=\left(\pi_{j}^{W}\right)\left(\left(\partial_{i} f\right)_{x}\right)$.
Let $A:=f_{x}^{\prime}$. Want: $\left(\pi_{j \| i}^{W^{\prime}}\right)(A)=\left(\pi_{j}^{W}\right)\left(\left(\partial_{i} f\right)_{x}\right)$.
Since $\left(\pi_{j \| i}^{W^{\prime}}\right)\left(f_{x}^{\prime}\right) \neq \Theta$, we conclude that $f_{x}^{\prime} \neq \odot$, and so $f_{x}^{\prime} \in \operatorname{im}\left[f^{\prime}\right]$.
Then $A=f_{x}^{\prime} \in \operatorname{im}\left[f^{\prime}\right] \subseteq W \otimes V$.
By HW\#9-2, $\left(f_{x}^{\prime}\right) *_{\mathbb{R} V W} \varepsilon_{i}^{V} \quad{ }^{*}=\left(\partial_{\varepsilon_{i}} f\right)_{x}$.
So, since $A=f_{x}^{\prime}$ and $\partial_{\varepsilon_{i}} f=\partial_{i} f$, we get $A *_{\mathbb{R} V W} \varepsilon_{i}^{V} \quad{ }^{*}=\left(\partial_{i} f\right)_{x}$.
Since $A \in W \otimes V$ and $\varepsilon_{i}^{V} \in V$, we get $A *_{\mathbb{R} V W} \varepsilon_{i}^{V} \in W$.
In particular, $A *_{\mathbb{R} V W} \varepsilon_{i}^{V} \neq$.
Then $\cdot \neq A *_{\mathbb{R} V W} \varepsilon_{i}^{V}=\left(\partial_{i} f\right)_{x}$, so $A *_{\mathbb{R} V W} \varepsilon_{i}^{V}=\left(\partial_{i} f\right)_{x}$.
Then $\left(\pi_{j}^{W}\right)\left(A *_{\mathbb{R} V W} \varepsilon_{i}^{V}\right)=\left(\pi_{j}^{W}\right)\left(\left(\partial_{i} f\right)_{x}\right)$.
We have $\left(A *_{\mathbb{R} V W} \varepsilon_{i}^{V}\right)_{j}=\left(A *_{\mathbb{R} V W} \varepsilon_{i}^{V}\right)_{j \| \varnothing}$

$$
\begin{aligned}
& =\sum_{h \in \mathcal{I}_{V}}\left(A_{j \| h}\right) \cdot\left(\left(\varepsilon_{i}^{V}\right)_{h \| \varnothing}\right) \\
& =\sum_{h \in \mathcal{I}_{V}}\left(A_{j \| h}\right) \cdot\left(\left(\varepsilon_{i}^{V}\right)_{h}\right) \\
& =\left(\sum_{h \in \mathcal{I}_{V} \backslash\{i\}}\left(A_{j \| h}\right) \cdot\left(\left(\varepsilon_{i}^{V}\right)_{h}\right)\right)+\left(\left(A_{j \| i}\right) \cdot\left(\left(\varepsilon_{i}^{V}\right)_{i}\right)\right. \\
& =\left(\sum_{h \in \mathcal{I}_{V} \backslash\{i\}}\left(A_{j \| h}\right) \cdot 0\right)+\left(\left(A_{j \| i}\right) \cdot 1\right) \\
& =0+A_{j \| i}=A_{j \| i}
\end{aligned}
$$

Then $\left(\pi_{j \| i}^{W}\right)(A)=A_{j \| i}=\left(\begin{array}{lll}A *_{\mathbb{R} V W} & \left.\varepsilon_{i}^{V}\right)_{j}\end{array}\right.$

$$
=\left(\pi_{j}^{W}\right)\left(A *_{\mathbb{R} V W} \varepsilon_{i}^{V}\right)=\left(\pi_{j}^{W}\right)\left(\left(\partial_{i} f\right)_{x}\right), \text { as desired. } \quad \mathrm{QED}
$$

## Homework 10: Due on Tuesday 9 April

10-1. Let $V, W, X \in \mathrm{TNSR}^{+}, \quad f: V \rightarrow W, \quad g: W \rightarrow X, \quad u \in V$.
Show: $\quad \forall p \in V, \quad\left(\partial_{u}^{V X}(g \circ f)\right)_{p} \quad=^{*} \quad\left(g_{f_{p}}^{\prime}\right) *_{\mathbb{R} V W} \quad\left(\left(\partial_{u}^{V W} f\right)_{p}\right)$.
Proof: Given $p \in V$. Want: $\left(\partial_{u}^{V X}(g \circ f)\right)_{p}=* \quad\left(g_{f_{p}}^{\prime}\right) *_{\mathbb{R} V W}\left(\left(\partial_{u}^{V W} f\right)_{p}\right)$. Let $\quad i:=i_{p}^{v}$. Then $i_{0}=p+0 \cdot v=p . \quad$ Also, $\left(\partial_{u}^{V W} f\right)_{p}=(f \circ i)_{0}^{\prime}$. Let $\phi:=f \circ i$. Then $\phi_{0}=(f \circ i)_{0}=f_{i_{0}}=f_{p}$. Also, $\left(\partial_{u}^{V W} f\right)_{p}=\phi_{0}^{\prime}$. By the Chain Rule, $(g \circ \phi)_{0}^{\prime}=^{*}\left(g_{\phi_{0}}^{\prime}\right) *_{\mathbb{R} V W}\left(\phi_{0}^{\prime}\right)$.

Then $\left(\partial_{u}^{V X}(g \circ f)\right)_{p}=(g \circ f \circ i)_{0}^{\prime}=(g \circ \phi)_{0}^{\prime}$

$$
={ }^{*} \quad\left(g_{\phi_{0}}^{\prime}\right) *_{\mathbb{R} V W}\left(\phi_{0}^{\prime}\right)=\left(g_{f_{p}}^{\prime}\right) *_{\mathbb{R} V W}\left(\left(\partial_{u}^{V W} f\right)_{p}\right) . \quad \text { QED }
$$

10-2. Let $S, V, W, Z \in \mathrm{TNSR}^{+}, \quad * \in \mathcal{B}_{V W}^{Z}$.
Let $f: S \rightarrow V, \quad g: S \rightarrow W, \quad u \in S$.
Show: $\forall p \in S, \quad\left(\partial_{u}^{S Z}(f * g)\right)_{p}=* \quad\left(\left(\left(\partial_{u}^{S V} f\right)_{p}\right) * g_{p}\right)+\left(f_{p} *\left(\left(\partial_{u}^{S W} g\right)_{p}\right)\right)$.
Proof: Given $p \in V$.
Want: $\quad\left(\partial_{u}^{S Z}(f * g)\right)_{p}=^{*}\left(\left(\left(\partial_{u}^{S V} f\right)_{p}\right) * g_{p}\right)+\left(f_{p} *\left(\left(\partial_{u}^{S W} g\right)_{p}\right)\right)$.
Let $\quad i:=i_{p}^{u} . \quad$ Then $i_{0}=p+0 \cdot u=p$.
Also, $\quad\left(\partial_{u}^{S V} f\right)_{p}=(f \circ i)_{0}^{\prime} \quad$ and $\quad\left(\partial_{u}^{S W} g\right)_{p}=(g \circ i)_{0}^{\prime}$.
Let $\phi:=f \circ i \quad$ and $\quad \psi:=g \circ i \quad$ and $\quad \chi:=(f * g) \circ i$.
Then $\quad\left(\partial_{u}^{S V} f\right)_{p}=\phi_{0}^{\prime} \quad$ and $\quad\left(\partial_{u}^{S W} g\right)_{p}=\psi_{0}^{\prime} \quad$ and $\quad\left(\partial_{u}^{S Z}(f * g)\right)_{p}=\chi_{0}^{\prime}$.
Also, $\quad \phi_{0}=f_{i_{0}}=f_{p} \quad$ and $\quad \psi_{0}=g_{i_{0}}=g_{p}$.
Want: $\quad \chi_{0}^{\prime}=* \phi_{0}^{\prime} * \chi_{0}+\phi_{0} * \psi_{0}^{\prime}$.
Claim: $\chi=\phi * \psi$.
Proof of Claim:
Want: $\forall t \in \mathbb{R}, \chi_{t}=(\phi * \psi)_{t}$. Given $t \in \mathbb{R}$. Want: $\chi_{t}=(\phi * \psi)_{t}$.
Let $q:=i_{t} . \quad$ Then $\quad \phi_{t}=(f \circ i)_{t}=f_{q}, \quad \psi_{t}=(g \circ i)_{t}=g_{q} \quad$ and

$$
\chi_{t}=((f * g) \circ i)_{t}=(f * g)_{q}
$$

Then $\chi_{t}=(f * g)_{q}=f_{q} * g_{q}=\phi_{t} * \psi_{t}=(\phi * \psi)_{t}$, as desired.
End of proof of Claim.
By the Claim and by the Product Rule, we have:

$$
D_{0}^{\mathbb{R} Z} \chi \quad=* \quad\left(D_{0}^{\mathbb{R} V} \phi\right) * \psi_{0}+\phi_{0} *\left(D_{0}^{\mathbb{R} W} \psi\right) .
$$

Then: $\left(D_{0}^{\mathbb{R} Z} \chi\right)(1)=*\left(\left(D_{0}^{\mathbb{R} V} \phi\right)(1)\right) * \psi_{0}+\phi_{0} *\left(\left(D_{0}^{\mathbb{R} Z} \psi\right)(1)\right)$.
So, $\quad$ since $\chi_{0}^{\prime}=\mathrm{s} \ell_{0}^{\mathbb{R} Z}\left(D_{0}^{\mathbb{R} Z} \chi\right)=\left(D_{0}^{\mathbb{R} Z} \chi\right)(1)$,
and since $\phi_{0}^{\prime}=s \ell_{0}^{\mathbb{R} V}\left(D_{0}^{\mathbb{R} V} \phi\right)=\left(D_{0}^{\mathbb{R} V} \phi\right)(1)$,
and since $\psi_{0}^{\prime}=\operatorname{s} \ell_{\bullet}^{\mathbb{R} W}\left(D_{0}^{\mathbb{R} W} \psi\right)=\left(D_{0}^{\mathbb{R} W} \psi\right)(1)$,
we see that: $\chi_{0}^{\prime}=* \phi_{0}^{\prime} * \chi_{0}+\phi_{0} * \psi_{0}^{\prime}$, as desired. QED
10-3. Let $V, W, X \in \mathrm{TNSR}^{+}, \quad A \in X \otimes V \otimes W, \quad y \in V, \quad z \in W$.
Show: $\quad\left(A *_{\mathbb{R}, W, X \otimes V} z\right) *_{\mathbb{R} V X} y=A *_{\mathbb{R}, V \otimes W, X}(y \otimes z)$.
Proof: Want: $\forall k \in \mathcal{I}_{X}$,

$$
\left(\left(\begin{array}{lll}
A & *_{\mathbb{R}, W, X \otimes V} & \left.z) *_{\mathbb{R} V X} y\right)_{k}=\left(A *_{\mathbb{R}, V \otimes W, X}(y \otimes z)\right)_{k} .
\end{array}\right.\right.
$$

Given $k \in \mathcal{I}_{X}$.
Want: $\quad\left(\left(A *_{\mathbb{R}, W, X \otimes V} z\right) *_{\mathbb{R} V X} y\right)_{k}=\left(A *_{\mathbb{R}, V \otimes W, X}(y \otimes z)\right)_{k}$.

We compute:

$$
\begin{aligned}
&\left(A *_{\mathbb{R}, V \otimes W, X}(y \otimes z)\right)_{k}=\left(A *_{\mathbb{R}, V \otimes W, X}(y \otimes z)\right)_{k \| \varnothing} \\
&=\sum_{\ell \in \mathcal{\mathcal { I } _ { V } \otimes W}} A_{k \| \ell} \cdot(y \otimes z)_{\ell \| \varnothing} \\
&=\sum_{\ell \in \mathcal{I}_{V} \otimes W} A_{k \| \ell} \cdot(y \otimes z)_{\ell} \\
&=\sum_{i \in \mathcal{I}_{V}} \sum_{j \in \mathcal{I}_{W}}\left(A_{k\|i\| j} \cdot(y \otimes z)_{i \| j}\right) \\
&=\sum_{i \in \mathcal{I}_{V}} \sum_{j \in \mathcal{I}_{W}}\left(A_{k\|i\| j} \cdot\left(y *_{V \mathbb{R} W} z\right)_{i \| j}\right) \\
&=\sum_{i \in \mathcal{I}_{V}} \sum_{j \in \mathcal{I}_{W}}\left(A_{k\|i\| j} \cdot\left(\sum_{m \in \mathcal{I}_{\mathbb{R}}} y_{i \| m} \cdot z_{m \| j}\right)\right) \\
&=\sum_{i \in \mathcal{I}_{V}} \sum_{j \in \mathcal{I}_{W}}\left(A_{k\|i\| j} \cdot y_{i \| \varnothing} \cdot z_{\varnothing \| j}\right) \\
&=\sum_{i \in \mathcal{I}_{V}} \sum_{j \in \mathcal{I}_{W}}\left(A_{k\|i\| j} \cdot y_{i} \cdot z_{j}\right) .
\end{aligned}
$$

Then:

$$
\begin{aligned}
& \left(\left(\begin{array}{ll}
A *_{\mathbb{R}, W, X \otimes V} & z
\end{array}\right) *_{\mathbb{R} V X} y\right)_{k}=\left(\left(\begin{array}{ll}
A *_{\mathbb{R}, W, X \otimes V} & z
\end{array}\right) *_{\mathbb{R} V X} y\right)_{k \| \varnothing} \\
& =\sum_{i \in \mathcal{I}_{V}}\left(A *_{\mathbb{R}, W, X \otimes V} z\right)_{k \| i} \cdot y_{i \| \varnothing} \\
& =\sum_{i \in \mathcal{I}_{V}}\left(A *_{\mathbb{R}, W, X \otimes V} z\right)_{k \| i} \cdot y_{i} \\
& =\sum_{i \in \mathcal{I}_{V}}\left(A *_{\mathbb{R}, W, X \otimes V} \quad z\right)_{k\|i\| \varnothing} \cdot y_{i} \\
& =\sum_{i \in \mathcal{I}_{V}}\left(\sum_{j \in \mathcal{I}_{W}} A_{k\|i\| j} \cdot z_{j \| \varnothing}\right) \cdot y_{i} \\
& =\sum_{i \in \mathcal{I}_{V}}\left(\sum_{j \in \mathcal{I}_{W}} A_{k\|i\| j} \cdot z_{j}\right) \cdot y_{i} \\
& =\sum_{i \in \mathcal{I}_{V}} \sum_{j \in \mathcal{I}_{W}}\left(A_{k\|i\| j} \cdot y_{i} \cdot z_{j}\right) \\
& =\left(A *_{\mathbb{R}, V \otimes W, X}(y \otimes z)\right)_{k}, \quad \text { as desired. } \quad \text { QED }
\end{aligned}
$$

10-4. Let $V, W, X \in \mathrm{TNSR}^{+}, \quad f: V \rightarrow W, \quad g: W \rightarrow X, \quad u, v \in V$. Show: $\quad \partial_{v}^{V X} \partial_{u}^{V X}(g \circ f) \supseteq\left(g^{\prime \prime} \circ f\right) \quad{ }^{*} \mathbb{R}, W \otimes W, X \quad\left(\left(\partial_{u}^{V W} f\right) \otimes\left(\partial_{v}^{V W} f\right)\right)$ $+\quad\left(g^{\prime} \circ f\right) \quad *_{\mathbb{R} W X} \quad\left(\partial_{v}^{V W} \partial_{u}^{V W} f\right)$.
Proof: Let $\chi:=\partial_{v}^{V X} \partial_{u}^{V X}(g \circ f)$.
Let $\phi:=\left(g^{\prime \prime} \circ f\right) \quad *_{\mathbb{R}, W \otimes W, X} \quad\left(\left(\partial_{u}^{V W} f\right) \otimes\left(\partial_{v}^{V W} f\right)\right)$.

Let $\psi:=\left(g^{\prime} \circ f\right) \quad{ }^{*} \mathbb{R} W X \quad\left(\partial_{v}^{V W} \partial_{u}^{V W} f\right)$.
Want: $\chi \supseteq \phi+\psi$.
By HW\#10-1, $\quad \partial_{u}^{V X}(g \circ f) \supseteq\left(g^{\prime} \circ f\right) *_{\mathbb{R} W X}\left(\partial_{u}^{V W} f\right)$.
Then $\quad \partial_{v}^{V X} \partial_{u}^{V X}(g \circ f) \supseteq \partial_{v}^{V X}\left(\left(g^{\prime} \circ f\right) *_{\mathbb{R} W X}\left(\partial_{u}^{V W} f\right)\right)$.
Recall: $\chi=\partial_{v}^{V X} \partial_{u}^{V X}(g \circ f)$. Let $\alpha:=g^{\prime} \circ f$ and $\kappa:=\partial_{u}^{V W} f$.
Then $\quad \chi \supseteq \partial_{v}^{V X}\left(\alpha *_{\mathbb{R} W X} \kappa\right)$.
Let $*:=*_{\mathbb{R} W X}$. Then $\quad \chi \supseteq \partial_{v}^{V X}(\alpha * \kappa)$.
Want: $\quad \partial_{v}^{V X}(\alpha * \kappa) \supseteq \phi+\psi$.
Let $Y:=X \otimes W$. Then $* \in \mathcal{B}_{Y W}^{X}$.
By HW\#10-2, $\quad \partial_{v}^{V X}(\alpha * \kappa) \supseteq\left(\left(\partial_{v}^{V Y} \alpha\right) * \kappa\right)+\left(\alpha *\left(\partial_{v}^{V W} \kappa\right)\right)$.
Want: $\quad\left(\partial_{v}^{V Y} \alpha\right) * \kappa \supseteq \phi \quad$ and $\quad \alpha *\left(\partial_{v}^{V W} \kappa\right)=\psi$.
We have $\alpha *\left(\partial_{v}^{V W} \kappa\right)=\left(g^{\prime} \circ f\right) *_{\mathbb{R} W X}\left(\partial_{v}^{V W} \partial_{u}^{V W} f\right)=\psi$.
Want: $\quad\left(\partial_{v}^{V Y} \alpha\right) * \kappa \supseteq \phi$.
Want: $\quad \forall q \in V, \quad\left(\left(\partial_{v}^{V Y} \alpha\right) * \kappa\right)_{q}={ }^{*} \quad \phi_{q}$.
Given $q \in V$. Want: $\left(\left(\partial_{v}^{V Y} \alpha\right) * \kappa\right)_{q}=^{*} \phi_{q}$.
By HW\#10-1, $\quad \partial_{u}^{V Y}\left(g^{\prime} \circ f\right) \supseteq\left(g^{\prime \prime} \circ f\right) * \mathbb{R} W Y\left(\partial_{u}^{V W} f\right)$.
Then $\left(\partial_{v}^{V Y} \alpha\right)_{q}=\left(\partial_{v}^{V Y}\left(g^{\prime} \circ f\right)\right)_{q}={ }^{*}\left(\left(g^{\prime \prime} \circ f\right) *_{\mathbb{R} W Y}\left(\partial_{u}^{V W} f\right)\right)_{q}$.
Let $A:=\left(g^{\prime \prime} \circ f\right)_{q}, \quad y:=\left(\partial_{u}^{V W} f\right)_{q}, \quad z:=\left(\partial_{v}^{V W} f\right)_{q}$.
Then $y=\left(\partial_{u}^{V W} f\right)_{q}=\kappa_{q}$.
Also, $\phi_{q}=\left(\left(g^{\prime \prime} \circ f\right) \quad *_{\mathbb{R}, W \otimes W, X} \quad\left(\left(\partial_{u}^{V W} f\right) \otimes\left(\partial_{v}^{V W} f\right)\right)\right)_{q}$

$$
=A \quad{ }^{*} \mathbb{R}, W \otimes W, X \quad(y \otimes z)
$$

By HW\#10-3 (with $V$ replaced by $W$ ),

$$
\left(A *_{\mathbb{R}, W, X \otimes W} z\right) *_{\mathbb{R} V W} y=A *_{\mathbb{R}, W \otimes W, X}(y \otimes z) .
$$

Then $\left(\left(\partial_{v}^{V Y} \alpha\right) * \kappa\right)_{q}=\left(\partial_{v}^{V Y} \alpha\right)_{q} * \kappa_{q}=\left(\partial_{v}^{V Y} \alpha\right)_{q} * y$

$$
=*\left(\left(g^{\prime \prime} \circ f\right) * \mathbb{R} W Y\left(\partial_{u}^{V W} f\right)\right)_{q} * y
$$

$$
=\left(\left(g^{\prime \prime} \circ f\right)_{q} *_{\mathbb{R} W Y}\left(\partial_{u}^{V W} f\right)_{q}\right) *_{\mathbb{R} W X} y
$$

$$
=\left(\begin{array}{ll}
A *_{\mathbb{R}, W, X \otimes W} & z
\end{array}\right) *_{\mathbb{R} W X} y
$$

$$
=A *_{\mathbb{R}, W \otimes W, X}(y \otimes z)=\phi_{q} . \quad \text { QED }
$$

10-5. Let $V:=\mathbb{R}^{2}, \quad W:=\mathbb{R}, \quad g: V \rightarrow W, \quad z:=0_{2}, \quad i:=i_{z}^{\varepsilon_{1}^{V}}$.
Assume: $\left(g_{z}=0\right) \&\left(\left(\partial_{1}^{V W} g\right)_{z}=0\right)$. Show: $g \circ i \in \mathcal{O}_{1}^{W W}$.
Proof: We have $i_{0}=z+0 \cdot \varepsilon_{1}^{V}=z$ and $\left(\partial_{1}^{V W} g\right)_{z}=\left(\partial_{\varepsilon_{1}^{V}}^{V W} g\right)_{z}=(g \circ i)_{0}^{\prime}$.
Then $\quad(g \circ i)_{0}=g_{i_{0}}=g_{z}=0 \quad$ and $\quad(g \circ i)_{0}^{\prime}=\left(\partial_{1}^{V W} g\right)_{z}=0$.
Since $\quad(g \circ i)_{0}=0 \quad$ and $\quad(g \circ i)_{0}^{\prime}=0, \quad$ it follows,
from HW\#8-1 (with $S$ and $T$ replaced by $W$, and $R$ by $g \circ i$ ), that: $\quad g \circ i \in \mathcal{O}_{1}^{W W}$, as desired. QED

Homework 9: Due on Tuesday 2 April
9-1. Let $V, W \in \operatorname{TNSR}^{+}, \quad \alpha: V \longrightarrow W, \quad \delta>0, \quad B:=B_{V}\left(0_{V}, \delta\right)$. Assume: $B \subseteq \operatorname{dom}[\alpha] . \quad$ Assume: $\forall q \in B,\left|\alpha_{q}\right|_{W} \leqslant|q|_{V}$.

Show: $\alpha \in \widehat{\mathcal{O}}_{1}^{V W}$.
Proof: Let $z:=0_{V}$.
Since $z \in B_{V}(z, \delta)=B_{V}\left(0_{V}, \delta\right)=B$, by assumption, $\left|\alpha_{z}\right|_{W} \leqslant|z|_{V}$.
Then $\left|\alpha_{z}\right|_{W} \leqslant|z|_{V}=\left|0_{V}\right|_{V}=0$, so $\left|\alpha_{z}\right|_{W} \leqslant 0$.
Then $0 \leqslant\left|\alpha_{z}\right|_{W} \leqslant 0$, so $\left|\alpha_{z}\right|_{W}=0$, so $\alpha_{z}=0_{W}$.
Then $\alpha_{0_{V}}=\alpha_{z}=0_{W}$, so $\alpha_{0_{V}}=0_{W}$. Let $\sigma:=\operatorname{adj}_{0_{V}}^{0_{W}}\left(\frac{\alpha}{|\bullet|_{V}}\right)$.
As $\alpha_{0_{V}}=0_{W}$, we get: $(\operatorname{dom}[\alpha]=\operatorname{dom}[\sigma]) \&\left(\alpha=\sigma \cdot\left(|\bullet|_{V}\right)\right)$.
Want: $\alpha \in\left(\mathrm{BNZ}_{V}^{W}\right) \cdot\left(|\bullet|_{V}\right)$. Want: $\sigma \in \mathrm{BNZ}_{V}^{W}$.
We have $B \in \operatorname{dom}[\alpha]=\operatorname{dom}[\sigma]$ and $B=B\left(0_{V}, \delta\right) \in \mathcal{B}_{V}\left(0_{V}\right)$.
Then $\sigma \in \mathrm{DNZ}_{V}^{W}$. By definition of $\sigma$, we have $\sigma_{0_{V}}=0_{W}$.
Want: $\sigma_{*}(B)$ is bounded in $W$. Let $C:=B_{W}\left(0_{W}, 2\right)$.
Since $C \in \mathcal{B}_{W}$, it suffices to show: $\sigma_{*}(B) \subseteq C$.
Want: $\forall q \in B \cap(\operatorname{dom}[\sigma]), \sigma_{q} \in C$.
Given $q \in B \cap(\operatorname{dom}[\sigma])$. Want: $\sigma_{q} \in C$.
Exactly one of the following is true:
(1) $q=0_{V}$
or
(2) $q \neq 0_{V}$.

Case (1):
We have $\sigma_{q}=\sigma_{0_{V}}=0_{W} \in B_{W}(0,2)=C$, as desired.
End of Case (1).

Case (2):
By definition of $\sigma, \sigma_{q}=\frac{\alpha_{q}}{|q|_{V}}$. Then $\left|\sigma_{q}\right|_{W}=\frac{\left|\alpha_{q}\right|_{W}}{|q|_{V}}$.
Since $q \in B \cap(\operatorname{dom}[\sigma]) \subseteq B$, by assumption, $\left|\alpha_{q}\right|_{W} \leqslant|q|_{V}$.
Then $\left|\sigma_{q}-0_{W}\right|_{W}=\left|\sigma_{q}\right|_{W}=\frac{\left|\alpha_{q}\right|_{W}}{|q|_{V}} \leqslant 1<2$, so $\sigma_{q} \in B\left(0_{W}, 2\right)$.
Then $\sigma_{q} \in B\left(0_{W}, 1\right)=C$, as desired. End of Case (2).
QED
9-2. Let $S, T \in \mathrm{TNSR}^{+}, \quad f: S \rightarrow T, \quad x, v \in S$.
Show: $\quad\left(\partial_{v}^{S T} f\right)_{x} \quad=^{*} \quad\left(f_{x}^{\prime}\right) *_{\mathbb{R} S T} v$.
Proof: Want: $\left(\left(f_{x}^{\prime}\right) *_{\mathbb{R} S T} v \neq \odot\right) \Rightarrow\left(\left(\partial_{v}^{S T} f\right)_{x}=\left(f_{x}^{\prime}\right) *_{\mathbb{R} S T} v\right)$.
Assume: $\left(f_{x}^{\prime}\right) *_{\mathbb{R} S T} \quad v \neq \mathrm{E}^{(2)} \quad$ Want: $\left(\partial_{v}^{S T} f\right)_{x}=\left(f_{x}^{\prime}\right) *_{\mathbb{R} S T} v$.

Since $\left(f_{x}^{\prime}\right) * \mathbb{R} S T \quad v \neq \Theta^{\circ}$, we see that $f_{x}^{\prime} \neq \oplus$.
Then s $\ell_{\bullet}^{S T}\left(D_{x}^{S T} f\right)=f_{x}^{\prime} \neq \Theta^{*}$, so $D_{x}^{S T} f \neq \operatorname{ci}^{2}$, so $D_{x}^{S T} f \in \mathcal{L}_{S}^{T}$.
Let $L:=D_{x}^{S T} f$. Then $L \in \mathcal{L}_{S}^{T}$.
We have s $\ell_{L}^{S T}=\mathrm{s} \ell_{\bullet}^{S T}(L)=\mathrm{s} \ell_{\bullet}^{S T}\left(D_{x}^{S T} f\right)=f_{x}^{\prime}$.
Since s $\ell_{L}^{S T}=f_{x}^{\prime}$, by Theorem 85.6, we get $L_{v}=\left(f_{x}^{\prime}\right) *_{\mathbb{R} S T} v$.
By HW \#8-4, $\left(\partial_{v}^{S T} f\right)_{x}=*\left(D_{x}^{S T} f\right)_{v}$.
Then $\left(\partial_{v}^{S T} f\right)_{x}={ }^{*}\left(D_{x}^{S T} f\right)_{v}=L_{v}=\left(f_{x}^{\prime}\right){ }^{*} \mathbb{R}_{\mathbb{R} S T} v \neq($.
Then $\left(\partial_{v}^{S T} f\right)_{x}=\left(f_{x}^{\prime}\right) *_{R S T} v$, as desired. QED
9-3. Let $V:=\mathbb{R}^{2}, \quad W:=\mathbb{R}, \quad f: V \rightarrow W, \quad z:=0_{2}$.
Assume: $\quad\left(f^{\prime}\right.$ is defined near $\left.z\right) \quad \& \quad\left(f_{z}=0\right)$.
Let $g:=\partial_{1}^{V W} f, \quad h:=\partial_{2}^{V W} f, \quad i:=i_{z}^{\varepsilon_{1}^{V}}$.
Show: $\exists \sigma \in \widehat{\mathcal{O}}_{1}^{W W}, \exists \tau \in \widehat{\mathcal{O}}_{1}^{V V}$ s.t.

$$
f=\left(g \circ i \circ \sigma \circ \pi_{1}^{V}\right) \cdot \pi_{1}^{V}+(h \circ \tau) \cdot \pi_{2}^{V} \quad \text { near } z
$$

Proof: Since $f^{\prime}$ is defined near $z$, choose $C \in \mathcal{B}_{V}(z)$ s.t. $C \subseteq \operatorname{dom}\left[f^{\prime}\right]$.
Since $C \in \mathcal{B}_{V}(z)$, choose $r>0$ s.t. $C=B_{V}(z, r)$.
Let $\delta:=r / \sqrt{2}$ and $J:=(-\delta ; \delta)$. Then $J^{2} \subseteq B_{V}(z, r)$.
Then $J^{2} \subseteq B_{V}(z, r)=C \subseteq \operatorname{dom}[f]$.
Define $S: J \rightarrow 2^{\mathbb{R}}$ and $T: J^{2} \rightarrow 2^{\mathbb{R}}$ by

$$
\begin{aligned}
& S_{x}=\left\{\alpha \in[0 \mid x] \text { s.t. }\left.f\right|_{(0,0)} ^{(x, 0)}=\left(\left(\partial_{1}^{V W} f\right)(\alpha, 0)\right) \cdot x\right\} \quad \text { and } \\
& T_{x}=\left\{\beta \in[0 \mid y] \text { s.t. }\left.f\right|_{(x, y)} ^{(x, y)}=\left(\left(\partial_{2}^{V W} f\right)(x, \beta)\right) \cdot y\right\} .
\end{aligned}
$$

Claim 1: $\forall x \in J$, we have $\varnothing \neq S_{x} \subseteq J$.
Proof of Claim 1:
Given $x \in J . \quad$ Want: $\varnothing \neq S_{x} \subseteq J$.
By HW\#8-5, we have $\varnothing \neq S_{x}$. Want: $S_{x} \subseteq J$.
By definition of $S_{x}$, we have $S_{x} \subseteq[0 \mid x]$.
We have $0 \in(-\delta ; \delta)=J$ and $x \in J$.
So, since $J$ is an interval, we get $[0 \mid x] \subseteq J$.
Then $S_{x} \subseteq[0 \mid x] \subseteq J$, as desired.
End of proof of Claim 1.

Claim 2: $\forall x, y \in J$, we have $\varnothing \neq T_{(x, y)} \subseteq J$.
Proof of Claim 2:
Given $x, y \in J . \quad$ Want: $\varnothing \neq T_{(x, y)} \subseteq J$.
By Theorem 90.13, p. 218, we have $\varnothing \neq T_{(x, y)}$. Want: $T_{(x, y)} \subseteq J$.
By definition of $T_{(x, y)}$, we have $T_{(x, y)} \subseteq[0 \mid y]$.

We have $0 \in(-\delta ; \delta)=J$ and $y \in J$.
So, since $J$ is an interval, we get $[0 \mid y] \subseteq J$.
Then $T_{(x, y)} \subseteq[0 \mid y] \subseteq J$, as desired.
End of proof of Claim 2.
Define $\sigma: J \longrightarrow \mathbb{R}$ by $\sigma_{x}=\mathrm{CH}\left(S_{x}\right)$.
By Claim 1, $\quad \forall x \in J$, we have $\varnothing \neq S_{x} \subseteq J$.
Then $\quad \sigma: J \rightarrow J \quad$ and, $\quad \forall x \in J, \sigma_{x} \in S_{x} \subseteq J$.
Define $\mu: J^{2} \rightarrow \mathbb{R}$ by $\mu_{(x, y)}=\mathrm{CH}\left(T_{(x, y)}\right)$.
By Claim 2, $\quad \forall x, y \in J$, we have $\varnothing \neq T_{(x, y)} \subseteq J$.
Then $\quad \mu: J^{2} \rightarrow J \quad$ and, $\quad \forall x, y \in J, \mu_{(x, y)} \in T_{(x, y)} \subseteq J$.
Define $\tau: J^{2} \rightarrow J^{2}$ by $\tau_{(x, y)}=\left(x, \mu_{(x, y)}\right)$.
Claim 3: $\sigma \in \widehat{\mathcal{O}}_{1}^{W W}$.
Proof of Claim 3:
Since $J=B_{\mathbb{R}}(0, \delta)$ and $J=\operatorname{dom}[\sigma]$, by HW\#9-1, it suffices to prove: $\quad \forall x \in J, \quad\left|\sigma_{x}\right|_{W} \leqslant|x|_{W}$.
Given $x \in J . \quad$ Want: $\left|\sigma_{x}\right|_{W} \leqslant|x|_{W}$.
By definition of $S_{x}$, we have $S_{x} \subseteq[0 \mid x]$.
Then $\sigma_{x} \in S_{x} \subseteq[0 \mid x]$.
Then $\sigma_{x} \in[0 \mid x]$, so $\left|\sigma_{x}\right| \leqslant|x|$.
Then $\left|\sigma_{x}\right|_{W}=\left|\sigma_{x}\right| \leqslant|x|=|x|_{W}$, as desired.
End of proof of Claim 3.
Claim 4: $\tau \in \widehat{\mathcal{O}}_{1}^{V V}$.
Proof of Claim 4:
Let $B:=B_{V}(z, \delta)$. Then $B \subseteq J^{2}=\operatorname{dom}[\tau]$.
By HW\#9-1, it suffices to prove: $\quad \forall q \in B, \quad\left|\tau_{q}\right|_{V} \leqslant|q|_{V}$.
Given $q \in B$. Want: $\left|\tau_{q}\right|_{V} \leqslant|q|_{V}$.
Let $x:=q_{1}, y:=q_{2}$. Then $q=(x, y)$ and $|q|_{V}^{2}=x^{2}+y^{2}$.
Since $(x, y)=q \in B \subseteq J^{2}$, we see that $x, y \in J$.
By definition of $T_{(x, y)}$, we have $T_{(x, y)} \subseteq[0 \mid y]$.
Then $\mu_{(x, y)} \in T_{(x, y)} \subseteq[0 \mid y]$.
Then $\mu_{(x, y)} \in[0 \mid y]$, so $\left|\mu_{(x, y)}\right| \leqslant|y|$, so $\left(\mu_{(x, y)}\right)^{2} \leqslant y^{2}$.
Then $\left|\tau_{q}\right|=\left|\tau_{(x, y)}\right|_{V}^{2}=\left|\left(x, \mu_{(x, y)}\right)\right|_{V}^{2}=x^{2}+\left(\mu_{(x, y)}\right)^{2} \leqslant x^{2}+y^{2}=|q|_{V}^{2}$.
Since $0 \leqslant\left|\tau_{q}\right|_{V}^{2} \leqslant|q|_{V}^{2}$, we get $\left|\tau_{q}\right|_{V} \leqslant|q|_{V}$, as desired.
End of proof of Claim 4.

By Claim 3 and Claim 4, we have $\sigma \in \widehat{\mathcal{O}}_{1}^{W W}$ and $\sigma \in \widehat{\mathcal{O}}_{1}^{W W}$.
Want: $f=\left(g \circ i \circ \sigma \circ \pi_{1}^{V}\right) \cdot \pi_{1}^{V}+(h \circ \tau) \cdot \pi_{2}^{V} \quad$ near $z$.
Since $B_{V}(0, \delta) \in \mathcal{B}_{V}(z)$, it suffices to prove:

$$
f=\left(g \circ i \circ \sigma \circ \pi_{1}^{V}\right) \cdot \pi_{1}^{V}+(h \circ \tau) \cdot \pi_{2}^{V} \quad \text { on } B_{V}(0, \delta)
$$

Want: $\forall q \in B_{V}(0, \delta), \quad f_{q}=\left(\left(g \circ i \circ \sigma \circ \pi_{1}^{V}\right) \cdot \pi_{1}^{V}+(h \circ \tau) \cdot \pi_{2}^{V}\right)_{q}$.
Given $q \in B_{V}(0, \delta)$. Want: $f_{q}=\left(\left(g \circ i \circ \sigma \circ \pi_{1}^{V}\right) \cdot \pi_{1}^{V}+(h \circ \tau) \cdot \pi_{2}^{V}\right)_{q}$.
Let $B:=B_{V}(z, \delta)$. Let $x:=q_{1}, y:=q_{2}$. Then $q=(x, y)$.
Then $\pi_{1}^{V}(q)=x$ and $\pi_{2}^{V}(q)=y$.
Since $(x, y)=q \in B \subseteq J^{2}$, we see that $x, y \in J$.
Since $i=i_{z}^{\varepsilon_{1}^{V}}$, we have: $\forall t \in \mathbb{R}, i(t)=z+t \varepsilon_{1}^{V}=(0,0)+t(1,0)=(t, 0)$.
Then $\left(i \circ \sigma \circ \pi_{1}^{V}\right)_{q}=(i \circ \sigma)_{x}=i\left(\sigma_{x}\right)=\left(\sigma_{x}, 0\right)$.
Want: $f_{(x, y)}=\left(g\left(\sigma_{x}, 0\right)\right) \cdot x+\left(h\left(\tau_{(x, y)}\right)\right) \cdot y$.
Since $\sigma_{x} \in S_{x}$, by definition of $S_{x}$,
we get $\left.f\right|_{(0,0)} ^{(x, 0)}=\left(\left(\partial_{1}^{V W} f\right)\left(\sigma_{x}, 0\right)\right) \cdot x$.
Then $\left.f\right|_{(0,0)} ^{(x, 0)}=\left(\left(\partial_{1}^{V W} f\right)\left(\sigma_{x}, 0\right)\right) \cdot x=\left(g\left(\sigma_{x}, 0\right)\right) \cdot x$.
Since $\mu_{(x, y)} \in T_{(x, y)}$, by definition of $T_{(x, y)}$,
we get $\left.f\right|_{(x, 0)} ^{(x, y)}=\left(\left(\partial_{1}^{V W} f\right)\left(x, \mu_{(x, y)}\right)\right) \cdot y$.
Then $\left.f\right|_{(x, 0)} ^{(x, y)}=\left(\left(\partial_{1}^{V W} f\right)\left(x, \mu_{(x, y)}\right)\right) \cdot y=\left(h\left(x, \mu_{x, y}\right)\right) \cdot y=\left(h\left(\tau_{x, y}\right)\right) \cdot y$.
Since $f_{(0,0)}=f_{z}=0$, we get $f_{(x, y)}=\left.f\right|_{(0,0)} ^{(x, y)}$.
Then $f_{(x, y)}=\left.f\right|_{((0,0)} ^{(x, y)}=\left(\left.f\right|_{(0,0)} ^{(x, 0)}\right)+\left(\left.f\right|_{(x, 0)} ^{(x, y)}\right)$

$$
=\left(g\left(\sigma_{x}, 0\right)\right) \cdot x+\left(h\left(\tau_{(x, y)}\right) \cdot y, \quad\right. \text { as desired. QED }
$$

9-4. Let $V:=\mathbb{R}^{2}, \quad W:=\mathbb{R}, \quad h: V \rightarrow W, \quad z:=0_{2}$.
Assume: $z \in \operatorname{dom}\left[h^{\prime}\right]$. Assume: $h_{z}=\left(\partial_{1}^{V W} h\right)_{z}=\left(\partial_{2}^{V W} h\right)_{z}=0$.

$$
\text { Show: } \quad h \in \mathcal{O}_{1}^{V W}
$$

Proof: We have $h^{\prime}: V \rightarrow W \otimes V$, so dom $\left[h^{\prime}\right] \subseteq V$ and im $\left[h^{\prime}\right] \subseteq W \otimes V$.
Since $z \in \operatorname{dom}\left[h^{\prime}\right]$, we get $h_{z}^{\prime} \in \operatorname{im}\left[h^{\prime}\right]$.
Then $h_{z}^{\prime} \in \operatorname{im}\left[h^{\prime}\right] \subseteq W \otimes V=\mathbb{R} \otimes \mathbb{R}^{2}=\mathbb{R}^{2}$.
Then $\left(h_{z}^{\prime}\right)_{1} \in \mathbb{R}$ and $\left(h_{z}^{\prime}\right)_{2} \in \mathbb{R}$. Then $\left(h_{z}^{\prime}\right)_{1} \neq \odot \neq\left(h_{z}^{\prime}\right)_{2}$.
We have $\left(\partial_{1}^{V W} h\right)_{z}=^{*}\left(h_{z}^{\prime}\right)_{1} \neq \odot, \quad$ so $\left(\partial_{1}^{V W} h\right)_{z}=\left(h_{z}^{\prime}\right)_{1}$.
Also, $\left(\partial_{2}^{V W} h\right)_{z}=^{*}\left(h_{z}^{\prime}\right)_{2} \neq \odot$, $\quad$ so $\left(\partial_{2}^{V W} h\right)_{z}=\left(h_{z}^{\prime}\right)_{2}$.
Then $\left(h_{z}^{\prime}\right)_{1}=\left(\partial_{1}^{V W} h\right)_{z}=0$ and $\left(h_{z}^{\prime}\right)_{2}=\left(\partial_{2}^{V W} h\right)_{z}=0$.
Then $h_{0_{V}}^{\prime}=h_{z}^{\prime}=(0,0)=0_{W \otimes V}$. Also, $h_{0_{V}}=h_{z}=0=0_{W}$.
Then, by HW\#8-1, we get $h \in \mathcal{O}_{1}^{V W}$, as desired. QED

9-5. Let $V:=\mathbb{R}^{2}, \quad W:=\mathbb{R}, \quad f: V \rightarrow W, \quad z:=0_{2}$.
Let $\alpha:=\left(\partial_{1} \partial_{1} f\right)_{z}, \quad \beta:=\left(\partial_{1} \partial_{2} f\right)_{z}, \quad \delta:=\left(\partial_{2} \partial_{2} f\right)_{z}$,

$$
\lambda:=\left(\partial_{1} f\right)_{z}, \quad \mu:=\left(\partial_{2} f\right)_{z}, \quad \rho:=f_{z}
$$


Define $\quad C \in \mathcal{C}_{V}^{W}, \quad L \in \mathcal{L}_{V}^{W}, \quad Q \in \mathcal{Q}_{V}^{W} \quad$ by

$$
\begin{gathered}
C(x, y)=\rho, \quad L(x, y)=(\lambda, \mu) \bullet_{V}(x, y), \\
P(x, y)=\left[\begin{array}{cc}
\alpha & \beta \\
\beta & \delta
\end{array}\right] \bullet_{V \otimes V}\left((x, y)^{\otimes 2}\right) .
\end{gathered}
$$

Let $R:=f-\left(C+L+\frac{P}{2!}\right)$.
Show: $\left(\partial_{1} \partial_{1} R\right)_{z}=\left(\partial_{1} \partial_{2} R\right)_{z}=\left(\partial_{2} \partial_{2} R\right)_{z}=\left(\partial_{1} R\right)_{z}=\left(\partial_{2} R\right)_{z}=R_{z}=0$.
Proof: We have: $\forall x, y \in \mathbb{R}$,

$$
\begin{aligned}
& C_{(x, y)}=\rho, \quad\left(\partial_{1} C\right)_{(x, y)}=0, \quad\left(\partial_{2} C\right)_{(x, y)}=0, \\
& \quad\left(\partial_{1} \partial_{1} C\right)_{(x, y)}=0, \quad\left(\partial_{1} \partial_{2} C\right)_{(x, y)}=0, \quad\left(\partial_{2} \partial_{2} C\right)_{(x, y)}=0, \\
& L_{(x, y)}=\lambda x+\mu y, \quad\left(\partial_{1} L\right)_{(x, y)}=\lambda, \quad\left(\partial_{2} L\right)_{(x, y)}=\mu, \\
& \quad\left(\partial_{1} \partial_{1} L\right)_{(x, y)}=0, \quad\left(\partial_{1} \partial_{2} L\right)_{(x, y)}=0, \quad\left(\partial_{2} \partial_{2} L\right)_{(x, y)}=0, \\
& P_{(x, y)}=\alpha x^{2}+2 \beta x y+\delta y^{2}, \\
& \quad\left(\partial_{1} P\right)_{(x, y)}=2 \alpha x+2 \beta y, \quad\left(\partial_{2} P\right)_{(x, y)}=2 \beta x+2 \delta y, \\
& \quad\left(\partial_{1} \partial_{1} P\right)_{(x, y)}=2 \alpha, \quad\left(\partial_{1} \partial_{2} P\right)_{(x, y)}=2 \beta, \quad\left(\partial_{2} \partial_{2} P\right)_{(x, y)}=2 \delta .
\end{aligned}
$$

Then, since $z=0_{2}=(0,0)$, we get

$$
\begin{aligned}
& C_{z}=\rho, \quad\left(\partial_{1} C\right)_{z}=0, \quad\left(\partial_{2} C\right)_{z}=0, \\
& \quad\left(\partial_{1} \partial_{1} C\right)_{z}=0, \quad\left(\partial_{1} \partial_{2} C\right)_{z}=0, \quad\left(\partial_{2} \partial_{2} C\right)_{z}=0 \\
& L_{z}=0, \quad\left(\partial_{1} L\right)_{z}=\lambda, \quad\left(\partial_{2} L\right)_{z}=\mu, \\
& \quad\left(\partial_{1} \partial_{1} L\right)_{z}=0, \quad\left(\partial_{1} \partial_{2} L\right)_{z}=0, \quad\left(\partial_{2} \partial_{2} L\right)_{z}=0 \\
& P_{z}=0, \\
& \quad\left(\partial_{1} P\right)_{z}=0, \quad\left(\partial_{2} P\right)_{z}=z, \\
& \quad\left(\partial_{1} \partial_{1} P\right)_{z}=2 \alpha, \quad\left(\partial_{1} \partial_{2} P\right)_{z}=2 \beta, \quad\left(\partial_{2} \partial_{2} P\right)_{z}=2 \delta .
\end{aligned}
$$

Then

$$
\begin{aligned}
& R_{z}={ }^{*} f_{z}-(\rho+0+0)=\rho-\rho=0 \neq \odot, \\
& \left(\partial_{1} R\right)_{z}=^{*}\left(\partial_{1} f\right)_{z}-(0+\lambda+0)=\lambda-\lambda=0 \neq \Theta, \\
& \left(\partial_{2} R\right)_{z}={ }^{*}\left(\partial_{2} f\right)_{z}-(0+\mu+0)=\mu-\mu=0 \neq \Theta, \\
& \left(\partial_{1} \partial_{1} R\right)_{z}={ }^{*}\left(\partial_{1} \partial_{1} f\right)_{z}-(0+0+(2 \alpha / 2))=\alpha-\alpha=0 \neq \Theta, \\
& \left(\partial_{1} \partial_{2} R\right)_{z}=^{*}\left(\partial_{1} \partial_{2} f\right)_{z}-(0+0+(2 \beta / 2))=\beta-\beta=0 \neq \Theta, \\
& \left(\partial_{2} \partial_{2} R\right)_{z}=^{*}\left(\partial_{2} \partial_{2} f\right)_{z}-(0+0+(2 \delta / 2))=\delta-\delta=0 \neq \Theta .
\end{aligned}
$$

Then $\left(\partial_{1} \partial_{1} R\right)_{z}=\left(\partial_{1} \partial_{2} R\right)_{z}=\left(\partial_{2} \partial_{2} R\right)_{z}=\left(\partial_{1} R\right)_{z}=\left(\partial_{2} R\right)_{z}=R_{z}=0$, as desired. QED

Homework 8: Due on Tuesday 26 March
8-1. Let $S, T \in \mathrm{TNSR}^{+}, \quad R: S \rightarrow T$.
Assume $\left(R_{0_{S}}=0_{T}\right) \&\left(R_{0_{S}}^{\prime}=0_{T \otimes S}\right)$. Show: $R \in \mathcal{O}_{1}^{S T}$.
Proof: Let $L:=D_{0_{S}} R$ and $A:=R_{0_{S}}^{\prime}$. Then $L=\operatorname{Lin}_{A}^{S T}$ and $A=0_{T \otimes S}$. Then $L=\operatorname{Lin}_{0_{T \otimes S}}^{S T}=\mathbf{0}_{S}^{T}$. Then $L \neq \mathcal{B}^{T}$.
Since $D_{0_{S}} R=L \neq \Theta$, it follows that $R_{0_{S}}^{T}-L \in \mathcal{O}_{1}^{S T}$.
Since $R_{0_{S}}=0_{T}$, it follows that $R_{0_{S}}^{T}=R$.
Then $R=R-\mathbf{0}_{S}^{T}=R_{0_{S}}^{T}-\mathbf{0}_{S}^{T}=R_{0_{S}}^{T}-L \in \mathcal{O}_{1}^{S T}$, as desired. QED
8-2. Let $S, T \in \mathrm{TNSR}^{+}, \quad f: S \rightarrow T$.
Let $p \in \operatorname{dom}\left[f^{\prime}\right], \quad L:=\operatorname{Lin}_{f_{p}^{\prime}}^{S T}, \quad R:=f_{p}^{T}-L$.
Show: $\left(R_{0_{S}}=0_{T}\right) \&\left(R_{0_{S}}^{\prime}=0_{T \otimes S}\right)$.
Proof: We have $R_{0_{S}}=\left(f_{p}^{T}-L\right)\left(0_{S}\right)=\left[f_{p}^{T}\left(0_{S}\right)\right]-\left[L\left(0_{S}\right)\right]$.
Since $p \in \operatorname{dom}\left[f^{\prime}\right] \subseteq \operatorname{dom}[f]$, we get $f_{p}^{T}\left(0_{S}\right)=0_{T}$.
Since $L \in \mathcal{L}_{S}^{T}$, we get $L\left(0_{S}\right)=0_{T}$.
Then $R_{0_{S}}=R\left(0_{S}\right)=\left(f_{p}^{T}-L\right)\left(0_{S}\right)=\left[f_{p}^{T}\left(0_{S}\right)\right]-\left[L\left(0_{S}\right)\right]=0_{T}-0_{T}=0_{T}$.
Want: $R_{0_{S}}^{\prime}=0_{T \otimes S}$.
We have $D_{0_{S}}^{S T}\left(f_{p}^{T}\right)=D_{p+0_{S}}^{S T} f=D_{p}^{S T} f=\operatorname{Lin}_{f_{p}^{\prime}}^{S T}=L$.
Also, since $L \in \mathcal{L}_{S}^{T}$, we get $D_{0_{S}}^{S T} L=L$.
Then $D_{0_{S}}^{S T} R=D_{0_{S}}^{S T}\left(f_{p}^{T}-L\right)=*\left[D_{0_{S}}^{S T}\left(f_{p}^{T}\right)\right]-\left[D_{0_{S}}^{S T}(L)\right]$

$$
=L-L=\mathbf{0}_{S}^{T}
$$

Since $D_{0_{S}} R={ }^{*} \mathbf{0}_{S}^{T} \neq \Theta^{(2)}$, it follows that $D_{0_{S}} R=\mathbf{0}_{S}^{T}$.
Then $R-0_{S}=\mathrm{s} \ell_{\bullet}^{S T}\left(D_{0_{S}} R\right)=\mathrm{s} \ell_{\bullet}^{S T}\left(\mathbf{0}_{S}^{T}\right)=0_{T \otimes S}$. QED
8-3. Let $S \in \operatorname{TNSR}^{+}, \quad p, v \in S, \quad i:=i_{p}^{v} . \quad$ Show: $i^{\prime}=C_{\mathbb{R}}^{v}$.
Proof: We have: $\forall t \in \mathbb{R}, i(t)=i_{p}^{v}(t)=p+t v$.
Want: $\forall t \in \mathbb{R}, \quad i^{\prime}(t)=C_{\mathbb{R}}^{v}(t)$.
Given $t \in \mathbb{R}$. Want: $i^{\prime}(t)=C_{\mathbb{R}}^{v}(t)$. Want $i_{t}^{\prime}=v$.
Define $L \in \mathcal{L}_{\mathbb{R}}^{S}$ by $L(h)=h v . \quad$ Then $s \ell_{\bullet}^{\mathbb{R} S}(L)=s \ell_{L}^{\mathbb{R} S}=L(1)=v$.
We have: $\forall h \in \mathbb{R}, \quad i_{t}^{T}(h)=[i(t+h)]-[i(t)]$

$$
=[p+(t+h) v]-[p+t v]=h v=L(h) .
$$

Then $i_{t}^{T}=L$, so $i_{t}^{T}-L=L-L=\mathbf{0}_{\mathbb{R}}^{S} \in \mathcal{O}_{1}^{\mathbb{R} S}$.
Since $i_{t}^{T}-L \in \mathcal{O}_{1}^{\mathbb{R} S}$, it follows that $L=D_{t}^{\mathbb{R} S} i$.
Then $i_{t}^{\prime}=\mathrm{s} \ell_{\bullet}^{\mathbb{R} S}\left(D_{t}^{\mathbb{R} S} i\right)=\mathrm{s} \ell_{\bullet}^{\mathbb{R} S}(L)=v$, as desired. QED

8-4. Let $S, T \in \mathrm{TNSR}^{+}, \quad f: S \rightarrow T, \quad p, v \in S$.
Show: $\left(\partial_{v}^{S T} f\right)_{p}=*\left(D_{p}^{S T} f\right)_{v}$.
Proof: Let $i:=i_{p}^{v}$ and let $g:=f \circ i$.
Then $\left(\partial_{v}^{S T} f\right)_{p}=(f \circ i)_{0}^{\prime}=g_{0}^{\prime}$.
Also, we have: $i_{0}=i(0)=i_{p}^{v}(0)=p+0 \cdot v=p$.
By the Linearization Chain Rule,
we have $D_{0}^{\mathbb{R} T}(f \circ i)={ }^{*}\left(D_{i_{0}}^{S T} f\right) \circ\left(D_{0}^{\mathbb{R} S} i\right)$.
Let $L:=D_{0}^{\mathbb{R} S} i$ and let $M:=D_{0}^{\mathbb{R} T} g$.
Then $M=D_{0}^{\mathbb{R} T}(f \circ i)={ }^{*}\left(D_{i_{0}}^{S T} f\right) \circ\left(D_{0}^{\mathbb{R} S} i\right)=\left(D_{p}^{S T} f\right) \circ L$.
Then $M(1)={ }^{*}\left(\left(D_{p}^{S T} f\right) \circ L\right)(1)=\left(D_{p}^{S T} f\right)(L(1))$.
We have $g_{0}^{\prime}=\mathrm{s} \ell_{\bullet}^{\mathbb{R} T}\left(D_{0}^{\mathbb{R} T} g\right)=\mathrm{s} \ell_{\bullet}^{\mathbb{R} T}(M)=\mathrm{s} \ell_{M}^{\mathbb{R} T}=M(1)$.
By HW\#8-3, $i^{\prime}=C_{\mathbb{R}}^{v}$. Then $i_{0}^{\prime}=i^{\prime}(0)=C_{\mathbb{R}}^{v}(0)=v$.
We have $i_{0}^{\prime}=\mathrm{s} \ell_{\bullet}^{\mathbb{R} S}\left(D_{0}^{\mathbb{R} S} i\right)=\mathrm{s} \ell_{\bullet}^{\mathbb{R} S}(L)=\mathrm{s} \ell_{L}^{\mathbb{R} S}=L(1)$.
Then $\left(\partial_{v}^{S T} f\right)_{p}=g_{0}^{\prime}=M(1)={ }^{*}\left(D_{p}^{S T}\right)(L(1))$

$$
=D_{p}^{S T}\left(i_{0}^{\prime}\right)=D_{p}^{S T}(v), \text { as desired. } \mathrm{QED}
$$

8-5. Let $V:=\mathbb{R}^{2}, \quad W \in \mathbb{R}, \quad R: V \rightarrow W$,

$$
\delta>0, \quad J:=(-\delta ; \delta), \quad x \in J
$$

Assume: $\quad J^{2} \subseteq \operatorname{dom}\left[R^{\prime}\right]$.
Show: $\quad \exists \alpha \in[0 \mid x] \quad$ s.t. $\left.\quad R\right|_{(0,0)} ^{(x, 0)}=\left(\left(\partial_{1}^{V W} R\right)(\alpha, 0)\right) \cdot x$.
Proof: Let $i:=i_{(0,0)}^{(1,0)}$. By HW\#8-3, we have $i^{\prime}=C_{\mathbb{R}}^{(1,0)}$.
Also: $\forall t \in \mathbb{R}, i_{t}=i(t)=(0,0)+t \cdot(1,0)=(t, 0)$.
Let $f:=R \circ i$. Then $f_{x}=R\left(i_{x}\right)=R(x, 0)$ and $f_{0}=R\left(i_{0}\right)=R(0,0)$.

Claim: $J \subseteq \operatorname{dom}\left[f^{\prime}\right]$.
Proof of Claim:
Want: $\forall t \in J, t \in \operatorname{dom}\left[f^{\prime}\right]$.
Given $t \in J . \quad$ Want: $t \in \operatorname{dom}\left[f^{\prime}\right]$.
Since $t \in \mathbb{R}=\operatorname{dom}\left[C_{\mathbb{R}}^{(0,1)}=i^{\prime}\right.$ and $i_{t}=(t, 0) \in J^{2} \subseteq \operatorname{dom}\left[R^{\prime}\right]$,
we conclude that $t \in \operatorname{dom}\left[(R \circ i)^{\prime}\right]$.
Then $t \in \operatorname{dom}\left[(R \circ i)^{\prime}\right]=\operatorname{dom}\left[f^{\prime}\right]$, as desired.
End of proof of Claim.

Since $x \in J$, by the Claim and the MVT, choose $\alpha \in[0 \mid x]$ s.t. $f_{x}-f_{0}=\left(f_{\alpha}^{\prime}\right) \cdot(x-0)$.
Want: $\left.R\right|_{(0,0)} ^{(x, 0)}=\left(\left(\partial_{1}^{V W} R\right)(\alpha, 0)\right) \cdot x$.

We have $\left.R\right|_{(0,0)} ^{(x, 0)}=[R(x, 0)]-[R(0,0)]=f_{x}-f_{0}=\left(f_{\alpha}^{\prime}\right) \cdot(x-0)=\left(f_{\alpha}^{\prime}\right) \cdot x$.
Want: $f_{\alpha}^{\prime}=\left(\partial_{1}^{V W} R\right)(\alpha, 0)$.
We have $D_{\alpha}^{\mathbb{R} W} f=D_{\alpha}^{\mathbb{R} W}(R \circ i)={ }^{*}\left(D_{i(\alpha)}^{V W} R\right) \circ\left(D_{\alpha}^{\mathbb{R} V} i\right)$.
Also, $f_{\alpha}^{\prime}=\left(D_{\alpha}^{\mathbb{R} W} f\right)(1)$ and $i_{\alpha}^{\prime}=\left(D_{\alpha}^{\mathbb{R} V} i\right)(1) . \quad$ Let $u:=\varepsilon_{1}^{V}$.
Then $\left(D_{\alpha}^{\mathbb{R} V} i\right)(1)=i_{\alpha}^{\prime}=i^{\prime}(\alpha)=C_{\mathbb{R}}^{(1,0)}(\alpha)=(1,0)=\varepsilon_{1}^{V}=u$.
Then $f_{\alpha}^{\prime}=\left(D_{\alpha}^{\mathbb{R} W} f\right)(1)={ }^{*}\left(\left(D_{i(\alpha)}^{V W} R\right) \circ\left(D_{\alpha}^{\mathbb{R} V} i\right)\right)(1)=\left(D_{i(\alpha)}^{V W} R\right)(u)$.
Since $0, x \in J$ and since $J$ is an interval, we get $[0 \mid x] \subseteq J$.
Then $\alpha \in[0 \mid x] \subseteq J . \quad$ So, as $0 \in J$, we get $(\alpha, 0) \in J^{2}$.
Then $i(\alpha)=(\alpha, 0) \in J^{2} \subseteq \operatorname{dom}\left[R^{\prime}\right]$, so $D_{i(\alpha)}^{V W} R \in \mathcal{L}_{V}^{W}$.
Then $\left(D_{i(\alpha)}^{V W} R\right)(u) \in W$, so $\left(D_{i(\alpha)}^{V W} R\right)(u) \neq \Theta$.
Since $f_{\alpha}^{\prime}={ }^{*}\left(D_{i(\alpha)}^{V W} R\right)(u) \neq \Theta$, we conclude that $f_{\alpha}^{\prime}=\left(D_{i(\alpha)}^{V W} R\right)(u)$.
Since $u=\varepsilon_{1}^{V}$, we get $\partial_{u}^{V W} R=\partial_{1}^{V W} R$.
We have $\left(\partial_{u}^{V W} R\right)(i(\alpha))=^{*}\left(D_{i(\alpha)}^{V W} R\right)_{u}=\left(D_{i(\alpha)}^{V W} R\right)(u)$.
Then $\left(\partial_{u}^{V W} R\right)(i(\alpha))={ }^{*}\left(D_{i(\alpha)}^{V W} R\right)(u) \neq \Theta$,

$$
\text { so }\left(\partial_{u}^{V W} R\right)(i(\alpha))=\left(D_{i(\alpha)}^{V W} R\right)(u)
$$

Then $f_{\alpha}^{\prime}=\left(D_{i(\alpha)}^{V W} R\right)(u)=\left(\partial_{u}^{V W} R\right)(\alpha, 0)=\left(\partial_{1}^{V W} R\right)(\alpha, 0)$. QED

Homework 7: Due on Tuesday 12 March
7-1. Let $V, W \in \mathrm{TNSR}$ and let $L, M \in \mathcal{L}_{V}^{W}$.
Assume: $[L]_{V}^{W}=[M]_{V}^{W} . \quad$ Show: $L=M$.
Proof: Want: $\forall x \in V, L_{x}=M_{x}$.
Given $x \in V$. Want: $L_{x}=M_{x}$.
Let $A:=\mathrm{s} \ell_{L}^{V W}$. By Theorem 85.6, $L_{x}=A *_{\mathbb{R} V W} x$.
Let $B:=\mathrm{s} \ell_{M}^{V W}$. By Theorem 85.6, $M_{x}=B{ }^{{ }^{\mathbb{R}} V W}$.
We have $A=\mathrm{s} \ell_{L}^{V W}=[L]_{V}^{W}=[M]_{V}^{W}=\mathrm{s} \ell_{M}^{V W}=B$, so $A=B$.
Then $L_{x}=A *_{\mathbb{R} V W} x=B *_{\mathbb{R} V W} x=M_{x}$. QED
7-2. Let $V, W \in$ TNSR and let $A \in W \otimes V$.
Show: $\exists L \in \mathcal{L}_{V}^{W}$ s.t. $[L]_{V}^{W}=A$.
Proof: Define $L \in \mathcal{L}_{V}^{W}$ by $L_{x}=A *_{\mathbb{R} V W} x$. Want: $[L]_{V}^{W}=A$.
We have $[L]_{V}^{W}=\mathrm{s} \ell_{L}^{V W}=\left(\mathrm{s} \ell_{\bullet}^{V W}\right)(L)$.
Want: $\left(\mathrm{s} \ell_{\bullet}^{V W}\right)(L)=A . \quad$ Want: $L=\left(\mathrm{s} \ell_{\bullet}^{V W}\right)^{-1}(A)$.
Let $M:=\left(\mathrm{s} \ell_{\bullet}^{V W}\right)^{-1}(A) . \quad$ Want: $L=M$.
Want: $\forall x \in V, L_{x}=M_{x}$. Given $x \in V$. Want: $L_{x}=M_{x}$.
Let $B:=\mathrm{s} \ell_{M}^{V W} . \quad$ By Theorem 85.6, $\quad M_{x}=B *_{\mathbb{R} V W} x$.

Since $M=\left(\mathrm{s} \ell_{\bullet}^{V W}\right)^{-1}(A)$, we get $\left(\mathrm{s} \ell_{\bullet}^{V W}\right)(M)=A$.
Then $B=\mathrm{s} \ell_{M}^{V W}=\left(\mathrm{s} \ell_{\bullet}^{V W}\right)(M)=A$.
Then $L_{x}=A *_{\mathbb{R} V W} x=B *_{\mathbb{R} V W} x=M_{x}$, as desired. QED
7-3. Let $I$ be a finite set and let $z \in \mathbb{R}^{I}$.

$$
\text { Show: } \quad \sum_{j \in I}\left|z_{j}\right| \leqslant \sqrt{\# I} \cdot \sqrt{\sum_{j \in I} z_{j}^{2}} \text {. }
$$

Proof: Define $x \in \mathbb{R}^{I}$ by $x_{j}=1$.
Then, $\forall j \in I, x_{j}^{2}=1$.
Then $\quad \sum_{j \in I} x_{j}^{2}=\# I, \quad$ so

$$
\sqrt{\sum_{j \in I} x_{j}^{2}}=\sqrt{\# I}
$$

Define $y \in \mathbb{R}^{I}$ by $y_{j}=\left|z_{j}\right|$.
Then, $\forall j \in I, y_{j}^{2}=z_{j}^{2}$.
Then

$$
\sum_{j \in I} y_{j}^{2}=\sum_{j \in I} z_{j}^{2}, \quad \text { so } \quad \sqrt{\sum_{j \in I} y_{j}^{2}}=\sqrt{\sum_{j \in I} z_{j}^{2}} .
$$

We have: $\quad \forall j \in I, x_{j} y_{j}=1 \cdot\left|z_{j}\right|=\left|z_{j}\right|$.
Then $\quad \sum_{j \in I} x_{j} y_{j}=\sum_{j \in I}\left|z_{j}\right|$.
By Theorem 84.11, $\quad \sum_{j \in I} x_{j} y_{j} \leqslant \sqrt{\sum_{j \in I} x_{j}^{2}} \cdot \sqrt{\sum_{j \in I} y_{j}^{2}}$.
Then $\sum_{j \in I}\left|z_{j}\right|=\sum_{j \in I} x_{j} y_{j} \leqslant \sqrt{\sum_{j \in I} x_{j}^{2}} \cdot \sqrt{\sum_{j \in I} y_{j}^{2}}=\sqrt{\# I} \cdot \sqrt{\sum_{j \in I} z_{j}^{2}}$,
as desired. QED
7-4. Let $U, V, W \in \mathrm{TNSR}$ and let $B \in \mathcal{B}_{U V}^{W}$.

$$
\text { Show: } \exists C \geqslant 0 \text { s.t., } \forall p \in U, \forall q \in V \text {, }
$$

$$
|B(p, q)|_{W} \leqslant C \cdot|p|_{U} \cdot|q|_{V}
$$

Proof: Let $K:=\max \left\{\left|B\left(\varepsilon_{i}^{U}, \varepsilon_{j}^{V}\right)\right|_{W}\right.$ s.t. $\left.i \in \mathcal{I}_{U}, j \in \mathcal{I}_{V}\right\}$.
Then $K \geqslant 0$. Let $C:=K \cdot \sqrt{\# \mathcal{I}_{U}} \cdot \sqrt{\# \mathcal{I}_{V}}$. Then $C \geqslant 0$.
Want: $\forall p \in U, \forall q \in V, \quad|B(p, q)|_{W} \leqslant C \cdot|p|_{U} \cdot|q|_{V}$.
Given $p \in U, q \in V$. Want: $|B(p, q)|_{W} \leqslant C \cdot|p|_{U} \cdot|q|_{V}$.
Since $p=\sum_{i \in \mathcal{I}_{U}} p_{i} \varepsilon_{i}^{U}$ and $q=\sum_{j \in \mathcal{I}_{V}} q_{j} \varepsilon_{j}^{V}$, we get

$$
B(p, q)=\sum_{i \in \mathcal{I}_{U}} \sum_{j \in \mathcal{I}_{V}}\left(p_{i} \cdot q_{j} \cdot B\left(\varepsilon_{i}^{U}, \varepsilon_{j}^{V}\right)\right)
$$

So, by subadditivity and absolute homogeneity of $|\bullet|_{W}$, we get

$$
|B(p, q)|_{W} \leqslant \sum_{i \in \mathcal{I}_{U}} \sum_{j \in \mathcal{I}_{V}}\left(\left|p_{i}\right| \cdot\left|q_{j}\right| \cdot\left|B\left(\varepsilon_{i}^{U}, \varepsilon_{j}^{V}\right)\right|_{W}\right)
$$

So, by the choice of $K$, we get

$$
|B(p, q)|_{W} \leqslant \sum_{i \in \mathcal{I}_{U}} \sum_{j \in \mathcal{I}_{V}}\left(\left|p_{i}\right| \cdot\left|q_{j}\right| \cdot K\right)
$$

So, as $K \cdot\left(\sum_{i \in \mathcal{I}_{U}}\left|p_{i}\right|\right) \cdot\left(\sum_{j \in \mathcal{I}_{V}}\left|q_{j}\right|\right)=\sum_{i \in \mathcal{I}_{U}} \sum_{j \in \mathcal{I}_{V}}\left(\left|p_{i}\right| \cdot\left|q_{j}\right| \cdot K\right)$, we get

$$
|B(p, q)|_{W} \leqslant K \cdot\left(\sum_{i \in \mathcal{I}_{U}}\left|p_{i}\right|\right) \cdot\left(\sum_{j \in \mathcal{I}_{V}}\left|q_{j}\right|\right)
$$

By HW $\# 7$-3, we get $\sum_{i \in \mathcal{I}_{U}}\left|p_{i}\right| \leqslant \sqrt{\# \mathcal{I}_{U}} \cdot \sqrt{\sum_{i \in \mathcal{I}_{U}} p_{i}^{2}}$.
Also, by HW\#7-3, we get $\sum_{j \in \mathcal{I}_{V}}\left|q_{i}\right| \leqslant \sqrt{\# \mathcal{I}_{V}} \cdot \sqrt{\sum_{j \in \mathcal{I}_{V}} q_{j}^{2}}$.
By definition of $|\bullet|_{U}$, we have $|p|_{U}=\sqrt{\sum_{i \in \mathcal{I}_{U}} p_{i}^{2}}$.
By definition of $|\bullet|_{V}$, we have $|q|_{V}=\sqrt{\sum_{j \in \mathcal{I}_{V}} q_{j}^{2}}$.
Then $|B(p, q)|_{W} \leqslant K \cdot\left(\sum_{i \in \mathcal{I}_{U}}\left|p_{i}\right|\right) \cdot\left(\sum_{j \in \mathcal{I}_{V}}\left|q_{j}\right|\right)$

$$
\begin{aligned}
& \leqslant K \cdot \sqrt{\# \mathcal{I}_{U}} \cdot \sqrt{\sum_{i \in \mathcal{I}_{U}} p_{i}^{2}} \cdot \sqrt{\# \mathcal{I}_{V}} \cdot \sqrt{\sum_{j \in \mathcal{I}_{V}} q_{j}^{2}} \\
& \leqslant K \cdot \sqrt{\# \mathcal{I}_{U}} \cdot|p|_{U} \cdot \sqrt{\# \mathcal{I}_{V}} \cdot|q|_{V} \\
& =K \cdot \sqrt{\# \mathcal{I}_{U}} \cdot \sqrt{\# \mathcal{I}_{V}} \cdot|p|_{U} \cdot|q|_{V} \\
& =C \cdot|p|_{U} \cdot|q|_{V}, \quad \text { as desired. QED }
\end{aligned}
$$

7-5. Let $T, U, V, W \in \mathrm{TNSR}$ and let $* \in \mathcal{B}_{U V}^{W}$.

$$
\text { Show: } \mathrm{BNZ}_{T U} * \mathrm{BNZ}_{T V} \subseteq \mathrm{BNZ}_{T W}
$$

Proof: Want: $\forall \alpha \in \mathrm{BNZ}_{T U} * \mathrm{BNZ}_{T V}, \alpha \in \mathrm{BNZ}_{T W}$.
Given $\alpha \in \mathrm{BNZ}_{T U} * \mathrm{BNZ}_{T V}$. Want: $\alpha \in \mathrm{BNZ}_{T W}$.
Choose $\beta \in \mathrm{BNZ}_{T U}$ and $\gamma \in \mathrm{BNZ}_{T V}$ s.t. $\alpha=\beta * \gamma$.
By HW\#7-4, choose $K \geqslant 0$ s.t. $\forall p \in U, \forall q \in V$,

$$
|p * q|_{W} \leqslant K \cdot|p|_{U} \cdot|q|_{V}
$$

Since $\beta \in \mathrm{BNZ}_{T U} \subseteq \mathrm{DNZ}_{T U}$, choose $B \in \mathcal{B}_{T}\left(0_{T}\right)$ s.t. $B \subseteq \operatorname{dom}[\beta]$.
Since $\gamma \in \mathrm{BNZ}_{T V} \subseteq \mathrm{DNZ}_{T V}$, choose $C \in \mathcal{B}_{T}\left(0_{T}\right)$ s.t. $C \subseteq \operatorname{dom}[\gamma]$.
Then $B \cap C \subseteq(\operatorname{dom}[\beta]) \cap(\operatorname{dom}[\alpha])=\operatorname{dom}[\beta * \gamma]=\operatorname{dom}[\alpha]$.
So, since $B \cap C \in\{B, C\} \subseteq \mathcal{B}_{T}\left(0_{T}\right)$, we conclude that $\alpha \in \mathrm{DNZ}_{T W}$.

Want: $\exists A \in \mathcal{B}_{T}\left(0_{T}\right)$ s.t. $\alpha_{*}(A)$ is bounded in $W$.
Since $\beta \in \mathrm{BNZ}_{T U}$, choose $D \in \mathcal{B}_{T}\left(0_{T}\right)$ s.t. $\beta_{*}(D)$ is bounded in $U$.
Since $\beta_{*}(D)$ is bounded in $U$, choose $E \in \mathcal{B}_{U}$ s.t. $\beta_{*}(D) \subseteq E$.
Since $E \in \mathcal{B}_{U}$, by the Superset Recentering Lemma, choose $F \in \mathcal{B}_{U}\left(0_{U}\right)$ s.t. $E \subseteq F$.
Since $F \in \mathcal{B}_{U}\left(0_{U}\right)$, choose $r>0$ s.t. $F=B_{U}\left(0_{U}, r\right)$.
Since $\gamma \in \mathrm{BNZ}_{T U}$, choose $X \in \mathcal{B}_{T}\left(0_{T}\right)$ s.t. $\gamma_{*}(X)$ is bounded in $V$.
Since $\gamma_{*}(X)$ is bounded in $V$, choose $Y \in \mathcal{B}_{V}$ s.t. $\gamma_{*}(X) \subseteq Y$.
Since $Y \in \mathcal{B}_{V}$, by the Superset Recentering Lemma, choose $Z \in \mathcal{B}_{V}\left(0_{V}\right)$ s.t. $Y \subseteq Z$.
Since $Z \in \mathcal{B}_{V}\left(0_{V}\right)$, choose $s>0$ s.t. $Z=B_{V}\left(0_{V}, s\right)$.
Let $A:=D \cap X$. Then $A \in\{D, X\} \subseteq \mathcal{B}_{T}\left(0_{T}\right)$.
Want: $\alpha_{*}(A)$ is bounded in $W$. Want: $\exists Q \in \mathcal{B}_{W}$ s.t. $\alpha_{*}(A) \subseteq Q$.
Let $Q:=B_{W}\left(0_{W}, K r s+1\right)$. Then $Q \in \mathcal{B}_{W}\left(0_{W}\right) \subseteq \mathcal{B}_{W}$.
Want: $\alpha_{*}(A) \subseteq Q$. Want: $\forall w \in \alpha_{*}(A), w \in Q$.
Given $w \in \alpha_{*}(A) . \quad$ Want: $w \in Q . \quad$ Want: $|w|_{W}<K r s+1$.
Since $w \in \alpha_{*}(A)$, choose $t \in(\operatorname{dom}[\alpha]) \cap A$ s.t. $\alpha(t)=w$.
Since $t \in(\operatorname{dom}[\alpha]) \cap A$, we get $t \in \operatorname{dom}[\alpha] \quad$ and $\quad t \in A$.
We have $t \in \operatorname{dom}[\alpha]=\operatorname{dom}[\beta * \gamma]=(\operatorname{dom}[\beta]) \cap(\operatorname{dom}[\gamma])$,
so $\quad t \in \operatorname{dom}[\beta] \quad$ and $\quad t \in \operatorname{dom}[\gamma]$.
Also, we have $t \in A=D \cap X$,
so $t \in D \quad$ and $\quad t \in X$.
Since $t \in \operatorname{dom}[\beta]$ and $t \in D$, we get $\beta(t) \in \beta_{*}(D)$.
So, since $\beta_{*}(D) \subseteq E \subseteq F=B_{U}\left(0_{U}, r\right)$,
we get $\beta(t) \in B_{U}\left(0_{U}, r\right), \quad$ so $|\beta(t)|_{U}<r$.
Since $t \in \operatorname{dom}[\gamma]$ and $t \in X$, we get $\gamma(t) \in \gamma_{*}(X)$.
So, since $\gamma_{*}(X) \subseteq Y \subseteq Z=B_{V}\left(0_{V}, s\right)$,
we get $\gamma(t) \in B_{V}\left(0_{V}, s\right)$, so $|\gamma(t)|_{V}<s$.
Since $t \in \operatorname{dom}[\beta]$, we get $\beta(t) \in \operatorname{im}[\beta]$.
Since $\beta \in \mathrm{BNZ}_{T U}$, we get $\operatorname{im}[\beta] \subseteq U$.
Since $t \in \operatorname{dom}[\gamma]$, we get $\gamma(t) \in \operatorname{im}[\gamma]$.
Since $\gamma \in \mathrm{BNZ}_{T V}$, we get im $[\gamma] \subseteq V$.
Since $\beta(t) \in \operatorname{im}[\beta] \subseteq U$ and $\gamma(t) \in \operatorname{im}[\gamma] \subseteq V$,
it follows, from the choice of $K$,
that $|(\beta(t)) *(\gamma(t))|_{W} \leqslant K \cdot|\beta(t)|_{U} \cdot|\gamma(t)|_{V}$.
We have $w=\alpha(t)=(\beta * \gamma)(t)=(\beta(t)) *(\gamma(t))$.
Then $|w|_{W}=|(\beta(t)) *(\gamma(t))|_{W} \leqslant K \cdot|\beta(t)|_{U} \cdot|\gamma(t)|_{V} \leqslant K r s$.
Then $|w|_{W} \leqslant K r s<K r s+1$, as desired. QED

Homework 6: Due on Tuesday 5 March
6-1. Let $T \in \mathrm{TNSR}, \quad v \in T . \quad$ Show: $v=\sum_{j \in \mathcal{I}_{T}} v_{j} \varepsilon_{j}^{T}$.
Proof: Let $w:=\sum_{j \in \mathcal{I}_{T}} v_{j} \varepsilon_{j}^{T} . \quad$ Want $v=w$.
Want: $\forall i \in \mathcal{I}_{T}, v_{i}=w_{i} . \quad$ Given $i \in \mathcal{I}_{T}$. Want: $v_{i}=w_{i}$.
We have: $\quad w_{i}=\sum_{j \in \mathcal{I}_{T}} v_{j} \cdot\left(\left(\varepsilon_{j}^{T}\right)_{i}\right)$

$$
\begin{aligned}
& =\left(v_{i} \cdot\left(\left(\varepsilon_{i}\right)_{i}\right)\right)+\left(\sum_{j \in \mathcal{I}_{T} \backslash\{i\}} v_{j} \cdot\left(\left(\varepsilon_{j}^{T}\right)_{i}\right)\right) \\
& =\left(v_{i} \cdot 1\right)+\left(\sum_{j \in \mathcal{I}_{T} \backslash\{i\}} v_{j} \cdot 0\right)=v_{i}+0 .
\end{aligned}
$$

Then $v_{i}=v_{i}+0=w_{i}$, as desired. QED
6-2. Let $S, T \in \mathrm{TNSR}, \quad A \in T \otimes S, \quad L:=\operatorname{Lin}_{A}^{S T}, \quad i \in \mathcal{I}_{S}$.

$$
\text { Show: } L\left(\varepsilon_{i}^{S}\right)=\sum_{j \in \mathcal{I}_{T}} A_{j \| i} \cdot \varepsilon_{j}^{T}
$$

Proof: Let $v:=L\left(\varepsilon_{i}^{S}\right) . \quad$ By HW\#6-1, we have: $\quad v=\sum_{j \in \mathcal{I}_{T}} v_{j} \varepsilon_{j}^{T}$.
By Theorem 83.5, p. 202, we have: $\forall j \in \mathcal{I}_{T}, \quad A_{j \| i}=\left(L\left(\varepsilon_{i}^{S}\right)\right)_{j}$.
Then $L\left(\varepsilon_{i}^{S}\right)=v=\sum_{j \in \mathcal{I}_{T}} v_{j} \varepsilon_{j}^{T}=\sum_{j \in \mathcal{I}_{T}}\left(L\left(\varepsilon_{i}^{S}\right)\right)_{j} \cdot \varepsilon_{j}^{T}$

$$
=\sum_{j \in \mathcal{I}_{T}} A_{j \| i} \cdot \varepsilon_{j}^{T}, \quad \text { as desired. } \quad \text { QED }
$$

6-3. Let $S, T \in \mathrm{TNSR}^{+}, \quad C \in \mathcal{C}_{S}^{T}, \quad p \in S . \quad$ Show: $D_{p}^{S T} C=\mathbf{0}_{S}^{T}$.
Proof: Since $C \in \mathcal{C}_{S}^{T}$, choose $w \in T$ s.t. $C=C_{S}^{w}$.
We have: $\quad \forall h \in S, \quad C_{p}^{T}(h)=[C(p+h)]-[C(p)]$

$$
\begin{aligned}
& =\left[C_{S}^{w}(p+h)\right]-\left[C_{S}^{w}(p)\right] \\
& =w-w=0_{T}=\mathbf{0}_{S}^{T}(h)
\end{aligned}
$$

Then $C_{p}^{T}=\mathbf{0}_{S}^{T}$. Let $L:=\mathbf{0}_{S}^{T}$.
Then $C_{p}^{T}-L=\mathbf{0}_{S}^{T}-\mathbf{0}_{S}^{T}=\mathbf{0}_{S}^{T} \in \mathcal{O}_{1}^{S T}$.
Then $L \in \operatorname{LINS}_{p} C$, and so $\quad D_{p}^{S T} C=L$.
Then $D_{p}^{S T} C=L=\mathbf{0}_{S}^{T}$, as desired. QED

6-4. Let $S, T \in \mathrm{TNSR}^{+}, \quad L \in \mathcal{L}_{S}^{T}, \quad p \in S . \quad$ Show: $D_{p}^{S T} L=L$.
Proof: We have: $\forall h \in S, L_{p}^{T}(h)=[L(p+h)]-[L(p)]$

$$
=[L(p)]+[L(h)]-[L(p)]=L(h) .
$$

Then $L_{p}^{T}=L$. Then $L_{p}^{T}-L=\mathbf{0}_{S}^{T} \in \mathcal{O}_{1}^{S T}$.
Then $L \in \operatorname{LINS}_{p} L$, and so $\quad D_{p}^{S T} L=L, \quad$ as desired. QED
6-5. Let $V, W \in \mathrm{TNSR}^{+}, \quad Q \in \mathcal{Q}_{V}^{W}, \quad B \in \mathcal{S B}_{V}^{W}$.
Assume: $Q=B(\bullet, \bullet) . \quad$ Show: $\forall x \in V, D_{x}^{V W} Q=2 \cdot(B(x, \bullet))$.
Proof: Given $x \in V$. Want: $D_{x}^{V W} Q=2 \cdot(B(x, \bullet))$.
We have: $\forall h \in S$,

$$
\begin{aligned}
Q_{x}^{T}(h) & =(Q(x+h))-(Q(x)) \\
& =(B(x+h, x+h))-(B(x, x)) \\
& =(B(x, x))+(B(x, h))+(B(h, x))+(B(h, h))-(B(x, x)) \\
& =(B(x, x))-(B(x, x))+(B(x, h))+(B(x, h))+(B(h, h)) \\
& =2 \cdot(B(x, h))+(B(h, h)) \\
& =(2 \cdot(B(x, \bullet))+(B(\bullet, \bullet)))(h) .
\end{aligned}
$$

Then $Q_{x}^{T}=2 \cdot(B(x, \bullet))+(B(\bullet, \bullet))$.
Let $L:=2 \cdot(B(x, \bullet))$ and let $R:=B(\bullet, \bullet)$.
Then $Q_{x}^{T}=L+R$ and $L \in \mathcal{L}_{V}^{W}$ and $R \in \mathcal{Q}_{V}^{W}$.
Since $L \in \mathcal{L}_{V}^{W}$, we get $L-L=\mathbf{0}_{S}^{T}$, and so $L-L+R=\mathbf{0}_{S}^{T}+R$.
Then $Q_{x}^{T}-L=L+R-L=L-L+R=\mathbf{0}_{V}^{W}+R=R$.
Then $Q_{x}^{T}-L=R \in \mathcal{Q}_{V}^{W} \subseteq \widehat{\mathcal{O}}_{2}^{V W} \subseteq \mathcal{O}_{1}^{V W}$.
So, since $L \in \mathcal{L}_{V}^{W}$, we get $L \in \operatorname{LINS}_{x} Q$, and so $D_{x}^{V W} Q=L$.
Then $D_{x}^{V W} Q=L=2 \cdot(B(x, \bullet))$, as desired. QED

Homework 5: Due on Tuesday 26 February
5-1. Let $S:=\mathbb{R}^{2}$ and let $T:=\mathbb{R}$. Show: $\mathcal{Q}_{S T} \subseteq \widehat{\mathcal{O}}_{2}^{S T}$.
Proof: Want: $\forall Q \in \mathcal{Q}_{S T}, Q \in \widehat{\mathcal{O}}_{2}^{S T}$.
Given $Q \in \mathcal{Q}_{S T}$. Want: $Q \in \widehat{\mathcal{O}}_{2}^{S T}$.
Since $Q \in \mathcal{Q}_{S T}$, it follows that $\operatorname{dom}[Q]=S$.
Let $\alpha:=\operatorname{adj}_{0_{S}}^{0_{T}}\left(\frac{Q}{|\bullet|_{S}^{2}}\right)$. Then $\alpha\left(0_{S}\right)=0_{T}$.
Also, $\operatorname{dom}[\alpha]=\left((\operatorname{dom}[Q])_{0_{S}}^{\times}\right)_{0_{S}}^{+}=(\operatorname{dom}[Q])_{0_{S}}^{+}=S_{0_{S}}^{+}=S$.
Also, $\forall x \in S \backslash\left\{0_{S}\right\}$, we have $Q(x)=(\alpha(x)) \cdot\left(|x|_{S}^{2}\right)$.

Since $Q \in \mathcal{Q}_{S T}$, it follows that $Q\left(0_{S}\right)=0_{T}$.
Recall that $T=\mathbb{R}$. Then $0_{T}=0$.
Then $\alpha\left(0_{S}\right)=0_{T}=0$ and $Q\left(0_{S}\right)=0_{T}=0$.
Then $Q\left(0_{S}\right)=0=0 \cdot 0^{2}=\left(\alpha\left(0_{S}\right)\right) \cdot\left(\left|0_{S}\right|_{S}^{2}\right)$.
Then $\forall x \in S$, we have $Q(x)=(\alpha(x)) \cdot\left(|x|_{S}^{2}\right)$. Then $Q=\alpha \cdot\left(|\bullet|_{S}^{2}\right)$.
Want: $Q \in\left(\mathrm{BNZ}_{S T}\right) \cdot\left(|\bullet|_{S}^{2}\right)$. Want: $\alpha \in \mathrm{BNZ}_{S T}$.
Since $\operatorname{dom}[\alpha]=S$, we see that $\alpha \in \mathrm{DNZ}_{S T}$.
Want: $\exists B \in \mathcal{B}_{S}\left(0_{S}\right)$ s.t. $\alpha_{*}(B)$ is bounded in $T$.
Want: im $[\alpha]$ is bounded in $T$.
Recall that $T=\mathbb{R}$. Want: im $[\alpha]$ is bounded in $\mathbb{R}$.
Want: $\exists r>0$ s.t. $\operatorname{im}[\alpha] \subseteq B_{\mathbb{R}}(0, r)$.
Let $C:=\left\{v \in S\right.$ s.t. $\left.|v|_{S}=1\right\}$.
Since $C$ is closed and bounded in $S$, we see that $C$ is compact.
Since $Q \in \mathcal{Q}_{S T}$, it follows that $Q$ is continuous.
Then $Q \mid C$ is continuous.
So, since $C$ is compact, by the Extreme Value Theorem, we conclude: $\quad \min (Q \mid C) \neq \odot \neq \max (Q \mid C)$.
Let $K:=\min (Q \mid C)$ and $L:=\max (Q \mid C)$.
Then $(K, L \in \mathbb{R}) \&(K \leqslant Q \leqslant L$ on $C)$.
Let $r:=1+[\max \{|K|,|L|\}]$. Then $r>0$ and $-r<K$ and $L<r$.
Want: $\operatorname{im}[\alpha] \subseteq B_{\mathbb{R}}(0, r)$.
Want: $\forall y \in \operatorname{im}[\alpha], y \in B_{\mathbb{R}}(0, r)$.
Given $y \in \operatorname{im}[\alpha] . \quad$ Want: $y \in B_{\mathbb{R}}(0, r)$.
Since $y \in \operatorname{im}[\alpha]$, choose $x \in \operatorname{dom}[\alpha]$ s.t. $y=\alpha(x)$.
Exactly one of the following is true:
(1) $x=0_{S}$
or
(2) $x \neq 0_{S}$.

Case (1):
We have $y=\alpha(x)=\alpha\left(0_{S}\right)=0 \in B_{\mathbb{R}}(0, r)$, as desired.
End of Case (1).
Case (2):
Since $x \neq 0_{S}$, by definition of $\alpha$, we get: $\alpha(x)=\frac{Q(x)}{|x|_{S}^{2}}$.
Also, since $x \neq 0_{S}$, we get $|x|_{S}>0$.
Let $b:=|x|_{S} . \quad$ Then $b>0$, so $\frac{b}{|b|}=1$.

Let $u:=\frac{x}{b}$. Then $|u|_{S}=\frac{|x|_{S}}{|b|}=\frac{b}{|b|}=1$.
Then $u \in C$, so, since $K \leqslant Q \leqslant L$ on $C$, we get: $K \leqslant Q(u) \leqslant L$.
So, since $-r<K$ and $L<r$, we get: $\quad-r<Q(u)<r$.
Then $Q(u) \in(-r ; r)=B_{\mathbb{R}}(0, r)$.
Since $Q \in \mathcal{Q}_{S T}$, we have $Q\left(\frac{x}{b}\right)=\frac{Q(x)}{b^{2}}$.
Then $Q(u)=Q\left(\frac{x}{b}\right)=\frac{Q(x)}{b^{2}}=\frac{Q(x)}{\left.|x|\right|_{S} ^{2}}=\alpha(x)$.
Then $y=\alpha(x)=Q(u) \in B_{\mathbb{R}}(0, r)$, as desired.
End of Case (2). QED
$5-2$. Let $S, T \in \mathrm{TNSR}^{+}$. Show: $\left(\mathrm{BNZ}_{S T}\right) \cdot\left(\mathrm{CVZ}_{\text {SR }}\right) \subseteq \mathrm{CVZ}_{S T}$.
Proof: Want: $\forall \gamma \in\left(\mathrm{BNZ}_{S T}\right) \cdot\left(\mathrm{CVZ}_{S \mathbb{R}}\right), \quad \gamma \in \mathrm{CVZ}_{S T}$.
Given $\gamma \in\left(\mathrm{BNZ}_{S T}\right) \cdot\left(\mathrm{CVZ}_{S \mathbb{R}}\right)$. Want: $\gamma \in \mathrm{CVZ}_{S T}$.
Since $\gamma \in\left(\mathrm{BNZ}_{S T}\right) \cdot\left(\mathrm{CVZ}_{S \mathbb{R}}\right)$,
choose $\alpha \in \mathrm{BNZ}_{S T}, \beta \in \mathrm{CVZ}_{\text {SR }}$ s.t. $\gamma=\alpha \cdot \beta$.
Since $\alpha \in \mathrm{BNZ}_{S T} \subseteq \mathrm{DNZ}_{S T}$ and since $\beta \in \mathrm{CVZ}_{S \mathbb{R}} \subseteq \mathrm{DNZ}_{S \mathbb{R}}$, choose $P, Q \in \mathcal{B}_{S}\left(0_{S}\right)$ s.t. $P \subseteq \operatorname{dom}[\alpha]$ and $Q \subseteq \operatorname{dom}[\beta]$.
Then $P \cap Q \in\{P, Q\} \subseteq \mathcal{B}_{S}\left(0_{S}\right)$.
So, since $P \cap Q \subseteq(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta])=\operatorname{dom}[\alpha \cdot \beta]=\operatorname{dom}[\gamma]$, we conclude that $\gamma \in \mathrm{DNZ}_{S T}$.
Want: $\gamma\left(0_{S}\right)=0_{T}$ and $\gamma$ is continuous at $0_{S}$.
Since $P \in \mathcal{B}_{S}\left(0_{S}\right)$, we get $0_{S} \in P$.
Since $\alpha \in \mathrm{DNZ}_{S T}$, we get $\alpha: S \rightarrow T$.
So, since $0_{S} \in P \subseteq \operatorname{dom}[\alpha]$, we get $\alpha\left(0_{S}\right) \in T$, so $\left[\alpha\left(0_{S}\right)\right] \cdot 0=0_{T}$.
Since $\beta \in \mathrm{CVZ}_{S \mathbb{R}}$, we get $\beta\left(0_{S}\right)=0$.
Then $\gamma\left(0_{S}\right)=(\alpha \cdot \beta)\left(0_{S}\right)=\left[\alpha\left(0_{S}\right)\right] \cdot\left[\beta\left(0_{S}\right)\right]=\left[\alpha\left(0_{S}\right)\right] \cdot 0=0_{T}$.
Want: $\gamma$ is continuous at $0_{S}$.
Want: $\forall \varepsilon>0, \exists \delta>0$ s.t., $\forall x \in \operatorname{dom}[\gamma]$,

$$
\left[\left|x-0_{S}\right|_{S}<\delta\right] \Rightarrow\left[\left|[\gamma(x)]-\left[\gamma\left(0_{S}\right)\right]\right|_{T}<\varepsilon\right] .
$$

Given $\varepsilon>0$. Want: $\exists \delta>0$ s.t., $\forall x \in \operatorname{dom}[\gamma]$,

$$
\left[\left|x-0_{S}\right|_{S}<\delta\right] \Rightarrow\left[\left|[\gamma(x)]-\left[\gamma\left(0_{S}\right)\right]\right|_{T}<\varepsilon\right] .
$$

Since $\alpha \in \mathrm{BNZ}_{S T}$, choose $A \in \mathcal{B}_{S}\left(0_{S}\right)$ s.t. $\alpha_{*}(A)$ is bounded in $T$.
Since $\alpha_{*}(A)$ is bounded in $T, \quad$ choose $Y \in \mathcal{B}_{T}$ s.t. $\alpha_{*}(A) \subseteq Y$.
By the Superset Recentering Lemma (Theorem 38.17),
choose $Z \in \mathcal{B}_{T}\left(0_{T}\right)$ s.t. $Y \subseteq Z$.
Choose $r>0$ s.t. $Z=B_{T}\left(0_{T}, r\right)$.

Since $\beta \in \mathrm{CVZ}_{S \mathbb{R}}$, it follows that $\beta$ is continuous at $0_{S}$,
so choose $\eta>0$ s.t., $\forall x \in \operatorname{dom}[\beta]$,

$$
\left[\left|x-0_{S}\right|_{S}<\eta\right] \Rightarrow[|[\beta(x)]-[\beta(0)]|<\varepsilon / r]
$$

Let $B:=B_{S}\left(0_{S}, \eta\right)$. Then $A, B \in \mathcal{B}_{S}\left(0_{S}\right)$. Let $Q:=A \cap B$.
Then $Q \in\{A, B\} \subseteq \mathcal{B}_{S}\left(0_{S}\right)$. Choose $\delta>0$ s.t. $Q=B_{S}\left(0_{S}, \delta\right)$.
Want: $\forall x \in \operatorname{dom}[\gamma],\left(\left[\left|x-0_{S}\right|_{S}<\delta\right] \Rightarrow\left[\left|[\gamma(x)]-\left[\gamma\left(0_{S}\right)\right]\right|_{T}<\varepsilon\right]\right)$.
Given $x \in \operatorname{dom}[\gamma]$.
Want: $\left[\left|x-0_{S}\right|_{S}<\delta\right] \Rightarrow\left[\left|[\gamma(x)]-\left[\gamma\left(0_{S}\right)\right]\right|_{T}<\varepsilon\right]$.
Assume: $\left|x-0_{S}\right|_{S}<\delta$. Want: $\left|[\gamma(x)]-\left[\gamma\left(0_{S}\right)\right]\right|_{T}<\varepsilon$.
We have $x \in \operatorname{dom}[\gamma]=\operatorname{dom}[\alpha \cdot \beta]=(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta])$.
Then $x \in(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta]) \subseteq \operatorname{dom}[\beta]$.
Also, since $\left|x-0_{S}\right|_{S}<\delta$, we have $x \in B_{S}\left(0_{S}, \delta\right)$.
Then $x \in B_{S}\left(0_{S}, \delta\right)=Q=A \cap B$.
Then $x \in A \cap B \subseteq B=B_{S}\left(0_{S}, \eta\right)$, so $\left|x-0_{S}\right|_{S}<\eta$.
So, since $x \in \operatorname{dom}[\beta]$, by choice of $\eta$, we get: $\left|[\beta(x)]-\left[\beta\left(0_{S}\right)\right]\right|<\varepsilon / r$.
Since $\beta \in \mathrm{CVZ}_{S \mathbb{R}}$, we get $\beta\left(0_{S}\right)=0$. Then $[\beta(x)]-\left[\beta\left(0_{S}\right)\right]=\beta(x)$.
Then $|\beta(x)|=\left|[\beta(x)]-\left[\beta\left(0_{S}\right)\right]\right|<\varepsilon / r$, so $|\beta(x)|<\varepsilon / r$.
Since $x \in(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta]) \subseteq \operatorname{dom}[\alpha]$ and since $x \in A \cap B \subseteq A$, we conclude that $\alpha(x) \in \alpha_{*}(A)$.
Then $\alpha(x) \in \alpha_{*}(A) \subseteq Y \subseteq Z=B_{T}\left(0_{T}, r\right)$, so $|\alpha(x)|_{T}<r$.
Since $0 \leqslant|\alpha(x)|_{T}<r$ and since $0 \leqslant|\beta(x)|<\varepsilon / r$,
it follows that $|\alpha(x)|_{T} \cdot|\beta(x)|<r \cdot(\varepsilon / r)$.
Recall that $\gamma\left(0_{S}\right)=0_{T}$. We have $\gamma(x)=(\alpha \cdot \beta)(x)=[\alpha(x)] \cdot[\beta(x)]$.
Then $\left|[\gamma(x)]-\left[\gamma\left(0_{S}\right)\right]\right|_{T}=\left|[\gamma(x)]-0_{T}\right|_{T}=|\gamma(x)|_{T}=|[\alpha(x)] \cdot[\beta(x)]|_{T}$ $=|\alpha(x)|_{T} \cdot|\beta(x)|<r \cdot(\varepsilon / r)=\varepsilon$, as desired. QED

5-3. Let $S \in \mathrm{TNSR}^{+}, \quad f, g: \mathbb{R} \longrightarrow S, \quad p \in \mathbb{R}$.

$$
\text { Show: }(f \cdot g)_{p}^{T}=\left(f_{p}^{T}\right) \bullet\left(g_{p}\right)+\left(f_{p}\right) \cdot\left(g_{p}^{T}\right)+\left(f_{p}^{T}\right) \cdot\left(g_{p}^{T}\right)
$$

Proof: Want: $\forall h \in \mathbb{R}$,

$$
(f \cdot g)_{p}^{T}(h)=\left(\left(f_{p}^{T}\right) \cdot\left(g_{p}\right)+\left(f_{p}\right) \cdot\left(g_{p}^{T}\right)+\left(f_{p}^{T}\right) \cdot\left(g_{p}^{T}\right)\right)(h)
$$

Given $h \in \mathbb{R}$.
Want: $(f \cdot g)_{p}^{T}(h)=\left(\left(f_{p}^{T}\right) \bullet\left(g_{p}\right)+\left(f_{p}\right) \bullet\left(g_{p}^{T}\right)+\left(f_{p}^{T}\right) \bullet\left(g_{p}^{T}\right)\right)(h)$.
Let $A:=f_{p+h}, B:=g_{p+h}$.
Then $A-a=f_{p+h}-f_{p}=f_{p}^{T}(h)$.
Also, $B-b=g_{p+h}-g_{p}=g_{p}^{T}(h)$.
We have $A \cdot B-a \bullet b=a \bullet(B-b)+b \bullet(A-a)$

$$
+(A-a) \cdot(B-b)
$$

Then $(f \bullet g)_{p}^{T}(h)=\left[(f \bullet g)_{p+h}\right]-\left[(f \bullet g)_{p}\right]=f_{p+h} \bullet g_{p+h}-f_{p} \bullet g_{p}$

$$
=A \cdot B-a \cdot b=(A-a) \cdot b+a \cdot(B-b)+(A-a) \cdot(B-b)
$$

$$
=\left(f_{p}^{T}(h)\right) \cdot\left(g_{p}\right)+\left(f_{p}\right) \cdot\left(g_{p}^{T}(h)\right)+\left(f_{p}^{T}(h)\right) \cdot\left(g_{p}^{T}(h)\right)
$$

$$
=\left(\left(f_{p}^{T}\right) \cdot\left(g_{p}\right)+\left(f_{p}\right) \bullet\left(g_{p}^{T}\right)+\left(f_{p}^{T}\right) \bullet\left(g_{p}^{T}\right)\right)(h),
$$

as desired. QED
5-4. Let $S, T, U \in \mathrm{TNSR}^{+}, \quad f: S \longrightarrow T, \quad g: T \longrightarrow U$.

$$
\text { Let } p \in S, \quad q:=f_{p} . \quad \text { Show: }(f \circ g)_{p}^{T}=\left(g_{q}^{T}\right) \circ\left(f_{p}^{T}\right)
$$

Proof: Want: $\forall h \in S,\left((g \circ f)_{p}^{T}\right)(h)=\left(\left(g_{q}^{T}\right) \circ\left(f_{p}^{T}\right)\right)(h)$.
Given $h \in S . \quad$ Want: $\left((g \circ f)_{p}^{T}\right)(h)=\left(\left(g_{q}^{T}\right) \circ\left(f_{p}^{T}\right)\right)(h)$.
We compute $\left((g \circ f)_{p}^{T}\right)(h)=[(g \circ f)(p+h)]-[(g \circ f)(p)]$

$$
=\left[g\left(f_{p+h}\right)\right]-\left[g\left(f_{p}\right)\right]=\left[g\left(f_{p+h}\right)\right]-[g(q)] .
$$

Exactly one of the following is true:
(1) $q={ }^{-(2)}$
or
(2) $q \neq$ (…

Case (1):
Since $q=\odot$, we get:
both $\left[g\left(f_{p+h}\right)\right]-[g(q)]=$ : $\cdot \quad$ and $\quad\left(\left(g_{q}^{T}\right) \circ\left(f_{p}^{T}\right)\right)(h)=\odot$.
Then $\left((g \circ f)_{p}^{T}\right)(h)=\left[g\left(f_{p+h}\right)\right]-[g(q)]=\odot=\left(\left(g_{q}^{T}\right) \circ\left(f_{p}^{T}\right)\right)(h)$.
End of Case (1).

Case (2):
Since $f_{p}=q \neq \odot$, we get $f_{p} \in \operatorname{im}[f] \subseteq \mathbb{R}$.
Then $q=f_{p} \in T$, so $q-q=0_{T}$.
Let $k:=\left(f_{p}^{T}\right)(h)$. Then $k=f_{p+h}-f_{p}=f_{p+h}-q$.
Then $q+k=q+\left(f_{p+h}-q\right)=f_{p+h}+(q-q)=f_{p+h}+0_{T}=f_{p+h}$.
Then $\left((g \circ f)_{p}^{T}\right)(h)=\left[g\left(f_{p+h}\right)\right]-[g(q)]=[g(q+k)]-[g(q)]$

$$
=g_{q}^{T}(k)=\left(g_{q}^{T}\right)\left(\left(f_{p}^{T}\right)(h)\right)=\left(\left(g_{q}^{T}\right) \circ\left(f_{p}^{T}\right)\right)(h)
$$

as desired. End of Case (2). QED
5-5. Let $S, T \in \mathrm{TNSR}, \quad i \in \mathcal{I}_{S}, \quad j \in \mathcal{I}_{T} . \quad$ Show: $i \| j \in \mathcal{I}_{S \otimes T}$.
Proof: Choose $\sigma, \tau \in \mathbb{N}$ s.t. $S \in \operatorname{TNSR}_{\sigma}$ and $T \in \operatorname{TNSR}_{\tau}$.
Choose $m \in \mathbb{R}^{\sigma}$ and $n \in \mathbb{R}^{\tau}$ s.t. $S=\mathbb{R}^{m}$ and $T=\mathbb{R}^{n}$.
We have $\quad S=\mathbb{R}^{m}, \quad$ so $\quad \mathcal{I}_{S}=[m]$.
Also, $\quad T=\mathbb{R}^{n}, \quad$ so $\quad \mathcal{I}_{S}=[n]$.
Also, $\quad S \otimes T=\mathbb{R}^{m \| n}, \quad$ so $\quad \mathcal{I}_{S \otimes T}=[m \| n]$.
We have: $\quad m=\left(m_{1}, \ldots, m_{\sigma}\right)$,
and $\quad n=\left(n_{1}, \ldots, n_{\tau}\right)$
and $\quad m \| n=\left(m_{1}, \ldots, m_{\sigma}, n_{1}, \ldots, n_{\tau}\right)$.
Then:
and $\quad[n]=\left[1 . . n_{1}\right] \times \cdots \times\left[1 . . n_{\tau}\right]$
and $\quad[m \| n]=\left[1 . . m_{1}\right] \times \cdots \times\left[1 . . m_{\sigma}\right] \times\left[1 . . n_{1}\right] \times \cdots \times\left[1 . . n_{\tau}\right]$.
Then: $\quad i \in \mathcal{I}_{S}=[m]=\left[1 . . m_{1}\right] \times \cdots \times\left[1 . . m_{\sigma}\right]$
and $j \in \mathcal{I}_{T}=[n]=\left[1 . . n_{1}\right] \times \cdots \times\left[1 . . n_{\tau}\right]$,
and so $\quad i \| j \in\left[1 . . m_{1}\right] \times \cdots \times\left[1 . . m_{\sigma}\right] \times\left[1 . . n_{1}\right] \times \cdots \times\left[1 . . n_{\tau}\right]$.
Then $i \| j \in[m \| n]=\mathcal{I}_{S \otimes T}$, as desired. QED
Homework 4: Due on Tuesday 19 February
4-1. Let $k \in \mathbb{N}_{0}, \alpha \in \widehat{\mathcal{O}}_{k}$ and $\lambda:=\operatorname{adj}_{0}^{0}\left(\frac{\alpha}{|\bullet|^{k}}\right)$. Show: $\lambda \in$ BNZ.
Proof: Since $\alpha \in \widehat{\mathcal{O}}_{k}=(\mathrm{BNZ}) \cdot\left(|\bullet|^{k}\right)$,
choose $\mu \in$ BNZ s.t. $\alpha=\mu \cdot\left(|\bullet|^{k}\right)$.
We have $\operatorname{dom}[\alpha]=(\operatorname{dom}[\mu]) \cap\left(\operatorname{dom}\left[|\bullet|^{k}\right]\right)$.
So, since $\operatorname{dom}[\mu] \subseteq \mathbb{R}=\operatorname{dom}\left[|\bullet|^{k}\right]$, we see that $\operatorname{dom}[\alpha]=\operatorname{dom}[\mu]$.
Since $\mu \in \mathrm{BNZ} \subseteq \mathrm{DNZ}$, choose $A \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $A \subseteq \operatorname{dom}[\mu]$.
Then $A \subseteq \operatorname{dom}[\mu]=\operatorname{dom}[\alpha], \quad$ so $A \subseteq \operatorname{dom}[\alpha]$.
So, since $A \in \mathcal{B}_{\mathbb{R}}(0)$, we see that $\alpha \in$ DNZ.
We have $\operatorname{dom}[\lambda]=\left(\operatorname{dom}\left[\frac{\alpha}{|\bullet|^{k}}\right]\right)_{0}^{+}=\left((\operatorname{dom}[\alpha])_{0}^{\times}\right)_{0}^{+}=(\operatorname{dom}[\alpha])_{0}^{+}$.
Then $A \subseteq \operatorname{dom}[\alpha] \subseteq(\operatorname{dom}[\alpha])_{0}^{+}=\operatorname{dom}[\lambda], \quad$ so $A \subseteq \operatorname{dom}[\lambda]$.
So, since $A \in \mathcal{B}_{\mathbb{R}}(0)$, we conclude that $\lambda \in \mathrm{DNZ}$.
Want: $\exists B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\lambda_{*}(B)$ is bounded in $\mathbb{R}$.
Since $\mu \in \mathrm{BNZ}$, choose $C \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\mu_{*}(C)$ is bounded in $\mathbb{R}$.
Since $A, C \in \mathcal{B}_{\mathbb{R}}(0)$, we get $A \cap C \in\{A, C\}$.
Let $B:=A \cap C$. Then $B=A \cap C \in\{A, C\} \subseteq \mathcal{B}_{\mathbb{R}}(0)$.
Want: $\lambda_{*}(B)$ is bounded in $\mathbb{R}$.
Since $\mu_{*}(C)$ is bounded in $\mathbb{R}$, choose $D \in \mathcal{B}_{\mathbb{R}}$ s.t. $\mu_{*}(C) \subseteq D$.
By the Superset Recentering Lemma, choose $E \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $D \subseteq E$.
Since $E \in \mathcal{B}_{\mathbb{R}}(0)$, it follows that $0 \in E$.
Since $\mu_{*}(C) \subseteq D \subseteq E$ and since $0 \in E$,
we conclude that $\left(\mu_{*}(C)\right) \cup\{0\} \subseteq E$.
So, as $E \in \mathcal{B}_{\mathbb{R}}$, it suffices to show: $\quad \lambda_{*}(B) \subseteq E$.
Want: $\forall y \in \lambda_{*}(B), y \in E$.

Given $y \in \lambda_{*}(B) . \quad$ Want: $y \in E$.
Since $y \in \lambda_{*}(B)$, choose $x \in B \cap(\operatorname{dom}[\lambda])$ s.t. $y=\lambda_{x}$.
Exactly one of the following is true:
(1) $x=0$
or
(2) $x \neq 0$.

Case (1):
We have $y=\lambda_{x}=\lambda_{0}=\left(\operatorname{adj}_{0}^{0}\left(\frac{\alpha}{|\bullet|^{k}}\right)\right)_{0}=0 \in E$, as desired.
End of Case (1).

Case (2):
Since $x \neq 0$, we have $\lambda_{x}=\left(\operatorname{adj}_{0}^{0}\left(\frac{\alpha}{|\bullet|^{k}}\right)\right)_{x}=\left(\frac{\alpha}{|\bullet|^{k}}\right)_{x}=\frac{\alpha_{x}}{|x|^{k}}$.
Since $\alpha=\mu \cdot\left(|\bullet|^{k}\right)$, we get: $\alpha_{x}=\left(\mu \cdot\left(|\bullet|^{k}\right)\right)_{x}$.
Then $\alpha_{x}=\left(\mu \cdot\left(|\bullet|^{k}\right)\right)_{x}=\mu_{x} \cdot\left(|x|^{k}\right)$.
Since $B \in \mathcal{B}_{\mathbb{R}}(0)$, we get $B \subseteq \mathbb{R}$. Then $x \in B \subseteq \mathbb{R}$.
So, since $x \neq 0$, we get $\frac{|x|^{k}}{|x|^{k}}=1$.
Then $\lambda_{x}=\frac{\alpha_{x}}{|x|^{k}}=\frac{\mu_{x} \cdot\left(|x|^{k}\right)}{|x|^{k}}=\mu_{x}$.
We have $x \in B \cap(\operatorname{dom}[\lambda]) \subseteq B=A \cap C$, so $x \in A$ and $x \in C$.
Since $x \in A \subseteq \operatorname{dom}[\mu]$ and since $x \in C$, we get $\mu_{x} \in \mu_{*}(C)$.
Then $y=\lambda_{x}=\mu_{x} \in \mu_{*}(C) \subseteq D \subseteq E$, as desired.
End of Case (2). QED
4-2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $U \in \mathbb{R}$.
Assume that $U$ is open in $\mathbb{R}$ and that $U \subseteq \operatorname{dom}\left[f^{\prime}\right]$.
Assume that $f$ is semi-increasing on $U$.
Let $T:=f_{*}^{\prime}(U) . \quad$ Show: $T \geqslant 0$.
Proof: Want: $\forall m \in T, m \geqslant 0$.
Given $m \in T$. Want: $m \geqslant 0$.
Assume $m<0$. Want: Contradiction.
Since $m \in T=f_{*}^{\prime}(U)$, choose $p \in U \cap\left(\operatorname{dom}\left[f^{\prime}\right]\right)$ s.t. $m=f_{p}^{\prime}$.
Then $p \in U \cap(\operatorname{dom}[f]) \subseteq U, \quad$ so $p \in U$.
Since $U$ is open in $\mathbb{R}$, we get: $U=\operatorname{Int}_{\mathbb{R}} U$.
Since $p \in U=\operatorname{Int}_{\mathbb{R}} U$, choose $B \in \mathcal{B}_{\mathbb{R}}(p)$ s.t. $B \subseteq U$.
Since $B \in \mathcal{B}_{\mathbb{R}}(p)$, choose $r>0$ s.t. $B=B_{\mathbb{R}}(p, r)$.
Since $f_{p}^{\prime}=m<0$, by Theorem 71.5, choose $\delta>0$ s.t.
(1) $f<f_{p}$ on $(p ; p+\delta)$ and (2) $f>f_{p}$ on $(p-\delta ; p)$.

Let $\gamma:=[1 / 2] \cdot[\min \{\delta, r\}] . \quad$ Then $0<\gamma<\delta$ and $-r<\gamma<r$.
Let $q:=p+\gamma$. Then $p<q<p+\delta$ and $p-r<q<p+r$.
Then $q \in(p ; p+\delta)$ and $q \in(p-r ; p+r)$.
We have $q \in(p-r ; p+r)=B_{\mathbb{R}}(p, r)=B \subseteq U$.
Then $p, q \in U$ and $p \leqslant q$.
So, since $f$ is semi-increasing on $U$, we get: $f_{p} \leqslant f_{q}$.
Since $q \in(p ; p+\delta)$, by (1), we get: $f_{q}<f_{p}$.
Then $f_{q}<f_{p} \leqslant f_{q}$, so $f_{q}<f_{q}$, so $f_{q} \neq f_{q}$. Contradiction. QED
4-3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $J$ be an interval.
Assume that $f$ is $\mathrm{c} / \mathrm{d}$ on $J . \quad$ Let $I:=\operatorname{Int}_{\mathbb{R}} J$ and $T:=f_{*}^{\prime}(I)$.
Assume $T \geqslant 0$. Show: $f$ is semi-increasing on $J$.
Proof: Want: $\forall a, b \in J,\left[(a \leqslant b) \Rightarrow\left(f_{a} \leqslant f_{b}\right)\right]$.
Given $a, b \in \mathbb{T}$. Want: $(a \leqslant b) \Rightarrow\left(f_{a} \leqslant f_{b}\right)$.
Assume: $a \leqslant b$. Want: $f_{a} \leqslant f_{b}$.
Assume $f_{a}>f_{b}$. Want: Contradiction.
Since $f_{a}>f_{b}$, we get $f_{a} \neq f_{b}$, and so $a \neq b$.
Since $a \neq b$ and $a \leqslant b$, we get: $a<b$. Then $b-a>0$.
Since $f_{a}>f_{b}$, we get: $f_{b}-f_{a}<0$.
So, since $b-a>0$, we get $\frac{f_{b}-f_{a}}{b-a}<0$.
Then $\mathrm{DQ}_{f}(a, b)=\frac{f_{b}-f_{a}}{b-a}<0$, so $\mathrm{DQ}_{f}(a, b)<0$.
By Theorem 72.22, we have $\mathrm{DQ}_{f}(a, b) \in f_{*}^{\prime}(I)$.
Then $\mathrm{DQ}_{f}(a, b) \in f_{*}^{\prime}(I)=T \geqslant 0$, so $0 \leqslant \mathrm{DQ}_{f}(a, b)$.
Then $0 \leqslant \mathrm{DQ}_{f}(a, b)<0$, so $0<0$. Contradiction. QED
4-4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $p \in \mathbb{R}$.

$$
\text { Show: }(f(p+\bullet))^{\prime}=f^{\prime}(p+\bullet)
$$

Proof: Let $g:=f(p+\bullet)$. Want: $g^{\prime}=f^{\prime}(p+\bullet)$.
Want: $\forall q \in \mathbb{R}, g^{\prime}(q)=f^{\prime}(p+q)$.
Given $q \in \mathbb{R}$. Want: $g^{\prime}(q)=f^{\prime}(p+q)$. Let $R:=\left\{\mathrm{s}_{L} \mid L \in\right.$
$\left.\operatorname{LINS}_{q} g\right\}, S:=\left\{\mathrm{s}_{L} \mid L \in \operatorname{LINS}_{p+q} f\right\}$.
Then $g^{\prime}(q)=\mathrm{UE} R$ and $f^{\prime}(p+q)=\mathrm{UE} S$. Want: $R=S$.
Want: $\operatorname{LINS}_{q} g=\operatorname{LINS}_{p+q} f$.
Want: $\left\{L \in \mathcal{L} \mid g_{q}^{T}-L \in \mathcal{O}_{1}\right\}=\left\{L \in \mathcal{L} \mid f_{p+q}^{T}-L \in \mathcal{O}_{1}\right\}$.

It suffices to show: $g_{q}^{T}=f_{p+q}^{T}$.
Want: $\forall h \in \mathbb{R},\left(g_{q}^{T}\right)(h)=\left(f_{p+q}^{T}\right)(h)$.
Given $h \in \mathbb{R}$. Want: $\left(g_{q}^{T}\right)(h)=\left(f_{p+q}^{T}\right)(h)$.
Want: $[g(q+h)]-[g(q)]=[f(p+q+h)]-[f(p+q)]$.
We have $\quad g(q+h)=(f(p+\bullet))(q+h)=f(p+q+h)$
and $\quad g(q)=(f(p+\bullet))(q)=f(p+q)$.
Then

$$
g(q+h)=f(p+q+h)
$$

and $\quad g(q)=f(p+q)$,
so $[g(q+h)]-[g(q)]=[f(p+q+h)]-[f(p+q)]$. QED
4-5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $p \in \operatorname{dom}[f]$.
Show: $[(f$ has a strict local minimum at $p$ in $\mathbb{R})$
$\Leftrightarrow\left(f_{p}^{T}\right.$ has a strict local minimum at 0 in $\left.\left.\mathbb{R}\right)\right]$.
Proof: Let $g:=f_{p}^{T}$.
Since $p \in \operatorname{dom}[f]$, we get $f_{p} \in \operatorname{im}[f]$.
Then $f_{p} \in \operatorname{im}[f] \subseteq \mathbb{R}$, so $f_{p} \in \mathbb{R}$.

Proof of $\Rightarrow$ :
Assume: $f$ has a strict local minimum at $p$ in $\mathbb{R}$.
Want: $f_{p}^{T}$ has a strict local minimum at 0 in $\mathbb{R}$.
Want: $g$ has a strict local minimum at 0 in $\mathbb{R}$.
Choose $B \in \mathcal{B}_{\mathbb{R}}(p)$ s.t. $f>f_{p}$ on $B_{p}^{\times}$.
Since $B \in \mathcal{B}_{\mathbb{R}}(p)$, we get $B-p \in \mathcal{B}_{\mathbb{R}}(0)$.
Let $A:=B-p$. Then $A \in \mathcal{B}_{\mathbb{R}}(0)$.
It therefore suffices to show: $g>g_{0}$ on $A_{0}^{\times}$.
Want: $\forall h \in A_{0}^{\times}, g_{h}>g_{0}$.
Given $h \in A_{0}^{\times}$. Want: $g_{h}>g_{0}$.
Since $A=B-p$, it follows that $p+A=B$.
Since $h \in A_{0}^{\times}$, we get $h \in A$ and $h \neq 0$.
Then $p+h \in p+A$ and $p+h \neq p$.
Then $p+h \in B$ and $p+h \neq p$, so $p+h \in B_{p}^{\times}$.
So, by the choice of $B$, it follows that $f_{p+h}>f_{p}$.
So, since $f_{p} \in \mathbb{R}$, we get: $f_{p+h}-f_{p}>f_{p}-f_{p}$.
Then $g_{h}=\left(f_{p}^{T}\right)_{h}=f_{p+h}-f_{p}>f_{p}-f_{p}=f_{p+0}-f_{p}=g_{0}$, as desired.
End of proof of $\Rightarrow$.
Proof of $\Leftarrow$ :
Assume: $f_{p}^{T}$ has a strict local minimum at 0 in $\mathbb{R}$.

Want: $f$ has a strict local minimum at $p$ in $\mathbb{R}$.
Know: $g$ has a strict local minimum at 0 in $\mathbb{R}$.
Choose $A \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $g>g_{0}$ on $A_{0}^{\times}$.
Since $A \in \mathcal{B}_{\mathbb{R}}(0)$, we get $A+p \in \mathcal{B}_{\mathbb{R}}(p)$.
Let $B:=A+p$. Then $B \in \mathcal{B}_{\mathbb{R}}(p)$.
It therefore suffices to show: $f>f_{p}$ on $B_{p}^{\times}$.
Want: $\forall x \in B_{p}^{\times}, f_{x}>f_{p}$.
Given $x \in B_{p}^{\times} \quad$ Want: $f_{x}>f_{p}$.
Since $x \in B_{p}^{\times}$, we get $x \in B$ and $x \neq p$.
Then $x-p \in B-p$ and $x-p \neq 0$. Let $h:=x-p$.
Then $h \in B-p$ and $h \neq 0$.
Since $B=A+p$, it follows that $B-p=A$.
Then $h \in A$ and $h \neq 0$. Then $h \in A_{0}^{\times}$.
So, by the choice of $A$, it follows that $g_{h}>g_{0}$.
So, as $f_{p} \in \mathbb{R}$, we get: $g_{h}+f_{p}>g_{0}+f_{p}$.
We have $g_{h}=f_{p+h}-f_{p}$ and $g_{0}=f_{p+0}-f_{p}$,
so, as $f_{p} \in \mathbb{R}$, we get $g_{h}+f_{p}=f_{p+h}$ and $g_{0}+f_{p}=f_{p+0}$.
Since $h=x-p$, we get $p+h=x$.
Then $f_{x}=f_{p+h}=g_{h}+f_{p}>g_{0}+f_{p}=f_{p+0}=f_{p}$, as desired.
End of proof of $\Leftarrow$. QED

## Homework 3: Due on Tuesday 12 February

3-1. Define $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ by $\alpha_{h}=\frac{h^{2}}{9 \cdot(3+h)}$. Show: $\alpha \in \widehat{\mathcal{O}}_{2}$.
Proof: Let $\lambda:=\operatorname{adj}_{0}^{0}\left(\frac{\alpha}{|\bullet|^{2}}\right)$.
Since $\alpha_{0}=0$, it follows, from Theorem 69.5, that $\alpha=\lambda \cdot\left(|\bullet|^{2}\right)$.
Want: $\alpha \in(\mathrm{BNZ}) \cdot\left(|\bullet|^{2}\right)$. Want: $\lambda \in \mathrm{BNZ}$.
We have $\operatorname{dom}[\lambda]=\left(\operatorname{dom}\left[\frac{\alpha}{|\bullet|^{k}}\right]\right)_{0}^{+}=\left((\operatorname{dom}[\alpha])_{0}^{\times}\right)_{0}^{+} \supseteq \operatorname{dom}[\alpha]$.
So, since $\alpha \in \mathrm{DNZ}$, it follows that $\lambda \in \mathrm{DNZ}$.
Want: $\exists B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\lambda_{*}(B)$ is bounded in $\mathbb{R}$.
Let $B:=B_{\mathbb{R}}(0,1)$. Then $B \in \mathcal{B}_{\mathbb{R}}(0)$.
Want: $\lambda_{*}(B)$ is bounded in $\mathbb{R}$. Want: $\lambda_{*}(B) \subseteq B_{\mathbb{R}}(0,100)$.
Want: $\forall y \in \lambda_{*}(B), y \in B_{\mathbb{R}}(0,100)$.
Given $y \in \lambda_{*}(B)$. Want $y \in B_{\mathbb{R}}(0,100)$.
Since $y \in \lambda_{*}(B)$, choose $h \in B$ s.t. $y=\lambda_{h}$.

Exactly one of the following is true:
(1) $h=0$
or
(2) $h \neq 0$.

Case (1):
We have $y=\lambda_{h}=\lambda_{0}=\left(\operatorname{adj}_{0}^{0}\left(\frac{\alpha}{|\bullet|^{2}}\right)\right)_{0}=0 \in B_{\mathbb{R}}(0,100)$, as desired.
End of Case (1).
Case (2):
We have $y=\lambda_{h}=\left(\operatorname{adj}_{0}^{0}\left(\frac{\alpha}{|\bullet|^{2}}\right)\right)_{h}=\left(\frac{\alpha}{|\bullet|^{2}}\right)_{h}=\frac{\alpha_{h}}{|h|^{2}}$.
Then $|y|=\frac{\left|\alpha_{h}\right|}{|h|^{2}} . \quad$ Also, $\left|\alpha_{h}\right|=\frac{|h|^{2}}{9 \cdot|3+h|}$. Then $|y|=\frac{1}{9 \cdot|3+h|}$.
Since $h \in B=B_{\mathbb{R}}(0,1)$, it follows that $d_{\mathbb{R}}(h, 0)<1$.
Then $|h-0|=d_{\mathbb{R}}(h, 0)<1$, so $-1<h<1$.
Then $3-1<3+h<3+1$, so $2<3+h<4$.
Since $3+h>2>0$, we get $|3+h|=3+h$ and $\frac{1}{3+h}<\frac{1}{2}$.
Since $\frac{1}{3+h}<\frac{1}{2}$, we see that $\frac{1}{9} \cdot \frac{1}{3+h}<\frac{1}{9} \cdot \frac{1}{2}$.
Then $d_{\mathbb{R}}(y, 0)=|y-0|=|y|=\frac{1}{9 \cdot|3+h|}=\frac{1}{9 \cdot(3+h)}$

$$
=\frac{1}{9} \cdot \frac{1}{3+h}<\frac{1}{9} \cdot \frac{1}{2}<100 .
$$

Then $y \in B_{\mathbb{R}}(0,100)$. End of Case (2). QED
3-2. Define $r: \mathbb{R} \rightarrow \mathbb{R}$ by $r_{x}=1 / x$. Show: $r_{3}^{\prime}=-1 / 9$.
Proof: Define $L \in \mathcal{L}$ by $L_{h}=-h / 9$.
Then $\mathrm{s} \ell_{L}=L_{1}=-1 / 9 . \quad$ Want $r_{3}^{\prime}=\mathrm{s} \ell_{L}$.
By Theorem 64.49, it suffices to show: $r_{3}^{T}-L \in \mathcal{O}_{1}$.
Define $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ by $\alpha_{h}=\frac{h^{2}}{9 \cdot(3+h)}$.
By HW\#3-1, $\alpha \in \widehat{\mathcal{O}}_{2}$, so, since $\widehat{\mathcal{O}}_{2} \subseteq \mathcal{O}_{1}$, we see that $\alpha \in \mathcal{O}_{1}$.
It therefore suffices to show: $r_{3}^{T}-L=\alpha$.
Want: $\forall h \in \mathbb{R},\left(r_{3}^{T}-L\right)_{h}=\alpha_{h}$.
Given $h \in \mathbb{R}$. Want: $\left(r_{3}^{T}-L\right)_{h}=\alpha_{h}$.
We compute: $\left(r_{3}^{T}-L\right)_{h}=\left[\left(r_{3}^{T}\right)_{h}\right]-\left[L_{h}\right]=\left[r_{3+h}-r_{3}\right]-[-h / 9]$

$$
=r_{3+h}-r_{3}+\frac{h}{9}=\frac{1}{3+h}-\frac{1}{3}+\frac{h}{9}
$$

$$
\begin{aligned}
& =\frac{9}{9 \cdot(3+h)}-\frac{3 \cdot(3+h)}{9 \cdot(3+h)}+\frac{h \cdot(3+h)}{9 \cdot(3+h)} \\
& =\frac{9-9-3 h+3 h+h^{2}}{9 \cdot(3+h)}=\frac{h^{2}}{9 \cdot(3+h)} \\
& =\alpha_{h}, \quad \text { as desired. QED }
\end{aligned}
$$

3-3. Define $L \in \mathcal{L}$ by $L_{x}=7 x$. $\quad$ Show: $L^{\prime}=C_{\mathbb{R}}^{7}$.
Proof: Want: $\forall x \in \mathbb{R}, L_{x}^{\prime}=\left(C_{\mathbb{R}}^{7}\right)_{x}$.
Given $x \in \mathbb{R}$. Want: $L_{x}^{\prime}=\left(C_{\mathbb{R}}^{7}\right)_{x}$. Want: $L_{x}^{\prime}=7$.
We have $\mathrm{s} \ell_{L}=L_{1}=7 \cdot 1=7$. Want: $L_{x}^{\prime}=\mathrm{s} \ell_{L}$.
By Theorem 64.49, it suffices to show: $L_{x}^{T}-L \in \mathcal{O}_{1}$.
Since $\mathbf{0} \in \mathcal{O}_{1}$, it suffices to show: $L_{x}^{T}-L=\mathbf{0}$.
Want: $\forall h \in \mathbb{R},\left(L_{x}^{T}-L\right)_{h}=\mathbf{0}_{h}$.
Given $h \in \mathbb{R}$. Want: $\left(L_{x}^{T}-L\right)_{h}=\mathbf{0}_{h}$.
We have $\left(L_{x}^{T}-L\right)_{h}=\left[\left(L_{x}^{T}\right)_{h}\right]-L_{h}=\left[L_{x+h}-L_{x}\right]-L_{h}$

$$
=[7 \cdot(x+h)-7 x]-7 h=0=\mathbf{0}_{h}, \text { as desired. QED }
$$

3-4. Let $a, b \in \mathbb{R}$. Assume $a<b$. Let $I:=(a ; b), J:=[a ; b]$.
Show: $\operatorname{Int}_{\mathbb{R}} J=I$ and $\mathrm{C} \ell_{\mathbb{R}} I=J$.
Proof: We wish to prove all of the following:
(1) $\operatorname{Int}_{\mathbb{R}} J \subseteq I \quad$ and
(2) $\operatorname{Int}_{\mathbb{R}} J \supseteq I \quad$ and
(3) $\mathrm{C} \ell_{\mathbb{R}} I \subseteq J \quad$ and
(4) $\mathrm{C}_{\mathbb{R}} I \supseteq J$.

Proof of (1):
Want: $\forall x \in \operatorname{Int}_{\mathbb{R}} J, x \in I . \quad$ Given $x \in \operatorname{Int}_{\mathbb{R}} J . \quad$ Want: $x \in I$.

Claim A: $x \neq a$.
Proof of Claim A:
Assume $x=a$. Want: Contradiction.
Since $a=x \in \operatorname{Int}_{\mathbb{R}} J$, choose $U \in \mathcal{B}_{\mathbb{R}}(a)$ s.t. $U \subseteq J$.
Since $U \in \mathcal{B}_{\mathbb{R}}(a)$, choose $r>0$ s.t. $U=B_{\mathbb{R}}(a, r)$.
Let $y:=a-(r / 2)$. Then $y<a$.
Also, $d_{\mathbb{R}}(y, a)=|a-y|=r / 2<r$, so $y \in B_{\mathbb{R}}(a, r)$.
Then $y \in B_{\mathbb{R}}(a, r)=U \subseteq J=[a ; b]$, so $y \geqslant a$.
Then $y<a$ and $y \geqslant a$. Contradiction.
End of proof of Claim A.

Claim B: $x \neq b$.

Proof of Claim B:
Assume $x=b$. Want: Contradiction.
Since $b=x \in \operatorname{Int}_{\mathbb{R}} J$, choose $U \in \mathcal{B}_{\mathbb{R}}(b)$ s.t. $U \subseteq J$.
Since $U \in \mathcal{B}_{\mathbb{R}}(b)$, choose $r>0$ s.t. $U=B_{\mathbb{R}}(b, r)$.
Let $y:=b+(r / 2)$. Then $y>b$.
Also, $d_{\mathbb{R}}(y, b)=|b-y|=r / 2<r$, so $y \in B_{\mathbb{R}}(b, r)$.
Then $y \in B_{\mathbb{R}}(b, r)=U \subseteq J=[a ; b]$, so $y \leqslant b$.
Then $y>b$ and $y \leqslant b$. Contradiction.
End of proof of Claim B.
Since $x \in J=[a ; b]$, it follows, from Claim A and Claim B, that $x \in[a ; b] \backslash\{a, b\}$.
Then $x \in[a ; b] \backslash\{a, b\}=(a ; b)=I$, as desired.
End of proof of (1).
Proof of (2):
Want: $\forall x \in I, x \in \operatorname{Int}_{\mathbb{R}} J . \quad$ Given $x \in I . \quad$ Want: $x \in \operatorname{Int}_{\mathbb{R}} J$.
Want: $\exists U \in \mathcal{B}_{\mathbb{R}}(x)$ s.t. $U \subseteq J$.
Since $x \in I=(a ; b)$, we have $a<x<b$.
Then $x-a>0$ and $b-x>0$, and so $\min \{x-a, b-x\}>0$.
Let $r:=\min \{x-a, b-x\}$. Then $r>0$ and $r \leqslant x-a$ and $r \leqslant b-x$.
Let $U:=B_{\mathbb{R}}(x, r) . \quad$ Then $U \in \mathcal{B}_{\mathbb{R}}(x) . \quad$ Want: $U \subseteq J$.
Want: $\forall y \in U, y \in J$.
Given $y \in U . \quad$ Want: $y \in J$.
Since $y \in U=B_{\mathbb{R}}(x, r)$, we get $d_{\mathbb{R}}(y, x)<r$.
Then $|y-x|=d_{\mathbb{R}}(y, x)<r$, so $x-r<y<x+r$.
Since $r \leqslant x-a$, we get $x-r \geqslant x-(x-a)$, and so $x-r \geqslant a$.
Since $r \leqslant b-x$, we get $x+r \leqslant x+(b-x)$, and so $x+r \leqslant b$.
We have $a \leqslant x-r<y$, so $a<y . \quad$ Also, $y<x+r \leqslant b$, so $y<b$.
Then $a<y<b$, so $y \in(a ; b)$.
So, since $(a ; b)=I$, we get $y \in I$, as desired.
End of proof of (2).

Proof of (3):
Want: $\forall x \in \mathrm{C}_{\mathbb{R}} I, x \in J . \quad$ Given $x \in \mathrm{C} \ell_{\mathbb{R}} I$. Want: $x \in J$.
Since $x \in \mathrm{C} \ell_{\mathbb{R}} I$, choose $s \in I^{\mathbb{N}}$ s.t. $s_{\bullet} \rightarrow x$ in $\mathbb{R}$.
We have: $\forall j \in \mathbb{N}, s_{j} \in I=(a ; b) \subseteq[a ; b]$, so $a \leqslant s_{j} \leqslant b$.
Since $s_{\bullet} \rightarrow x$ in $\mathbb{R}$ and since, $\forall j \in \mathbb{N}, s_{j} \leqslant b$,
it follows, from Theorem 47.1, that $x \leqslant b$.
Since $s_{\bullet} \rightarrow x$ in $\mathbb{R}$ and since, $\forall j \in \mathbb{N}, s_{j} \geqslant a$,
it follows, from Theorem 47.2, that $x \geqslant a$.
Since $a \leqslant x \leqslant b$, we get $x \in[a ; b]$.
So, since $[a ; b]=J$, we get $x \in J$, as desired.
End of proof of (3).
Proof of (4):
Want: $\forall x \in J, x \in \mathrm{C} \ell_{\mathbb{R}} I . \quad$ Given $x \in J . \quad$ Want: $x \in \mathrm{C} \ell_{\mathbb{R}} I$.
Want: $\exists s \in I^{\mathbb{N}}$ s.t. $s_{\bullet} \rightarrow x$ in $\mathbb{R}$.
Exactly one of the following is true:
( $\alpha$ ) $x=a$
or
$(\beta) x \neq a$.

Case ( $\alpha$ ):
Since $a<b$, we see that $b-a>0$. Then $(b-a) / 2>0$.
Let $z:=(b-a) / 2$. Then $z>0$.
Also, as $b-a>0$, we get $(b-a) / 2<b-a$.
Then $z<b-a$, and so $a+z<b$.
Define $s \in \mathbb{R}^{\mathbb{N}}$ by $s_{j}=a+(z / j)$.
Claim X: $s \in I^{\mathbb{N}}$.
Proof of Claim X:
We have $\operatorname{dom}[s]=\mathbb{N}$. Want: $\operatorname{im}[s] \subseteq I$.
Want: $\forall q \in \operatorname{im}[s], q \in I$.
Given $q \in \operatorname{im}[s]$. Want: $q \in I$.
Since $q \in \operatorname{im}[s]$, choose $j \in \mathbb{N}$ s.t. $s_{j}=q$. Want: $s_{j} \in I$.
We have $j>0$, so, as $z>0$,
we get $z / j>0$, so $a+(z / j)>a+0$.
Then $s_{j}=a+(z / j)>a+0=a$, so $a<s_{j}$.
We have $j \geqslant 1$, so, as $z>0$,
we get $z / j \leqslant z / 1$, so $a+(z / j) \leqslant a+(z / 1)$.
Then $s_{j}=a+(z / j) \leqslant a+(z /)=a+z<b$, so $s_{j}<b$.
Since $a<s_{j}<b$, we get $s_{j} \in(a ; b)$. Then $s_{j} \in(a ; b)=I$.
End of proof of Claim X.
By Claim X, $s \in I^{\mathbb{N}}$. Want: $s \bullet \rightarrow x$ in $\mathbb{R}$.
By definition of Case ( $\alpha$ ), we know that $x=a$.
Define $r \in \mathbb{R}^{\mathbb{N}}$ by $r_{j}=1 / j$. Then, by Theorem 39.7, $r_{\bullet} \rightarrow 0$ in $\mathbb{R}$.

Then, by Theorem $40.2,(z \cdot r) \bullet \rightarrow z \cdot 0$ in $\mathbb{R}$.
Let $c:=C_{\mathbb{N}}^{a}$. Then, by Theorem 40.3, $c_{\bullet} \rightarrow a$ in $\mathbb{R}$.
Then, by Theorem 40.1, $(c+(z \cdot r)) \cdot \rightarrow a+(z \cdot 0)$ in $\mathbb{R}$.
So, since $a+(z \cdot 0)=a+0=a=x$, we get $(c+(z \cdot r)) \bullet x$ in $\mathbb{R}$.
It therefore suffices to show: $s=c+(z \cdot r)$.
Want: $\forall j \in \mathbb{N}, s_{j}=(c+(z \cdot r))_{j}$.
Given $j \in \mathbb{N}$. Want: $s_{j}=(c+(z \cdot r))_{j}$.
We have $c_{j}=\left(C_{\mathbb{N}}^{a}\right)_{j}=a$.
Also, $(z \cdot r)_{j}=z \cdot\left(r_{j}\right)=z \cdot(1 / j)=z / j$.
Then $s_{j}=a+(z / j)=c_{j}+\left[(z \cdot r)_{j}\right]=(c+(z \cdot r))_{j}$.
End of Case ( $\alpha$ ).
Case ( $\beta$ ):
Since $x \in J=[a ; b]$, we get $a \leqslant x \leqslant b$.
Since $a \leqslant x$ and $x \neq a$, we get $a<x$. Then $x-a>0$.
Then $(x-a) / 2>0$. Let $z:=(x-a) / 2$. Then $z>0$.
Also, as $x-a>0$, we get $(x-a) / 2<x-a$.
Then $z<x-a$, and so $x-z>a$.
Define $s \in \mathbb{R}^{\mathbb{N}}$ by $s_{j}=x-(z / j)$.
Claim $Y: s \in I^{\mathbb{N}}$.
Proof of Claim Y:
We have $\operatorname{dom}[s]=\mathbb{N}$. Want: $\operatorname{im}[s] \subseteq I$.
Want: $\forall q \in \operatorname{im}[s], q \in I$.
Given $q \in \operatorname{im}[s]$. Want: $q \in I$.
Since $q \in \operatorname{im}[s]$, choose $j \in \mathbb{N}$ s.t. $s_{j}=q$. Want: $s_{j} \in I$.
We have $j>0$, so, as $z>0$,
we get $z / j>0$, so $x-(z / j)<x-0$.
Then $s_{j}=x-(z / j)<x-0=x \leqslant b$, so $s_{j}<b$.
We have $j \geqslant 1$, so, as $z>0$,
we get $z / j \leqslant z / 1$, so $x-(z / j) \geqslant x-(z / 1)$.
Then $s_{j}=x-(z / j) \geqslant x-(z / 1)=x-z \geqslant a$, so $s_{j}>a$, so $a<s_{j}$.
Since $a<s_{j}<b$, we get $s_{j} \in(a ; b)$. Then $s_{j} \in(a ; b)=I$.
End of proof of Claim Y.
By Claim $\mathrm{Y}, s \in I^{\mathbb{N}}$. Want: $s \bullet \rightarrow x$ in $\mathbb{R}$.
Define $r \in \mathbb{R}^{\mathbb{N}}$ by $r_{j}=1 / j$. Then, by Theorem 39.7, $r_{\bullet} \rightarrow 0$ in $\mathbb{R}$.
Then, by Theorem $40.2,(-z \cdot r) \cdot \rightarrow-z \cdot 0$ in $\mathbb{R}$.

Let $c:=C_{\mathbb{N}}^{x} \quad$ Then, by Theorem 40.3, $c_{\bullet} \rightarrow x$ in $\mathbb{R}$.
Then, by Theorem 40.1, $(c+(-z \cdot r)) \rightarrow x-(z \cdot 0)$ in $\mathbb{R}$.
So, since $x-(z \cdot 0)=x-0=x$, we get $(c+(-z \cdot r)) \bullet x$ in $\mathbb{R}$.
It therefore suffices to show: $s=c+(-z \cdot r)$.
Want: $\forall j \in \mathbb{N}, s_{j}=(c+(-z \cdot r))_{j}$.
Given $j \in \mathbb{N}$. Want: $s_{j}=(c+(-z \cdot r))_{j}$.
We have $c_{j}=\left(C_{\mathbb{N}}^{x}\right)_{j}=x$.
Also, $(-z \cdot r)_{j}=-z \cdot\left(r_{j}\right)=-z \cdot(1 / j)=-z / j$.
Then $s_{j}=x-(z / j)=x+(-z / j)=c_{j}+\left[(-z \cdot r)_{j}\right]=(c+(-z \cdot r))_{j}$.
End of Case ( $\beta$ ).
End of proof of (4). QED
3-5. Find a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
[f(-2)=f(2)] \&\left[\forall x \in(-2 ; 2), f_{x}^{\prime} \neq 0\right] .
$$

Solution: Let $f:=|\bullet|$.

## Homework 2: Due on Tuesday 5 February

2-1. Let $f: \mathbb{R} \rightarrow \mathbb{R}, a \in \mathbb{R}, p \in \operatorname{dom}[f], S \subseteq \mathbb{R}$ and $q:=f_{p}$.
Show: $(f>a$ on $S) \Leftrightarrow\left(f_{p}^{T}>a-q\right.$ on $\left.S-p\right)$.
Proof: Proof of $\Rightarrow$ : Assume: $f>a$ on $S$. Want: $f_{p}^{T}>a-q$ on $S-p$.
Want: $\forall h \in S-p, f_{p}^{T}(h)>a-q$.
Given $h \in S-p$. Want: $f_{p}^{T}(h)>a-q$.
Since $h \in S-p$, choose $x \in S$ s.t. $h=x-p$. $\quad$ Then $p+h=x$.
Since $x \in S$ and since $f>a$ on $S$, we get: $f_{x}>a$.
Then $f_{x}-q>a-q$.
Then $f_{p}^{T}(h)=f_{p+h}-f_{p}=f_{x}-q>a-q$, as desired. End of proof of $\Rightarrow$.
Proof of $\Leftarrow$ : Assume: $f_{p}^{T}>a-q$ on $S-p . \quad$ Want: $f>a$ on $S$.
Want: $\forall x \in S, f_{x}>a$.
Given $x \in S$. Want: $f_{x}>a$.
Since $x \in S$, we get: $x-p \in S-p$.
Let $h:=x-p$. Then $h \in S-p$ and $p+h=x$.
Since $h \in S-p$ and since $f_{p}^{T}>a-q$ on $S-p$, we get: $f_{p}^{T}(h)>a-q$.
Then $\left[f_{p}^{T}(h)\right]+q>a-q+q . \quad$ Also, $-f_{p}+q=-q+q=0$.

Then $f_{x}=f_{x}-f_{p}+q=f_{p+h}-f_{p}+q=\left[f_{p}^{T}(h)\right]+q>a-q+q=a$, as desired. End of proof of $\Leftarrow . \quad$ QED

2-2. Show: $(B N Z) \circ(C V Z) \subseteq B N Z$.
Proof: Want: $\forall \alpha \in(\mathrm{BNZ}) \circ(\mathrm{CVZ}), \alpha \in \mathrm{BNZ}$.
Given $\alpha \in(\mathrm{BNZ}) \circ(\mathrm{CVZ})$. Want: $\alpha \in \mathrm{BNZ}$.
Choose $\beta \in \mathrm{BNZ}, \gamma \in \mathrm{CVZ}$ s.t. $\alpha=\beta \circ \gamma$.
Since $\beta \in \mathrm{BNZ}$, we get $\beta \in \mathrm{DNZ}$, so choose $A \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $A \subseteq \operatorname{dom}[\beta]$.
Since $\gamma \in \mathrm{CVZ}$, we get $\gamma \in \mathrm{DNZ}$, so choose $D \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $D \subseteq \operatorname{dom}[\gamma]$.
Since $\gamma \in \mathrm{CVZ}$, we get: $\quad \gamma$ is continuous at $0 \quad$ and $\quad \gamma_{0}=0$.
Since $\gamma$ is continuous at 0 and $A \in \mathcal{B}_{\mathbb{R}}(0)=\mathcal{B}_{\mathbb{R}}\left(\gamma_{0}\right)$, choose $E \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\gamma_{*}(E) \subseteq A$.
Let $F:=D \cap E . \quad$ Then $F \in \mathcal{B}_{\mathbb{R}}(0)$.
Claim 1: $F \subseteq \operatorname{dom}[\alpha]$.
Proof of Claim 1:
Want: $\forall x \in F, x \in \operatorname{dom}[\alpha]$.
Given $x \in F$. Want: $x \in \operatorname{dom}[\alpha]$.
We have $x \in F \subseteq D \subseteq \operatorname{dom}[\gamma]$. Also, $x \in F \subseteq E$.
Since $x \in \operatorname{dom}[\gamma]$ and since $x \in E$, we get: $\gamma(x) \in \gamma_{*}(E)$.
Then $\gamma(x) \in \gamma_{*}(E) \subseteq A \subseteq \operatorname{dom}[\beta]$, so $\beta(\gamma(x)) \neq \odot$.
Then $\alpha(x)=(\beta \circ \gamma)(x)=\beta(\gamma(x)) \neq \Theta^{2}$, so $x \in \operatorname{dom}[\alpha]$, as desired.
End of Proof of Claim 1.

Since $F \in \mathcal{B}_{\mathbb{R}}(0)$, by Claim 1 , we conclude that $\alpha \in$ DNZ.
Want: $\exists Z \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\alpha_{*}(Z)$ is bounded in $\mathbb{R}$.
Since $\beta \in \mathrm{BNZ}$, choose $B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\beta_{*}(B)$ is bounded in $\mathbb{R}$.
Since $\gamma$ is continuous at 0 and $B \in \mathcal{B}_{\mathbb{R}}(0)=\mathcal{B}_{\mathbb{R}}\left(\gamma_{0}\right)$,
choose $Z \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\gamma_{*}(Z) \subseteq B$.
Want: $\alpha_{*}(Z)$ is bounded in $\mathbb{R}$.
Since $\beta_{*}(B)$ is bounded in $\mathbb{R}$, it suffices to prove: $\alpha_{*}(Z) \subseteq \beta_{*}(B)$.
Want: $\forall q \in \alpha_{*}(Z), q \in \beta_{*}(B)$.
Given $q \in \alpha_{*}(Z)$. Want: $q \in \beta_{*}(B)$.
Since $q \in \alpha_{*}(Z)$, choose $p \in Z \cap(\operatorname{dom}[\alpha])$ s.t. $q=\alpha(p)$.
We have: $p \in Z$ and $p \in \operatorname{dom}[\alpha]$.
Since $p \in \operatorname{dom}[\alpha]$, we get: $\alpha(p) \neq \oplus$.
Also, $\beta(\gamma(p))=(\beta \circ \gamma)(p)=\alpha(p)$.
Then $\beta(\gamma(p))=\alpha(p) \neq \Theta$, so $\gamma(p) \in \operatorname{dom}[\beta]$.

Then $\gamma(p) \neq \Theta_{\text {, }}$ so $p \in \operatorname{dom}[\gamma]$.
Since $p \in \operatorname{dom}[\gamma]$ and since $p \in Z$, we conclude that $\gamma(p) \in \gamma_{*}(Z)$.
So, since $\gamma_{*}(Z) \subseteq B$, it follows that $\gamma(p) \in B$.
Since $\gamma(p) \in \operatorname{dom}[\beta]$ and since $\gamma(p) \in B$, we see that $\beta(\gamma(p)) \in \beta_{*}(B)$.
Then $q=\alpha(p)=\beta(\gamma(p)) \in \beta_{*}(B)$, as desired. QED
2-3. Let $j, k \in \mathbb{N}$. Show: $\hat{\mathcal{O}}_{j} \circ \mathcal{O}_{k} \subseteq \mathcal{O}_{j k}$.
Proof: Want: $\forall \alpha \in \hat{\mathcal{O}}_{j} \circ \mathcal{O}_{k}, \alpha \in \mathcal{O}_{j k}$.
Given $\alpha \in \alpha \in \widehat{\mathcal{O}}_{j} \circ \mathcal{O}_{k}$. Want: $\alpha \in \mathcal{O}_{j k}$.
Choose $\beta \in \widehat{\mathcal{O}}_{j}, \gamma \in \mathcal{O}_{k}$ s.t. $\alpha=\beta \circ \gamma$.
Since $\beta \in \widehat{\mathcal{O}}_{j}=(\mathrm{BNZ}) \cdot\left(|\bullet|^{j}\right)$, choose $\phi \in$ BNZ s.t. $\beta=\phi \cdot\left(|\bullet|^{j}\right)$.
Since $\gamma \in \mathcal{O}_{k}=(\mathrm{CVZ}) \cdot\left(|\bullet|^{k}\right)$, choose $\psi \in$ CVZ s.t. $\gamma=\psi \cdot\left(|\bullet|^{k}\right)$.
We have: $\forall x \in \mathbb{R}, \alpha(x)=(\beta \circ \gamma)(x)=\beta(\gamma(x))=\left(\phi \cdot\left(|\bullet|^{j}\right)\right)(\gamma(x))$
$=\left[\phi(\gamma(x)] \cdot\left[|\gamma(x)|^{j}\right]\right.$
$=[(\phi \circ \gamma)(x)] \cdot\left[\left|\left(\psi \cdot\left(|\bullet|^{k}\right)\right)(x)\right|^{j}\right]$
$=[(\phi \circ \gamma)(x)] \cdot\left[\left|[\psi(x)] \cdot\left[|x|^{k}\right]\right|^{j}\right]$
$=[(\phi \circ \gamma)(x)] \cdot\left[|\psi(x)|^{j}\right] \cdot\left[\left.\left.| | x\right|^{k}\right|^{j}\right]$
$=[(\phi \circ \gamma)(x)] \cdot\left[|\psi(x)|^{j}\right] \cdot\left[\mid x^{j k}\right]$
$=\left([\phi \circ \gamma] \cdot\left[\left|\psi^{j}\right|\right] \cdot\left[|\bullet|{ }^{j k}\right]\right)(x)$.
Then $\alpha=[\phi \circ \gamma] \cdot\left[\left|\psi^{j}\right|\right] \cdot\left[|\bullet|{ }^{j k}\right]$.
We have $\phi \in \mathrm{BNZ}$ and $\gamma \in \mathcal{O}_{k} \subseteq \mathcal{O}_{0}=\mathrm{CVZ}$, so $\phi \circ \gamma \in(\mathrm{BNZ}) \circ(\mathrm{CVZ})$.
By HW\#2-2, (BNZ) $\circ(\mathrm{CVZ}) \subseteq$ BNZ. Then $\phi \circ \gamma \in$ BNZ.
Since $\psi \in \mathrm{CVZ}$, we get $|\psi| \in|\mathrm{CVZ}| \subseteq \mathrm{CVZ}$.
So, since $j \in \mathbb{N}$, it follows that $|\psi|^{j} \in \mathrm{CVZ}$.
Then $[\phi \circ \gamma] \cdot\left[\left|\psi^{j}\right|\right] \in(\mathrm{BNZ}) \cdot(\mathrm{CVZ})$.
By HW\#1-4, (BNZ) $\cdot(\mathrm{CVZ}) \subseteq$ CVZ. Then $[\phi \circ \gamma] \cdot\left[\left|\psi^{j}\right|\right] \in \mathrm{CVZ}$.
Then $\alpha=[\phi \circ \gamma] \cdot\left[\left|\psi^{j}\right|\right] \cdot\left[|\bullet|{ }^{j k}\right] \in(\mathrm{CVZ}) \cdot\left(|\bullet|{ }^{j k}\right)=\mathcal{O}_{j k}$. QED
2-4. Let $\phi \in \mathrm{CVZ}, \varepsilon>0$. Show: $\exists B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $|\phi|<\varepsilon$ on $B$.
Proof: Since $\phi \in$ CVZ, we know:
$\phi \in \mathrm{DNZ}$ and $\phi_{0}=0$ and $\phi$ is continuous at 0.
Let $C:=B_{\mathbb{R}}(0, \varepsilon)$. Then $C \in \mathcal{B}_{\mathbb{R}}(0)=\mathcal{B}_{\mathbb{R}}\left(\phi_{0}\right)$.
So, since $\phi$ is continuous at 0 , choose $A \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\phi_{*}(A) \subseteq C$.
Since $\phi \in \mathrm{DNZ}$, choose $D \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $D \subseteq \operatorname{dom}[\phi]$.
Since $A, D \in \mathcal{B}_{\mathbb{R}}(0)$, we get $A \cap D \in\{A, D\}$.
Let $B:=A \cap D$. Then $B \in\{A, D\} \subseteq \mathcal{B}_{\mathbb{R}}(0)$.
Want: $|\phi|<\varepsilon$ on $B$. Want: $\forall x \in B,(|\phi|)(x)<\varepsilon$.

Given $x \in B$. Want: $(|\phi|)(x)<\varepsilon$.
We have $x \in B=A \cap D \subseteq D \subseteq \operatorname{dom}[\phi]$.
Also, $x \in B=A \cap D \subseteq A$.
Since $x \in A$ and $x \in \operatorname{dom}[\phi]$, we get $\phi(x) \in \phi_{*}(A)$.
Then $\phi(x) \in \phi_{*}(A) \subseteq C=B_{\mathbb{R}}(0, \varepsilon)$, so $|[\phi(x)]-0|<\varepsilon$.
Then $(|\phi|)(x)=|\phi(x)|=|[\phi(x)]-0|<\varepsilon$, as desired. QED
2-5. Let $\alpha \in \mathcal{O}_{1}, L \in \mathcal{L} \backslash\{\mathbf{0}\}$. Show: $\exists B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $|\alpha| \leqslant|L|$ on $B$.
Proof: Since $L \in \mathcal{L}$, choose $m \in \mathbb{R}$ s.t. $L=m \cdot \mathrm{id}_{\mathbb{R}}$.
Then, for all $x \in \mathbb{R}$, we have: $L_{x}=m x$.
Since $L \neq \mathbf{0}$, we see that $m \neq 0$, so $m \in \mathbb{R}_{0}^{\times}$, so $|m|>0$.
Let $\varepsilon:=|m| . \quad$ Then $\varepsilon>0$.
Since $\alpha \in \mathcal{O}_{1}=\mathrm{CVZ} \cdot(|\bullet|)$, choose $\phi \in \mathrm{CVZ}$ s.t. $\alpha=\phi \cdot(|\bullet|)$.
By HW\#2-4, choose $B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $|\phi|<\varepsilon$ on $B$.
Want: $|\alpha| \leqslant|L|$ on $B$. Want: $\forall x \in B,|\alpha|_{x} \leqslant|L|_{x}$.
Given $x \in B$. Want: $|\alpha|_{x} \leqslant|L|_{x}$.
Since $x \in B$ and $|\phi|<\varepsilon$ on $B$, we get: $|\phi|_{x}<\varepsilon$.
Since $|\phi|_{x} \leqslant \varepsilon$ and $|x| \geqslant 0$, we conclude that $|\phi|_{x} \cdot|x| \leqslant \varepsilon \cdot|x|$.
Since $\alpha=\phi \cdot(|\bullet|)$, it follows that $\alpha_{x}=\phi_{x} \cdot|x|$, and so $\left|\alpha_{x}\right|=\left|\phi_{x}\right| \cdot|x|$.
Then $|\alpha|_{x}=\left|\alpha_{x}\right|=\left|\phi_{x}\right| \cdot|x|=|\phi|_{x} \cdot|x| \leqslant \varepsilon \cdot|x|$
$=|m| \cdot|x|=|m x|=\left|L_{x}\right|=|L|_{x}$, as desired. QED
Homework 1: Due on Tuesday 29 January
1-1. Let $j \in \mathbb{N}_{0}$. Show: $\mathcal{O}_{j} \supseteq(\mathrm{CVZ}) \cdot\left(|\bullet|{ }^{j}\right)$.
Proof: Want: $\forall \alpha \in(\mathrm{CVZ}) \cdot\left(|\bullet|^{j}\right), \alpha \in \mathcal{O}_{j}$.
Given $\alpha \in(\mathrm{CVZ}) \cdot\left(|\bullet|^{j}\right)$. Want: $\alpha \in \mathcal{O}_{j} . \quad$ Let $\beta:=\frac{\alpha}{|\bullet|^{j}}$.
Want: $(\alpha \in \mathrm{DNZ}) \&\left(\alpha_{0}=0\right) \&(\beta \rightarrow 0$ near 0$)$.
Since $\alpha \in(\mathrm{CVZ}) \cdot\left(|\bullet|^{j}\right)$, choose $\phi \in \mathrm{CVZ}$ s.t. $\alpha=\phi \cdot\left(|\bullet|^{j}\right)$.
Since $\operatorname{dom}\left[|\bullet|^{j}\right]=\mathbb{R}$, we get $|\bullet|^{j} \in$ DNZ.
Then $\alpha=\phi \cdot\left(\mid \bullet{ }^{j}\right) \in($ DNZ $) \cdot($ DNZ $) \subseteq$ DNZ.
Want: $\left(\alpha_{0}=0\right) \&(\beta \rightarrow 0$ near 0$)$.
Since $\phi \in \mathrm{CVZ}$, it follows that $\phi_{0}=0$.
Then $\alpha_{0}=\left(\phi \cdot|\bullet|{ }^{j}\right)_{0}=\left(\phi_{0}\right) \cdot\left(|0|^{j}\right)=0 \cdot 0=0$.
Want: $\beta \rightarrow 0$ near 0 .

Claim: $\beta=\phi$ on $\mathbb{R}_{0}^{\times}$.

Proof of claim:
Want: $\forall x \in \mathbb{R}_{0}^{\times}, \beta_{x}=\phi_{x}$.
Given $x \in \mathbb{R}_{0}^{\times}$. Want: $\beta_{x}=\phi_{x}$.
Since $x \in \mathbb{R}_{0}^{\times}$, it follows that $\frac{|x|^{j}}{|x|^{j}}=1$.
We have: $\alpha_{x}=\left(\phi \cdot\left(|\bullet|{ }^{j}\right)\right)_{x}=\left(\phi_{x}\right) \cdot\left(|x|^{j}\right)$.
Then: $\beta_{x}=\left(\frac{\alpha}{|\bullet|{ }^{j}}\right)_{x}=\frac{\alpha_{x}}{|x|^{j}}=\frac{\left(\phi_{x}\right) \cdot\left(|x|^{j}\right)}{|x|^{j}}=\left(\phi_{x}\right) \cdot 1=\phi_{x}$, as desired.
End of proof of claim.
Since $\phi \in \mathrm{CVZ}$, it follows that $\phi \rightarrow \phi_{0}$ near 0 .
So, since $\phi_{0}=0$, we get: $\phi \rightarrow 0$ near 0 .
So, since $\beta=\phi$ on $\mathbb{R}_{0}^{\times}$,
we conclude that $\beta \rightarrow 0$ near 0 , as desired. QED
1-2. Show: CVZ $\subseteq$ BNZ.
Proof: Want: $\forall \alpha \in \mathrm{CVZ}, \alpha \in \mathrm{BNZ}$.
Given $\alpha \in$ CVZ. Want: $\alpha \in$ BNZ.
We have $\alpha \in \mathrm{CVZ} \subseteq \mathrm{DNZ}$.
Want: $\exists B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\alpha_{*}(B)$ is bounded in $\mathbb{R}$.
Since $\alpha \in \mathrm{CVZ}$, it follows that $\alpha$ is continuous at 0 .
Choose $B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\alpha_{*}(B) \subseteq B_{\mathbb{R}}(0,1)$.
Want: $\alpha_{*}(B)$ is bounded in $\mathbb{R}$.
Since $\alpha_{*}(B) \subseteq B_{\mathbb{R}}(0,1)$, it follows that $\alpha_{*}(B)$ is bounded in $\mathbb{R}$. QED
1-3. Show: $(B N Z) \cdot(B N Z) \subseteq B N Z$.
Proof: Want: $\forall \gamma \in(B N Z) \cdot(B N Z), \quad \gamma \in B N Z$.
Given $\gamma \in(B N Z) \cdot(B N Z) . \quad W a n t: \gamma \in B N Z$.
Since $\gamma \in(\mathrm{BNZ}) \cdot(\mathrm{BNZ})$, choose $\alpha, \beta \in \mathrm{BNZ}$ s.t. $\gamma=\alpha \cdot \beta$.
Since $\alpha, \beta \in \mathrm{BNZ} \subseteq \mathrm{DNZ}$,
choose $P, Q \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $P \subseteq \operatorname{dom}[\alpha]$ and $Q \in \operatorname{dom}[\beta]$.
Then $P \cap Q \in \mathcal{B}_{\mathbb{R}}(0)$.
So, since $P \cap Q \subseteq(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta])=\operatorname{dom}[\alpha \cdot \beta]=\operatorname{dom}[\gamma]$, we conclude that $\gamma \in$ DNZ.
Want: $\exists C \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\gamma_{*}(C)$ is bounded in $\mathbb{R}$.
Since $\alpha, \beta \in \mathrm{BNZ}$, choose $A, B \in \mathcal{B}_{\mathbb{R}}(0)$ s.t.
$\alpha_{*}(A)$ and $\beta_{*}(B)$ are bounded in $\mathbb{R}$.
Let $C:=A \cap B . \quad$ Then $C \in \mathcal{B}_{\mathbb{R}}(0)$.

Want: $\gamma_{*}(C)$ is bounded in $\mathbb{R}$.
Since $\alpha_{*}(A)$ and $\beta_{*}(B)$ are bounded in $\mathbb{R}$, choose $T, U \in \mathcal{B}_{\mathbb{R}}$ s.t. $\alpha_{*}(A) \subseteq T$ and $\beta_{*}(B) \subseteq U$.
By the Superset Recentering Lemma (Theorem 38.17),
choose $V, W \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $T \subseteq V$ and $U \subseteq W$.
Choose $r, s>0$ s.t. $V=B_{\mathbb{R}}(0, r)$ and $W=B_{\mathbb{R}}(0, s)$.
Want: $\gamma_{*}(C) \subseteq B_{\mathbb{R}}(0, r s)$.
Want: $\forall y \in \gamma_{*}(C), y \in B_{\mathbb{R}}(0, r s)$.
Given $y \in \gamma_{*}(C)$. Want: $y \in B_{\mathbb{R}}(0, r s)$. Want: $|y|<r s$.
Since $y \in \gamma_{*}(C)$, choose $x \in C \cap(\operatorname{dom}[\gamma])$ s.t. $\gamma(x)=y$.
We have $x \in \operatorname{dom}[\gamma]=\operatorname{dom}[\alpha \cdot \beta]=(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta])$.
Since $x \in \operatorname{dom}[\alpha]$ and $x \in C=A \cap B \subseteq A$, we get: $\alpha(x) \in \alpha_{*}(A)$.
Since $x \in \operatorname{dom}[\beta]$ and $x \in C=A \cap B \subseteq B$, we get: $\beta(x) \in \beta_{*}(B)$.
Then $\alpha(x) \in \alpha_{*}(A) \subseteq T \subseteq V=B_{\mathbb{R}}(0, r)$, so $|\alpha(x)|<r$.
Also, $\beta(x) \in \beta_{*}(A) \subseteq U \subseteq W=B_{\mathbb{R}}(0, s)$, so $|\beta(x)|<s$.
Since $0 \leqslant|\alpha(x)|<r$ and $0 \leqslant|\beta(x)|<s$, we get $|\alpha(x)| \cdot|\beta(x)|<r s$.
We have $\gamma(x)=(\alpha \cdot \beta)(x)=[\alpha(x)] \cdot[\beta(x)]$, so $|\gamma(x)|=|\alpha(x)| \cdot|\beta(x)|$.
Then $|y|=|\gamma(x)|=|\alpha(x)| \cdot|\beta(x)|<r s$, as desired. QED
1-4. Show: $(\mathrm{BNZ}) \cdot(\mathrm{CVZ}) \subseteq \mathrm{CVZ}$.
Proof: Want: $\forall \gamma \in(B N Z) \cdot(C V Z), \quad \gamma \in$ CVZ.
Given $\gamma \in(B N Z) \cdot(C V Z) . \quad$ Want: $\gamma \in$ CVZ.
Since $\gamma \in(\mathrm{BNZ}) \cdot(\mathrm{CVZ})$, choose $\alpha \in \mathrm{BNZ}, \beta \in \mathrm{CVZ}$ s.t. $\gamma=\alpha \cdot \beta$.
Since $\alpha \in \mathrm{BNZ} \subseteq \mathrm{DNZ}$ and since $\beta \in \mathrm{CVZ} \subseteq \mathrm{DNZ}$, choose $P, Q \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $P \subseteq \operatorname{dom}[\alpha]$ and $Q \subseteq \operatorname{dom}[\beta]$.
Then $P \cap Q \in \mathcal{B}_{\mathbb{R}}(0)$.
So, since $P \cap Q \in(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta])=\operatorname{dom}[\alpha \cdot \beta]=\operatorname{dom}[\gamma]$, we conclude that $\gamma \in$ DNZ.
Want: $\gamma(0)=0$ and $\gamma$ is continuous at 0 .
Since $P \in \mathcal{B}_{\mathbb{R}}(0)$, we get $0 \in P$.
Since $\alpha \in \mathrm{DNZ}$, we get $\alpha: \mathbb{R} \rightarrow \mathbb{R}$.
So, since $0 \in P \subseteq \operatorname{dom}[\alpha]$, we get $\alpha(0) \in \mathbb{R}$, so $[\alpha(0)] \cdot 0=0$.
Since $\beta \in \mathrm{CVZ}$, we get $\beta(0)=0$.
Then $\gamma(0)=(\alpha \cdot \beta)(0)=[\alpha(0)] \cdot[\beta(0)]=[\alpha(0)] \cdot 0=0$.
Want: $\gamma$ is continuous at 0 .
Want: $\forall \varepsilon>0, \exists \delta>0$ s.t., $\forall x \in \operatorname{dom}[\gamma]$,

$$
[|x-0|<\delta] \Rightarrow[|[\gamma(x)]-[\gamma(0)]|<\varepsilon] .
$$

Given $\varepsilon>0 . \quad$ Want: $\exists \delta>0$ s.t., $\forall x \in \operatorname{dom}[\gamma]$,

$$
[|x-0|<\delta] \Rightarrow[|[\gamma(x)]-[\gamma(0)]|<\varepsilon]
$$

Since $\alpha \in \mathrm{BNZ}$, choose $A \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $\alpha_{*}(A)$ is bounded in $\mathbb{R}$.
Since $\alpha_{*}(A)$ is bounded in $\mathbb{R}$, choose $T \in \mathcal{B}_{\mathbb{R}}$ s.t. $\alpha_{*}(A) \subseteq T$.
By the Superset Recentering Lemma (Theorem 38.17),
choose $U \in \mathcal{B}_{\mathbb{R}}(0)$ s.t. $T \subseteq U$.
Choose $r>0$ s.t. $U=B_{\mathbb{R}}(0, r)$.
Since $\beta \in \mathrm{CVZ}$, it follows that $\beta$ is continuous at 0 ,
so choose $\eta>0$ s.t., $\forall x \in \operatorname{dom}[\beta]$,

$$
[|x-0|<\eta] \Rightarrow[|[\beta(x)]-[\beta(0)]|<\varepsilon / r] .
$$

Let $B:=B_{\mathbb{R}}(0, \eta) . \quad$ Then $A, B \in \mathcal{B}_{\mathbb{R}}(0) . \quad$ Let $Q:=A \cap B$.
Then $Q \in \mathcal{B}_{\mathbb{R}}(0) . \quad$ Choose $\delta>0$ s.t. $Q=B_{\mathbb{R}}(0, \delta)$.
Want: $\forall x \in \operatorname{dom}[\gamma],([|x-0|<\delta] \Rightarrow[|[\gamma(x)]-[\gamma(0)]|<\varepsilon])$.
Given $x \in \operatorname{dom}[\gamma]$.
Want: $[|x-0|<\delta] \Rightarrow[|[\gamma(x)]-[\gamma(0)]|<\varepsilon]$.
Assume: $|x-0|<\delta$. Want: $|[\gamma(x)]-[\gamma(0)]|<\varepsilon$.
We have $x \in \operatorname{dom}[\gamma]=\operatorname{dom}[\alpha \cdot \beta]=(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta])$.
Then $x \in(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta]) \subseteq \operatorname{dom}[\beta]$.
Also, since $|x-0|<\delta$, we have $x \in B_{\mathbb{R}}(0, \delta)$.
Then $x \in B_{\mathbb{R}}(0, \delta)=Q=A \cap B$.
Then $x \in A \cap B \subseteq B=B_{\mathbb{R}}(0, \eta)$, so $|x-0|<\eta$.
So, since $x \in \operatorname{dom}[\beta]$, by choice of $\eta$, we get: $|[\beta(x)]-[\beta(0)]|<\varepsilon / r$.
Since $\beta \in \mathrm{CVZ}$, we get $\beta(0)=0$. Then $[\beta(x)]-[\beta(0)]=\beta(x)$.
Then $|\beta(x)|=|[\beta(x)]-[\beta(0)]|<\varepsilon / r$, so $|\beta(x)|<\varepsilon / r$.
Since $x \in(\operatorname{dom}[\alpha]) \cap(\operatorname{dom}[\beta]) \subseteq \operatorname{dom}[\alpha]$ and since $x \in A \cap B \subseteq A$, we conclude that $\alpha(x) \in \alpha_{*}(A)$.
Then $\alpha(x) \in \alpha_{*}(A) \subseteq T \subseteq U=B_{\mathbb{R}}(0, r)$, so $|\alpha(x)|<r$.
Since $0 \leqslant|\alpha(x)|<r$ and since $0 \leqslant|\beta(x)|<\varepsilon / r$,
it follows that $|\alpha(x)| \cdot|\beta(x)|<r \cdot(\varepsilon / r)$.
Recall that $\gamma(0)=0$. We have $\gamma(x)=(\alpha \cdot \beta)(x)=[\alpha(x)] \cdot[\beta(x)]$.
Then $|[\gamma(x)]-[\gamma(0)]|=|[\gamma(x)]-0|=|\gamma(x)|=|[\alpha(x)] \cdot[\beta(x)]|$

$$
=|\alpha(x)| \cdot|\beta(x)|<r \cdot(\varepsilon / r)=\varepsilon, \text { as desired. QED }
$$

1-5. Let $j \in \mathbb{N}_{0}$. Show: $\mathcal{O}_{j} \subseteq \widehat{\mathcal{O}}_{j}$.
Proof: By HW\#1-2, CVZ $\subseteq$ BNZ.
Then $(\mathrm{CVZ}) \cdot\left(|\bullet|{ }^{j}\right) \subseteq(\mathrm{BNZ}) \cdot\left(|\bullet|{ }^{j}\right)$.
Then $\mathcal{O}_{j} \subseteq \widehat{\mathcal{O}}_{j}$, as desired. QED

