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1. Foundations

1.1. Abbreviations.

We will be using the following abbreviations:

@ forall (or, sometimes, for any)

D there exists (or, sometimes, there exist)

s.t. such that

 not

& and

_ or

ñ implies

For any text strings A and B,

A ô B means r A ñ B s & r B ñ A s.

For any text string A,

EA means  p DAq.

1.2. The logic purist.

Mathematics is Truth.

We won’t be purists about this, but we do describe briefly what how

the purist would like mathematics to be organized, beginning with a

finite alphabet which would include:

lowercase Roman letters: a,b,c,. . . ,z ;

uppercase Roman letters: A,B,C,. . . ,Z ;

lowercase italic Roman letters: a,b,c,. . . ,z ;

uppercase italic Roman letters: A,B,C,. . . ,Z ;

uppercase script letters: A,B,C,. . . ,Z ;

uppercase blackboard bold letters: A,B,C,. . . ,Z ;

lowercase Greek letters: α,β,γ,. . . ,ω ;

some uppercase Greek letters: Γ,∆,Θ,Λ,Ξ,Π,Σ,Φ,Ψ,Ω ;

digits: 0,. . . ,9 ; the symbol 8 ;

the abbreviations from the preceding section: @,. . . ,E ;

more special characters: P,“,ă,p,q ;

a blank space to separate words ;

the symbol / .

According to the purist, the entire alphabet should be explained at the

start and no characters added later.
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We are not purists; later, we’ll, in fact, add many characters, e.g.

ą,ď,ě,H,R,
Ť

,
Ş

,Ď, etc.

Note that P is not the same as the Greek letter ε.

Note that H is not the same as the Greek letter φ.

The purist would have us give a list of strings called axioms. There

should be one string on each line. The list may be infinite, but there

should be an algorithm (the axiom algorithm) that prints it out. For

example, the first two axioms might be:

@x, x “ x

@x, x{0 “ /
The purist would ask for an algorithm (the inference algorithm)

that would take, as input, a FINITE list of strings (one per line), and

then produce, as ouput, a FINITE list of strings (one per line).

Typically, for example, if the two axioms above were input into a

typical inference algorithm, then, somewhere in the output, we would

find a line that reads:

p @x, x “ x q & p @x, x{0 “ / q

The typical inference algorithm would take each pair of input lines

and, somewhere in the output, produce a line obtained by surrounding

each of the two by parentheses and then concatenating them with an

ampersand, &, in between.

This carries the idea that, if you know two things separately, then

you know both of them are true together.

The purist also asks that every line of input to the inference algo-

rithm is one of the lines of output.

This carries the idea that, if you know something, then you know it.

We won’t go into details about all the requirements of the inference

algorithm, and it might vary depending on the exact nature of the

mathematics you’re trying to develop. The basic idea is that the purist

wants complete clarity on what kinds of statements can be inferred

when other statements are assumed.

Once the axiom algorithm and inference algorithm are written, we

write a theorem algorithm that does the following:

create the first 100 axioms,

and call them the first batch of axioms,
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input the first batch of axioms into the inference algorithm,

and call the output the first batch of theorems,

print out the first batch of theorems,

create the next 100 axioms,

and call them the second batch of axioms,

append the second batch of axioms

to the end of the first batch of theorems,

and call the result the first appended list,

input the first appended list into the inference algorithm,

and call the output the second batch of theorems,

print out the second batch of theorems,

create the next 100 axioms,

and call them the third batch of axioms,

append the third batch of axioms

to the end of the second batch of theorems,

and call the result the second appended list,

input the second appended list into the inference algorithm,

and call the output the third batch of theorems,

print out the third batch of theorems,

create the next 100 axioms,

and call them the fourth batch of axioms,

append the fourth batch of axioms

to the end of the third batch of theorems,

and call the result the third appended list,

input the third appended list into the inference algorithm,

and call the output the fourth batch of theorems,

print out the fourth batch of theorems,

etc.

The theorem algorithm produces, as output, an infinite list of strings

(one per line). These strings are called theorems.

The logic purist says, if you think some string is true, you just have

to wait to see if it appears in the list of theorems.

If it’s NOT true, you have to wait forever to find that out.

We are not logic purists, but the possibility of such a pure system

underlies everything that follows.

We start over.
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1.3. Some basic set theory.

DEFINITION 1.3.1. By an object, we mean:

a set or a real number or 8 or ´8 or /.

DEFINITION 1.3.2. Let x be an object and let S be a set.

By x R S, we mean:  px P S q.

DEFINITION 1.3.3. Let S and T be sets. Then:

S
Ť

T :“ tx | px P Sq _ px P T qu,

S
Ş

T :“ tx | px P Sq& px P T qu and

SzT :“ tx | px P Sq& px R T qu.

THEOREM 1.3.4. Let S :“ t1, 2, 3u, T :“ t3, 4, 5u. Then:

S
Ť

T “ t1, 2, 3, 3, 4, 5u “ t1, 2, 3, 4, 5u &

S
Ş

T “ t3u & SzT “ t1, 2u & T zS “ t4, 5u.

Proof. Omitted. �

DEFINITION 1.3.5. We define:

H :“ t u,

N :“ t1, 2, 3, . . .u,

N0 :“ t0, 1, 2, 3, . . .u,

Z :“ t. . . ,´3,´2,´1, 0, 1, 2, 3, . . .u,

Q :“ tk{` | k P Z, ` P Nu and

R :“ t real numbers u.

It is a nontrivial theorem that there are elements of R that are not

elements of Q. In particular,
?

2 P RzQ. Proving this would require us

to delve more deeply into the axioms of R than we have time for.

1.4. Some axioms.

DEFINITION 1.4.1. Let S and T be sets.

Then S Ď T means: @x P S, x P T .

Also, T Ě S means: S Ď T .

Also, S Ę T means:  pS Ď T q.

Also, T Ğ S means: S Ę T .

Also, S Ĺ T means: pS Ď T q& pS ‰ T q.

Also, T Ľ S means: S Ĺ T .

The next result is an axiom, called the Axiom of Extensionality:
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AXIOM 1.4.2. Let S and T be sets.

Then: r S “ T s ô r pS Ď T q & pT Ď S q s.

THEOREM 1.4.3. Let A :“ t1, 2, 3u, B :“ t1, 2, 3, 4u, C :“ t2, 3, 4u.

Then: p A Ĺ B q & p B Ę A q

& p B Ę C q & p C Ĺ B q

& p A Ę C q & p C Ę A q.

In the preceding theorem, the sets A and C are said to be incom-

parable exactly because: p A Ę C q & p C Ę A q.

THEOREM 1.4.4. N Ĺ N0 Ĺ Z Ĺ Q Ĺ R.

DEFINITION 1.4.5. We define:

R˚ :“ R
Ť

t8 , ´8u and

Z˚ :“ Z
Ť

t8 , ´8u and

N˚ :“ N
Ť

t8 u and

N˚0 :“ N0

Ť

t8 u.

AXIOM 1.4.6. @x, x “ x.

AXIOM 1.4.7. @x, x{0 “ /.

AXIOM 1.4.8. @set S, S ‰ / R S.

In the preceding axiom, “ S ‰ / R S ” is an abbreviation of:

“ p S ‰ / q & p / R S q ”.

Generally, we will make these kinds of abbreviations without comment.

AXIOM 1.4.9. Let a, b, c P R˚.
Assume a ă b ă c. Then a ă c.

AXIOM 1.4.10. Let a, b P R˚.
Assume a ă b. Then a ‰ b.

If we wish to develop set theory and the theory of the real number

system in parallel, also making room for /, it requires a number of

axioms, which you can read about in the notes from last year’s course.

A more standard approach involves developing set theory first, then

defining each real number as a specific set, then proving basic results

about the real number system, then moving on to real analysis. In this

standard approach, the symbol / is never used.

This year, we will not develop the foundations so carefully, and will

instead rely on the reader’s sense (based on previous learning) of how
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sets and real numbers work. So, for example, the last two axioms might

simply have been omitted, since most readers know that a double strict

inequality contracts to a strict inequality, and, also, most readers know

that less than implies not equal to.

1.5. The Axiom of Choice.

A set S is said to be nonempty if S ‰ H.

The next axiom is called the Axiom of Choice:

AXIOM 1.5.1. Let S be a nonempty set. Then CHS P S.

We will use CHpSq as an alternate notation for CHS.

AXIOM 1.5.2. CHH “ /.

THEOREM 1.5.3. Let S :“ t1, 2, 3u, x :“ CHS.

Then: p x “ 1 q _ p x “ 2 q _ p x “ 3 q.

THEOREM 1.5.4. Let S :“ tt1, 2, 3uu, x :“ CHS.

Then: x “ t1, 2, 3u.

1.6. Singleton sets and the Unique Element operator.

A singleton set is a set with exactly one element:

DEFINITION 1.6.1. Let S be an object.

By S is a singleton set, we mean:

p S is a set q & p @x, y P S, x “ y q.

DEFINITION 1.6.2. Let S be a set. Then:

UES :“

#

CHS, if S is a singleton set

/, if S is not a singleton set.

We sometimes use UEpSq to denote UES, and sometimes even leave

out the parentheses in UEpSq:

THEOREM 1.6.3. We have: UEt5u “ 5 and UEtt1, 2uu “ t1, 2u

and UEt1, 2u “ / and UEH “ /.

1.7. Functions.

THEOREM 1.7.1. We have: t5, 8u “ t8, 5u.

Also, we have: t5, 5u “ t5u.

Also, we have: tt5u, t5uu “ tt5uu.
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DEFINITION 1.7.2. Let a and b be objects.

Then: xxa, byy :“ t tau , ta, bu u

THEOREM 1.7.3. We have:

xx5, 8yy “ tt5u, t5, 8uu,

xx8, 5yy “ tt8u, t8, 5uu “ tt8u, t5, 8uu,

xx5, 8yy “ tt5u, t5, 8uu ‰ tt8u, t5, 8uu “ xx8, 5yy,

xx5, 5yy “ tt5u, t5, 5uu “ tt5u, t5uu “ tt5uu and

xx 1 , t3u yy “ t t1u , t 1 , t3u u u.

THEOREM 1.7.4. Let a, b, c, d be objects.

Then: r xxa, byy s ô r pa “ cq& pb “ dq s.

Also: r ta, bu “ tc, du s ô r p pa “ cq& pb “ dq q

_ p pa “ dq& pb “ cq q s.

DEFINITION 1.7.5. Let R be an object.

By R is a relation, we mean:

pR is a set q & p @c P R, Da, b s.t. c “ xxa, byy q.

THEOREM 1.7.6.

The set txx1, 2yy, xx1, 3yy, xx2, 3yyu is a relation.

The set txx1, 2yy, xx2, 3yyu is a relation.

We graphed the two relations in the preceding theorem, noting the

vertical line test failing for the frist, but not the second.

DEFINITION 1.7.7. Let f be an object.

By f is a function, we mean:

(1) f is a relation and

(2) @a, b, c, r p xxa, byy P f q & p xxa, byy P f q s ñ r b “ c s.

Condition (2) in the Definition 1.7.7 is called the vertical line test.

THEOREM 1.7.8. Let R :“ t xx1, 2yy, xx1, 3yy, xx2, 3yy u

and let f :“ t xx1, 2yy, xx2, 3yy u.

Then: R is NOT a function and f IS a function.

DEFINITION 1.7.9. Let f be a function and let x be an object.

Then fpxq :“ UE t y | xxx, yyy P f u.

Also, fx :“ fpxq.
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THEOREM 1.7.10. Let f :“ t xx1, 2yy , xx2, 3yyu.

Then: f is a function and fp1q “ 2

and f2 “ 3 and f3 “ /.

The function in the preceding theorem is denoted

ˆ

1 ÞÑ 2

2 ÞÑ 3

˙

. From

this point forward, instead of writing

f :“ t xx1, 2yy , xx2, 3yyu,

we strongly prefer

f :“

ˆ

1 ÞÑ 2

2 ÞÑ 3

˙

.

DEFINITION 1.7.11. Let f be a function. Then:

Df :“ tx | fx ‰ / u
and If :“ t y | Dx P Df s.t. fx “ y u.

In the preceding definition, Df is called the domain of f ,

and If is called the image of f .

THEOREM 1.7.12. Let f :“

¨

˝

1 ÞÑ 4

3 ÞÑ 2

4 ÞÑ 2

˛

‚.

Then: Df “ t1, 3, 4u and If “ t4, 2, 2u “ t2, 4u.

DEFINITION 1.7.13. Let X and Y be sets, and let f be an object.

Then f : X 99K Y means: pf is a functionq& pDf Ď Xq& pIf Ď Y q.

Also, f : X Ñ Y means: pf is a functionq& pDf “ Xq& pIf Ď Y q.

Also, f : X Ñą Y means: pf is a functionq& pDf “ Xq& pIf “ Y q.

DEFINITION 1.7.14. Let a, b P R˚.
Then ra; bs :“ t x P R˚ | a ď x ď b u

and ra; bq :“ t x P R˚ | a ď x ă b u

and pa; bs :“ t x P R˚ | a ă x ď b u

and pa; bq :“ t x P R˚ | a ă x ă b u

and ra..bs :“ t x P Z˚ | a ď x ď b u

and ra..bq :“ t x P Z˚ | a ď x ă b u

and pa..bs :“ t x P Z˚ | a ă x ď b u

and pa..bq :“ t x P Z˚ | a ă x ă b u.
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THEOREM 1.7.15. Let f :“ t xxx, yyy | p x, y P R q& p y “ x2 q u.

Then: f is a function and f2 “ 4 and f´2 “ 4

and Df “ R and If “ r0;8q

and f : RÑ R and f : RÑą r0;8q.

From this point forward, instead of writing

“Let f :“ t xxx, yyy | p x, y P R q& p y “ x2 q u”,

we strongly prefer

“Define f : RÑ R by: @x P R, fx “ x2”.

We graphed this function f ; the graph is a parabola.

Define g : R 99K R by: @x P R, gx “ p1{xq ` 5.

We graphed g; the graph is a hyperbola.

DEFINITION 1.7.16. Let S be a set and q and object.

Then S`q :“ S
Ť

tqu and Sˆq :“ Sztqu.

THEOREM 1.7.17. Let S :“ t1, 2, 3u, y :“ 3, z :“ 4.

Then S`y “ t1, 2, 3u and S`z “ t1, 2, 3, 4u

and Sˆy “ t1, 2u and Sˆz “ t1, 2, 3u.

THEOREM 1.7.18. Define g : R 99K R by: @x P R, gx “ p1{xq ` 5.

Then Dg “ Rˆ0 and Ig “ Rˆ5
and g : Rˆ0 Ñ R and g : Rˆ0 Ñą Rˆ5 .

THEOREM 1.7.19. Let f and g be functions.

Then: p f “ g q ô p @x fx “ gx q.

THEOREM 1.7.20. Let f and g be functions and let S be a set.

Assume Df Ď S and Dg Ď S. Then: p f “ g q ô p @x P S fx “ gx q.

DEFINITION 1.7.21. Let f and g be functions.

Then g ˝ f is the function defined by: @x, pg ˝ fqx “ gfx.

Frownie is infective:

DEFINITION 1.7.22. @f , p/ ˝ f “ / q& pf ˝/ “ / q.

THEOREM 1.7.23. Define f, g : RÑ R by:

@x P R, fx “ x` 1 and gx “ x2.

Then: @x P R, pg ˝ fqx “ px` 1q2 “ x2 ` 2x` 1 and pf ˝ gqx “ x2 ` 1.

Also, we have: pg ˝ fq1 “ 4 ‰ 2 “ pf ˝ gq1.

Also, we have: g ˝ f ‰ f ˝ g.

THEOREM 1.7.24. Let f , g and h be functions.

Then ph ˝ gq ˝ f “ h ˝ pg ˝ fq.
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Proof. Want: @w, pph ˝ gq ˝ fqw “ ph ˝ pg ˝ fqqw.

Given w. Want: pph ˝ gq ˝ fqw “ ph ˝ pg ˝ fqqw.

Let x :“ fw. Let y :“ gx. Let z :“ hy.

Then pph ˝ gq ˝ fqw “ ph ˝ gqfw “ ph ˝ gqx “ hgx “ hy “ z.

Want: ph ˝ pg ˝ fqqw “ z. We have pg ˝ fqw “ gfw “ gx “ y.

Then ph ˝ pg ˝ fqqw “ hpg˝fqw “ hy “ z, as desired. �

1.8. Injective functions and inverse functions.

DEFINITION 1.8.1. Let f be a function.

By f is one-to-one, we mean:

@a, b P Df , p fa “ fb q ñ p a “ b q.

Also, by f is injective, we mean: f is one-to-one.

DEFINITION 1.8.2. Let X and Y be sets, and let f be an object.

Then f : X ãÑ Y means: p f : X Ñ Y q & p f is one-to-one q.

Also, f : X ãÑą Y means: p f : X Ñą Y q& p f is one-to-one q.

THEOREM 1.8.3. Let f :“

¨

˝

1 ÞÑ 4

2 ÞÑ 5

3 ÞÑ 6

˛

‚.

Then: f : t1, 2, 3u ãÑą t4, 5, 6u and f : t1, 2, 3u ãÑ t3, 4, 5, 6, 7u.

THEOREM 1.8.4. H : H ãÑą H and H : H ãÑ t7, 8u.

DEFINITION 1.8.5. Let R be a relation.

Then: R^ :“ t xxy, xyy | xxx, yyy P R u.

THEOREM 1.8.6. Let R :“ t xx1, 2yy, xx2, 2yy, xx2, 4yy u.

Then R^ “ t xx2, 1yy, xx2, 2yy, xx4, 2yy u.

Let R :“ t xx1, 2yy, xx2, 2yy, xx2, 4yy u.

We graphed R and R^ and observed:

R^ is obtained from R by reflection through the 45-degree line.

Frownie is infective:

DEFINITION 1.8.7. @x, /x :“ /. Also, @x, /pxq “ /.

DEFINITION 1.8.8. Let f be a function.

Then f´1 :“

#

f^, if f is one-to-one

/, if f is not one-to-one.
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THEOREM 1.8.9. Let f :“

¨

˝

1 ÞÑ 5

2 ÞÑ 7

3 ÞÑ 4

˛

‚, g :“

¨

˝

7 ÞÑ 1

8 ÞÑ 2

9 ÞÑ 1

˛

‚.

Then f´1 “

¨

˝

5 ÞÑ 1

7 ÞÑ 2

4 ÞÑ 3

˛

‚ and g´1 “ /

and f´1 is a function and g´1 is not a function

and f´1
7 “ 2 and f´1

1 “ / and g´1
2 “ /

and @x, g´1
x “ / and @x, pg´1 ˝ gqx “ / “ pg ˝ g´1qx

and pf´1 ˝ fq3 “ 3 and pf´1 ˝ fq4 “ /
and pf ˝ f´1q3 “ / and pf ˝ f´1q4 “ 4.

DEFINITION 1.8.10. Let S be a set.

Then idS : S Ñ S is defined by: @x P S, idSx “ x.

THEOREM 1.8.11. Let f :“

¨

˝

1 ÞÑ 5

2 ÞÑ 7

3 ÞÑ 4

˛

‚.

Then: f´1 ˝ f “ idDf and f ˝ f´1 “ idIf .

THEOREM 1.8.12. Let f be a one-to-one function.

Then: f´1 is a function and Df´1 “ If and If´1 “ Df

and f´1 ˝ f “ idDf and f ˝ f´1 “ idIf .

THEOREM 1.8.13. Let g :“

¨

˝

7 ÞÑ 1

8 ÞÑ 2

9 ÞÑ 1

˛

‚.

Then: g´1 “ / and g ˝ g´1 “ / and g´1 ˝ g “ /.

THEOREM 1.8.14. Let g be a function.

Assume g is not one-to-one.

Then: g´1 “ / and g ˝ g´1 “ / and g´1 ˝ g “ /.

DEFINITION 1.8.15. Let f be a function and S a set.

Then f˚pSq :“ tfx |x P S X Dfu

and f˚pSq :“ tx P Df | fx P Su.

We drew a Venn diagram with a downward function to illustrate the

preceding definition.
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THEOREM 1.8.16. Let f :“

¨

˝

1 ÞÑ 7

2 ÞÑ 8

3 ÞÑ 9

˛

‚.

Then f˚t6, 7, 8u “ t1, 2u and f˚t2, 3, 4u “ t8, 9u.

DEFINITION 1.8.17. Let S be a set and let a be an object.

Then Ca
S : S Ñ tau is defined by: @x P S, Ca

Spxq “ a.

Let S be a set and let a be an object.

Then Ca
S is called the constant function on S with value a.

We graphed C2
p0;8q; it is a horizontal ray to the right out of the point

p0, 2q. It does not include the point p0, 2q.

DEFINITION 1.8.18. Let T be a set and let S Ď T .

Then χTS : T Ñ t0, 1u is defined by:

@q P T , χTS pqq “

#

1, if q P S

0, if q R S.

Let T be a set and let S Ď T .

Then χTS is called the characteristic function of S in T .

DEFINITION 1.8.19. Let f be a function, A Ď Df .

Then f |A is the function defined by:

@x, pf |Aqx “

#

fx, if x P A

/, if x R A.

In the preceding definition, f |A is called the restriction of f to A.

THEOREM 1.8.20. Let f :“

¨

˝

1 ÞÑ 2

3 ÞÑ 4

5 ÞÑ 6

˛

‚ and let A :“ t1, 5u.

Then f |A “

ˆ

1 ÞÑ 2

5 ÞÑ 6

˙

and f1 “ 2 and f3 “ 4 and f5 “ 6

and pf |Aq1 “ 2 and pf |Aq3 “ / and pf |Aq5 “ 6.

1.9. Max, min, inf and sup.

DEFINITION 1.9.1. Let a P R˚, S Ď R˚.
Then a ă S means: @x P S, a ă x.

Also, a ď S means: @x P S, a ď x.

Also, a ą S means: @x P S, a ą x.

Also, a ě S means: @x P S, a ě x.
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Also, S ą a means: a ă S.

Also, S ě a means: a ď S.

Also, S ă a means: a ą S.

Also, S ď a means: a ě S.

DEFINITION 1.9.2. Let S Ď R˚.
Then UBS :“ ta P R˚ |S ď au.

Also, LBS :“ ta P R˚ | a ď Su.

Also, UBpSq :“ UBS.

Also, LBpSq :“ LBS.

The set LBS is the set of lower bounds of S.

The set UBS is the set of upper bounds of S.

We are sometimes sloppy and omit pq in UBpSq and LBpSq.

So, for example, UBt1, 3u means UBpt1, 3uq.

THEOREM 1.9.3. UBt1, 3u “ r3;8s and LBt1, 3u “ r´8; 1s.

DEFINITION 1.9.4. Let S Ď R˚.
Then maxS :“ UEpS X UBSq.

Also, minS :“ UEpS X LBSq.

Also, maxpSq :“ maxS.

Also, minpSq :“ minS.

The object minS is minimum of S.

The object maxS is the set of maximum of S.

We are sometimes sloppy and omit pq in maxpSq and minpSq.

So, for example, minp1; 3s means minp p1; 3s q.

THEOREM 1.9.5. We have:

pmaxt1, 2u“2q& pmint1, 2u“1q& pmaxp1; 2s“2q& pminp1; 2s“/q.

The following two theorems will be used repeatedly without com-

ment:

THEOREM 1.9.6. Let A Ď R˚, x :“ minA.

Assume x ‰ /. Then: px P A q& px ď A q.

THEOREM 1.9.7. Let A Ď R˚, x :“ maxA.

Assume x ‰ /. Then: px P A q& pA ď x q.
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DEFINITION 1.9.8. Let S Ď R˚.
Then supS :“ minpUBSq.

Also, infS :“ maxpLBSq.

Also, suppSq :“ supS.

Also, infpSq :“ infS.

The object infS is infimum of S.

The object supS is the set of supremum of S.

We are sometimes sloppy and omit pq in infpSq and suppSq.

So, for example, infp1; 3s means infp p1; 3s q.

THEOREM 1.9.9.

We have: p UBp1; 2s “ r2;8s q & p supp1; 2s “ 2 q.

Also: p LBp1; 2s “ r´8; 1s q & p infp1; 2s “ 1 q.

Some examples:

S LB UB min max inf sup

t5u r´8; 5s r5;8s 5 5 5 5

r0; 1s r8; 0s r1;8s 0 1 0 1

p0; 1q r8; 0s r1;8s / / 0 1

r0; 1q r8; 0s r1;8s 0 / 0 1

p0; 1s r8; 0s r1;8s / 1 0 1

t0, 1u r8; 0s r1;8s 0 1 0 1

R˚ t´8u t8u ´8 8 ´8 8

R t´8u t8u / / ´8 8

H R˚ R˚ / / 8 ´8

The next result is called the Completeness Axiom:

AXIOM 1.9.10. Let S Ď R˚. Then supS ‰ / ‰ infS.

The following theorem will be used repeatedly without comment:

THEOREM 1.9.11. All of the following are true:

(1) @S Ď R˚, inf S ď S ď supS.

(2) @S Ď R˚, @x P R, pS ď x q ñ p supS ď x q.

(3) @S Ď R˚, @x P R, px ď S q ñ px ď inf S q.

Later, we will need:
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THEOREM 1.9.12. Let A Ď R and let x :“ minA.

Assume x ‰ /. Then: px P A q& px´ 1 R A q.

Idea of proof: From the definition of min, we see that the minimum

of any set is either frownie or is an element both of the set and of its

set of lower bounds. In particular, it is an element of the set, and so

we see that x P A. To show x ´ 1 R A, note that, were x ´ 1 to be

an element of A, then we’d have minA ď x ´ 1, which would yield

x ď x´ 1, which would yield 0 ď ´1, which is not true. QED

1.10. The Archimedean Principle.

We have many unstated axioms describing the real numbers. We

also have many theorems about the real numbers that will be assumed

without proof, and used repeatedly without comment. For example:

THEOREM 1.10.1. @a, b, c P R, pa ă b ă cq ñ pa ă cq.

Note: The compound inequality a ă b ă c means: pa ă bq&pb ă cq.

We will often use these kinds of compounds without comment.

Another basic fact about R that is used repeately without comment

is the statement: ´8 ă R ă 8.

In other words: @x P R, ´8 ă x ă 8.

In other words: @x P R, p´8 ă xq&px ă 8q.

The following axiom is also basic:

AXIOM 1.10.2. supN “ 8.

From the preceding axiom, we get the Archimedean Principle:

THEOREM 1.10.3. @x P R, Dk P N s.t. k ą x.

Proof. Given x P R. Want: Dk P N s.t. k ą x.

Assume:  p Dk P N s.t. k ą x q. Want: Contradiction.

We have: @k P N, k ď x. Then N ď x. Then supN ď x.

Since supN ď x P R ă 8, we get supN ă 8.

Then supN ‰ 8. By Axiom 1.10.2, supN “ 8. Contradiction. �

Theorem 1.10.3 asserts:

any real number admits a positive integer that is greater.

This may seem obvious; for us, this assertion is important enough that

it is named; it is called the Archimedean Principle.
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1.11. The Principle of Mathematical Induction.

The next axiom is called the Well-ordering axiom:

AXIOM 1.11.1. @nonempty T Ď N, minT ‰ /.

From this we prove the Principle of Mathematical Induction:

THEOREM 1.11.2. Let S Ď N.

Assume: p 1 P S q & p @j P S, j ` 1 P S q.

Then: S “ N.

Proof. Assume S ‰ N. Want: Contradiction.

Since S Ď N and S ‰ N, we have NzS ‰ H.

Let i :“ minpNzSq. Since NzS ‰ H, by Axiom 1.11.1, i ‰ /.

Then, by Theorem 1.9.12, we get: p i P NzS q& p i´ 1 R NzS q.
By hypothesis, 1 P S. Since i P NzS, we get: i R S.

Since 1 P S and i R S, we see that i ‰ 1.

We have i P NzS Ď N, so i P N.

Since i P N and i ‰ 1, we conclude that i´ 1 P N.

Since i´ 1 R NzS and i´ 1 P N, it follows that i´ 1 P S.

By assumption @j P S, j ` 1 P S.

So, since i´ 1 P S, we see that pi´ 1q ` 1 P S.

Then i P S. Recall: i R S. Contradiction. �

THEOREM 1.11.3. @j P N, 1` ¨ ¨ ¨ ` j “ jpj ` 1q{2.

Proof. Let S :“ tj P N | 1` ¨ ¨ ¨ ` j “ jpj ` 1q{2u.

Want: S “ N.

Since 1 “ 1 ¨ p1` 1q{2, it follows that 1 P S.

So, by the PMI, it suffices to show: @j P S, j ` 1 P S.

Given j P S. Want: j ` 1 P S.

Know: 1` ¨ ¨ ¨ ` j “ jpj ` 1q{2.

Want: 1` ¨ ¨ ¨ ` j ` pj ` 1q “ pj ` 1qppj ` 1q ` 1q{2.

We have:

1` ¨ ¨ ¨ ` j ` pj ` 1q “ pjpj ` 1q{2q ` pj ` 1q

“ ppj2
` jq{2q ` pp2j ` 2q{2q

“ pj2
` 3j ` 2q{2 “ pj ` 1qpj ` 2q{2

“ pj ` 1qppj ` 1q ` 1q{2,

as desired. �
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THEOREM 1.11.4. @j P N, 12 ` ¨ ¨ ¨ ` j2 “ jpj ` 1qp2j ` 1q{6.

Proof. Let S :“ tj P N | 12 ` ¨ ¨ ¨ ` j2 “ jpj ` 1qp2j ` 1q{6u.

Want: S “ N. 12 “ 1 ¨ 2 ¨ 3{6 “ 1 ¨ p1` 1q ¨ p2 ¨ 1` 1q{6, so 1 P S.

By the PMI, Want: S is successor closed.

Want: @j P S, j ` 1 P S.

Given j P S. Want: j ` 1 P S.

Since j P S, we know 12 ` ¨ ¨ ¨ ` j2 “ jpj ` 1qp2j ` 1q{6.

Want: 12 ` ¨ ¨ ¨ ` j2 ` pj ` 1q2 “ pj ` 1qppj ` 1q ` 1qp2 ¨ pj ` 1q ` 1q{6.

We have

12
` ¨ ¨ ¨ ` j2

` pj ` 1q2 “ r12
` ¨ ¨ ¨ ` j2

s ` rpj ` 1q2s

“

„

jpj ` 1qp2j ` 1q

6



`

„

6pj ` 1q2

6



“ rj ` 1s

„

rjp2j ` 1qs ` r6pj ` 1qs

6



“ rj ` 1s

„

r2j2 ` js ` r6j ` 6s

6



“ rj ` 1s

„

2j2 ` 7j ` 6

6



“ rj ` 1s

„

pj ` 2qp2j ` 3q

6



“ pj ` 1qppj ` 1q ` 1qp2 ¨ pj ` 1q ` 1q{6,

as desired. �

1.12. Comparing sets by injections and surjections.

DEFINITION 1.12.1. Let X and Y be sets.

Then DX ãÑ Y means: Df s.t. f : X ãÑ Y .

Also, DX Ñą Y means: Df s.t. f : X Ñą Y .

Also, DX ãÑą Y means: Df s.t. f : X ãÑą Y .

THEOREM 1.12.2. Dt1, 2, 3u ãÑą t4, 5, 6u

and Dt1, 2, 3u ãÑ t3, 4, 5, 6, 7u

and Et3, 4, 5, 6, 7u ãÑ t1, 2, 3u

and Dt3, 4, 5, 6, 7u Ñą t1, 2, 3u

and Et1, 2, 3u Ñą t3, 4, 5, 6, 7u

and DH Ñą t7, 8u

and Et7, 8u Ñą H.
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Let A and B be sets.

Then DA ãÑ B indicates that A is “smaller” than B.

Also, DB Ñą A indicates that B is “larger” than A,

EXCEPT when A “ H.

So, ãÑ works slightly better than Ñą for comparing sets.

The next four theorems will be used, without comment in the proof

of Theorem 1.12.7, as well as in future proofs. The proofs of these four

theorems are left as unassigned HW.

THEOREM 1.12.3. Let X, Y be sets, f : X Ñ Y . Let A be a set.

Then: px P f˚pAqq ô pfpxq P Aq.

THEOREM 1.12.4. Let a, b be objects. Then: pa P tbuq ô pa “ bq.

THEOREM 1.12.5. Let X, Y be sets, let f : X Ñ Y and let w P If .

Then: f˚ptwuq ‰ H.

THEOREM 1.12.6. Let X, Y be sets, f : X Ñ Y . Let p, q be objects.

Assume: p P f˚ptquq. Then: fppq “ q.

THEOREM 1.12.7. Let S and T be sets.

Assume: DT Ñą S.

Then: DS ãÑ T .

Proof. We know: Df s.t. f : T Ñą S. We want: Dg s.t. g : S ãÑ T .

Choose f s.t. f : T Ñą S.

Define g : S Ñ T by: @x P S, gx “ CHpf˚ptxuqq. Want: g : S ãÑ T .

Since g : S Ñ T , we need only show: g is one-to-one.

Want: @w, x P S, pgw “ gxq ñ pw “ xq.

Given w, x P S. Want: pgw “ gxq ñ pw “ xq.

Assume gw “ gx. Want w “ x.

Since f : T Ñą S, we have If “ S.

Then w, x P S “ If , so f˚ptwuq ‰ H ‰ f˚ptxuq.

Then CHpf˚ptwuqq P f˚ptwuq and CHpf˚ptxuqq P f˚ptxuq.

So, since gw “ CHpf˚ptwuqq and gx “ CHpf˚ptxuqq,

we get: gw P f
˚ptwuq and gx P f

˚ptxuq.

It follows that: fpgwq “ w and fpgxq “ x.

By assumption, gw “ gx. Then fpgwq “ fpgxq.

Then w “ fpgwq “ fpgxq “ x, as desired. �

For nonempty sets, Ñą gives the same comparison as ãÑ:
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THEOREM 1.12.8. Let S and T be nonemptysets.

Then: p DS ãÑ T q ô p DT Ñą S q.

Proof. Omitted. �

D ãÑą is reflexive:

THEOREM 1.12.9. Let S be a set. Then DS ãÑą S.

Idea of proof: Show that idS : S ãÑą S. QED

The preding theorem is also true for D ãÑ and for D Ñą. That is:

THEOREM 1.12.10. Let S be a set. Then DS ãÑ S and DS Ñą S.

D ãÑą is symmetric:

THEOREM 1.12.11. Let S and T be sets.

Then: p DS ãÑą T q ô p DT ãÑą S q.

Idea of proof: Show @f : S ãÑą T , f´1 : T ãÑą S. QED

The preceeding theorem is untrue for D ãÑ, and is also untrue for

D Ñą. It only works for D ãÑą.

D ãÑą is transitive:

THEOREM 1.12.12. Let S, T and U be sets.

Then: r p DS ãÑą T q& p DT ãÑą U q s ñ r DS ãÑą U s.

Idea of proof: Show @f : S ãÑą T , @g : T ãÑą U , g ˝ f : S ãÑą U .

QED

The preceeding theorem is true for D ãÑ, and is also true for D Ñą.

That is, the following two theorems are both true:

THEOREM 1.12.13. Let S, T and U be sets.

Then: r p DS ãÑ T q& p DT ãÑ U q s ñ r DS ãÑ U s.

THEOREM 1.12.14. Let S, T and U be sets.

Then: r p DS Ñą T q& p DT Ñą U q s ñ r DS Ñą U s.

DEFINITION 1.12.15. Let S be a set. Then:

#S :“ sup t k P N0 | Dr1..ks ãÑ S u.

We have r1..0s “ H, and so: @ set S, Dr1..0s ãÑ S.

Thus we have: @set S, 0 P t k P N0 | Dr1..ks ãÑ S u,

and so: @set S, H ‰ t k P N0 | Dr1..ks ãÑ S u.
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THEOREM 1.12.16. We have:

p#t5, 6, 9u “ 3 q& p#H “ 0 q& p#N “ 8q& p#R “ 8q
& p#t t1, 2u , 3u “ 2 q& p#t t1, 2u u “ 1 q& p#t1, 2u “ 2 q.

DEFINITION 1.12.17. Let S be a set.

By S is finite, we mean #S ă 8.

By S is infinite, we mean #S “ 8.

The next three theorems are important, because they clarify the

sense in which D ãÑ and D Ñą compare sets for size. The proofs are,

unforunately, omitted, for lack of time. In a course on set theory, we

would give proofs of all three, but this is a course in real analysis.

THEOREM 1.12.18. Let S and T be finite sets.

Then: p DS ãÑ T q ô p #S ď #T q.

THEOREM 1.12.19. Let S and T be finite sets. Assume S ‰ H.

Then: p DT Ñą S q ô p #T ě #S q.

Note that, if T “ t3, 4, 5u and S “ H, then ET Ñą S. So, in the

preceding theorem, the assumption that S is nonempty is necessary.

As we remarked earlier, D Ñą is a flawed way to compare sets, and we

prefer to work with D ãÑ.

1.13. The World of Sets.

THEOREM 1.13.1. Let S and T be sets.

Then both of the following are true:

(A) p DS ãÑ T q _ p DT ãÑ S q.

(B) r p DS ãÑ T q & p DT ãÑ S q s ô r DS ãÑą T s.

In the preceding, (B) is called the Schroeder-Bernstein Theorem.

We drew a picture of the World of Sets, in which

two sets are S and T are on the same level iff DS ãÑą T and

a set S is below a set T if DS ãÑ T and ET ãÑ S.

We find showed the first few levels of finite sets, where

H is the only set at the bottom level (called the 0th level),

the first level consists of sets S for which #S “ 1,

the second level consists of sets S for which #S “ 2,

the third level consists of sets S for which #S “ 3,

etc.
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There’s a line with the finite sets below it, and the infinite sets above it.

The next theorem asserts that the level containing N is at the bottom

of the infinite sets.

THEOREM 1.13.2. Let S be an infinite set.

Then DN ãÑ S.

Proof. Omitted. �

DEFINITION 1.13.3. Let S be a set.

By S is countable, we mean: DS ãÑ N.

By S is uncountable, we mean: ES ãÑ N.

By S is countably infinite, we mean: DS ãÑą N.

The countably infinite sets therefore form the level with N, which is

located at the bottom of the infinite sets. The countable sets are all

the sets at or below that level. The uncountable sets are all above it.

The next two theorems tell us that N0 and Z are all countably infi-

nite. That is, they are both at that level that contains N.

THEOREM 1.13.4. DN ãÑą N0.

Idea of proof:

¨

˚

˚

˚

˝

1 ÞÑ 0

2 ÞÑ 1

3 ÞÑ 2
...

˛

‹

‹

‹

‚

. QED

THEOREM 1.13.5. DN ãÑą Z.

Idea of proof:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ÞÑ 0

2 ÞÑ 1

3 ÞÑ ´1

4 ÞÑ 2

5 ÞÑ ´2

6 ÞÑ 3

7 ÞÑ ´3
...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. QED

The following table lists each integer in the first column and each

positive integer in the first row. Each entry on the inside of the table

is obtained by dividing

the integer to the left of it by the positive integer above it.
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Every rational number appears in the inside of the table (infinitely

many times).

Divide 1 2 3 4 5 6 7 ¨ ¨ ¨

0 0 0 0 0 0 0 0 ¨ ¨ ¨

1 1 1{2 1{3 1{4 1{5 1{6 1{7 ¨ ¨ ¨

´1 ´1 ´1{2 ´1{3 ´1{4 ´1{5 ´1{6 ´1{7 ¨ ¨ ¨

2 2{1 2{2 2{3 2{4 2{5 2{6 2{7 ¨ ¨ ¨

´2 ´2{1 ´2{2 ´2{3 ´2{4 ´2{5 ´2{6 ´2{7 ¨ ¨ ¨

3 3{1 3{2 3{3 3{4 3{5 3{6 3{7 ¨ ¨ ¨

´3 ´3{1 ´3{2 ´3{3 ´3{4 ´3{5 ´3{6 ´3{7 ¨ ¨ ¨
...

...
...

...
...

...
...

...
. . .

We can list every rational number (infinitely many times) as follows:

start at the upper left 0 (on the zeroth diagonal)

move NE along the first diagonal 1, 0

move NE along the second diagonal ´1, 1{2, 0

move NE along the third diagonal 2{1,´1{2, 1{3, 0

move NE along the fourth diagonal ´2{1, 2{2,´1{3, 1{4, 0

move NE along the fifth diagonal 3{1,´2{2, 2{3,´1{4, 1{5, 0

move NE along the sixth diagonal ´3{1, 3{2,´2{3, 2{4,´1{5, 1{6, 0

etc.

Concatenating these lists of diagonals, we get a list:

0 , 1, 0 , ´1, 1{2, 0 , 2{1,´1{2, 1{3, 0 , . . .

Every rational number appears (infinitely many times) in this list.

THEOREM 1.13.6. DNÑą Q.

Idea of proof:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ÞÑ 0

2 ÞÑ 1

3 ÞÑ 0

4 ÞÑ ´1

5 ÞÑ 1{2

6 ÞÑ 0

7 ÞÑ 2{1

8 ÞÑ ´1{2

9 ÞÑ 1{3

10 ÞÑ 0
...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. QED



CLASS NOTES 27

We can now prove that Q is countably infinite,

i.e., that Q is at the same level as N and N0 and Z.

THEOREM 1.13.7. DN ãÑ Q.

Proof. By Theorem 1.13.6, DNÑą Q.

So, by Theorem 1.12.7, DQ ãÑ N.

Since idN : N ãÑ Q, we see that DN ãÑ Q.

Since both DQ ãÑ N and DN ãÑ Q,

by the Schoeder-Bernstein Theorem,

we get DN ãÑą Q, as desired. �

1.14. Power sets.

DEFINITION 1.14.1. Let S be a set.

Then 2S :“ t subsets of S u.

Let S be a set. Then the set 2S is the set of all subsets of S; it is

therefore a set of sets. It is called the Power set of S.

To list all the subsets of t7, 8, 9u, build a table of YESs and NOs:

7 NO NO NO NO YES YES YES YES

8 NO NO YES YES NO NO YES YES

9 NO YES NO YES NO YES NO YES

Each column gives us a particular subset, by telling us whehter or not

a given element of t7, 8, 9u should be in the subset or not.

We therefore arrive at eight subsets:

THEOREM 1.14.2. 2t7,8,9u “ t H , t9u ,

t8u , t8, 9u , t7u

t7, 9u , t7, 8u , t7, 8, 9u u.

Note that #p2t7,8,9uq “ 8 “ 23 “ 2#t7,8,9u. This is not a coincidence:

THEOREM 1.14.3. Let S be a finite set. Then #p2Sq “ 2#S.

1.15. Sets of functions.

DEFINITION 1.15.1. Let S and T be sets.

Then T S :“ t functions S Ñ T u.

To list all the functions t7, 8, 9u Ñ t0, 1u, build a table of 1s and 0s:
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7 0 0 0 0 1 1 1 1

8 0 0 1 1 0 0 1 1

9 0 1 0 1 0 1 0 1

Each column gives us a particular function, by telling us whehter or

not a given element of t7, 8, 9u should map to 1 or 0.

We therefore arrive at eight functions:

THEOREM 1.15.2. We have:

t0, 1ut7,8,9u “

"

¨

˝

7 ÞÑ 0

8 ÞÑ 0

9 ÞÑ 0

˛

‚,

¨

˝

7 ÞÑ 0

8 ÞÑ 0

9 ÞÑ 1

˛

‚,

¨

˝

7 ÞÑ 0

8 ÞÑ 1

9 ÞÑ 0

˛

‚,

¨

˝

7 ÞÑ 0

8 ÞÑ 1

9 ÞÑ 1

˛

‚,

¨

˝

7 ÞÑ 1

8 ÞÑ 0

9 ÞÑ 0

˛

‚

¨

˝

7 ÞÑ 1

8 ÞÑ 0

9 ÞÑ 1

˛

‚,

¨

˝

7 ÞÑ 1

8 ÞÑ 1

9 ÞÑ 0

˛

‚,

¨

˝

7 ÞÑ 1

8 ÞÑ 1

9 ÞÑ 1

˛

‚

*

.

Note that #pt0, 1ut7,8,9uq “ 8 “ 23 “ p#t0, 1uq#t7,8,9u. This is not a

coincidence:

THEOREM 1.15.3. Let S and T be finite sets.

Then #pT Sq “ p#T q#S.

I asked one of you to pick an element of t0, 1ut7,8,9u and you picked

the fifth element in the list above. That is, you picked

¨

˝

7 ÞÑ 1

8 ÞÑ 0

9 ÞÑ 0

˛

‚.

We then calculated f˚pt1uq and obtained t7u. The fifth element of

the list in Theorem 1.14.2 is t7u. Thus we can build a bijection

t0, 1ut7,8,9u ãÑą 2t7,8,9u

by mapping a function f P t0, 1ut7,8,9u to f˚pt1uq P 2t7,8,9u.

This works for any set S, even infinite sets:

THEOREM 1.15.4. Let S be a set.

Then Dt0, 1uS ãÑ 2S.

Idea of proof: Define Φ : t0, 1uS Ñ 2S by:

@f P t0, 1uS, Φf “ f˚pt1uq.

Show that: Φ : t0, 1uS ãÑą 2S.

That is, show that Φ is one-to-one, and that IΦ “ 2S. QED
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1.16. The World of Sets has no top.

The next result shows that N is not at the top of the World of Sets,

because t0, 1uN is higher:

THEOREM 1.16.1. E2N ãÑ N.

Proof. Assume D2N ãÑ N. Want: Contradiction.

By Theorem 1.15.4, Dt0, 1uN ãÑą 2N, so Dt0, 1uN ãÑ 2N.

Since Dt0, 1uN ãÑ 2N and D2N ãÑ N,

we see that: Dt0, 1uN ãÑ N.

Then, by Theorem 1.12.8, DNÑą t0, 1uN.

Choose Φ s.t. Φ : NÑą t0, 1uN.

Define f : NÑ t0, 1u by: @j P N, fpjq “ 1´ rΦjpjqs.

Since Φ : NÑą t0, 1uN, we get: DΦ “ N and IΦ “ t0, 1u
N.

Since f P t0, 1uN “ IΦ, choose j P DΦ s.t. f “ Φj.

Then fpjq “ Φjpjq. Also, j P DΦ “ N.

By definition of f , we have: fpjq “ 1´ rΦjpjqs.

Let x “ Φjpjq. Then x “ Φjpjq “ fpjq “ 1´ rΦjpjqs “ 1´ x.

Then x “ 1´ x, so 2x “ 1, so x “ 1{2.

Since j P N and f : NÑ t0, 1u, it follows that fpjq P t0, 1u.

Then 1{2 “ x “ Φjpjq “ fpjq P t0, 1u. Then 1{2 P t0, 1u.

Since 1{2 ‰ 0 and 1{2 ‰ 1, we get 1{2 R t0, 1u. Contradiction. �

Idea of the preceding proof:

Each element of t0, 1uN is a sequence of bits.

In the proof of Theorem 1.16.1, the function Φ gives rise to an infinite

matrix M of bits, by the rule:

@j, k P N, the pj, kq-entry of M is Φjpkq.

In order to get IΦ “ t0, 1u
N,

we’d need that every element of t0, 1uN is a row of M .

However, we can make an element f P t0, 1uN by the rule:

@j P N, the j-entry of f is 1´ rΦjpjqs.

Then f cannot be the first row of M because

the first entry of f is not equal to

the first entry of the first row of M .

Also, f cannot be the second row of M because

the second entry of f is not equal to

the second entry of the second row of M .

Also, f cannot be the third row of M because



30 SCOT ADAMS

the third entry of f is not equal to

the third entry of the second row of M .

Continuing, we see that, in fact f cannot be any row of M . QED

In the preceding argument, great focus is paid to

Φ1p1q and Φ2p2q and Φ3p3q and ¨ ¨ ¨ .

These are the entries along the diagonal of M . Moreover, the argument

in the proof of Theorem 1.16.1 was evidently discovered by G. Cantor.

For this reason that argument in the proof of Theorem 1.16.1 is some-

times called a Cantor diagonalization argument.

The World of Sets has an element at the bottom, namely H.

The next result says that there is no set S that is at the top:

THEOREM 1.16.2. @set S, E2S ãÑ S.

Idea of proof: If S “ H, then #2S “ #tHu “ 1 and #S “ #H “ 0,

so E2S ãÑ S. We therefore only need consider the case where S ‰ H. In

that case, since S ‰ H ‰ 2S, we can simply change N to S throughout

the proof of Theorem 1.16.1, and prove E2S ãÑ S, as desired. QED

1.17. Placement of R in the World of Sets.

THEOREM 1.17.1. Dt0, 1uN Ñą r0; 1s.

Idea of proof: Define F : t0, 1uN Ñ r0; 1s by:

@a P t0, 1uN, F paq “ 0.a1a2a3 ¨ ¨ ¨ (base two).

Now, 0.0111111 . . . “ 0.1000000 . . . (base two),

so this function F is not one-to-one.

However, F can be shown to be surjective onto r0; 1s.

Note that: F p1, 1, 1, 1, 1, 1, . . .q “ 0.111111 . . . “ 1 (base two).

Then F : t0, 1uN Ñą r0; 1s. QED

THEOREM 1.17.2. Dt0, 1uN ãÑ R.

Idea of proof: Define G : t0, 1uN Ñ r0; 1s by:

@a P t0, 1uN, Gpaq “ 0.a1a2a3 ¨ ¨ ¨ (base ten).

Note that 0.0999999 . . . “ 0.1000000 . . . (base ten),

but we are not using the digit nine, only 0 and 1.

This map G can be shown to be injective.

Also, IG Ď r0; 1s Ď R. Then G : t0, 1uN ãÑ R. QED

THEOREM 1.17.3. DR ãÑą t0, 1uN.
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Proof. Define A : RÑ p´1; 1q by At “ t{
?
t2 ` 1.

Then A : R ãÑ p´1; 1q.

Define B : p´1; 1q Ñ r0; 1s by Bt “ pt` 1q{2.

Then B : p´1; 1q ãÑ r0; 1s.

By Theorem 1.17.1, Dt0, 1uN Ñą r0; 1s.

So, by Theorem 1.12.7, Dr0; 1s ãÑ t0, 1uN.

Choose C s.t. C : r0; 1s ãÑ t0, 1uN.

Then C ˝B ˝ A : R ãÑ t0, 1uN, so DR ãÑ t0, 1uN.

By Theorem 1.17.2, Dt0, 1uN ãÑ R.

Since both DR ãÑ t0, 1uN and Dt0, 1uN ãÑ R,

by the Schroeder-Bernstein Theorem,

we see that DR ãÑą t0, 1uN, as desired. �

This shows that R belongs on the same level as t0, 1uN. By Theo-

rem 1.15.4, this is the same level as 2N, and, by Theorem 1.16.1, this

is above N.

DEFINITION 1.17.4. Let S be a set.

By S has continuum cardinality, we mean DR ãÑą S.

We have now shown that the continuum cardinality level is above

the countably infinite level. This level contains R and t0, 1uN and 2N.

Using the tools we have been developing, it is not hard to prove:

For any a P R, for any b ą a,

the sets pa; bq, ra; bq, pa; bs and ra; bs

all have continuum cardinality.

An interesting question:

Are there any sets strictly between

the continuum cardinality level and

the countably infinite level?

The standard axioms of set theory, used by most mathematicians, are

together sometimes called “ZFC”, for Zermelo-Fraenkel with Choice.

The assertion that

there are NO sets strictly between

the continuum cardinality level and

the countably infinite level

is sometimes called “CH”, for the Continuum Hypothesis.

It turns out that there are models of ZFC for which CH is true, and

models of ZFC for which CH is false. One therefore has a choice:

You can work in ZFC+CH or ZFC+( CH) or plain old ZFC.
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In this class,

we choose to work in plain old ZFC,

and the Continuum Hypothesis will be treated as undecidable, and, to

us, uninteresting. It turns out that the basics of Real Analysis don’t

requre that we consider any sets that might be located strictly between

N and R in the World of Sets.

1.18. Scalars, vectors, matrices and tensors.

For all a, we define paq :“ p1 ÞÑ aq.

For all a, b, we define pa, bq :“

ˆ

1 ÞÑ a

2 ÞÑ b

˙

.

For all a, b, c, we define pa, b, cq :“

¨

˝

1 ÞÑ a

2 ÞÑ b

3 ÞÑ c

˛

‚.

For all a, b, c, d, we define pa, b, c, dq :“

¨

˚

˚

˝

1 ÞÑ a

2 ÞÑ b

3 ÞÑ c

4 ÞÑ d

˛

‹

‹

‚

.

...

For all a, . . . , z, we define pa, . . . , zq :“

¨

˚

˝

1 ÞÑ a
...

26 ÞÑ z

˛

‹

‚

.

For all sets A,B, we define

AˆB :“ tpa, bq | a P A, b P Bu.

For all sets A,B,C, we define

AˆB ˆ C :“ tpa, b, cq | a P A, b P B, c P Cu.

For all sets A,B,C,D, we define

AˆB ˆ C ˆD :“ tpa, b, c, dq | a P A, b P B, c P C, d P Du.
...

For all sets A, . . . , Z, we define

Aˆ ¨ ¨ ¨ ˆ Z :“ tpa, . . . , zq | a P A, . . . , z P Zu.

DEFINITION 1.18.1. @set S, @k P N, Sk :“ Sr1..ks.

Since r1..ks “ t1, . . . , ku,

the set Sk is the set of all functions t1, . . . , ku Ñ S.
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THEOREM 1.18.2. r1..4s “ t1, 2, 3, 4u and

R4 “ Rr1..4s “ tfunctions r1..4s Ñ Ru and

p8, 9, 6, 6q “

¨

˚

˚

˝

1 ÞÑ 8

2 ÞÑ 9

3 ÞÑ 6

4 ÞÑ 6

˛

‹

‹

‚

P Rr1..4s “ R4.

THEOREM 1.18.3. Let v :“ p8, 9, 6, 6q.

Then v P R4 and v1 “ 8 and v2 “ 9 and v3 “ 6 and v4 “ 6.

THEOREM 1.18.4. For any set S,

DS1 ãÑą S and

S2 “ S ˆ S and

S3 “ S ˆ S ˆ S and

S4 “ S ˆ S ˆ S ˆ S.

If you wish, you can continue the preceding theorem out to

S26 “ SˆSˆSˆSˆSˆSˆSˆSˆSˆSˆSˆSˆSˆSˆSˆSˆ

S ˆ S ˆ S ˆ S ˆ S ˆ S ˆ S ˆ S ˆ S ˆ S,

For all a, we define ras :“ pp1, 1q ÞÑ aq.

For all a, b, we define

„

a

b



:“

ˆ

p1, 1q ÞÑ a

p2, 1q ÞÑ b

˙

.

For all a, b, we define
“

a b
‰

:“

ˆ

p1, 1q ÞÑ a

p1, 2q ÞÑ b

˙

.

THEOREM 1.18.5. All of the following are true:

p5; 9q “ tx P R | 5 ă x ă 9u and

p5, 9q “

ˆ

1 ÞÑ a

2 ÞÑ b

˙

and

“

5 9
‰

“

ˆ

p1, 1q ÞÑ 5

p1, 2q ÞÑ 9

˙

and
„

5

9



“

ˆ

p1, 1q ÞÑ 5

p2, 1q ÞÑ 9

˙

.

For all a, b, c, d, we define

„

a b

c d



:“

¨

˚

˚

˝

p1, 1q ÞÑ a

p1, 2q ÞÑ b

p2, 1q ÞÑ c

p2, 2q ÞÑ d

˛

‹

‹

‚

.
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THEOREM 1.18.6. We have:

»

–

p5; 9q p5, 9q
“

5 9
‰

„

5

9



fi

fl “

¨

˚

˚

˚

˚

˚

˝

p1, 1q ÞÑ p5; 9q

p1, 2q ÞÑ p5, 9q

p2, 1q ÞÑ
“

5 9
‰

p2, 2q ÞÑ

„

5

9



˛

‹

‹

‹

‹

‹

‚

.

We can continue these definitions to 2ˆ 3 and 3ˆ 2 matrices:

For all a, b, c, d, e, f , we define:

„

a b c

d e f



:“

¨

˚

˚

˚

˚

˚

˚

˚

˝

p1, 1q ÞÑ a

p1, 2q ÞÑ b

p1, 3q ÞÑ c

p2, 1q ÞÑ d

p2, 2q ÞÑ e

p2, 3q ÞÑ f

˛

‹

‹

‹

‹

‹

‹

‹

‚

and

»

–

a d

b e

c f

fi

fl :“

¨

˚

˚

˚

˚

˚

˚

˚

˝

p1, 1q ÞÑ a

p2, 1q ÞÑ b

p3, 1q ÞÑ c

p1, 2q ÞÑ d

p2, 2q ÞÑ e

p3, 2q ÞÑ f

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

THEOREM 1.18.7. Both of the following are true:

„

4 5 6

9 8 7



:“

¨

˚

˚

˚

˚

˚

˚

˚

˝

p1, 1q ÞÑ 4

p1, 2q ÞÑ 5

p1, 3q ÞÑ 6

p2, 1q ÞÑ 9

p2, 2q ÞÑ 8

p2, 3q ÞÑ 7

˛

‹

‹

‹

‹

‹

‹

‹

‚

and

»

–

4 9

5 8

6 7

fi

fl :“

¨

˚

˚

˚

˚

˚

˚

˚

˝

p1, 1q ÞÑ 4

p2, 1q ÞÑ 5

p3, 1q ÞÑ 6

p1, 2q ÞÑ 9

p2, 2q ÞÑ 8

p3, 2q ÞÑ 7

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

We can continue these definitions to 2ˆ4, 4ˆ2, 3ˆ3 matrices, etc.,

but we leave it to the reader to do this work.

DEFINITION 1.18.8. @i, j P N, iˆ j :“ r1..is ˆ r1..js and

@i, j, k P N, iˆ j ˆ k :“ r1..is ˆ r1..js ˆ r1..ks
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The reader can continue these definitions to include

iˆ j ˆ k ˆ ` and iˆ j ˆ k ˆ `ˆm and so on.

THEOREM 1.18.9. 2ˆ 2 “ r1..2s ˆ r1..2s “ t1, 2u ˆ t1, 2u

“ tp1, 1q, p1, 2q, p2, 1q, p2, 2qu.

Also, R2ˆ2 “ t functions tp1, 1q, p1, 2q, p2, 1q, p2, 2qu Ñ R u.

Also,

„

6 7

8 9



“

¨

˚

˚

˝

p1, 1q ÞÑ 6

p1, 2q ÞÑ 7

p2, 1q ÞÑ 8

p2, 2q ÞÑ 9

˛

‹

‹

‚

P R2ˆ2.

THEOREM 1.18.10.

We have 2ˆ 2ˆ 2 “ r1..2s ˆ r1..2s ˆ r1..2s

“ t1, 2u ˆ t1, 2u ˆ t1, 2u

“ tp1, 1, 1q, p1, 1, 2q, p1, 2, 1q, p1, 2, 2q,

p2, 1, 1q, p2, 1, 2q, p2, 2, 1q, p2, 2, 2qu.

THEOREM 1.18.11. Let

T :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p1, 1, 1q ÞÑ 4

p1, 1, 2q ÞÑ 3

p1, 2, 1q ÞÑ 9

p1, 2, 2q ÞÑ ´6

p2, 1, 1q ÞÑ 6

p2, 1, 2q ÞÑ ´9

p2, 2, 1q ÞÑ 15

p2, 2, 2q ÞÑ 8

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Then T P R2ˆ2ˆ2.

A real number like
?

2 is sometimes called

a scalar or a 0-tensor.

A one-dimensional array like p1, 2, 3q is sometimes called

a vector or a 1-tensor.

A two-dimensional array like

„

4 5 6

9 8 7



is sometimes called

a matrix or a 2-tensor.

The object T from Theorem 1.18.11 is hard to visualize on a page, but

can be thought of as a three-dimesional array of real numbers (with

shape 2ˆ 2ˆ 2). This kind of object is sometimes called

a 3-tensor.

Even harder to visualize would be an element of, say R5ˆ7ˆ2ˆ3, which
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can be thought of as a four-dimensional array of real numbers (with

shape 5ˆ 7ˆ 2ˆ 3), and is sometimes called

a 4-tensor.

Continuing, we have 5-tensors and 6-tensors and so on.

1.19. Functionals.

Frownie is infective:

DEFINITION 1.19.1. @a, a`/ :“ / and /` a “ /
and a´/ “ / and /´ a “ /
and a ¨/ “ / and / ¨ a “ /
and a{/ “ / and /{a “ /.

Also,
?

/ :“ /.

Also, CH/ :“ / and CHp/q :“ /.

Also, UE/ :“ / and UEp/q :“ /.

DEFINITION 1.19.2. Let f be an object.

By f is a functional, we mean:

f is a function and If Ď R.

DEFINITION 1.19.3. Let f be a functional and let a P R.

Then af is the functional defined by:

@x, pafqx “ a ¨ fx.

DEFINITION 1.19.4. Let f and g be functionals.

Then f ` g is the functional defined by:

@x, pf ` gqx “ fx ` gx.

Also, f ´ g is the functional defined by:

@x, pf ´ gqx “ fx ´ gx.

Also, fg is the functional defined by:

@x, pfgqx “ fx ¨ gx.

Also, f{g is the functional defined by:

@x, pf{gqx “ fx{gx.

THEOREM 1.19.5. 6 ¨ p7, 8, 9q “ p42, 48, 54q.

Proof. We have:

6 ¨ p7, 8, 9q “

¨

˝

1 ÞÑ 7

2 ÞÑ 8

3 ÞÑ 9

˛

‚“

¨

˝

1 ÞÑ 42

2 ÞÑ 48

3 ÞÑ 54

˛

‚“ p42, 48, 54q. �
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THEOREM 1.19.6. 6 ¨

„

7 8 9

1 2 3



“

„

42 48 54

5 12 18



THEOREM 1.19.7. p3, 1q ` p5, 6q “ p8, 7q.

Proof. We have:

p3, 1q`p5, 6q “

ˆ

1 ÞÑ 3

2 ÞÑ 1

˙

`

ˆ

1 ÞÑ 5

2 ÞÑ 6

˙

“

ˆ

1 ÞÑ 8

2 ÞÑ 7

˙

“ p8, 7q. �

Proof. We have:

p3, 1q`p5, 6q “

ˆ

1 ÞÑ 3

2 ÞÑ 1

˙

`

ˆ

1 ÞÑ 5

2 ÞÑ 6

˙

“

ˆ

1 ÞÑ 8

2 ÞÑ 7

˙

“ p8, 7q. �

THEOREM 1.19.8.
„

3 2 1

5 ´1 7



`

„

8 ´1 4

9 16 2



“

„

11 1 3

14 15 9



.

DEFINITION 1.19.9. Let i P N, V :“ Ri. Then 0V :“ C0
r1..is.

THEOREM 1.19.10. Let V :“ R4.

Then 0V “ C0
r1..4s “ C0

t1,2,3,4u “

¨

˚

˚

˝

1 ÞÑ 0

2 ÞÑ 0

3 ÞÑ 0

4 ÞÑ 0

˛

‹

‹

‚

“ p0, 0, 0, 0q.

DEFINITION 1.19.11. Let i, j P N, V :“ Riˆj. Then 0V :“ C0
iˆj.

Recall: 2ˆ 3 “ r1..2s ˆ r1..3s “ t1, 2u ˆ t1, 2, 3u.

THEOREM 1.19.12. Let V :“ R2ˆ3.

Then 0V “ C0
2ˆ3 “ C0

t1,2uˆt1,2,3u “

¨

˚

˚

˚

˚

˚

˚

˚

˝

p1, 1q ÞÑ 0

p1, 2q ÞÑ 0

p1, 3q ÞÑ 0

p2, 1q ÞÑ 0

p2, 2q ÞÑ 0

p2, 3q ÞÑ 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

„

0 0 0

0 0 0



.

DEFINITION 1.19.13. Let i, j, k P N, V :“ Riˆjˆk.

Then 0V :“ C0
iˆjˆk.

The reader is invited to continue these definitions,

with iˆ j ˆ k ˆ ` and iˆ j ˆ k ˆ `ˆm and so on.
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1.20. Translating and dilating sets of reals.

DEFINITION 1.20.1. Let a P R, S Ď R.

Then a ¨ S :“ tax |x P Su.

Also, a` S :“ ta` x |x P Su.

Also, S ¨ a :“ txa |x P Su.

Also, S ` a :“ tx` a |x P Su.

THEOREM 1.20.2. p´4q¨r1; 2q “ p´8;´4s and 4`p2; 5s “ p6; 9s

and 3N0 ` 2 “ t2, 5, 8, 11, 14, 17, 20, . . .u.

DEFINITION 1.20.3. Let s be an object.

By s is a sequence, we mean:

s is a function and Ds “ N.

Let s1, s2, s3, . . . be objects. Then, by ps1, s2, s3, . . .q, we mean:

the sequence

¨

˚

˚

˚

˝

1 ÞÑ s1

2 ÞÑ s2

3 ÞÑ s3
...

˛

‹

‹

‹

‚

.

THEOREM 1.20.4. Let s :“ p5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, . . .q.

Then s is a sequence and s1000 “ 5.

A purist is uncomfortable with ellipses (¨ ¨ ¨ ), and would prefer that

we replace

Let s :“ p5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, . . .q

with

Let s : NÑ R be defined by: @j P N, sj “

$

’

’

&

’

’

%

5, if j P 3N0 ` 1

6, if j P 3N0 ` 2

7, if j P 3N0 ` 3.

1.21. Absolute value and norms.

DEFINITION 1.21.1. @x P R, |x| :“
?
x2.

In the preceding definition, the number |x| is called the absolute

value of x.

THEOREM 1.21.2. | ´ 7| “
a

p´7q2 “
?

49 “ 7.
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THEOREM 1.21.3. The following are all true:

(1) @x P R, p |x| “ 0 q ô p x “ 0 q and

(2) @a P R, @x P R, |ax| “ |a| ¨ |x| and

(3) @x, y P R, |x` y| ď |x| ` |y|.

In the preceding theorem, (1) says absolute value “separates 0” (from

other real numbers), while (2) says absolute value is “absolute homo-

geneous”, while (3) says absolute value is “subadditive”.

DEFINITION 1.21.4. Let i P N, V :“ Ri. Then:

@x P V , |x| :“

g

f

f

e

i
ÿ

s“1

x2
s

In the preceding definition, the number |x| is called the norm of x,

or the V -norm of x. It is sometimes written |x|V for clarity.

THEOREM 1.21.5. |p´4, 3q| “
a

p´4q2 ` 32 “
?

16` 9 “
?

25 “ 5.

THEOREM 1.21.6. Let i P N, V :“ Ri. Then:

(1) @x P V , p |x|V “ 0 q ô p x “ 0V q and

(2) @a P R, @x P V , |ax| “ |a| ¨ |x|V and

(3) @x, y P V , |x` y|V ď |x|V ` |y|V .

In the preceding theorem, (1) says the V -norm “separates 0V ” (from

other vectors), while (2) says the V -norm is “absolute homogeneous”,

while (3) says the V -norm is “subadditive”. Subadditivity is tricky to

prove, and its proof will be deferred until spring semester.

DEFINITION 1.21.7. Let i, j P N, V :“ Riˆj. Then:

@x P V , |x| :“

d

ÿ

sPiˆj

x2
s

In the preceding definition, the number |x| is called the norm of x,

or the V -norm of x. It is sometimes written |x|V for clarity.

THEOREM 1.21.8.

ˇ

ˇ

ˇ

ˇ

„

7 8 9

4 5 6

ˇ

ˇ

ˇ

ˇ

“
?

72 ` 82 ` 92 ` 42 ` 52 ` 62.

THEOREM 1.21.9. Let i, j P N, V :“ Riˆj. Then:

(1) @x P V , p |x|V “ 0 q ô p x “ 0V q and

(2) @a P R, @x P V , |ax| “ |a| ¨ |x|V and

(3) @x, y P V , |x` y|V ď |x|V ` |y|V .
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In the preceding theorem, (1) says the V -norm “separates 0V ” (from

other matrices), while (2) says the V -norm is “absolute homogeneous”,

while (3) says the V -norm is “subadditive”. Subadditivity is tricky to

prove, and its proof will be deferred until spring semester.

DEFINITION 1.21.10. Let i, j, k P N, V :“ Riˆjˆk. Then:

@x P V , |x| :“

d

ÿ

sPiˆjˆk

x2
s

In the preceding definition, the number |x| is called the norm of x,

or the V -norm of x. It is sometimes written |x|V for clarity.

THEOREM 1.21.11. Let i, j, k P N, V :“ Riˆjˆk. Then:

(1) @x P V , p |x|V “ 0 q ô p x “ 0V q and

(2) @a P R, @x P V , |ax| “ |a| ¨ |x|V and

(3) @x, y P V , |x` y|V ď |x|V ` |y|V .

In the preceding theorem, (1) says the V -norm “separates 0V ” (from

other matrices), while (2) says the V -norm is “absolute homogeneous”,

while (3) says the V -norm is “subadditive”. Subadditivity is tricky to

prove, and its proof will be deferred until spring semester.

These definitions can be continued to develop norms for four-tensors,

five-tensors, etc. In all cases, we have separation of zero, absolute

homogeneity and subadditivity. In all cases subadditivity is most easily

proved using the “dot product” and Cauchy-Schwarz, both of which will

be exposed in the spring semester.

1.22. Metrics and metric spaces.

DEFINITION 1.22.1. Let S be a set, d : S ˆ S Ñ r0;8q.

By d is a metric on S, we mean:

(1) @x, y P S, r x “ y s ô r dpx, yq “ 0 s and

(2) @x, y P S, dpx, yq “ dpy, xq and

(3) @x, y, z P S, dpx, zq ď rdpx, yqs ` rdpy, zqs.

In the preceding definition, (1) says that d “separates points”, while

(2) says that d is “symmetric”, while (3) says that d satisfies the “tri-

angle inequality”.

DEFINITION 1.22.2. For any set S, MpSq :“ tmetrics on Su.
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DEFINITION 1.22.3. Define d0 : Rˆ RÑ r0;8q by:

@x, y P R, d0px, yq “ |y ´ x|.

THEOREM 1.22.4. d0p2, 7q “ d0p7, 2q “ 5.

THEOREM 1.22.5. d0 PMpRq.

The metric d0 is the standard metric on R.

DEFINITION 1.22.6. Let i P N, V :“ Ri.

Define di : V ˆ V Ñ r0;8q by: @x, y P V , dipx, yq “ |y ´ x|V .

THEOREM 1.22.7. d3p p4, 1, 5q , p4,´2, 9q q “
a

02 ` p´3q2 ` 42.

THEOREM 1.22.8. Let i P N, V :“ Ri. Then di PMpV q.

Let i P N. The metric di is the standard metric on Ri.

DEFINITION 1.22.9. Let i, j P N, V :“ Riˆj.

Define dpi,jq : V ˆ V Ñ r0;8q by:

@x, y P V , dpi,jqpx, yq “ |y ´ x|V .

THEOREM 1.22.10.

dp2,3q

ˆ„

1 5 ´6

4 10 9



,

„

1 4 ´6

8 10 15

˙

“
?

12 ` 42 ` 62.

THEOREM 1.22.11. Let i, j P N, V :“ Riˆj. Then dpi,jq PMpV q.

Let i, j P N. The metric dpi,jq is the standard metric on Riˆj.

DEFINITION 1.22.12. Let i, j, k P N, V :“ Riˆjˆk.

Define dpi,j,kq : V ˆ V Ñ r0;8q by:

@x, y P V , dpi,j,kqpx, yq “ |y ´ x|V .

THEOREM 1.22.13. Let i, j, k P N, V :“ Riˆjˆk.

Then dpi,j,kq PMpV q.

Let i, j, k P N. The metric dpi,j,kq is the standard metric on Riˆjˆk.

These definitions can be continued to develop metrics for four-tensors,

five-tensors, etc.

DEFINITION 1.22.14. By a metric space, we mean: an ordered

pair pS, dq s.t.: p S is a set q & p d PMpSq q.

THEOREM 1.22.15. pR, d0q is a metric space.

Also, @i P N, pRi, diq is a metric space.
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Also, @i, j P N, pRiˆj, dpi,jqq is a metric space.

Also, @i, j, k P N, pRiˆjˆk, dpi,j,kqq is a metric space.

THEOREM 1.22.16. Let X :“ pR5, d5q.

Then X1 “ R5 and X2 “ d5.

DEFINITION 1.22.17. Let X be a metric space.

Then Xset :“ X1 and dX :“ X2.

In the preceding definition, Xset is called the underlying set of X,

while dX is called the underlying metric of X.

THEOREM 1.22.18. Let X :“ pR5, d5q.

Then Xset “ R5 and dX “ d5.

THEOREM 1.22.19. Let X :“ pR9ˆ8ˆ7, dp9,8,7qq.

Then Xset “ R9ˆ8ˆ7 and dX “ dp9,8,7q.

Out of sloppiness, we almost always write X for Xset.

Out of sloppiness, we sometimes write d for dX .

When a set S has a standard metric d, then, out of sloppiness, we

frequently write S to mean pS, dq. So, for example, out of sloppiness,

we frequently write R9ˆ8ˆ7 to mean pR9ˆ8ˆ7, dp9,8,7qq.

In particular, when we write dR, we would mean dpR,d0q.

Then dR “ dpR,d0q “ d0.

THEOREM 1.22.20. dRp2, 7q “ dRp7, 2q “ 5.

Let V :“ R2ˆ3. Then dV “ dpR2ˆ3,dp2,3qq “ dp2,3q.

THEOREM 1.22.21. Let V :“ R2ˆ3. Then
„

1 5 ´6

4 10 9



,

„

1 4 ´6

8 10 15



P V and

dV

ˆ„

1 5 ´6

4 10 9



,

„

1 4 ´6

8 10 15

˙

“
?

12 ` 42 ` 62.

THEOREM 1.22.22. Let X :“ R2ˆ2. Then
„

5 9

6 7



,

„

8 1

0 0



P X and

dX

ˆ„

5 9

6 7



,

„

8 1

0 0

˙

“
?

32 ` 82 ` 62 ` 72.
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THEOREM 1.22.23. Let X be a metric space and let S Ď X.

Then dX |pS ˆ Sq P MpSq.

Let X be a metric space and let S Ď X.

Then dX |pSˆSq is called the relative metric on S inherited from X.

It is the standard metric on S, and, by sloppiness,

we sometimes write S for the metric space pS, dX |pS ˆ Sqq.

So, for example, in the next theorem, when we write

“Let S :“ r0;8q”,

the meaning is

“Let S :“ p r0;8q , dR|pr0;8q ˆ r0;8qq q”.

THEOREM 1.22.24. Let S :“ r0;8q. Then:

p dSp2, 7q “ 5 q & p dSp4,´3q “ / q & p dRp4,´3q “ 7 q.

THEOREM 1.22.25. Let S :“ r3; 4s.

Then: @x, y P S, dSpx, yq “ |y ´ x|.

THEOREM 1.22.26. Let T :“ r´8;´6s.

Then: @p, q P T , dT pp, qq “ |q ´ p|.

DEFINITION 1.22.27. Let X be a metric space, q P X and t P R.

Then: BXpq, tq :“ tp P X | dXpp, qq ă tu

and BXpq, tq :“ tp P X | dXpp, qq ď tu

and SXpq, tq :“ tp P X | dXpp, qq “ tu.

DEFINITION 1.22.28. Let X be a metric space and let q P X.

Then: BXpqq :“ tBXpq, tq | t ą 0u.

DEFINITION 1.22.29. Let X be a metric space.

Then: BX :“ tBXpq, tq | q P X, t ą 0u.

The next theorem is called the Recentering Theorem.

THEOREM 1.22.30. Let X be a metric space, B P BX and q P X.

Then: (1) DC P BXpqq s.t. B Ď C

and (2) p q P B q ñ p DA P BXpqq s.t. A Ď B q.

Proof. Proof of (1):

Since B P BX , choose p P X, r ą 0 s.t. B “ BXpp, rq.

Let s :“ dXpp, qq. Let C :“ BXpq, r ` sq. Then C P BXpqq.
Want: B Ď C. Want @z P B, z P C.
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Given z P B. Want z P C. Want: z P BXpq, r ` sq.

Since z P B “ BXpp, rq, we get dXpz, pq ă r, so rdXpz, pqs ` s ă r ` s.

Then dXpz, qq ď rdXpz, pqs ` rdXpp, qqs “ rdXpz, pqs ` s ă r ` s,

and so z P BXpq, r ` sq, as desired.

End of proof of (1).

Proof of (2):

Unassigned HW.

End of proof of (2). �

THEOREM 1.22.31. @a P R, @ε ą 0, Bpa, εq “ pa´ ε; a` εq

and Bpa, εq “ ra´ ε; a` εs

and Spa, εq “ ta´ ε, a` εu.

THEOREM 1.22.32. Let a, x P R and let ε ą 0.

Then: p |x´ a| ă ε q ô p dRpa, xq ă ε q

ô p x P BRpa, εq q

ô p x P pa´ ε; a` εq q

ô p a´ ε ă x ă a` ε q.

THEOREM 1.22.33. Let a, x P R and let ε ą 0.

Then: p |x´ a| ă ε q ô p a´ ε ă x ă a` ε q.

THEOREM 1.22.34. Let x P R and let ε ą 0.

Then: p |x| ă ε q ô p ´ε ă x ă ε q.

THEOREM 1.22.35. Let x P R and let ε ą 0.

Then: p dRpx, 0q ă ε q ô p ´ε ă x ă ε q.

THEOREM 1.22.36. Let a, x P R and let ε ą 0.

Then: p |x´ a| ď ε q ô p a´ ε ď x ď a` ε q.

THEOREM 1.22.37. Let x P R and let ε ą 0.

Then: p |x| ď ε q ô p ´ε ď x ď ε q.

THEOREM 1.22.38. Let x P R and let ε ą 0.

Then: p dRpx, 0q ď ε q ô p ´ε ď x ď ε q.

THEOREM 1.22.39. @z P R, p |z ´ 5| ă 0.3 q ô p 4.7 ă z ă 5.3 q.

THEOREM 1.22.40. @z P R, p |z ´ 5| ď 0.3 q ô p 4.7 ď z ď 5.3 q.

THEOREM 1.22.41. @q P R, p |4´q| ă 0.01 q ô p 3.99 ă q ă 4.01 q.

THEOREM 1.22.42. @q P R, p |4´q| ď 0.01 q ô p 3.99 ď q ď 4.01 q.
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1.23. Lipschitz functions.

DEFINITION 1.23.1. Let X and Y be metric spaces.

Let f : X 99K Y and let K ě 0.

By f is Lipschitz-K from X to Y , we mean:

@p, q P Df , dY pfp, fqq ď K ¨ pdXpp, qqq.

Lipschitz-0 is the same as constant.

Lipschitz-1 is sometimes called “distance semi-decreasing”;

Lipschitz-1 means that the function

may move two points closer together,

but it never moves them farther apart.

Recall that a secant line for a function f : R 99K R is

a line that crosses through least two points of the graph of f .

Let f : R 99K R. Then f is Lipschitz-K means that

every secant line has slope in r´K;Ks.

THEOREM 1.23.2. Let S :“ r3; 4s and T :“ r´7;´5s.

Define f : S Ñ T by: @x P S, fx “ ´2x` 1.

Then f is Lipschitz-2 from S to T .

Proof. Want: @x, y P S, dT pfx, fyq ď 2 ¨ rdSpx, yqs.

Given x, y P S. Want: dT pfx, fyq ď 2 ¨ rdSpx, yqs.

It suffices to show: dT pfx, fyq “ 2 ¨ rdSpx, yqs.

We have: dT pfx, fyq “ |fy ´ fx| “ |p´2y ` 1q ´ p´2x` 1q|

“ |p´2yq ´ p´2xq| “ |p´2q ¨ py ´ xq|

“ | ´ 2| ¨ |y ´ x| “ 2 ¨ |y ´ x| “ 2 ¨ pdSpx, yqq. �

DEFINITION 1.23.3. Define |‚| : RÑ r0;8q by @x P R, |‚|x “ |x|.

THEOREM 1.23.4. | ‚ | is Lipschitz-1 from R to r0;8q.

Proof. Want: @x, y P R, dp | ‚ |x , | ‚ |y q ď dpx, yq.

Given x, y P R. Want: dp | ‚ |x , | ‚ |yq ď dpx, yq.

Want: dp|x|, |y|q ď dpx, yq.

Let a :“ |x| and b :“ |y|. Want: dpa, bq ď dpx, yq.

Want: |b´ a| ď |y ´ x|. Let t :“ |y ´ x|. Then t “ |x´ y|.

Want: |b´ a| ď t. Want: a´ t ď b ď a` t.

Since a “ |x| “ |y ` px´ yq| ď |y| ` |x´ y| “ b` t,

we get a ď b` t, so a´ t ď b. Want: b ď a` t.

We have b “ |y| “ |x` py ´ xq| ď |x| ` |y ´ x| “ a` t. �
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DEFINITION 1.23.5. Let i P N and let V :“ Ri.

Define | ‚ |V : V Ñ r0;8q by: @x P V , p| ‚ |V qx “ |x|V .

THEOREM 1.23.6. Let i P N and let V :“ Ri.

Then | ‚ | is Lipschitz-1 from V to r0;8q.

DEFINITION 1.23.7. Let i, j P N and let V :“ Riˆj.

Define | ‚ |V : V Ñ r0;8q by: @x P V , p| ‚ |V qx “ |x|V .

THEOREM 1.23.8. Let i, j P N and let V :“ Riˆj.

Then | ‚ | is Lipschitz-1 from V to r0;8q.

DEFINITION 1.23.9. Let i, j, k P N and let V :“ Riˆjˆk.

Define | ‚ |V : V Ñ r0;8q by: @x P V , p| ‚ |V qx “ |x|V .

THEOREM 1.23.10. Let i, j, k P N and let V :“ Riˆjˆk.

Then | ‚ | is Lipschitz-1 from V to r0;8q.

These definitions and theorems can be continued to four-tensors, five-

tensors, etc. Keep in mind that, in all of these theorems, Lipschitz-1

means distance semi-decreasing. This concept comes up in other ways:

THEOREM 1.23.11. Define p : R2 Ñ R by: @v P R2, pv “ v1.

Then p is Lipschitz-1.

Proof. Let X :“ R2. Want: @u, v P X, dRppu, pvq ď dXpu, vq.

Given u, v P X. Want: dRppu, pvq ď dXpu, vq.

Want: |pv ´ pu| ď |v ´ u|X . We have pu “ u1 and pv “ v1.

Want: |v1´ u1| ď |v´ u|X . We have u “ pu1, u2q and v “ pv1, v2q.

Want: |v1 ´ u1| ď |pv1, v2q ´ pu1, u2q|X .

Want: |v1 ´ u1| ď |pv1 ´ u1, v2 ´ u2q|X .

We have 0 ď pv1 ´ u1q
2 and 0 ď pv2 ´ u2q

2.

Since 0 ď pv2 ´ u2q
2, we get pv1 ´ u1q

2 ď pv1 ´ u1q
2 ` pv2 ´ u2q

2.

Since 0 ď pv1 ´ u1q
2 ď pv1 ´ u1q

2 ` pv2 ´ u2q
2,

we conclude that
a

pv1 ´ u1q
2 ď

a

pv1 ´ u1q
2 ` pv2 ´ u2q

2.

That is, |v1 ´ u1| ď |pv1 ´ u1, v2 ´ u2q|X , as desired. �

DEFINITION 1.23.12. Let X and Y be metric spaces, f : X 99K Y .

By f is Lipschitz from X to Y , we mean:

DK ě 0 s.t. f is Lipschitz-K.

2. Limits and Continuity

2.1. A doubly quantified statement.
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THEOREM 2.1.1. @ε ą 0, Dδ ą 0 s.t. δ2 ` δ ď ε.

Proof. Given ε ą 0. Want: Dδ ą 0 s.t. δ2 ` δ ď ε.

Let δ :“ mint
a

ε{2 , ε{2 u. Then δ ą 0.

Want: δ2 ` δ ď ε.

By the definition of δ, we have

both δ ď
a

ε{2 and δ ď ε{2.

Since 0 ă δ ď
a

ε{2, we get δ2 ď p
a

ε{2q2.

Then δ2 ď ε{2. So, since δ ď ε{2, δ2 ` δ ď pε{2q ` pε{2q.

Then δ2 ` δ ď pε{2q ` pε{2q “ ε, as desired. �

2.2. Limits of sequences.

DEFINITION 2.2.1. Let X be a metric space.

Let s P XN and let z P X.

Then sÑ z in X means:

@ε ą 0, DK P N s.t. @j P N,

p j ě K q ñ p dXpsj, zq ă ε q.

THEOREM 2.2.2. Define s P RN by: @j P N, sj “ 1{j.

Then sÑ 0 in R.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dRpsj, 0q ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dRpsj, 0q ă ε q.

By the Archimedean Principle, choose K P N s.t. K ą 1{ε.

Want: @j P N, p j ě K q ñ p dRpsj, 0q ă ε q.

Since j ě K ą 1{ε, we get j ą 1{ε.

Since j ą 1{ε ą 0, we get 1{j ă ε.

Since j ą 0, we get 1{j ą 0, and so |1{j| “ 1{j.

Then dRpsj, 0q “ |sj ´ 0| “ |sj| “ |1{j| “ 1{j ă ε, as desired. �

2.3. Some precalculus.

The results in this section will be used in the future without com-

ment.

DEFINITION 2.3.1. @k P N, @a P R, k
?
a :“ maxtx P R |xk “ au.

THEOREM 2.3.2. We have:

p @a P R, 2
?
a “

?
a q &
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p @k P N, @a ě 0 p k
?
aqk “ a q &

p @k P 2N0 ` 1, @a P R p k
?
aqk “ a q.

THEOREM 2.3.3. @ε P R, pε{3q ` pε{3q ` pε{3q “ ε.

THEOREM 2.3.4. @a, b, c, d, e, f P R,

ppa ď bq&pc ď dq&pe ď fqq ñ pa` c` e ď b` d` fq.

THEOREM 2.3.5. Let a, b, c P R˚. Let m :“ minta, b, cu.

Then: pm P ta, b, cu q& pm ď a q& pm ď b q& pm ď c q.

THEOREM 2.3.6. @C ě 0, @λ ą 0,
C

C ` 1
¨ λ ă λ.

2.4. The Precalculus Product Rule.

THEOREM 2.4.1. @a, b, x, y P R,

xy ´ ab “ px´ aq ¨ b ` a ¨ py ´ bq ` px´ aq ¨ py ´ bq.

To prove this theorem, simply expand the right hand side and cancel.

To remember this theorem:

The theorem is true even if some of the variables are negative, and

even if x ď a or y ď b.

However, the easiest case to picture is the case when x ą a ą 0

and y ą b ą 0. We imagine an a ˆ b rectangle that grows to an

xˆ y rectangle, with the lower left corner staying fixed. The change in

area is xy ´ ab, and it can be viewed as the sum of the areas of three

subrectangles of the x ˆ y rectangle. This yields the formula in the

preceding theorem.

One can think of x´ a as the “change to a” and denote it by 4a.

One can think of y ´ b as the “change to b” and denote it by 4b.
One can think of xy´ab as the “change to ab” and denote it by 4pabq.
With this notation the formula reads

4pabq “ p4aq ¨ b ` a ¨ p4bq ` p4aq ¨ p4bq.
Buzz phrase: The change to ab is equal to

(the change to a) times b plus

a times (the change to b) plus

the product of the two changes.

The Precalculus Product Rule and Calculus Product Rule are similar.

However, in the Precalculus Product Rule, we need to remember

that third term: “the product of the two changes”.
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2.5. Sequential limits of sums and products.

THEOREM 2.5.1. Let s, t P RN.

Assume: p sÑ 2 in R q & p tÑ 3 in R q.
Then: (1) s` tÑ 5 in R

and (2) stÑ 6 in R.

Proof. Since sÑ 2 in R, we have: @ε ą 0, DL P N s.t.

p j ě L q ñ p dRpsj, 2q ă ε q.

Also, since tÑ 3 in R, we have: @ε ą 0, DM P N s.t.

p j ěM q ñ p dRptj, 3q ă ε q.

Proof of (1):

Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dRpps` tqj, 5q ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dRpps` tqj, 5q ă ε q.

Choose L P N s.t., @j P N, p j ě L q ñ p dRpsj, 2q ă ε{2 q.

Choose M P N s.t., @j P N, p j ěM q ñ p dRptj, 3q ă ε{2 q.

Let K :“ maxtL,Mu. Then K P N.

Want: p j ě K q ñ p dRpps` tqj, 5q ă ε q.

Assume j ě K. Want: dRpps` tqj, 5q ă ε.

Since j ě K ě L, by choice of L, we get dRpsj, 2q ă ε{2.

Since j ě K ěM , by choice of M , we get dRptj, 3q ă ε{2.

Then dRpps` tqj, 5q “ |ps` tqj ´ 5| “ |psj ` tjq ´ p2` 3q|

“ |psj ´ 2q ` ptj ´ 3q| ď |sj ´ 2| ` |tj ´ 3|

“ pdpsj, 2qq ` pdptj, 3qq ă pε{2q ` pε{2q “ ε.

End of proof of (1).

Proof of (2):

Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dRppstqj, 6q ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dRppstqj, 6q ă ε q.

Let δ :“ mintε{10,
a

ε{2u. Then δ ą 0.

Choose L P N s.t., @j P N, p j ě L q ñ p dRpsj, 2q ă δ q.

Choose M P N s.t., @j P N, p j ěM q ñ p dRptj, 3q ă δ q.

Let K :“ maxtL,Mu. Then K P N.

Want: p j ě K q ñ p dRppstqj, 6q ă ε q.
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Assume j ě K. Want: dRppstqj, 6q ă ε.

By definiton of δ, we have: δ ď ε{10 and δ ď
a

ε{2.

Since δ ă ε{10, we get: 5δ ď ε{2.

Since 0 ă δ ď
a

ε{2, we get δ2 ď ε{2.

Since j ě K ě L, by choice of L, we get dRpsj, 2q ă δ.

Since j ě K ěM , by choice of M , we get dRptj, 3q ă δ.

By the Precalculus Product Rule,

sjtj ´ 2 ¨ 3 “ psj ´ 2q ¨ 3` 2 ¨ ptj ´ 3q ` psj ´ 2q ¨ ptj ´ 3q.

Then dRppstqj, 6q “ |pstqj ´ 6| “ |sjtj ´ 2 ¨ 3|

“ |psj ´ 2q ¨ 3` 2 ¨ ptj ´ 3q ` psj ´ 2q ¨ ptj ´ 3q|

ď |sj ´ 2| ¨ 3` 2 ¨ |tj ´ 3| ` |sj ´ 2| ¨ |tj ´ 3|

“ pdRpsj, 2qq ¨ 3` 2 ¨ pdRptj, 3qq ` pdRpsj, 2qq ¨ pdRptj, 3qq

ă δ ¨ 3` 2 ¨ δ ` δ ¨ δ “ 5δ ` δ2 ď pε{2q ` pε{2q “ ε.

End of proof of (2). �

2.6. Continuity.

DEFINITION 2.6.1. Let X and Y be metric spaces.

Let f : X 99K Y and let p be an object.

Then by f is continuous at p from X to Y , we mean:

r p P Df s &

r @ε ą 0, Dδ ą 0 s.t., @w P Df ,

p dpw, pq ă δ q ñ p dpfw, fpq ă ε q s.

THEOREM 2.6.2. Define f : RÑ R by: @x P R, fx “ x2.

Then f is continuous at 2 from R to R.

Proof. Since f2 “ 4 ‰ /, we get 2 P Df .

Want: @ε ą 0, Dδ ą 0 s.t., @w P Df ,

p dpx, 2q ă δ q ñ p dpfx, f2q ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @w P Df ,

p dpx, 2q ă δ q ñ p dpfx, f2q ă ε q.

Let δ :“ mint1, ε{5u. Then δ ą 0.

Want: @w P Df , p dpx, 2q ă δ q ñ p dpfx, f2q ă ε q.

Given w P Df . Want: p dpx, 2q ă δ q ñ p dpfw, f2q ă ε q.

Assume dpw, 2q ă δ. Want: dpfw, f2q ă ε.

By definition of δ, we have δ ď 1 and δ ď ε{5.

Since δ ď ε{5, we get 5δ ď ε.

We have |w ´ 2| “ dpw, 2q ă δ.

Then |w ` 2| “ |w ´ 2` 4| ď |w ´ 2| ` 4 ă δ ` 4 ď 1` 4 “ 5.
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Since 0 ď |w ` 2| ă 5 and 0 ď |w ´ 2| ă δ, by multiplying,

we get |w ` 2| ¨ |w ´ 2| ă 5δ.

Then dpfw, f2q “ |fw ´ f2| “ |w
2 ´ 22| “ |pw ` 2q ¨ pw ´ 2q|

“ |w ` 2| ¨ |w ´ 2| ă 5δ ď ε, as desired. �

THEOREM 2.6.3. Define f : R 99K R by: @x P R, fx “ 1{x.

Then f is continuous at 4 from R to R.

Proof. Since f4 “ 1{4 ‰ /, we get 4 P Df .

Want: @ε ą 0, Dδ ą 0 s.t., @w P Df ,

p dpx, 4q ă δ q ñ p dpfx, f4q ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @w P Df ,

p dpx, 4q ă δ q ñ p dpfx, f4q ă ε q.

Let δ :“ mint1, 12εu. Then δ ą 0.

Want: @w P Df , p dpx, 4q ă δ q ñ p dpfx, f4q ă ε q.

Given w P Df . Want: p dpx, 4q ă δ q ñ p dpfw, f4q ă ε q.

Assume dpw, 4q ă δ. Want: dpfw, f4q ă ε.

By definition of δ, we have both δ ď 1 and δ ď 12ε.

It follows both that 4´ δ ě 3 and that
δ

12
ď ε.

Since | ‚ | is Lipschitz-1, we get dp|w|, |4|q ď dpw, 4q.

Then dp|w|, 4q “ dp|w|, |4|q ď dpw, 4q ă δ, so dp|w|, 4q ă δ.

Since dp|w|, 4q ă δ, we get: 4´ δ ă |w| ă 4` δ.

Then |w| ą 4´ δ ě 3, so |w| ą 3, so 4 ¨ |w| ą 12.

Also, we have |4´ w| “ dpw, 4q ă δ.

Since 0 ď |4´ w| ă δ and since 4 ¨ |w| ą 12 ą 0,

we conclude that:
|4´ w|

4 ¨ |w|
ă

δ

12
.

Then dpfw, f4q “ |fw ´ f4| “

ˇ

ˇ

ˇ

ˇ

1

w
´

1

4

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

4´ w

4w

ˇ

ˇ

ˇ

ˇ

“
|4´ w|

|4| ¨ |w|
“
|4´ w|

4 ¨ |w|
ă

δ

12
ď ε, as desired. �

DEFINITION 2.6.4. Let X and Y be metric spaces.

Let f : X 99K Y and let S be a set.

Then f is continuous on S means:

@p P S, p f is continuous at p from X to Y q.

DEFINITION 2.6.5. Let X and Y be metric spaces, f : X 99K Y .

Then f is continuous means: f is continuous on Df .
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THEOREM 2.6.6. Define f : R 99K R by: @x P R, fx “ 1{x.

Then f is continuous from R to R.

Proof. Want: f is continuous on Df from R to R.

We have Df “ Rˆ0 . Want: f is continuous on Rˆ0 from R to R.

Want: @p P Rˆ0 , f is continuous at p from R to R.

Given p P Rˆ0 . Want: f is continuous at p from R to R.

We have p P Rˆ0 “ Df .

Want: @ε ą 0, Dδ ą 0 s.t., @w P Df ,

p dpw, pq ă δ q ñ p dpfw, fpq ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @w P Df ,

p dpw, pq ă δ q ñ p dpfw, fpq ă ε q.

Since p P Rˆ0 , we get |p| ą 0, and so
|p|

2
ą 0.

Since p P Rˆ0 , we get
p2

2
ą 0. So, since ε ą 0, we get

p2

2
¨ ε ą 0.

Let δ :“ min

"

|p|

2
,
p2

2
¨ ε

*

. Then δ ą 0.

Want: @w P Df , p dpw, pq ă δ q ñ p dpfw, fpq ă ε q.

Given w P Df . Want: p dpw, pq ă δ q ñ p dpfw, fpq ă ε q.

Assume dpw, pq ă δ. Want: dpfw, fpq ă ε.

By definition of δ, we have both δ ď
|p|

2
and δ ď

p2

2
¨ ε.

It follows both that |p| ´ δ ě |p| ´
|p|

2
and that

2

p2
¨ δ ď ε.

Since | ‚ | is Lipschitz-1, we get dp |p| , |w| q ď dp p , w q.

Since dp |p| , |w| q ď dp p , w q ă δ, we get |p| ´ δ ă |w| ă |p| ` δ.

Then |w| ą |p| ´ δ ą |p| ´
|p|

2
“
|p|

2
, so |w| ą

|p|

2
, so |w| ¨ |p| ą

|p|2

2
.

So, since |p|2 “ p2, we get |w| ¨ |p| ą
p2

2
.

Also, we have |p´ w| “ dpw, pq ă δ.

Since 0 ď |p´ w| ă δ and since |w| ¨ |p| ą
p2

2
ą 0,

we conclude that:
|p´ w|

|p| ¨ |w|
ă

δ

p2{2
.

Then dpfw, fpq “ |fw ´ fp| “

ˇ

ˇ

ˇ

ˇ

1

w
´

1

p

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

p´ w

wp

ˇ

ˇ

ˇ

ˇ

“
|p´ w|

|w| ¨ |p|
ă

δ

p2{2
“

2

p2
¨ δ ď ε, as desired. �

2.7. Uniform continuity.
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THEOREM 2.7.1. Let X and Y be metric spaces, f : X 99K Y .

Then: p f is continuous from X to Y q

ô p @p P Df , f is continuous at p from X to Y q

ô p @p P Df , @ε ą 0, Dδ ą 0 s.t., @q P Df ,

p dpp, qq ă δ q ñ p dpfp, fqq ă ε q q

ô p @ε ą 0, @p P Df , Dδ ą 0 s.t., @q P Df ,

p dpp, qq ă δ q ñ p dpfp, fqq ă ε q q

DEFINITION 2.7.2. Let X and Y be metric spaces, f : X 99K Y .

By f is uniformly continuous from X to Y , we mean:

@ε ą 0, Dδ ą 0 s.t., @p P Df , @q P Df ,

p dpp, qq ă δ q ñ p dpfp, fqq ă ε q

In homework, you’ll show that Lipschitz implies uniformly continu-

ous implies continuous.

2.8. Sequential continuity.

DEFINITION 2.8.1. Let X and Y be metric spaces.

Let f : X 99K Y and let p be an object.

By f is sequentially continuous at p from X to Y , we mean:

r p P Df s & r @s P DN
f , p sÑ p in X q ñ p f ˝ sÑ fp in Y q s.

THEOREM 2.8.2. Let X, Y be metric spaces, f : X 99K Y , p P X.

Assume that f is continuous at p from X to Y .

Then f is sequentially continuous at p from X to Y .

Proof. Since f is continuous at p from X to Y , we see that p P Df .

It remains to show: @s P DN
f , p sÑ p in X q ñ p f ˝ sÑ fp in Y q.

Given s P DN
f . Want: p sÑ p in X q ñ p f ˝ sÑ fp in Y q.

Assume sÑ p in X. Want: f ˝ sÑ fp in Y .

Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dppf ˝ sqj, fpq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dppf ˝ sqj, fpq ă ε q.

Since f is continuous at p from X to Y ,

choose δ ą 0 s.t., @w P Df , p dpw, pq ă δ q ñ p dpfw, fpq ă ε q.

Since sÑ p in X, choose K P N s.t., @j P N,
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p j ě K q ñ p dpsj, pq ă δ q.

Then K P N. Want: @j P N, p j ě K q ñ p dppf ˝ sqj, fpq ă ε q.

Given j P N. Want: p j ě K q ñ p dppf ˝ sqj, fpq ă ε q.

Assume j ě K. Want: dppf ˝ sqj, fpq ă ε.

Since j ě K, by choice of K, we have: dpsj, pq ă δ.

Since s P DN
f , we conclude that sj P Df .

Let w :“ sj. Then w P Df .

So, since dpw, pq “ dpsj, pq ă δ, by choice of δ, we have: dpfw, fpq ă ε.

We have pf ˝ sqj “ fpsjq “ fpwq.

Then dppf ˝ sqj, fpq “ dpfw, fpq ă ε, as desired.

�

THEOREM 2.8.3. Let X be a metric space, s P XN, p P X.

Assume: @j P N, dpsj, pq ď 1{j. Then sÑ p in X.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dpsj, pq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dpsj, pq ă ε q.

By the Archimedean Principle, choose K P N s.t. K ą 1{ε.

Then K P N. Want: @j P N, p j ě K q ñ p dpsj, pq ă ε q.

Given j P N. Want: p j ě K q ñ p dpsj, pq ă ε q.

Assume j ě K. Want: dpsj, pq ă ε.

By hypothesis, dpsj, pq ď 1{j.

Since j ě K ą 0, we get: 1{j ď 1{K.

Since K ą 1{ε ą 0, we get: 1{K ă ε.

Then dpsj, pq ď 1{j ď 1{K ă ε, as desired. �

THEOREM 2.8.4. Let X, Y be metric spaces, f : X 99K Y , p P X.

Then: p f is continuous at p from X to Y q

ô p f is sequentially continuous at p from X to Y q.

Proof. By Theorem 2.8.2, we have ñ. Want: ð.

Assume: f is sequentially continuous at p from X to y.

Want: f is continuous at p from X to Y .

Assume: f is not continuous at p from X to Y . Want: Contradiction.

Choose ε ą 0 s.t., @δ ą 0, Dw P Df s.t. p dpw, pq ă δ q& p dpfw, fpq ě ε q.

Then @j P N, Dw P Df s.t. p dpw, pq ă 1{j q& p dpfw, fpq ě ε q.

By the Axiom of Choice,

choose s P DN
f s.t., @j P N, p dpsj, pq ă 1{j q& p dpfsj , fpq ě ε q.
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Then @j P N, dpsj, pq ă 1{j,

and so, by Theorem 2.8.3, we see that: sÑ p in X.

So, since s P DN
f and since f is sequentially continuous at p,

we conclude that: f ˝ sÑ fp in Y .

So choose K P N s.t., @j P N, p j ě K q ñ p dppf ˝ sqj, fpq ă ε q.

So, since K ě K, we get dppf ˝ sqK , fpq ă ε, and so ε ą dppf ˝ sqK , fpq.

By the choice of s, we have: dpfsK , fpq ě ε.

Then ε ą dppf ˝ sqK , fpq “ dpfsK , fpq ě ε,

and so ε ą ε. Contradiction. �

2.9. Arithmetic of functionals.

DEFINITION 2.9.1. Let f and g be functionals.

Then f ` g , f ´ g , fg , f{g are the functionals defined by: @x,

pf ` gqx “ fx ` gx pf ´ gqx “ fx ´ g,

pfgqx “ fx ¨ gx pf{gqx “ fx{g.

DEFINITION 2.9.2. Let f be a functional and let a P R.

Then af is the functional defined by: @x,

pafqx “ a ¨ fx.

THEOREM 2.9.3. Let f and g be functionals.

Then: Df`g “ Df´g “ Dfg “ Df

Ş

Dg.

Also, Df{g “ Df

Ş

Dg

Ş

pg˚pRˆ0 qq.

THEOREM 2.9.4. Let f be a functional and let a P R.

Then: Daf “ Df .

2.10. Pairing of functions.

Frownie is infective. We make the convention that:

@t,

ˆ

1 ÞÑ t

2 ÞÑ /

˙

“ / “

ˆ

1 ÞÑ /
2 ÞÑ t

˙

.

Recall that: @x, y, px, yq “

ˆ

1 ÞÑ x

2 ÞÑ y

˙

.

It follows that: @t, pt,/q “ / “ p/, tq. Frownie is infective.

DEFINITION 2.10.1. Let f and g be functions.

then pf, gqfn is the function defined by:

@x, pf, gqfnx “ pfx, gxq
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We are almost always sloppy and write pf, gq for pf, gqfn. As a con-

sequence, when we write pf, gq, the reader must discern, from context,

whether we mean pf, gqfn or

ˆ

1 ÞÑ f

2 ÞÑ g

˙

.

Hint: When f and g are functions, by pf, gq, we usually mean pf, gqfn.

THEOREM 2.10.2. Define f, g : R 99K R by:

@t P R, p p ft “
?
t q& p gt “

?
3´ t q q.

Let h :“ pf, gq. Then:

Df “ r0;8q and Dg “ p´8; 3s and Dh “ r0; 3s

and h : R 99K R2 and @t P R, ht “ p
?
t,
?

3´ tq.

THEOREM 2.10.3. @functions f, g, Dpf,gq “ Df

Ş

Dg.

2.11. Properties of continuity.

THEOREM 2.11.1. Let X be a metric space, f, g : X 99K R, p P X.

Assume f and g are both continuous at p from X to R.

Then f ` g and fg are both continuous at p from X to R.

Proof. By Theorem 2.8.4,

f and g are both sequentially continuous at p from X to R.

Also, by Theorem 2.8.4, it suffices to show:

f ` g and fg are both sequentially continuous at p from X to R.

Since f and g are both sequentially continuous at p from X to R,

we get: p P Df and p P Dg, so p P Df

Ş

Dg.

We have: Df`g “ Df

Ť

Dg “ Dfg. Then: p P Df`g and p P Dfg.

It suffices to show: @s P pDf

Ş

Dgq
N, p sÑ p in X q ñ

p pf ` gq ˝ sÑ pf ` gqp in R and pfgq ˝ sÑ pfgqp in R q.

Given s P pDf

Ş

Dgq
N. Want: p sÑ p in X q ñ

p pf ` gq ˝ sÑ pf ` gqp in R and pfgq ˝ sÑ pfgqp in R q.

Assume: sÑ p in X.

Want: pf ` gq ˝ sÑ pf ` gqp in R and pfgq ˝ sÑ pfgqp in R.

We have: pf ` gqp “ fp ` gp and pfgqp “ fp ¨ gp.

Want: pf ` gq ˝ sÑ fp ` gp in R and pfgq ˝ sÑ fp ¨ gp in R.

We have s P pDf

Ş

Dgq
N Ď DN

f and s P pDf

Ş

Dgq
N Ď DN

g .

So, since sÑ p in X and

since f and g are both sequentially continuous at p from X to R,

we get: f ˝ sÑ fp in R and g ˝ sÑ gp in R.

Then, by HW#4-3 and HW#4-4, we get:

pf ˝sq`pg ˝sq Ñ fp`gp in R and pf ˝sq ¨ pg ˝sq Ñ fp ¨gp in R.



CLASS NOTES 57

Want: pf ˝ sq ` pg ˝ sq “ pf ` gq ˝ s and pf ˝ sq ¨ pg ˝ sq “ pfgq ˝ s.

Want: @j P N, ppf ˝ sq ` pg ˝ sqqj “ ppf ` gq ˝ sqj and

ppf ˝ sq ¨ pg ˝ sqqj “ ppfgq ˝ sqj.

Given j P N. Want:

ppf ˝sq`pg˝sqqj “ ppf`gq˝sqj and ppf ˝sq¨pg˝sqqj “ ppfgq˝sqj.

We have ppf ˝ sq ` pg ˝ sqqj “ pf ˝ sqj ` pg ˝ sqj “ fsj ` gsj
“ pf ` gqsj “ ppf ` gq ˝ sqj.

Want: ppf ˝ sq ¨ pg ˝ sqqj “ ppfgq ˝ sqj.

We have ppf ˝ sq ¨ pg ˝ sqqj “ pf ˝ sqj ¨ pg ˝ sqj “ fsj ¨ gsj
“ pfgqsj “ ppfgq ˝ sqj, as desired. �

THEOREM 2.11.2. Let X and Y be metric spaces, a P Y .

Then Ca
X is continuous from X to Y .

Proof. Since Ca
X is Lipschitz-0 from X to Y ,

we see that Ca
X is Lipschitz from X to Y .

Then, by HW#5-1, Ca
X is uniformly continuous from X to Y .

Then, by HW#5-2, Ca
X is continuous from X to Y , as desired. �

THEOREM 2.11.3. Let X be a metric space.

Let f : X 99K R, p P X, a P R.

Assume that f is continuous at p from X to R.

Then af is continuous at p from X to R.

Proof. Since Ca
X is continuous from X to R and DCa

X
“ X,

we see that Ca
X is continuous on X from X to R.

So, since p P X, we see that Ca
X is continuous at p from X to R.

So, since f is also continuous at p from X to R,

we see that Ca
X ¨ f is continuous at p from X to R.

It therefore suffices to show: Ca
X ¨ f “ af .

Want: @q P X, pCa
X ¨ fqq “ pafqq.

Given q P X. Want: pCa
X ¨ fqq “ pafqq.

We have: pCa
X ¨ fqq “ pC

a
Xqq ¨ fq “ a ¨ fq “ pafqq, as desired. �

THEOREM 2.11.4. Let X be a metric space, f, g : X 99K R, p P X.

Assume that f and g are both continuous at p from X to R.

Then f ´ g is continuous at p from X to R.

Proof. Since g is continuous at p from X to R,

we get: p´1q ¨ g is continuous at p from X to R.

So, since f is also continuous at p from X to R,
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we get: f ` p´1q ¨ g is continuous at p from X to R.

It therefore suffices to show: f ` p´1q ¨ g “ f ´ g.

Want: @q P X, pf ` p´1q ¨ gqq “ pf ´ gqq.

Given q P X. Want: pf ` p´1q ¨ gqq “ pf ´ gqq.

We have: pf ` p´1q ¨ gqq “ fq ` pp´1q ¨ gqq “ fq ` p´1q ¨ gq
“ fq ´ gq “ pf ´ gqq, as desired. �

The following theorem is called Absoluteness of Continuity:

THEOREM 2.11.5. Let X and Y be metric spaces.

Let A Ď X, B Ď Y , f : A 99K B.

Then: p f is continuous from A to B q

ô p f is continuous from X to Y q.

Proof. Proof of ñ:

Assume: f is continuous from A to B.

Want: f is continuous from X to Y .

Want: f is continuous on Df from X to Y .

Want: @p P Df , f is continuous at p from X to Y .

Given p P Df . Want: f is continuous at p from X to Y .

Want: @ε ą 0, Dδ ą 0 s.t., @w P X,

p dXpw, pq ă δ q ñ p dY pfw, fpq ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @w P X,

p dXpw, pq ă δ q ñ p dY pfw, fpq ă ε q.

Since f is continuous from A to B,

we get: f is continuous on Df from A to B.

So, since p P Df , we get: f is continuous at p from A to B.

So choose δ ą 0 s.t., @w P Df ,

p dApw, pq ă δ q ñ p dBpfw, fpq ă ε q.

Want: @w P Df , r p dXpw, pq ă δ q ñ p dY pfw, fpq ă ε q s.

Given w P Df . Want: p dXpw, pq ă δ q ñ p dY pfw, fpq ă ε q.

Assume: dXpw, pq ă δ. Want: dY pfw, fpq ă ε.

Since f : A 99K B, we get Df Ď A and If Ď B.

Then w, x P Df Ď A and fw, fx P If Ď B.

So, since dA “ dX |pAˆ Aq and since dB “ dY |pB ˆBq,

we get: dApw, pq “ dXpw, pq and dBpfw, fpq “ dY pfw, fpq.

Then dApw, pq “ dXpw, pq ă δ,

so, by choice of δ, we get: dBpfw, fpq ă ε.

Then dY pfw, fpq “ dBpfw, fpq ă ε, as desired.

End of proof of ñ.
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Proof of ð:

Assume: f is continuous from X to Y .

Want: f is continuous from A to B.

Want: f is continuous on Df from A to B.

Want: @p P Df , f is continuous at p from A to B.

Given p P Df . Want: f is continuous at p from A to B.

Want: @ε ą 0, Dδ ą 0 s.t., @w P X,

p dApw, pq ă δ q ñ p dBpfw, fpq ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @w P X,

p dApw, pq ă δ q ñ p dBpfw, fpq ă ε q.

Since f is continuous from X to Y ,

we get: f is continuous on Df from X to Y .

So, since p P Df , we get: f is continuous at p from X to Y .

So choose δ ą 0 s.t., @w P Df ,

p dXpw, pq ă δ q ñ p dY pfw, fpq ă ε q.

Want: @w P Df , r p dApw, pq ă δ q ñ p dBpfw, fpq ă ε q s.

Given w P Df . Want: p dApw, pq ă δ q ñ p dBpfw, fpq ă ε q.

Assume: dApw, pq ă δ. Want: dBpfw, fpq ă ε.

Since f : A 99K B, we get Df Ď A and If Ď B.

Then w, x P Df Ď A and fw, fx P If Ď B.

So, since dA “ dX |pAˆ Aq and since dB “ dY |pB ˆBq,

we get: dApw, pq “ dXpw, pq and dBpfw, fpq “ dY pfw, fpq.

Then dXpw, pq “ dApw, pq ă δ,

so, by choice of δ, we get: dY pfw, fpq ă ε.

Then dBpfw, fpq “ dY pfw, fpq ă ε, as desired.

End of proof of ð.

�

THEOREM 2.11.6. Let f, g, h be functions.

Then ph ˝ gq ˝ f “ h ˝ pg ˝ fq.

Proof. Want: @x, pph ˝ gq ˝ fqx “ ph ˝ pg ˝ fqqx.

Given x. Want: pph ˝ gq ˝ fqx “ ph ˝ pg ˝ fqqx.

We have: pph ˝ gq ˝ fqx “ ph ˝ gqpfxq “ hpgpfxqq

“ hppg ˝ fqxq “ ph ˝ pg ˝ fqqx, as desired. �

THEOREM 2.11.7. Let X, Y, Z be metric spaces, p P X.

Let f : X 99K Y and g : Y 99K Z.

Assume: f is continuous at p from X to Y .
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Assume: g is continuous at fp from Y to Z.

Then g ˝ f is continuous at p from X to Z.

Proof. We have: f is sequentially continuous at p from X to Y .

Also, g is sequentially continuous at fp from Y to Z.

Want: g ˝ f is sequentially continuous at p from X to Z.

Want: @s P DN
g˝f , p sÑ p in X q ñ p pg ˝ fq ˝ sÑ pg ˝ fqp in Z q.

Given s P DN
g˝f . Want: p sÑ p in X q ñ p pg ˝fq˝sÑ pg ˝fqp in Z q.

Assume: sÑ p in X. Want: pg ˝ fq ˝ sÑ pg ˝ fqp in Z.

We have: @j P N,

sj P Dg˝f , so pg ˝ fqpsjq ‰ /,

so gpfpsjqq “ pg ˝ fqpsjq ‰ /,

so both fpsjq ‰ / and gppf ˝ sqjq “ gpfpsjqq ‰ /,

so both sj P Df and pf ˝ sqj P Dg.

Then s P DN
f and f ˝ s P DN

g .

Since s P DN
f and since sÑ p in X

and since f is sequentially continuous at p from X to Y ,

we get: f ˝ sÑ fp in Y .

Since f ˝ s P DN
g and since f ˝ sÑ fp in Y

and since g is sequentially continuous at fp from Y to Z,

we get: g ˝ pf ˝ sq Ñ gfp in Z.

So, since pg ˝ fq ˝ s “ g ˝ pf ˝ sq and since pg ˝ fqp “ gfp ,

we get: pg ˝ fq ˝ sÑ pg ˝ fqp in Z, as desired. �

Alternate proof:

Proof. Want: @ε ą 0, Dγ ą 0 s.t., @v P Dg˝f ,

p dpv, pq ă γ q ñ p dppg ˝ fqv, pg ˝ fqpq ă ε q.

Given ε ą 0. Want: Dγ ą 0 s.t., @v P Dg˝f ,

p dpv, pq ă γ q ñ p dppg ˝ fqv, pg ˝ fqpq ă ε q.

Since g is continuous at fp from Y to Z, choose δ ą 0 s.t., @w P Dg,

p dpw, fpq ă γ q ñ p dpgw, gfpq ă ε q.

Since f is continuous at p from X to Y , choose γ ą 0 s.t., @v P Df ,

p dpv, pq ă γ q ñ p dpfv, fpq ă δ q.

Want: @v P Dg˝f , p dpv, pq ă γ q ñ p dppg ˝ fqv, pg ˝ fqpq ă ε q.

Given v P Dg˝f . Want: p dpv, pq ă γ q ñ p dppg˝fqv, pg˝fqpq ă ε q.

Assume: dpv, pq ă γ. Want: dppg ˝ fqv, pg ˝ fqpq ă ε.

Since v P Dg˝f , we get: pg ˝ fqv ‰ /.

So, since gpfvq “ pg ˝ fqv, we get: gpfvq ‰ /.

Then fv P Dg. Then fv ‰ /. Then v P Df .
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Since v P Df and dpv, pq ă γ, by choice of γ, we get: dpfv, fpq ă δ.

Since fv P Dg and dpfv, fpq ă δ, by choice of δ, we get dpgfv , gfpq ă ε.

Then dppg ˝ fqv, pg ˝ fqpq “ dpgfv , gfpq ă ε, as desired. �

THEOREM 2.11.8. Let X, Y, Z be metric spaces.

Let f : X 99K Y and let g : Y 99K Z.

Assume: f is continuous from X to Y .

Assume: g is continuous from Y to Z.

Then g ˝ f is continuous from X to Z.

Proof. Want: g ˝ f is continuous on Dg˝f from X to Z.

Want: @p P Dg˝f , g ˝ f is continuous at p from X to Z.

Given p P Dg˝f . Want: g ˝ f is continuous at p from X to Z.

Since p P Dg˝f , we get pg ˝ fqp ‰ /.

Then gpfpq “ pg ˝ fqp ‰ /, so fp P Dg.

Since fp P Dg, we get fp ‰ / and so p P Df .

Since f is continuous from X to Y , we get:

f is continuous on Df from X to Y .

So, since p P Df , we get: f is continuous at p from X to Y .

Since g is continuous from Y to Z, we get:

g is continuous on Dg from Y to Z.

So, since fp P Dg, we get: g is continuous at fp from Y to Z.

Then, by Theorem 2.11.7, g ˝ f is continuous at p from X to Z. �

THEOREM 2.11.9. Let X be a metric space, f, g : X 99K R, p P X.

Assume that f and g are both continuous at p from X to R.

Assume that gp ‰ 0. Then: f{g is continuous at p from X to R.

Proof. Define h : R 99K R by: @x P R, hx “ 1{x.

Then h is continuous from R to R.

That is, h is continuous on Dh from R to R.

So, since gp P Rˆ0 “ Dh, we conclude:

h is continuous at gp from R to R.

So, since g is continuous at p from X to R, we conclude:

h ˝ g is continuous at p from X to R.

So, since f is continuous at p from X to R, we conclude:

f ¨ ph ˝ gq is continuous at p from X to R.

It therefore suffices to show: f ¨ ph ˝ gq “ f{g.

Want: @w P X, pf ¨ ph ˝ gqqw “ pf{gqw.

Given w P X. Want: pf ¨ ph ˝ gqqw “ pf{gqw.
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We have pf ¨ ph ˝ gqw “ fw ¨ pph ˝ gqwq “ fw ¨ hgw “ fw ¨ p1{gwq

“ fw{gw “ pf{gqw, as desired. �

THEOREM 2.11.10. Let X be a metric space, f, g : X 99K R.

Assume: f and g are both continuous from X to R. Then:

(1) f ` g is continuous from X to R and

(2) f ´ g is continuous from X to R and

(3) fg is continuous from X to R and

(4) f{g is continuous from X to R.

Proof. Proof of (1),(2),(3):

Unassigned HW.

End of proof of (1),(2),(3).

Proof of (4):

Want: f{g is continuous on Df{g from X to R.

Want: @p P Df{g, f{g is continuous at p from X to R.

Given p P Df{g. Want: f{g is continuous at p from X to R.

Since p P Df{g, we get pf{gqp ‰ /.

Then fp{gp “ pf{gqp ‰ /, so fp ‰ / and gp ‰ / and gp ‰ 0.

Since fp ‰ /, we get p P Df . Since gp ‰ /, we get p P Dg.

Since f is continuous from X to R, we get:

f is continuous on Df from X to R.

So, since p P Df , we get: f is continuous at p from X to R.

Since g is continuous from X to R, we get:

g is continuous on Dg from X to R.

So, since p P Dg, we get: g is continuous at p from X to R.

Then, by Theorem 2.11.9, f{g is continuous at p from X to Z.

End of proof of (4). �

THEOREM 2.11.11. Let X and Y be metric spaces.

Let f : X 99K Y , let S Ď Df and let p P S.

Assume that f is continuous at p from X to Y .

Then f |S is continuous at p from X to Y .

Proof. We have p P S “ Df |S.

Want: @ε ą 0, Dδ ą 0 s.t., @w P Df |S,

p dpw, pq ă δ q ñ p dp pf |Sqw , pf |Sqp q ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @w P Df |S,

p dpw, pq ă δ q ñ p dp pf |Sqw , pf |Sqp q ă ε q.
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Since f is continuous at p from X to Y , choose δ ą 0 s.t., @w P Df ,

p dpw, pq ă δ q ñ p dpfw, fp q ă ε q.

Then δ ą 0. Want: @w P Df |S,

p dpw, pq ă δ q ñ p dp pf |Sqw , pf |Sqp q ă ε q.

Given w P Df |S. Want: p dpw, pq ă δ q ñ p dp pf |Sqw , pf |Sqp q ă ε q.

Assume dpw, pq ă δ. Want: dp pf |Sqw , pf |Sqp q ă ε.

We have: w P Df |S “ S. By hypothesis, S Ď Df . Then w P Df .

Since pw P Df q& p dpw, pq ă δ q, by choice of δ,

we get: dpfw, fpq ă ε.

We have p P S. Also, by hypothesis, w P S.

Then: pf |Sqp “ fp and pf |Sqw “ fw.

Then: dp pf |Sqw , pf |Sqp q “ dpfw, fpq ă ε, as desired. �

The converse of the preceding theorem is not true:

Let S :“ r4;8q and f :“ χR
S .

Then f |S “ C1
S, so f |S is continuous,

so f |S is continuous at 4 from R to R.

However, by HW#8-2, f is not continuous at 4 from R to R.

THEOREM 2.11.12. Let X and Y be metric spaces.

Let f : X 99K Y and let S Ď Df .

Assume that f is continuous from X to Y .

Then f |S is continuous from X to Y .

Proof. Want: f |S is continuous on Df |S from X to Y .

Want: @p P Df |S, f |S is continuous at p from X to Y .

Given p P Df |S. Want: f |S is continuous at p from X to Y .

We have: p P Df |S “ S. By hypothesis, S Ď Df . Then p P Df .

By hypothesis, f is continuous on Df from X to Y .

So, since p P Df , we get: f is continuous at p from X to Y .

Then, by Theorem 2.11.11, f |S is continuous at p from X to Y . �

THEOREM 2.11.13. Let f, g : RÑ R, p P R.

Assume f and g are both continuous at p from R to R.

Then pf, gq is continuous at p from R to R.

Proof. Let h :“ pf, gq. Want: h is continuous at p from R to R.

Since f and g are both continuous at p from R to R,

we get: p P Df and p P Dg.

We have Dh “ Df

Ş

Dg. Then p P Df

Ş

Dg “ Dh.

It remains to show: @ε ą 0, Dδ ą 0 s.t., @w P Dh,
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p dRpw, pq ă δ q ñ p dR2phw, hpq ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @w P Dh,

p dRpw, pq ă δ q ñ p dR2phw, hpq ă ε q.

Let λ :“ ε{
?

2.

Since f is continuous at p from R to R, choose α ą 0 s.t., @w P Df ,

p dRpw, pq ă α q ñ p dRpfw, fpq ă λ q.

Since g is continuous at p from R to R, choose β ą 0 s.t., @w P Dg,

p dRpw, pq ă β q ñ p dRpgw, gpq ă λ q.

Let δ :“ mintα, βu. Then δ ą 0.

Want: @w P Dh, p dRpw, pq ă δ q ñ p dR2phw, hpq ă ε q.

Given w P Dh. Want: p dRpw, pq ă δ q ñ p dR2phw, hpq ă ε q.

Assume: dRpw, pq ă δ. Want: dR2phw, hpq ă ε.

Since w P Dh “ Dpf,gq “ Df

Ş

Dg, we get: w P Df and w P Dg.

Since δ :“ mintα, βu, we get: δ ď α and δ ď β.

Since w P Df and since dRpw, pq ă δ ď α, by choice of α,

we get: dRpfw, fpq ă λ.

Since |fw ´ fp| “ dRpfw, fpq ă λ, we get: |fw ´ fp| ă λ.

Since 0 ď |fw ´ fp| ă λ, we get: |fw ´ fp|
2 ă λ2.

So, since |fw ´ fp|
2 “ pfw ´ fpq

2, we get: pfw ´ fpq
2 ă λ2.

Since w P Dg and since dRpw, pq ă δ ď β, by choice of β,

we get: dRpgw, gpq ă λ.

Since |gw ´ gp| “ dRpgw, gpq ă λ, we get: |gw ´ gp| ă λ.

Since 0 ď |gw ´ gp| ă λ, we get: |gw ´ gp|
2 ă λ2.

So, since |gw ´ gp|
2 “ pgw ´ gpq

2, we get: pgw ´ gpq
2 ă λ2.

We compute: dR2phw, hpq “ dR2p pf, gqw , pf, gqp q

“ dR2p pfw, gwq , pfp, gp q

“ | pfw, gwq ´ pfp, gpq |R2

“ | p fw ´ fp , gw ´ gp q |R2

“
a

pfw ´ fpq2 ` pgw ´ gpq2.

Since λ “ ε{2, we get
?

2 ¨ λ “ ε.

Since pfw ´ fpq
2 ă λ2 and pgw ´ gpq

2 ă λ2,

we get: pfw ´ fpq
2 ` pgw ´ gpq

2 ă λ2 ` λ2.

Since 0 ď pfw ´ fpq
2 ` pgw ´ gpq

2 ă λ2 ` λ2,

we get:
a

pfw ´ fpq2 ` pgw ´ gpq2 ă
?
λ2 ` λ2.

So, since dR2phw, hpq “
a

pfw ´ fpq2 ` pgw ´ gpq2

and since
?
λ2 ` λ2 “

?
2λ2 “

?
2 ¨ λ “ ε,

we get: dR2phw, hpq ă ε, as desired. �
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2.12. Comparison of functions.

We make the following convention: @x P R,

 p/ ď xq and  p/ ě xq and

 p/ ă xq and  p/ ą xq and

 px ď /q and  px ě /q and

 px ă /q and  px ą /q.
We also make the following convention:

 p/ ă /q and  p/ ą /q.
Also, since / “ /, we conclude:

/ ď / and  p/ ě /q.

DEFINITION 2.12.1. Let f and g be functions and let S be a set.

By f “ g on S, we mean: @x P S, fx “ gx.

For any functions f and g, for any set S, we have:

p f “ g on S q ñ p Df X S “ Dg X S q.

DEFINITION 2.12.2. Let f and g be functionals and let S be a set.

By f ď g on S, we mean: @x P S, fx ď gx.

By f ě g on S, we mean: @x P S, fx ě gx.

For any functionals f and g, for any set S, we have:

p f ď g on S q ñ p Df X S “ Dg X S q.

For any functionals f and g, for any set S, we have:

p f ě g on S q ñ p Df X S “ Dg X S q.

DEFINITION 2.12.3. Let f and g be functionals and let S be a set.

By f ă g on S, we mean: @x P S, fx ă gx.

By f ą g on S, we mean: @x P S, fx ą gx.

For any functionals f and g, for any set S, we have:

p f ă g on S q ñ p pS Ď Df q& pS Ď Dgq q.

For any functionals f and g, for any set S, we have:

p f ą g on S q ñ p pS Ď Df q& pS Ď Dgq q.

DEFINITION 2.12.4. Let f be a function, a an object, S a set.

By f ” a on S, we mean: @x P S, fx “ a.

For any function f , for any object a, for any set S, we have:

p p f ” a on S q& p a ‰ / q q ñ p S Ď Df q.
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For any function f , for any set S, we have:

p f ” / on Sq q ñ p S
Ş

Df “ H q.

DEFINITION 2.12.5. Let f be a functional, a P R, S a set.

By f ď a on S, we mean: @x P S, fx ď a.

By f ě a on S, we mean: @x P S, fx ě a.

By f ă a on S, we mean: @x P S, fx ă a.

By f ą a on S, we mean: @x P S, fx ą a.

By a ď f on S, we mean: @x P S, a ď fx.

By a ě f on S, we mean: @x P S, a ě fx.

By a ă f on S, we mean: @x P S, a ă fx.

By a ą f on S, we mean: @x P S, a ą fx.

DEFINITION 2.12.6. Let X be a metric space.

Let f and g be functions and let p P X.

By f “ g near p in X, we mean: DB P BXppq s.t. f “ g on B.

DEFINITION 2.12.7. Let X be a metric space.

Let f and g be functionals and let p P X.

By f ď g near p in X, we mean: DB P BXppq s.t. f ď g on B.

By f ě g near p in X, we mean: DB P BXppq s.t. f ě g on B.

By f ă g near p in X, we mean: DB P BXppq s.t. f ă g on B.

By f ą g near p in X, we mean: DB P BXppq s.t. f ą g on B.

DEFINITION 2.12.8. Let X be a metric space.

Let f be a functions, let a be an object and let p P X.

By f ” a near p in X, we mean: DB P BXppq s.t. f ” a on B.

DEFINITION 2.12.9. Let X be a metric space.

Let f be a functional, let a P R and let p P X.

By f ď a near p in X, we mean: DB P BXppq s.t. f ď a on B.

By f ě a near p in X, we mean: DB P BXppq s.t. f ě a on B.

By f ă a near p in X, we mean: DB P BXppq s.t. f ă a on B.

By f ą a near p in X, we mean: DB P BXppq s.t. f ą a on B.

THEOREM 2.12.10. Let X and Y be metric spaces.

Let f, g : X 99K Y and let p P X. Assume f “ g near p in X.

Assume g is continuous at p from X to Y .

Then f is continuous at p from X to Y .

Proof. Since g is continuous at p from X to Y ,

we conclude that p P Dg, so gp ‰ /.
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Since f “ g near p in X,

choose B P BXppq s.t. f “ g on B.

Since B P BXppq, choose µ ą 0 s.t. B “ BXpp, µq.

Then p P BXpp, µq “ B, so p P B.

So, since f “ g on B, we get: fp “ gp.

Then fp “ gp ‰ /, and so p P Df .

Want: @ε ą 0, Dδ ą 0 s.t., @w P Df ,

p dpw, pq ă δ q ñ p dpfw, fpq ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @w P Df ,

p dpw, pq ă δ q ñ p dpfw, fpq ă ε q.

Since g is continuous at p from X to Y ,

choose λ ą 0 s.t., @w P Dg,

p dpw, pq ă λ q ñ p dpgw, gpq ă ε q.

Let δ :“ mintλ, µu. Then δ ą 0.

Want: @w P Df , p dpw, pq ă δ q ñ p dpfw, fpq ă ε q.

Given w P Df . Want: p dpw, pq ă δ q ñ p dpfw, fpq ă ε q.

Assume dpw, pq ă δ. Want: dpfw, fpq ă ε.

Since dpw, pq ă δ ď µ, we get: w P BXpp, µq.

So, since BXpp, µq “ B, we get: w P B.

So, since f “ g on B, we get: fw “ gw.

Since w P Df , we get fw ‰ /.

Then gw “ fw ‰ /, and so w P Dg.

So, since dpw, pq ă δ ă λ, by choice of λ, we get: dpgw, gpq ă ε.

So, since fw “ gw and fp “ gp, we get: dpfw, fpq ă ε, as desired. �

2.13. Limits of functions between metric spaces.

DEFINITION 2.13.1. Let f be a function and let p and q be objects.

Then adjqp f is the function defined by:

@x, padjqp fqx “

#

fx, if x ‰ p

q, if x “ p.

THEOREM 2.13.2. Let f :“ adj31pC
2
Rq.

Then: @x P R, fx “

#

2, if x ‰ 1

3, if x “ 1.
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THEOREM 2.13.3. Let f :“ adj23pC
1
Rq.

Then: @x P R, fx “

#

1, if x ‰ 2

2, if x “ 3.

Also, adj13 f “ C1
R.

DEFINITION 2.13.4. Let X and Y be metric spaces.

Let f : X 99K Y , let p P X and let q P Y .

By f Ñ q near p from X to Y , we mean:

@ε ą 0, Dδ ą 0 s.t., @w P Df ,

p 0 ă dpw, pq ă δ q ñ p dpfw, qq ă ε q.

THEOREM 2.13.5. Let f :“ adj31pC
2
Rq.

Then: f1 “ 3 and f Ñ 2 near 1 from R to R.

Proof. We have: f1 “ padj31pC
2
Rqq1 “ 3.

Want: f Ñ 2 near 1 from R to R.

Want: @ε ą 0, Dδ ą 0 s.t., @w P Df ,

p 0 ă dpw, 1q ă δ q ñ p dpfw, 2q ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @w P Df ,

p 0 ă dpw, 1q ă δ q ñ p dpfw, 2q ă ε q.

Let δ “ 6. Then δ ą 0.

Want: @w P Df , p 0 ă dpw, 1q ă δ q ñ p dpfw, 2q ă ε q.

Given w P Df . Want: p 0 ă dpw, 1q ă δ q ñ p dpfw, 2q ă ε q.

Assume: 0 ă dpw, 1q ă δ. Want: dpfw, 2q ă ε.

Since dpw, 1q ą 0, we get dpw, 1q ‰ 0,

so w ‰ 1, so padj31pC
2
Rqqw “ pC

2
Rqw.

Since w P R, we have pC2
Rqw “ 2.

Then fw “ padj31pC
2
Rqqw “ pC

2
Rqw “ 2.

Then dpfw, 2q “ dp2, 2q “ 0 ă ε, as desired. �

THEOREM 2.13.6. Let X, Y and Z be metric spaces.

Let f : X 99K Y , g : Y 99K Z. Let a P X, b P Y .

Assume that f Ñ b near a from X to Y

and that g is continuous at b from Y to Z.

Then: g ˝ f Ñ gb near a from X to Z.

Proof. Want: @ε ą 0, Dγ ą 0 s.t., @v P Dg˝f ,

p 0 ă d p v , a q ă γ q ñ p d p pg ˝ fqv , gb q ă ε q.

Given ε ą 0. Want: Dγ ą 0 s.t., @v P Dg˝f ,

p 0 ă d p v , a q ă γ q ñ p d p pg ˝ fqv , gb q ă ε q.



CLASS NOTES 69

Since g is continuous at b from Y to Z,

choose δ ą 0 s.t., @w P Dg,

p d pw , b q ă δ q ñ p d p gw , gb q ă ε q.

Since f Ñ b near a from Z to Y ,

choose γ ą 0 s.t., @v P Df ,

p 0 ă d p v , a q ă γ q ñ p d p fv , b q ă δ q.

Then γ ą 0. Want: @v P Dg˝f ,

p 0 ă d p v , a q ă γ q ñ p d p pg ˝ fqv , gb q ă ε q.

Given v P Dg˝f .

Want: p 0 ă d p v , a q ă γ q ñ p d p pg ˝ fqv , gb q ă ε q.

Assume 0 ă d p v , a q ă γ. Want: d p pg ˝ fqv , gb q ă ε.

Since v P Dg˝f , we get pg ˝ fqv ‰ /.

Then gpfvq “ pg ˝ fqv ‰ /, and so fv P Dg.

Since fv P Dg, we see that fv ‰ /, and so v P Df .

Then v P Df and 0 ă d p v , a q ă γ,

so, by choice of γ, we get: d p fv , b q ă δ.

Let w :“ fv. Then w “ fv P Dg and d pw , b q “ d p fv , b q ă δ,

so, by choice of δ, we get: d p gw , gb q ă ε.

Then: d p pg ˝ fqv , gb q “ d p gfv , gb q “ d p gw , gb q ă ε. �

2.14. The Hausdorff property for metric spaces.

THEOREM 2.14.1. Let Y be a metric space, q, r P Y .

Assume q ‰ r. Then Dε ą 0 s.t. pBXpq, εqq
Ş

pBXpr, εqq “ H.

Proof. Since q ‰ r, we get: dpq, rq ‰ 0.

So, since dpq, rq ě 0, we get: dpq, rq ą 0.

Let s :“ dpq, rq. Then s ą 0. Let ε :“ s{2. Then ε ą 0.

Want: pBXpq, εqq
Ş

pBXpr, εqq “ H.

Assume pBXpq, εqq
Ş

pBXpr, εqq ‰ H. Want: Contradiction.

Choose w P pBXpq, εqq
Ş

pBXpr, εqq.

Since w P BXpq, εq, we get: dpq, wq ă ε.

Since w P BXpr, εq, we get: dpw, rq ă ε.

Then s “ dpq, rq ď pdpq, wqq ` pdpw, rqq ă ε` ε “ 2ε, so s ă 2ε.

Since ε “ s{2, we get 2ε “ s.

Then s ă 2ε “ s, so s ă s. Contradiction. �

2.15. Uniqueness of limits of sequences.

THEOREM 2.15.1. Let Y be a metric space, s P Y N, q, r P Y .

Assume sÑ q in Y and sÑ r in Y . Then q “ r.
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Proof. Assume q ‰ r. Want: Contradiction.

By Theorem 2.14.1, choose ε ą 0 s.t. pBXpq, εqq
Ş

pBXpr, εqq “ H.

Since sÑ q in Y , choose L P N s.t., @j P N,

p j ě L q ñ p dpsj, qq ă ε q.

Since sÑ r in Y , choose M P N s.t., @j P N,

p j ěM q ñ p dpsj, rq ă ε q.

Let j :“ maxtL,Mu. Then: p j P N q& p j ě L q& p j ěM q.

Since j P N and j ě L, by choice of L,

we get: dpsj, qq ă ε, so sj P BXpq, εq.

Since j P N and j ěM , by choice of M ,

we get: dpsj, rq ă ε, so sj P BXpr, εq.

Then sj P pBXpq, εqq
Ş

pBXpr, εqq “ H,

so sj P H. Contradiction. �

THEOREM 2.15.2. Let g :“ C3
r1;2s

Ť

t9u.

Then: @q P R, g Ñ q near 9.

Proof. Given q P R. Want: g Ñ q near 9.

Want: @ε ą 0, Dδ ą 0 s.t., @x P Dg,

p 0 ă dpx, 9q ă δ q ñ p dpgx, qq ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P Dg,

p 0 ă dpx, 9q ă δ q ñ p dpgx, qq ă ε q.

Let δ :“ 7. Then δ ą 0.

Want: @x P Dg, p 0 ă dpx, 9q ă δ q ñ p dpgx, qq ă ε q.

Given x P Dg. Want: p 0 ă dpx, 9q ă δ q ñ p dpgx, qq ă ε q.

Since x P Dg “ r1; 2s
Ť

t9u, we get: px P r1; 2s q _ p x P t9u q.

Then p 1 ď x ď 2 q _ px “ 9 q.

Then p 9´ x ě 7 q _ p 9´ x “ 0 q.

Then p |9´ x| ě 7 q _ p |9´ x| “ 0 q.

Then p dpx, 9q ě 7 q _ p dpx, 9q “ 0 q.

Then  p0 ă dpx, 9q ă 7q. Then  p0 ă dpx, 9q ă δq.

Then p 0 ă dpx, 9q ă δ q ñ p dpgx, qq ă ε q, as desired. �

2.16. Limits and continuity.

THEOREM 2.16.1. Let X and Y be metric spaces.

Let g : X 99K Y and let p P Dg.

Assume: g Ñ gp near p from X to Y .

Then: g is continuous at p from X to Y .
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Proof. By hypothesis p P Dg.

Want: @ε ą 0, Dδ ą 0 s.t., @w P Dg,

p dXpw, pq ă δ q ñ p dY pgw, gpq ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @w P Dg,

p dXpw, pq ă δ q ñ p dY pgw, gpq ă ε q.

Since g Ñ gp near p from X to Y ,

choose δ ą 0 s.t., @w P Dg,

p 0 ă dXpw, pq ă δ q ñ p dY pgw, gpq ă ε q.

Then δ ą 0. Want: @w P Dg,

p dXpw, pq ă δ q ñ p dY pgw, gpq ă ε q.

Given w P Dg. Want: p dXpw, pq ă δ q ñ p dY pgw, gpq ă ε q.

Assume: dXpw, pq ă δ. Want: dY pgw, gpq ă ε.

Exactly one of the following is true:

(1) dXpw, pq “ 0 or (2) dXpw, pq ‰ 0.

Case 1:

Since p P Dg, we get gp P Ig. Also, g : X 99K Y , so Ig Ď Y .

Then gp P Ig Ď Y , so dY pgp, gpq “ 0.

Since dXpw, pq “ 0, we get w “ p, and so gw “ gp.

We have dY pgw, gpq “ dY pgp, gpq “ 0 ă ε, as desired.

End of Case 1.

Case 2:

Since dXpw, pq ě 0 and dXpw, pq ‰ 0, we get dXpw, pq ą 0.

Then w P Dg and 0 ă dXpw, pq ă δ.

So, by choice of δ, we have: dY pgw, gpq ă ε, as desired.

End of Case 2. �

2.17. The metric space N˚.

DEFINITION 2.17.1. Define a : N˚ Ñ R by:

@j P N˚, aj “

#

1{j, if j ‰ 8

0, if j “ 8.

Define d˚ : N˚ ˆ N˚ Ñ r0;8q by: @j, k P N˚, d˚pj, kq “ |ak ´ aj|.

THEOREM 2.17.2. We have: d˚p5, 7q “ |p1{5q ´ p1{7q| “ 2{35

and d˚p3,8q “ |p1{3q ´ 0| “ 1{3

and d˚p8,8q “ |0´ 0| “ 0.

THEOREM 2.17.3. We have: d˚ PMpN˚q.
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We refer to d˚ as the compatible metric on N˚.
We are sometimes sloppy and use N˚ to denote the metric space pN˚, d˚q.
Note that dN˚ “ dpN˚,d˚q “ pN˚, d˚q2 “ d˚.

THEOREM 2.17.4. Let X be a set and let s P XN.

Then s : NÑ X and s : N˚ 99K X.

THEOREM 2.17.5. Let X be a metric space, s P XN, q P X.

Assume: sÑ q in X. Then: sÑ q near 8 from N˚ to X.

Proof. Want: @ε ą 0, Dδ ą 0 s.t., @j P Ds,

p 0 ă dN˚pj,8q ă δ q ñ p dXpsj, qq ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @j P Ds,

p 0 ă dN˚pj,8q ă δ q ñ p dXpsj, qq ă ε q.

Since sÑ q in X, choose K P N s.t., @j P N,

p j ě K q ñ p dXpsj, qq ă ε q.

Let δ :“ 1{K. Then δ ą 0.

Want: @j P Ds, p 0 ă dN˚pj,8q ă δ q ñ p dXpsj, qq ă ε q.

Given j P Ds. Want: p 0 ă dN˚pj,8q ă δ q ñ p dXpsj, qq ă ε q.

Assume: 0 ă dN˚pj,8q ă δ. Want: dXpsj, qq ă ε q.

We have dN˚pj,8q “ |p1{jq ´ 0| “ |1{j| “ 1{j,

and so dN˚pj,8q “ 1{j.

Then 1{j “ dN˚pj,8q ă δ “ 1{K, and so 1{j ă 1{K.

Since 0 ă 1{j ă 1{K, we get: j ą K. Then j ě K.

So, since j P Ds “ N, by choice of K, we get: dpsj, qq ă ε. �

2.18. The metric space R˚.

DEFINITION 2.18.1. Define α : R˚ Ñ r´1; 1s by:

@x P R˚, αx “

$

’

’

&

’

’

%

´1, if x “ ´8

x{
?

1` x2, if ´8 ă x ă 8

1, if x “ 8.

Define d˚ : R˚ ˆ R˚ Ñ r0;8q by: @x, y P R˚, d˚px, yq “ |αy ´ αx|.

THEOREM 2.18.2. d˚p5, 7q “ p7{
?

50q ´ p5{
?

26q and

d˚p3,8q “ 1´ p3{
?

10q and

d˚p´8, 6q “ p6{
?

37q ´ p´1q

“ p6{
?

37q ` 1 and

d˚p´8,8q “ 1´ p´1q “ 2.

THEOREM 2.18.3. We have: d˚ PMpR˚q.
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We refer to d˚ as the compatible metric on R˚.
We are sometimes sloppy and use R˚ to denote the metric space pR˚, d˚q.
Note that dR˚ “ dpR˚,d˚q “ pR˚, d˚q2 “ d˚.

2.19. The Intermediate Value Theorem.

THEOREM 2.19.1. Let X be a metric space.

Let f : X 99K R, let p P X and let a P R.

Assume: p f is continuous at p from X to R q & p fp ą a q.

Then DC P BXppq s.t. p f ą a on C X Df q.

Proof. Let ε :“ fp ´ a. Then ε ą 0.

Since f is continuous at p from X to R,

choose δ ą 0 s.t., @w P Df , p dpw, pq ă δ q ñ p dpfw, fpq ă ε q.

Let C :“ BXpp, δq. Then C P BXppq. Want: f ą a on CXDf .

Want: @w P C X Df , fw ą a. Given w P C X Df . Want: fw ą a.

We have w P C X Df Ď C “ BXpp, δq, so dpw, pq ă δq.

We have w P C X Df Ď Df , so w P Df .

Since w P Df and dpw, pq ă δ, by choice of δ, we get: dpfw, fpq ă ε.

Then fp ´ ε ă fw ă fp ` ε, and so fw ą fp ´ ε.

Since ε “ fp ´ a, we get a “ fp ´ ε. Then fw ą fp ´ ε “ a. �

THEOREM 2.19.2. Let X be a metric space.

Let f : X 99K R, let p P X and let a P R.

Assume: p f is continuous at p from X to R q & p fp ă a q.

Then DC P BXppq s.t. p f ă a on C X Df q.

Proof. Unassigned HW. �

THEOREM 2.19.3. Let a P R and b ą a and let I :“ ra; bs.

Let f : R 99K R and let y P R.

Assume: f is continuous on I from R to R and fa ă y ă fb.

Let S :“ t v P I | fv ă y u and let x :“ supS.

Then: x P I and fx ě y.

Proof. Since a P ra; bs “ I and fa ă y, by definition of S, we get: a P S.

Then a P S ď supS, and so a ď supS.

Since S Ď I “ ra; bs ď b, we get S ď b, and so supS ď b.

Then: a ď supS ď b. Then: supS P ra; bs.

By hypothesis, x “ supS and I “ ra; bs. Then: x P I.

It remains to show: fx ě y. Assume fx ă y. Want: Contradiction.

Since f is continuous on I from R to R and since x P I,
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we conclude: f is continuous at x from R to R.

So, since fx ă y, by Theorem 2.19.2,

choose C P BRpxq s.t. pf ă y on C X Df q.

Choose λ ą 0 s.t. C “ BRpx, λq.

Recall that fx ă y. By hypothesis, we have y ă fb.

Then fx ă y ă fb, so fx ă fb, so fx ‰ fb, so x ‰ b.

Since x P I and x ‰ b, we get x P Iˆb .

Then x P Iˆb “ ra; bsˆb “ ra; bq, and so a ď x ă b.

Let µ :“ b´ x. Since x ă b, we get µ ą 0.

Let δ :“ mintλ{2 , µ u. Then: p δ ą 0 q& p δ ď λ{2 q& p δ ď µ q.

Let w :“ x` δ. Then: pw ą x q& pw ď x` pλ{2q q& pw ď x` µ q.

Since w ą x, we get: x ă w.

Since λ ą 0, we get x´ λ ă x and x` pλ{2q ă x` λ.

Then x´ λ ă x ă w ď x` pλ{2q ă x` λ,

and so x´ λ ă w ă x` λ, and so w P px´ λ;x` λq.

Then w P px´ λ;x` λq “ BRpx, λq “ C, and so w P C.

Since µ “ b´ x, we get: x` µ “ b. Recall: x ă w.

We have a ď x ă w ď x` µ “ b, so a ă w ď b.

Then w P pa; bs Ď ra; bs “ I, so w P I.

By hypothesis, f is continuous on I from R to R, so I Ď Df .

Then w P I Ď Df , so, as w P C, we get w P C X Df .

So, since f ă y on C X Df , we get fw ă y.

So, since w P I, by definition of S, we get w P S. Recall: x ă w.

Then w P S ď supS “ x ă w, so w ă w. Contradiction. �

THEOREM 2.19.4. Let a P R and b ą a and let I :“ ra; bs.

Let f : R 99K R and let y P R.

Assume: f is continuous on I from R to R and fa ă y ă fb.

Then: Dx P I s.t. fx “ y.

Proof. Let S :“ t v P I | fv ă y u and let x :“ supS.

By Theorem 2.19.3, we have x P I. Want: fx “ y.

By Theorem 2.19.3, we have fx ě y. Want: fx ď y.

Assume fx ą y. Want: Contradiction.

Since f is continuous on I from R to R and x P I,

we conclude that f is continuous at x from R to R.

So, since fx ą y, by Theorem 2.19.1,

choose C P BRpxq s.t. f ą y on C X Df .

Choose λ ą 0 s.t. C “ BRpx, λq.
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Since λ ą 0, we get x´ λ ă x ă x` λ.

Since supS “ x ą x´ λ, we get supS ą x´ λ.

Then  psupS ď x´ λq, so  pS ď x´ λq,

so choose w P S s.t. w ą x´ λ. Then x´ λ ă w.

Then x´ λ ă w P S ď supS “ x ă x` λ,

so x´ λ ă w ă x` λ, so w P px´ λ;x` λq.

Then w P px´ λ;x` λq “ BRpx, λq “ C, so w P C.

By hypothesis, f is continuous on I from R to R, so I Ď Df .

Then w P S Ď I Ď Df , so, as w P C, we get w P C X Df .

So, since f ą y on C X Df , we get fw ą y.

Since w P S, by definition of S, we get: fw ă y. Contradiction. �

The next theorem is our first version of the Intermediate Value The-

orem, which we label IVT#1.

THEOREM 2.19.5. Let a P R and b ą a and let I :“ ra; bs.

Let f : R 99K R and let y P R.

Assume: f is continuous on I from R to R and fa ă y ă fb.

Then: Dx P pa; bq s.t. fx “ y.

Proof. By Theorem 2.19.5, choose x P I s.t. fx “ y.

As a ă y ă b, we get fa ă fx ă fb, so fa ‰ fx ‰ fb, so a ‰ x ‰ b.

Then x P Iˆ
ta,bu “ ra; bsˆ

ta,bu “ pa; bq. Want: fx “ y.

By choice of x, we have fx “ y, as desired. �

The next theorem is our second version of the Intermediate Value

Theorem, which we label IVT#2.

THEOREM 2.19.6. Let a P R, b ě a and f : R 99K R.

Assume: f is continuous on ra; bs from R to R and fa ď fb.

Then: rfa; fbs Ď f˚p ra; bs q.

Proof. Want: @y P rfa; fbs, y P f˚p ra; bs q.

Given y P rfa; fbs. Want: y P f˚p ra; bs q.

By definition of f˚p ra; bs q, want: Dx P ra; bs
Ş

Df s.t. fx “ y.

By hypothesis, f is continuous on ra; bs from R to R,

so ra; bs Ď Df , so ra; bs
Ş

Df “ ra; bs.

Want: Dx P ra; bs s.t. fx “ y.

Since y P rfa; fbs, we get fa ď y ď fb.

Exactly one of the following is true:

(1) y “ fa or (2) y “ fb or (3) fa ă y ă fb.
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Case 1:

Let x :“ a. Then x P ra; bs. Want: fx “ y. Know: y “ fa.

We have fx “ fa “ y, as desired.

End of Case 1.

Case 2:

Let x :“ b. Then x P ra; bs. Want: fx “ y. Know: y “ fb.

We have fx “ fb “ y, as desired.

End of Case 2.

Case 3:

By hypothesis, b ě a. Let I :“ ra; bs. Want: Dx P I s.t. fx “ y.

Since fa ă y ă fb, we get fa ă fb, so fa ‰ fb, so a ‰ b.

Sicne b ě a and a ‰ b, we see that b ą a.

Then, by Theorem 2.19.4, we conclude: Dx P I s.t. fx “ y.

End of Case 3. �

DEFINITION 2.19.7. Let a, b P R˚, α :“ minta, bu, β :“ maxta, bu.

Then ra|bs :“ rα; βs and pa|bq :“ pα; βq.

THEOREM 2.19.8. We have r8|6s “ r6|8s “ r6; 8s

and r9|2s “ r2|9s “ r2; 9s

and p3|5q “ p5|3q “ p3; 5q.

The next theorem is our third version of the Intermediate Value

Theorem, which we label IVT#3.

THEOREM 2.19.9. Let a P R, b ě a and f : R 99K R.

Assume: f is continuous on ra; bs from R to R. Then: rfa|fbs Ď

f˚p ra; bs q.

Proof. At least one of the following is true:

(1) fa ď fb or (2) ba ě fb.

Case 1:

By Theorem 2.19.6, rfa; fbs Ď f˚p ra; bs q.

Since fa ď fb, we get: rfa|fbs “ rfa; fbs.

Then rfa|fbs “ rfa; fbs Ď f˚p ra; bs q, as desired.

End of Case 1.
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Case 2: Let g :“ ´f .

Then g is continuous on ra; bs from R to R and ga ď gb.

Then, by Theorem 2.19.6, rga; gbs Ď g˚p ra; bs q.

Multiplying by ´1, we get ´p rga; gbs q Ď ´p g˚p ra; bs q q.

Then r´gb;´gas Ď p´g˚qp ra; bs q.

So, since fb “ ´gb and fa “ ´ga and f “ ´g,

we get rfb; fas Ď f˚p ra; bs q.

Since fa ě fb, we get: rfa|fbs “ rfb; fas.

Then rfa|fbs “ rfb; fas Ď f˚p ra; bs q, as desired.

End of Case 2. �

The next theorem is our final version of

the Intermediate Value Theorem.

THEOREM 2.19.10. Let a, b P R and f : R 99K R.

Assume: f is continuous on ra|bs from R to R.

Then: rfa|fbs Ď f˚p ra|bs q.

Proof. At least one of the following is true:

(1) a ď b or (2) a ě b.

Case 1:

By Theorem 2.19.9, rfa|fbs Ď f˚p ra; bs q.

Since a ď b, we get: ra|bs “ ra; bs.

Then rfa|fbs “ f˚p ra; bs q “ f˚p ra|bs q, as desired.

End of Case 1.

Case 2: Let α :“ b and β :“ a. Then α ď β.

By Theorem 2.19.9, rfα|fβs Ď f˚p rα; βs q.

Since a ě b, we see that ra|bs “ rb; as.

Then ra|bs “ rα; βs. Then fp ra|bs q “ fp rα; βs q.

Also, rfα|fβs “ rfβ|fαs “ rfa|fbs.

Then rfa|fbs “ rfα|fβs Ď f˚p rα; βs q “ f˚p ra|bs q, as desired.

End of Case 2. �

3. Compactness and the Extreme Value Theorem

3.1. Increasing and decreasing.

DEFINITION 3.1.1. Let f : R˚ 99K R˚, S Ď Df .

By f is strictly-increasing on S, we mean:



78 SCOT ADAMS

@w, x P S, pw ă xq ñ pfw ă fxq.

By f is strictly-decreasing on S, we mean:

@w, x P S, pw ă xq ñ pfw ą fxq.

By f is semi-increasing on S, we mean:

@w, x P S, pw ď xq ñ pfw ď fxq.

By f is semi-decreasing on S, we mean:

@w, x P S, pw ď xq ñ pfw ě fxq.

DEFINITION 3.1.2. Let f : R˚ 99K R˚.
By f is strictly-increasing, we mean: f is strictly-increasing on Df .

By f is strictly-decreasing, we mean: f is strictly-decreasing on Df .

By f is semi-increasing, we mean: f is semi-increasing on Df .

By f is semi-decreasing, we mean: f is semi-decreasing on Df .

We discussed increasing/decreasing and secant slopes.

THEOREM 3.1.3. Define f : RÑ R by: @x P R, fx “ x2.

Then f is strictly-decreasing on p´8; 0s and

f is strictly-increasing on r0;8q.

THEOREM 3.1.4. p1, 1{2, 1{3, . . .q is strictly-decreasing and

p1, 1, 2, 2, 3, 3, 4, 4, . . .q is semi-increasing.

THEOREM 3.1.5. Let s P RN.

Assume: @j P N, sj ă sj`1.

Then: s is strictly-increasing.

Proof. Since s is a sequence, we get: Ds “ N.

Want: s is strictly-increasing on Ds.

Want: s is strictly-increasing on N.

Want: @j, k P N, pj ă kq ñ psj ă skq.

Given j, k P N. Want: pj ă kq ñ psj ă skq.

Assume j ă k. Want: sj ă sk.

Since j, k P Z, we get k ´ j P Z. Also, since j ă k, we get k ´ j ą 0.

Let ` :“ k ´ j. Then ` P Z and ` ą 0. Then ` P N.

Also, k “ j ` `. Want: sj ă sj``.

Want: @m P N, sj ă sj`m.

Let T :“ tm P N | sj ă sj`mu. Want T “ N.

By assumption, @i P N, si ă si`1. Then sj ă sj`1.

Then 1 P T . By the PMI, want: @m P N, m` 1 P N.

Given m P N. Want: m` 1 P N.
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Since m P N, we get sj ă sj`m. Want: sj ă sj`m`1.

By assumption, @i P N, si ă si`1. Then sj`m ă sj`m`1.

Then sj ă sj`m ă sj`m`1, as desired. �

There are three more theorems that are similar to the last:

THEOREM 3.1.6. Let s P RN.

Assume: @j P N, sj ą sj`1.

Then: s is strictly-decreasing.

Proof. Unassigned HW �

THEOREM 3.1.7. Let s P RN.

Assume: @j P N, sj ď sj`1.

Then: s is semi-increasing.

Proof. Unassigned HW �

THEOREM 3.1.8. Let s P RN.

Assume: @j P N, sj ě sj`1.

Then: s is semi-decreasing.

Proof. Unassigned HW �

THEOREM 3.1.9. Let f, g : R 99K R.

Assume: f and g are both strictly-increasing.

Then: g ˝ f is strictly-increasing.

Proof. Unassigned HW. �

3.2. Subsequences.

DEFINITION 3.2.1. Let s and t be sequences.

By t is a subsequence of s, we mean:

Dstrictly-increasing ` P NN s.t. t “ s ˝ `.

THEOREM 3.2.2. Let s :“ p2, 4, 6, 8, . . .q, t :“ p22, 42, 62, 82, . . .q,

u :“ p1, 2, 3, 4, . . .q, v :“ p4, 2, 8, 6, 12, 10, 16, 14, 20, 18, . . .q.

Then t is a subsequence of s and s is a subsequence of u and

u is NOT a subsequence of s and

v is NOT a subsequence of u.

THEOREM 3.2.3. Let s, t, u be sequences.

Assume: pu is a subsequence of t q& p t is a subsequence of s q.

Then: u is a subsequence of s.
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Proof. Choose strictly-increasing `,m P NN s.t. u “ t ˝ ` and t “ s ˝m.

Then m˝ ` P NN. Also, by Theorem 3.1.9, m˝ ` is strictly-increasing.

It therefore suffices to show: u “ s ˝ pm ˝ `q.

We have u “ t ˝ ` “ ps ˝mq ˝ ` “ s ˝ pm ˝ `q, as desired. �

DEFINITION 3.2.4. Let X be a metric space and let s P XN.

By s is convergent in X, we mean: Dp P X s.t. sÑ p in X.

DEFINITION 3.2.5. Let X be a metric space and let s P XN.

By s is subconvergent in X, we mean:

Dsubsequence t of s s.t. t is convergent in X.

THEOREM 3.2.6. Let s :“ p´1, 1,´1, 1,´1, 1,´1, 1,´1, 1, . . .q.

Then s is subconvergent in R.

Proof. Want: Dsubsequence t of s s.t. t is convergent in R.

Let ` :“ p2, 4, 6, 8, . . .q. Then ` P NN and ` is strictly-increasing.

Let t :“ s ˝ `. Then t is a subsequence of s.

Want: t is convergent in R. Want: Dp P R s.t. tÑ p in R.

Let p :“ 1. Then p P R. Want: tÑ p in R.

We have: @j P N, tj “ ps ˝ `qj “ s`j “ s2j “ 1.

Then t “ C1
N. Then tÑ 1 in R. Then tÑ p in R. �

THEOREM 3.2.7. Let s :“ p2, 4, 6, 8, . . .q.

Then s is not subconvergent in R.

Proof. Assume s is subconvergent in R. Want: Contradiction.

Choose a subsequence t of s s.t. t is convergent in R.

Chose p P R s.t. tÑ p in R.

Choose a strictly-increasing ` P NN s.t. t “ s ˝ `.

Since tÑ p in R, choose K P N s.t., @j P N,

p j ě K q ñ p dptj, pq ă 1 q.

By the Archimedean Principle,

choose j P N s.t. j ě maxt pp` 1q{2 , K u.

Then j ě pp` 1q{2 and j ě K.

Since j P N and j ě K, by choice of K, we get: dptj, pq ă 1.

Then p´ 1 ă tj ă p` 1. Then p` 1 ą tj.

We have tj “ ps ˝ `qj “ s`j , so tj “ s`j .

By definition of s, we know: @k P N, sk “ 2k. Then s`j “ 2`j.

By HW#8-3, `j ě j. Then 2`j ě 2j.

Since j ě pp` 1q{2, we get 2j ě p` 1.
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Then p` 1 ą tj “ s`j “ 2`j ě 2j ě p` 1,

so p` 1 ą p` 1. Contradiction. �

3.3. Product metrics and product metric spaces.

THEOREM 3.3.1. Let X and Y be metric spaces, Z :“ X ˆ Y .

Define d : Z ˆ Z Ñ r0;8q by @p, q P Z,

dpp, qq “
a

pdXpp1, q1qq
2 ` pdY pp2, q2qq

2 .

Then d PMpZq.

DEFINITION 3.3.2. Let X and Y be metric spaces, Z :“ X ˆ Y .

Define d : Z ˆ Z Ñ r0;8q by @p, q P Z,

dpp, qq “
a

pdXpp1, q1qq
2 ` pdY pp2, q2qq

2 .

Then X ˆMS Y :“ pX ˆ Y, dq.

We are often sloppy and write X ˆ Y for X ˆMS Y .

3.4. Stereographic projection.

THEOREM 3.4.1. Let V :“ R2, C :“ SV p0V , 1q.

Let p :“ p1, 0q, q P Cˆp , t P R.

Assume: p and q and p0, tq collinear (i.e., on a line).

Then: t “
q2

1´ q1

and q “

ˆ

t2 ´ 1

t2 ` 1
,

2t

t2 ` 1

˙

.

The preceding is a precalculus theorem that we proved in detail

in class. It describes the importance of the “stereographic projection”

maps given by:

q ÞÑ
q2

1´ q1

: Cˆp Ñ R

and t ÞÑ

ˆ

t2 ´ 1

t2 ` 1
,

2t

t2 ` 1

˙

: RÑ Cˆp .

These two functions are called f and g in Theorem 3.7.12, below.

3.5. Two basic facts.

THEOREM 3.5.1. Let a, b ě 0. Then
?
a` b ď

?
a`

?
b.

Proof. Let s :“
?
a and t :“

?
b. Want:

?
a` b ď s` t.

Since s2 “ a and t2 “ b, we get s2 ` t2 “ a` b.

We have s, t ě 0, so 2st ě 0. Then s2 ` t2 ď s2 ` 2st` t2.

So, since s2 ` t2 “ a` b and s2 ` 2st` t2 “ ps` tq2,

we see that a` b ď ps` tq2.

Since a, b ě 0, we get a` b ě 0, so 0 ď a` b.

Since 0 ď a` b ď ps` tq2, we see that
?
a` b ď s` t, as desired. �
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THEOREM 3.5.2. Define α : R˚ Ñ r´1; 1s by: @x P R˚,

αx “

$

’

’

&

’

’

%

´1, if x “ ´8

x{
?

1` x2, if ´8 ă x ă 8

1, if x “ 8.

Define β : r´1; 1s Ñ R˚ by: @y P r´1; 1s,

βy “

$

’

’

&

’

’

%

´8, if y “ ´1

y{
a

1´ y2, if ´ 1 ă y ă 1

8, if y “ 1.

Then: α and β are both strictly-increasing and

α ˝ β “ idr´1;1s and β ˝ α “ idR˚.

Also: α : R˚ ãÑą r´1; 1s and β : r´1; 1s ãÑą R˚ and

α´1 “ β and β´1 “ α.

Proof. Unassigned HW. �

3.6. Limits involving infinite quantities.

THEOREM 3.6.1. @N P R, Dδ ą 0 s.t., @x P R,

p d˚px,´8q ă δ q ñ p x ă N q.

Proof. Given N P R. Want:Dδ ą 0 s.t., @x P R,

p d˚px,´8q ă δ q ñ p x ă N q.

Define α : R˚ Ñ r´1; 1s by: @x P R˚,

αx “

$

’

’

&

’

’

%

´1, if x “ ´8

x{
?

1` x2, if ´8 ă x ă 8

1, if x “ 8.

Define β : r´1; 1s Ñ R˚ by: @y P r´1; 1s,

βy “

$

’

’

&

’

’

%

´8, if y “ ´1

y{
a

1´ y2, if ´ 1 ă y ă 1

8, if y “ 1.

Since N ą ´8 and α is strictly-increasing, we get: αN ą α´8.

Let δ :“ 1` αN . Then δ ą 1` α´8 “ 1` p´1q “ 0, so δ ą 0.

Want: @x P R, p d˚px,´8q ă δ q ñ p x ă N q.

Given x P R. Want: p d˚px,´8q ă δ q ñ p x ă N q.

Assume: d˚px,´8q ă δ. Want: x ă N .

Since x ą ´8 and α is strictly-increasing, we get: αx ą α´8.

Then αx ´ α´8 ą 0, and so |αx ´ α´8| “ αx ´ α´8.

Then αx ´ α´8 “ |αx ´ α´8| “ d˚px,´8q ă δ.
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Then αx ă δ ` α´8 “ δ ` p´1q “ p1` αNq ` p´1q “ αN ,

so αx ă αN .

So, since β is strictly-increasing, βαx ă βαN
.

Then x “ pβ ˝ αqx “ βαx ă βαN
“ pβ ˝ αqN “ N , as desired. �

THEOREM 3.6.2. Let f : R 99K R.

Assume: @M P R, DN P R s.t., @x P Df ,

p x ă N q ñ p fx ąM q.

Then f Ñ 8 near ´8 from pR˚, d˚q to pR˚, d˚q.

Proof. Want: @ε ą 0, Dδ ą 0 s.t, @x P Df ,

p d˚px,´8q ă δ q ñ p d˚pfx,8q ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t, @x P Df ,

p d˚px,´8q ă δ q ñ p d˚pfx,8q ă ε q.

By HW#9-4, choose M P R s.t., @y P R,

p y ąM q ñ p d˚py,8q ă δ q.

By hypothesis, choose N P R s.t., @x P Df ,

p x ă N q ñ p fx ąM q.

By Theorem 3.6.1, choose δ ą 0 s.t., @x P R,

p d˚px,´8q ă δ q ñ p x ă N q.

Want: @x P Df , p d
˚px,´8q ă δ q ñ p d˚pfx,8q ă ε q.

Given x P Df . Want: p d˚px,´8q ă δ q ñ p d˚pfx,8q ă ε q.

Assume: d˚px,´8q ă δ. Want: d˚pfx,8q ă ε.

By hypothesis, f : R 99K R, so Df Ď R and If Ď R.

Since x P Df Ď R and d˚px,´8q ă δ, by choice of δ, we get: x ă N .

Since x P Df and x ă N , by choice of N , we get fx ąM .

Let y :“ fx. Then y ąM .

Since x P Df , it follows that fx P If .
Since y “ fx P If Ď R and y ąM , by choice of M , we get d˚py,8q ă δ.

Then d˚pfx,8q “ d˚py,8q ă ε, as desired. �

The converse of Theorem 3.6.2 is also true:

THEOREM 3.6.3. Let f : R 99K R.

Assume: f Ñ 8 near ´8 from pR˚, d˚q to pR˚, d˚q.
Then: @M P R, DN P R s.t., @x P Df ,

p x ă N q ñ p fx ąM q.

Proof. Unassigned HW. �

The preceding two theorems concern limits of 8 near ´8.

There are also two theorems concerning limits of ´8 near ´8.
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There are also two theorems concerning limits of 8 near 8.

There are also two theorems concerning limits of ´8 near 8.

We leave it to the reader to forumlate and prove all these theorems.

3.7. Isometries and homeomorphisms.

DEFINITION 3.7.1. Let X and Y be metric spaces, f an object.

By f is an isometry from X to Y , we mean:

f : X ãÑą Y and

@p, q P X, dY pfp, fqq “ dXpp, qq and

@p, q P Y , dXpf
´1
p , f´1

q q “ dXpp, qq.

THEOREM 3.7.2. Let X and Y be metric spaces, f : X Ñą Y .

Assume: @p, q P X, dY pfp, fqq “ dXpp, qq.

Then f is an isometry from X to Y .

Proof. Claim: f is 1-1.

Proof of Claim: Want: @p, q P X, p fp “ fq q ñ p p “ q q.

Given p, q P X. Want: p fp “ fq q ñ p p “ q q.

Assume fp “ fq. Want: p “ q.

Since fp “ fq, we get dY pfp, fqq “ 0.

By hypothesis, dY pfp, fqq “ dXpp, qq.

Then dXpp, qq “ 0. Then p “ q, as desired.

End of proof of Claim.

By the Claim f is 1-1. By hypothesis, f : X Ñą Y .

Then f : X ãÑą Y .

By hypothesis, @p, q P X, dY pfp, fqq “ dXpp, qq.

It remains to show: @p, q P Y , dXpf
´1
p , f´1

q q “ dY pp, qq.

Given p, q P Y . Want: dXpf
´1
p , f´1

q q “ dY pp, qq.

Let s :“ f´1
p and t :“ f´1

q . Then fs “ p and fq “ t.

Since s, t P X, by hypothesis, we get dY pfs, ftq “ dXps, tq.

Then dXpf
´1
p , f´1

q q “ dXps, tq “ dY pfs, ftq “ dY pp, qq. �

DEFINITION 3.7.3. Let X and Y be metric spaces.

By X and Y are isometric, we mean:

Df s.t. p f is an isometry from X to Y q.

THEOREM 3.7.4. pR˚, d˚q and r´1; 1s are isometric.
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Proof. Want: Dα s.t. p α is an isometry from pR˚, d˚q to r´1; 1s q.

Define α : R˚ Ñ r´1; 1s by:

@x P R˚, αx “

$

’

’

&

’

’

%

´1, if x “ ´8

x{
?

1` x2, if ´8 ă x ă 8

1, if x “ 8.

Want: α is an isometry from pR˚, d˚q to r´1; 1s.

Unassigned HW: Show α is an isometry from pR˚, d˚q to r´1; 1s. �

DEFINITION 3.7.5. Let X and Y be metric spaces, f an object.

By f is a homeomorphism from X to Y , we mean:

f : X ãÑą Y and

f is continuous from X to Y and

f´1 is continuous from Y to X.

THEOREM 3.7.6. Let X :“ r1; 2q
Ť

p3; 4s and Y :“ r7; 9s.

Define f : X Ñ Y by: @w P X, fw “

#

w ` 6, if w ă 2

w ` 5, if w ą 2.
Then f : X ãÑą Y and

f is continuous from X to Y and

f´1 is not continuous at 8 from Y to X.

The idea of the preceding theorem is expressed by:

“attaching is continuous, but tearing apart is not”.

The function f attaches r1; 2q to r3; 4s to make r7; 9s.

The function f´1 tears apart r7; 9s to make r1; 2q and r3; 4s.

DEFINITION 3.7.7. Let X and Y be metric spaces.

By X and Y are homeomorphic, we mean:

Df s.t. p f is an homeomorphism from X to Y q.

THEOREM 3.7.8. Let S and T be sets.

Let f : S Ñ T and g : T Ñ S.

Assume: p g ˝ f “ idS q & p f ˝ g “ idT q.

Then: p f : S ãÑą T q & p g : T ãÑą S q

& p f´1 “ g q & p g´1 “ f q.

THEOREM 3.7.9. Define s : R 99K R by sx “
?
x.

Then: Ds “ r0;8q “ Is
and s is uniformly continuous from R to R
and s is not Lipschitz from R to R.
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Proof. Unassigned HW.

Hint for uniformly continuity: Let δ :“ ε2. �

THEOREM 3.7.10. Define s : R 99K R by sx “
?
x.

Then: s is continuous from R to R
and s is continuous from r0;8q to r0;8q.

Proof. By Theorem 3.7.9, s is uniformly continuous from R to R.

It follows that s is continuous from R to R.

Want: s is continuous from r0;8q to r0;8q.

By Theorem 3.7.9, we have: Ds “ r0;8q “ Is.
Then s : r0;8q Ñą r0;8q, and so s : r0;8q 99K r0;8q.

Then, by Absoluteness of Continuity,

we get: s is continuous r0;8q to r0;8q, as desired. �

THEOREM 3.7.11. p´1; 1q and R are homeomorphic.

Proof. Want: Df s.t. f is a homeomorphism from p´1; 1q onto R.

Define f : p´1; 1q Ñ R by: @x P p´1; 1q, fx “
x

?
1´ x2

.

Want: f is a homeomorphism from p´1; 1q onto R.

Want: p f : p´1; 1q ãÑą R q &

p f is continuous from p´1; 1q to R q &

p f´1 is continuous from R to p´1; 1q q.

Define g : RÑ R by: @x P R, gx “
x

?
1` x2

.

Then: p Ig Ď p´1; 1q q & p g ˝ f “ idp´1;1q q & p f ˝ g “ idR q.

It follows that: f : p´1; 1q ãÑą R and g “ f´1.

Want: p f is continuous from p´1; 1q to R q &

p g is continuous from R to p´1; 1q q.

By properties of limits, we conclude that:

p f is continuous from R to R q &

p g is continuous from R to R q.
Then, by Absoluteness of Continuity, we have:

p f is continuous from p´1; 1q to R q &

p g is continuous from R to p´1; 1q q,

as desired. �

THEOREM 3.7.12. Let V :“ R2, C :“ SV p0V , 1q, p :“ p1, 0q.

Then Cˆp and R are homeomorphic.



CLASS NOTES 87

Proof. Want: Df s.t. f is a homeomorphism from Cˆp onto R.

Define φ : V 99K R by: @q P V , φq “
q2

1´ q1

.

By properties of continuity, φ is continuous from V to R.

Also, Cˆp Ď tq P V | q1 ă 1u Ď Dφ. Let f :“ φ|Cˆp .

Want: f is a homeomorphism from Cˆp onto R.

Since φ is continuous from V to R,

it follows that f is continuous from V to R.

Then, by Absoluteness of Continuity, f is continuous from Cˆp to R.

Want: f : Cˆp ãÑą R and f´1 is continuous from R to Cˆp .

Define λ, µ : RÑ R by: @t P R, λt “
t2 ´ 1

t2 ` 1
and µt “

2t

t2 ` 1
.

By properties of continuiy, λ and µ are both continuous from R to R,

and so pλ, µq is continuous from R to R2.

Let g :“ pλ, µq. Recall: V “ R2. Then g is continuous from R to V .

Unassigned HW: @t P R, gt P C
ˆ
p and fgt “ t

and @q P Cˆp , gfq “ q.

Then Ig Ď Cˆp and f ˝ g “ idR and g ˝ f “ idCˆp .

Then f : Cˆp ãÑą R and f´1 “ g.

Want: f´1 is continuous from R to Cˆp .

Since g is continuous from R to V and Ig Ď Cˆp ,

by Absoluteness of Continuity, g is continuous from R to Cˆp .

So, since f´1 “ g, we get: f´1 is continuous from R to Cˆp . �

3.8. Boundedness and compactness.

NOTE FOR NEXT YEAR: Define S is a-wide to mean: @p, q P S,

dpp, qq ă a. Then bounded means finitely wide, i.e., Da P R s.t. S is

a-wide. Also, Cauchy means: @ε ą 0, Dε-wide tail. Just use bounded

on metric spaces, no “bounded in . . . ”.

DEFINITION 3.8.1. Let X be a metric space and let S Ď X.

By S is bounded in X, we mean:

p DB P BX s.t. S Ď B q _ p S “ X “ H q.

THEOREM 3.8.2.

r1; 2q is bounded in R and p´8; 0q is NOT bounded in R.

THEOREM 3.8.3. Let V :“ R2, C :“ SV p0v, 1q, p :“ p0, 1q.

Then C and Cˆp are both bounded in R2.

THEOREM 3.8.4. Rˆ t0u is NOT bounded in R2.



88 SCOT ADAMS

THEOREM 3.8.5. Let X be a metric space.

Then H is bounded in X.

DEFINITION 3.8.6. Let X be a metric space.

By X is bounded, we mean:

X is bounded in X.

THEOREM 3.8.7.

r1; 2q is bounded and p´8; 0q is NOT bounded.

THEOREM 3.8.8. Let V :“ R2, C :“ SV p0v, 1q, p :“ p0, 1q.

Then C and Cˆp are both bounded.

THEOREM 3.8.9. Rˆ t0u is NOT bounded.

THEOREM 3.8.10. H is bounded.

THEOREM 3.8.11. Both pN˚, d˚q and pR˚, d˚q are bounded.

We have shown that

the bounded metric space p´1; 1q

is homeomorphic to

the unbounded metric space R.

Let V :“ R2, C :“ SV p0V , 1q, p :“ p0, 1q.

We have shown that

the bounded metric space Cˆp
is homeomorphic to

the unbounded metric space R.

Moreover, R is isometric to Rˆ t0u,
so R is homeomorhpic to Rˆ t0u.

We conclude that

the bounded metric space Cˆp
is homeomorphic to

the unbounded metric space Rˆ t0u.

Based on these observations, one might think that

boundedness is not a useful concept to topology.

And yet, it is possible for a metric spaces X to be SO bounded that

any metric space homeomorphic to X is bounded.

Let’s say that a metric space X is “super-bounded” if:



CLASS NOTES 89

any metric space homeomorphic to X is bounded.

We will show: C is super-bounded, although Cˆp is not.

DEFINITION 3.8.12. Let X be a metric space.

By X is compact, we mean: @s P XN, s is subconvergent in X.

Let V :“ R2, C :“ SV p0V , 1q, p :“ p0, 1q.

We will show: C is compact, although Cˆp is not. We will also show:

that any metric space

that is homeomorphic to a compact metric space

is compact.

In particular, any metric space homeomorphic to C is compact.

We will also show:

any compact metric space is bounded.

Then any metric space homeomorphic to C is bounded.

That is, C is super-bounded.

In fact, any compact metric space is super-bounded,

and it’s possible to show the converse:

any super-bounded metric space is compact,

although that’s beyond our scope.

3.9. Basic properties of compactness.

THEOREM 3.9.1. Let X be a compact metric space.

Then X is bounded.

Proof. Assume X is unboudned. Want: Contradiction.

Since H is bounded, we get: X ‰ H.

Choose p P X. @j P N, let Bj :“ BXpp, jq.

Then, @j P N, we have: Bj P BX .

So, since X is unbounded, we conclude: @j P N,

X Ę Bj and so Dq P X s.t. q R Bj.

So, by the Axiom of Choice, choose s P XN s.t., @i P N, si R Bi.

Since X is compact, we see that s is subconvergent.

Choose a subsequence t of s s.t. t is convergent in X.

Since t is convergent in X,

choose z P X s.t. tÑ z in X.

Since t is a subsequence of s,

choose a strictly-increasing ` P NN s.t. t “ s ˝ `.

Since tÑ z in X, choose K P N s.t., @j P N,
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p j ě K q ñ p dptj, zq ă 1 q.

By the Archimedean Property, choose j P N s.t.

j ą max t K , 1` pdpz, pqq u.

Then j ą K and j ą 1` pdpz, pqq,

so j ě K and j ě 1` pdpz, pqq.

Since j ě K, by choice of K, we get: dptj, zq ă 1.

Recall: @i P N, si R Bi. Then s`j R B`j . Then tj “ ps˝`qj “ s`j R B`j .

Since tj R B`j “ BXpp, `jq, we get: dptj, pq ě `j.

By HW#8-3, we get `j ě j. Then dptj, pq ě `j ě j, so j ď dptj, pq.

Recall: j ě 1` pdpz, pqq. Then 1` pdpz, pqq ď j.

Recall: dptj, zq ă 1. Then pdptj, zqq ` pdpz, pqq ă 1` pdpz, pqq.

By the triangle inequality, we have: dptj, pq ď pdptj, zqq`pdpz, pqq.

Then j ď dptj, pq ď pdptj, zqq ` pdpz, pqq ă 1` pdpz, pqq ď j,

so j ă j. Contradiction. �

THEOREM 3.9.2. Let X and Y be sets.

Let f : X Ñą Y and let s P Y N.

Then: Dσ P XN s.t. f ˝ σ “ s.

Proof. We have: @j P N, sj P Y “ If ,
and so Dq P X s.t. fq “ sj.

So, by the Axiom of Choice, choose σ P XN s.t., @j P N, fσj “ sj.

Want: f ˝ σ “ s. Want: @j P N, pf ˝ σqj “ sj.

Given j P N. Want: pf ˝ σqj “ sj.

We have pf ˝ σqj “ fσj “ sj, as desired. �

THEOREM 3.9.3. Let X and Y be sets.

Let f : X Ñ Y and let σ, τ P XN.

Assume: τ is a subsequence of σ.

Then: f ˝ τ is a subsequence of f ˝ σ.

Proof. Choose a strictly-increasing ` P NN s.t. τ “ σ ˝ `.

Then f ˝ τ “ f ˝ pσ ˝ `q “ pf ˝ σq ˝ `,

and so f ˝ τ is a subsequence of f ˝ σ, as desired. �

THEOREM 3.9.4. Let X and Y be metric spaces.

Let f : X Ñ Y and let τ P XN.

Assume: f is continuous from X to Y and τ is convergent in X.

Then: f ˝ τ is convergent in Y .

Proof. Choose p P X s.t. τ Ñ p in X.

Since p P X “ Df and f is continuous on Df from X to Y ,
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we conclude that: f is continuous at p from X to Y .

So, since τ Ñ p in X, we get: f ˝ τ Ñ fp in Y .

Then f ˝ τ is convergent in Y , as desired. �

THEOREM 3.9.5. Let X and Y be metric spaces.

Let f : X Ñ Y and let σ P XN.

Assume: f is continuous from X to Y and σ is subconvergent in X.

Then: f ˝ σ is subconvergent in Y .

Proof. Choose a subsequence τ of σ s.t. τ is convergent in X.

By Theorem 3.9.3, f ˝ τ is a subsequence of f ˝ σ.

It therefore suffices to show: f ˝ τ is convergent in Y .

By Theorem 3.9.4, f ˝ τ is convergent in Y , as desired. �

THEOREM 3.9.6. Let X and Y be metric spaces, f : X Ñą Y .

Assume: X is compact and f is continuous from X to Y .

Then : Y is compact.

Proof. Want: @s P Y N, s is subconvergent in Y .

Given s P Y N. Want: s is subconvergent in Y .

By Theorem 3.9.2, choose σ P XN s.t. f ˝ σ “ s.

Since X is compact and σ P XN, σ is subconvergent in X.

Then, by Theorem 3.9.5, f ˝ σ is subconvergent in Y .

So, since f ˝ σ “ s, we get: s is subconvergent in Y . �

THEOREM 3.9.7. @S Ď R˚, inf S , supS P R˚.

THEOREM 3.9.8. inf H “ 8 ą ´8 “ sup H.

THEOREM 3.9.9. Let S Ď R˚. Assume S ‰ H.

Then inf S ď supS.

Proof. Choose a P S. Then a ď supS and a ě inf S.

Then inf S ď a ď supS, as desired. �

THEOREM 3.9.10. Let S Ď R.

Assume: p S ‰ H q & p S is bounded in R q.
Then: inf S , supS P R.

Proof. By Theorem 3.9.7, we have: inf S , supS P R˚.
Choose B P BR s.t. S Ď B.

Choose p P R and a ą 0 s.t. B “ BRpp, aq.

Since S Ď B “ BRpp, aq “ pp´ a; p` aq,
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we see that: p´ a ă S ă p` a.

Then p´ a ď S ď p` a.

Then ´8 ă p´ a ď inf S ď supS ď p` a ă 8,

so ´8 ă inf S ă 8 and ´8 ă supS ă 8,

so inf S R t´8,8u and supS R t´8,8u,

Then inf S , supS P pR˚qˆ
t´8,8u “ R, as desired. �

3.10. Basics of topology in metric spaces.

DEFINITION 3.10.1. Let X be a metric space and A Ď X.

Then BXA :“ tp P X | @B P BXppq, B
Ş

A ‰ H ‰ B
Ş

pXzAqu.

In the preceding definition, note that B
Ş

pXzAq “ BzA.

THEOREM 3.10.2. Let X :“ R2, U :“ BXp0X , 1q, C :“ SXp0X , 1q.

Let H :“ r0;8q ˆ R, A :“ U
Ť

pC
Ş

Hq. Then BXA “ C.

DEFINITION 3.10.3. Let X be a metric space and A Ď X. Then:

B
seq
X A :“ t p P X | pDs P AN s.t. sÑ p in Xq

& pDt P pXzAqN s.t. tÑ p in Xq u.

THEOREM 3.10.4. Let X :“ R2, U :“ BXp0X , 1q, C :“ SXp0X , 1q.

Let H :“ r0;8q ˆ R, A :“ U
Ť

pC
Ş

Hq. Then Bseq
X A “ C.

THEOREM 3.10.5. Let X be a metric space and A Ď X.

Then BXA “ B
seq
X A.

Proof. By HW#10-3, we have: BXA Ě B
seq
X A. Want: BXA Ď B

seq
X A.

Want: @p P BXA, p P Bseq
X A. Given p P BXA. Want: p P Bseq

X A.

Define B : NÑ 2X by: @j P N, Bj “ BXpp, 1{jq.

Since p P BXA, we know:

@B P BXppq, B
Ş

A ‰ H ‰ B
Ş

pXzAq.

We know, @j P N, that Bj P BXppq.
Then: @j P N, Bj

Ş

A ‰ H ‰ Bj

Ş

pXzAq.

We wish to show:

(1) Ds P AN s.t. sÑ p in X and

(2) Dt P pXzAqN s.t. tÑ p in X

Proof of (1):

Define s P AN by: @j P N, sj “ CHpBj

Ş

Aq.

Then s P AN. Want: sÑ p in X.
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We have: @j P N, sj P Bj “ BXpp, 1{jq.

Then: @j P N, dpsj, pq ă 1{j.

Then: @j P N, dpsj, pq ď 1{j.

Then, by Theorem 2.8.3, we get sÑ p in X, as desired.

End of proof of (1).

Proof of (2):

Define t P pXzAqN by: @j P N, tj “ CHpBj

Ş

pXzAqq.

Then t P pXzAqN. Want: tÑ p in X.

We have: @j P N, tj P Bj “ BXpp, 1{jq.

Then: @j P N, dptj, pq ă 1{j.

Then: @j P N, dptj, pq ď 1{j.

Then, by Theorem 2.8.3, we get tÑ p in X, as desired.

End of proof of (2). �

DEFINITION 3.10.6. Let X be a metric space and A Ď X. Then:

ClXA :“ A
Ť

BXA

and IntXA :“ A z BXA.

THEOREM 3.10.7. Let X be a metric space and A Ď X.

Then: IntXA Ď A Ď ClXA.

THEOREM 3.10.8. Let X :“ R2, U :“ BXp0X , 1q, C :“ SXp0X , 1q.

Let H :“ r0;8q ˆ R, A :“ U
Ť

pC
Ş

Hq.

Then: ClXA “ U
Ť

C “ BXp0X , 1q

and IntXA “ U “ BXp0X , 1q.

THEOREM 3.10.9. Let X :“ R and A :“ r3; 5q.

Then: ClXA “ r3; 5s and IntXA “ p3; 5q.

THEOREM 3.10.10. Let X be a metric space, A Ď X, p P X.

Then: (1) p p P ClXA q ô p @B P BXppq, B
Ş

A ‰ Hq.

Also: (2) p p P IntXA q ô p DB P BXppq, B Ď A q.

Proof. Proof of (1): Unassigned HW. End of proof of (1).

Proof of ñ in (2):

Assume: p P IntXA. Want: DB P BXppq, B Ď A q.

Since p P IntXA “ AzpBXAq, we get: p P A and p R BXA.

Since p R BXA, by definition of BXA,

we conclude  p@B P BXppq, B
Ş

A ‰ H ‰ B
Ş

pXzAq q.
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Choose B P BXppq s.t.  pB
Ş

A ‰ H ‰ B
Ş

pXzAq q.

Then B P BXppq, and we wish to show: B Ď A.

We have: pB
Ş

A “ Hq _ pH “ B
Ş

pXzAq q.

Since B P BXppq, we get: p P B.

So, since p P A, we get: p P B
Ş

A. Then B
Ş

A ‰ H.

So, since pB
Ş

A “ Hq _ pH “ B
Ş

pXzAq q,

we conclude that H “ B
Ş

pXzAq.

Then B “ B
Ş

X “ B
Ş

pA
Ť

pXzAqq “ pB
Ş

Aq
Ť

pB
Ş

pXzAqq

“ pB
Ş

Aq
Ť

H “ B
Ş

A Ď A, as desired.

End of proof of ñ in (2).

Proof of ð in (2): Unassigned HW. End of proof of ð in (2). �

THEOREM 3.10.11. Let X be a metric space and A Ď X.

Then XzpIntXAq “ ClXpXzAq.

Proof. Proof of Ď:

Want: @p P XzpIntXAq, p P ClXpXzAq.

Given p P XzpIntXAq. Want: p P ClXpXzAq.

Want: @B P BXppq, B
Ş

pXzAq ‰ H.

Given B P BXppq. Want: B
Ş

pXzAq ‰ H.

Assume: B
Ş

pXzAq “ H. Want: Contradiction.

We have B “ B
Ş

X “ B
Ş

pA
Ť

pXzAqq “ pB
Ş

Aq
Ť

pB
Ş

pXzAqq

“ pB
Ş

Aq
Ť

H “ B
Ş

A Ď A, so B Ď A.

Since B P BXppq and B Ď A, we conclude,

by (2) of Theorem 3.10.10, that p P IntXA.

Since p P XzpIntXAq, we conclude that p R IntXA. Contradiction.

End of proof of Ď.

Proof of Ě: Unassigned HW. End of proof of Ě. �

THEOREM 3.10.12. Let X be a metric space and A Ď X.

Then XzpClXAq “ IntXpXzAq.

Proof. Let B :“ XzA. Want: XzpClXAq “ IntXB.

Let U :“ IntXB. Want: XzpClXAq “ U .

Since A Ď X, we get: XzpXzAq “ A. Then XzB “ A.

By Theorem 3.10.11, XzpIntXBq “ ClXpXzBq.

Then XzU “ XzpIntXBq “ ClXpXzBq “ ClXA,

so XzU “ ClXA, so XzpXzUq “ XzpClXAq.
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Since U Ď X, we get: XzpXzUq “ U .

Then XzpClXAq “ XzpXzUq “ U , as desired. �

DEFINITION 3.10.13. Let X be a metric space and A Ď X.

By A is closed in X, we mean: ClXA “ A.

By A is open in X, we mean: IntXA “ A.

The word “clopen” means “closed and open”. As set is clopen in a

metric space if it is both closed and open in it.

We noted that, in R, there are exactly two clopen sets: H and R.

We noted that, in R2, there are exactly two clopen sets: H and R2.

Let S :“ r1; 2s and T :“ r3; 4s and X :“ S
Ť

T . We noted that,

in the metric space X (with the relative metric inherited from R),

there are exactly four clopen sets:; H, S, T and X.

THEOREM 3.10.14. Let X :“ R2, U :“ BXp0X , 1q, C :“ SXp0X , 1q.

Let H :“ r0;8q ˆ R, A :“ U
Ť

pC
Ş

Hq.

Then: U is open in X and not closed in X

and U
Ť

C is closed in X and not open in X

and A is neither open nor closed in X

and X is both open and closed in X.

THEOREM 3.10.15. Let X :“ R.

Then: p3; 5q is open in X and not closed in X

and r3; 5s is closed in X and not open in X

and r3; 5q is neither open nor closed in X

and X is both open and closed in X.

THEOREM 3.10.16. Let X be a metric space, T Ď X, S Ď T .

Then: p A is open in X q ô p XzA is closed in X q.

Proof. Proof of ñ:

Assume: A is open in X. Want: XzA is closed in X.

Want: ClXpXzAq “ XzA. Since A is open in X, we get: IntXA “ A.

It follows that XzpIntXAq “ XzA.

By Theorem 3.10.11, we have: XzpIntXAq “ ClXpXzAq.

Then ClXpXzAq “ XzpIntXAq “ XzA, as desired.

End of proof of ñ.
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Proof of ð:

Assume: XzA is closed in X. Want: A is open in X.

Want: IntXA “ A. As XzA is closed in X, we get: ClXpXzAq “ XzA.

By Theorem 3.10.11, we have: XzpIntXAq “ ClXpXzAq.

Then XzpIntXAq “ ClXpXzAq “ XzA, so XzpIntXAq “ XzA,

and it follows that: XzpXzpIntXAqq “ XzpXzAq.

Since IntXA Ď X and A Ď X, we conclude:

XzpXzpIntXAqq “ IntXA and XzpXzAq “ A.

Then IntXA “ XzpXzpIntXAqq “ XzpXzAq “ A, as desired.

End of proof of ð. �

THEOREM 3.10.17. Let X be a metric space, T Ď X, S Ď T .

Then: p A is closed in X q ô p XzA is open in X q.

Proof. Since A Ď X, we get XzpXzAq “ A.

Let B :“ XzA. Then XzB “ A.

By Theorem 3.10.16, we have:

p B is open in X q ô p XzB is closed in X q.

Then p XzA is open in X q ô p A is closed in X q.

Then p A is closed in X q ô p XzA is open in X q, as desired. �

THEOREM 3.10.18. Let X be a metric space and A Ď X.

Then: IntXA is open in X.

Proof. Let U :“ IntXA. Want: U is open in X. Want IntXU “ U .

We have IntXU Ď U . Want: U Ď IntXU .

Want: @p P U , p P IntXU .

Given p P U . Want: p P IntXU .

Want: DB P BXppq s.t. B Ď U .

Since p P U “ IntXA, choose B P BXppq s.t. B Ď A.

Then B P BXppq. Want: B Ď U .

Since B Ď A, we get: IntXB Ď IntXA.

By HW#10-5, B is open in X, so IntXB “ B.

Then B “ IntXB Ď IntXA “ U , as desired. �

THEOREM 3.10.19. Let X be a metric space and A Ď X.

Then: ClXA is closed in X.

Proof. Let C :“ ClXA. Want: C is closed in X.

By Theorem 3.10.12, we have: XzpClXAq “ IntXpXzAq.

Let B :“ XzA. Then XzC “ XzpClXAq “ IntXpXzAq “ IntXB.
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By Theorem 3.10.18, IntXB is open in X.

So, since XzC “ IntXB, we see that: XzC is open in X.

Then, by Theorem 3.10.17, C is closed in X, as desired. �

3.11. Convergence of bounded semi-monotonic sequencs.

DEFINITION 3.11.1. Let X be a metric space, S a set.

Then: XS
bi :“ tf P XS | If is bounded in Xu.

THEOREM 3.11.2. Let s P RN
bi. Assume that s is semi-increasing.

Then s is convergent in R.

Proof. Want: Dq P R s.t. sÑ q in R.

Since Ds “ N ‰ H, we get: Is ‰ H.

So, since Is is bounded in R, by Theorem 3.9.10, we get: sup Is P R.

Let q :“ sup Is. Then q P R. Want: sÑ q in R.

Want: @ε ą 0, DK P N s.t., @j P N, p j ě K q ñ p dpsj, qq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N, p j ě K q ñ p dpsj, qq ă ε q.

We have  pq ď q ´ εq. So, as q “ sup Is, we get  psup Is ď q ´ εq.

Then  pIs ď q ´ εq, so choose y P Is s.t. y ą q ´ ε.

Since y P Is, choose K P Ds s.t. y “ sK .

Then K P Ds “ N. Want: @j P N, p j ě K q ñ p dpsj, qq ă ε q.

Given j P N. Want: p j ě K q ñ p dpsj, qq ă ε q.

Assume: j ě K. Want: dpsj, qq ă ε. Want: q ´ ε ă sj ă q ` ε.

We have sj P Is ď sup Is “ q ă q ` ε. Want: q ´ ε ă sj.

Since s is semi-increasing and K ď j, we get: sK ď sj.

By choice of y, we have: q´ ε ă y. By choice of K, we have y “ sK .

Then q ´ ε ă y “ sK ď sj, as desired. �

DEFINITION 3.11.3. Let f : R˚ 99K R˚.
By f is strictly-monotone, we mean:

f is strictly-increasing or f is strictly-decreasing.

By f is semi-monotone, we mean:

f is semi-increasing or f is semi-decreasing.

THEOREM 3.11.4. Let s P RN
bi. Assume that s is semi-monotone.

Then s is convergent in R.

Proof. Either (1) s is semi-increasing or (2) s is semi-decreasing.

Case (1):
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By Theorem 3.11.2, s is convergent in R, as desired.

End of Case (1).

Case (2):

Let t :“ ´s. Then t P RN
bi and t is semi-increasing.

By Theorem 3.11.2, t is convergent in R.

Then ´t is convergent in R.

So, since ´t “ ´p´sq “ s, we see that s is convergent in R, as desired.

End of Case (2). �

3.12. Basic dynamical systems.

DEFINITION 3.12.1. Let f be a function and let j P N.

Then f j˝ is the function defined by: @x,

f j˝ pxq “ UE t y P If | Ds P Inf s.t.

p s1 “ fpxq q&

p @i P r2..js, si “ fpsj´1q q&

p y “ sj q u.

Let f be a function. Then

f 1
˝ “ f , f 2

˝ “ f ˝ f , f 3
˝ “ f ˝ f ˝ f , f 4

˝ “ f ˝ f ˝ f ˝ f , etc.

THEOREM 3.12.2. Let f be a function and let j P N.

Then: f j`1
˝ “ f ˝ f j˝ .

THEOREM 3.12.3. Let P be a set, f : P Ñ P , m P P .

Define ` P PN by: @j P N, `j “ f j˝ pmq.

Then: @j P N, `j`1 “ fp`jq.

Proof. Given j P N. Want: `j`1 “ fp`jq.

By Theorem 3.12.2, we have: quad f j`1
˝ “ f ˝ f j˝ .

We have `j`1 “ f j`1
˝ pmq “ p f ˝ f j˝ qpmq

“ fp f j˝ pmq q “ fp`jq, as desired. �

THEOREM 3.12.4. Let P P N. Assume P is infinite.

Then D` P PN s.t. ` is strictly-increasing.

Proof. By hypothesis, the set P is infinite.

For all k P P , since r1..ks “ t1, . . . , ku, we see that r1..ks is finite,

so, since P is infinite, we see that P zr1..ks is infinite,

so, as H is finite, we get P zr1..ks ‰ H,

so, by the Well-Ordering Axiom, minpP zr1..ksq ‰ /,
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and it follows that minpP zr1..ksq P P zr1..ks.

Define f : P 99K P by: @k P P , fpkq “ minpP zr1..ksq.

Then: @k P P , fpkq ‰ / and fpkq P P zr1..ks.

Since f : P 99K P we get Df Ď P .

For all k P P , since fpkq ‰ /, we see that k P Df . Then P Ď Df .

So, since Df Ď P , we get: Df “ P . Then f : P Ñ P .

Since P is infinite and as H is finite, we get P ‰ H,

so, by the Well-Ordering Axiom, minP ‰ /,

and it follows that minP P P .

Let m :“ minP . Then m P P .

Define ` P PN by: @j P N, `j “ f j˝ pmq.

Then ` P PN, and we wish to show: ` is strictly-increasing.

Want: @j P N, `j`1 ą `j.

Given j P N. Want: `j`1 ą `j.

By Theorem 3.12.3, we have: `j`1 “ fp`jq.

Since ` P PN, it follows that `j P P .

Recall: @k P P , fpkq P P zr1..ks.

Let k :“ `j. Then k P P , so fpkq P P zr1..ks.

Then `j`1 “ fp`jq “ fpkq P P zr1..ks Ď Nzr1..ks ą k “ `j. �

THEOREM 3.12.5. Let P Ď N. Assume P is finite.

Then Dm P N0 s.t. pm..8q Ď NzP .

Proof. Since P Ď N, we get: P`0 Ď N`0 “ N0.

Since P`0 is a nonempty finite subset of R, we get: max P`0 ‰ /.

Let m :“ max P`0 . Then m ‰ /, so m P P`0 ď m.

Want: pm..8q Ď NzP . Want: @j P pm..8q, j P NzP .

Given j P pm..8q. Want: j P NzP .

Since m P N0 ě 0, we get pm..8q Ď p0..8q.

Then j P pm..8q Ď p0..8q “ N, and it remains to show: j R P .

Since j P pm..8q, we see that j ą m.

Then P Ď P`0 ď m ă j, so P ă j. Then j R P . �

3.13. Properness of the reals.

THEOREM 3.13.1. Let s P RN.

Then Dsubsequence t of s s.t. t is semi-monotone.

Proof. Let P :“ tj P N | @k P pj..8q, sj ě sku.

We know: either (1) P is infinite or (2) P is finite.
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Case 1:

By Theorem 3.12.4, choose ` P PN s.t. ` is strictly-increasing.

Let t :“ s ˝ `. Then t is a subsequence of s.

Want: t is semi-monontone. Want: t is semi-decreasing.

Want: @i P N, ti ě ti`1.

Given i P N. Want: ti ě ti`1.

Since ` P PN, we see that `i P P .

Let j :“ `i. Then j P P .

Then, by definition of P , we have: @k P pj..8q, sj ě sk.

Since ` is strictly-increasing, we have `i`1 ą `i.

Also, since ` P PN, we have `i`1 P P . Let k :“ `i`1.

Since k “ `i`1 ą `i “ j and since k “ `i`1 P P Ď N,

we see that k P pj..8q. Then sj ě sk.

Then ti “ ps ˝ `qi “ s`i “ sj ě sk “ s`i`1
“ ps ˝ `qi`1 “ ti`1.

End of Case 1.

Case 2:

By Theorem 3.12.5, choose m P N0 s.t. pm..8q Ď NzP .

Then, @j P pm..8q, because j R P , we see, by definition of P , that:

 p@k P pj..8q, sj ě sk q.

Thus, @j P pm..8q, Dk P pj..8q s.t. sj ă sk.

Then, @j P pm..8q, t k P pj..8q | sj ă sk u ‰ H.

Then, by the Well-Ordering Axiom, we have:

@j P pm..8q, mint k P pj..8q | sj ă sk u ‰ /.

Define f : pm..8q Ñ Z by:

@j P pm..8q, fpjq “ mint k P pj..8q | sj ă sk u.

Then, @j P pm..8q, fpjq P t k P pj..8q | sj ă sk u,

and so fpjq P pj..8q and sj ă sfpjq.

Also, @j P pm..8q, j ą m, and so pj..8q Ď pm..8q.

Then, @j P pm..8q, fpjq P pj..8q Ď pm..8q.

So, since Df “ pm..8q, we get: @j P Df , fj P pm..8q.

Then If Ď pm..8q. Then f : pm..8q Ñ pm..8q.

Define ` P pm..8qN by: @i P N, `i “ f i˝pm` 1q.

Then: @i P N, fp`iq “ `i`1.

We have: @j P pm..8q, fpjq P pj..8q ą j, so fpjq ą j.

Then, @i P N, `i`1 “ fp`iq ą `i. Then ` is strictly-increasing.

Let t :“ s ˝ `. Then t is a subsequence of s.

Want: t is semi-monontone. Want: t is strictly-increasing.
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Want: @i P N, ti ă ti`1. Given i P N. Want: ti ă ti`1.

Recall: @j P pm..8q, sj ă sfpjq. Let j :“ `i.

Then j P I` “ pm..8q, so sj ă sfpjq. Also, fpjq “ fp`iq “ `i`1.

Then ti “ ps ˝ `qi “ s`i “ sj ă sfpjq “ s`j`1
“ ps ˝ `qj`1 “ tj`1.

End of Case 2. �

THEOREM 3.13.2. Let f and g be functions. Then Ig˝f Ď Ig.

Proof. Want: @p P Ig˝f , p P If . Given p P Ig˝f . Want: p P Ig.
Since p P Ig˝f , choose x P Dg˝f s.t. pg ˝ fqx “ p.

Let y :“ fx. Then gy “ gfx “ pg ˝ fqx “ p.

Since p P Ig˝f , we get p ‰ /. Then gy “ p ‰ /, so gy P Ig.
Then p “ gy P Ig, as desired. �

THEOREM 3.13.3. Let X be a metric space and let s P XN
bi.

Let t be a subsequence of s. Then t P XN
bi.

Proof. Choose a strictly-increasing ` P NN s.t. t “ s ˝ `.

By Theorem 3.13.2, Is˝` Ď Is. Then It “ Is˝` Ď Is, so It Ď Is.
Since s P RN

bi, we get: Is is bounded in R.

So, since It Ď Is, we get: It is bounded in X. Then t P XN
bi. �

DEFINITION 3.13.4. Let X be a metric space.

By X is proper, we mean: @s P XN
bi, s is subconvergent in X.

THEOREM 3.13.5. R is proper.

Proof. Want: @s P RN
bi, s is subconvergent in R.

Given s P RN
bi. Want: s is subconvergent in R.

Want: Dsubsequence t of s s.t. t is convergent in R.

By Theorem 3.13.1, choose a subsequence t of s s.t. t is semi-monotone.

Then t is a subsequence of s. Want: t is convergent in R.

By Theorem 3.13.3, we get: t P RN
bi.

Then, by Theorem 3.11.4, we conclude: t is convergent in R. �

3.14. Properness of products.

THEOREM 3.14.1. Let X and Y be metric spaces.

Let f : X 99K Y and let T Ď X.

Assume: p T is bounded in X q &p f is Lipschitz from X to Y q.

Then f˚pT q is bounded in Y .
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Proof. Exactly one of the following must be true:

(1) Df “ H or Df ‰ H.

Case (1):

We have f˚pT q “ tfp | p P T X Dfu “ tfp | p P Hu “ H.

So, since H is bounded in Y , we get: f˚pT q is bounded in Y .

End of Case (1).

Case (2):

Want: DC P BY s.t. f˚pT q Ď C.

Since Df ‰ H, choose z P Df . Since z P Df Ď X, we get X ‰ H.

So, since T is bounded in X, choose A P BX s.t. T Ď A.

By the Superset Recentering Lemma, choose B P BXpzq s.t. A Ď B.

Since B P BXpzq, choose r ą 0 s.t. B “ BXpz, rq.

Since f is Lipschitz, choose K ě 0 s.t. f is Lipschitz-K.

Let C :“ BY pfz, Kr ` 1q. Then C P BY . Want: f˚pT q Ď C.

Want: @q P f˚pT q, q P C. Given q P f˚pT q. Want: q P C.

Since q P f˚pT q, choose p P T X Df s.t. q “ fp.

We have p P T Ď A Ď B “ BXpz, rq, so dXpp, zq ă r.

Since f is Lipschitz-K, we have dY pfp, fzq ď K ¨ pdXpp, zqq.

Since K ě 0 and dXpp, zq ă r, we get K ¨ pdXpp, zqq ď Kr.

Then dY pq, fzq “ dY pfp, fzq ď K ¨ pdXpp, zqq ď Kr ă Kr ` 1,

so dY pq, fzq ă Kr ` 1, so q P BY pfz, Kr ` 1q.

Then q P BY pfz, Kr ` 1q “ C, as desired.

End of Case (2). �

THEOREM 3.14.2. Let X and Y be metric spaces.

Let f : X Ñ Y and let s P XN
bi.

Assume: f is Lipschitz from X to Y . Then f ˝ s P Y N
bi .

Proof. Since s P XN
bi, we get: s : NÑ X and Is is bounded in X.

Since s : NÑ X and f : X Ñ Y , we get f ˝ s : NÑ Y .

Then f ˝ s P Y N. Want: If˝s is bounded in Y .

Since Is is bounded in X and since f is Lipschitz from X to Y ,

by Theorem 3.14.1, we get: f˚pIsq is bounded in Y .

So, since If˝s “ f˚pIsq, we get: If˝s is bounded in Y , as desired. �

THEOREM 3.14.3. Let X be a metric space, s P XN and q P X.

Let t be a subsequence of s.

Assume: sÑ q in X. Then: tÑ q in X.
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Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dptj, qq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dptj, qq ă ε q.

Since sÑ q in X, choose K P N s.t., @j P N,

p j ě K q ñ p dpsj, qq ă ε q.

Then K P N. Want: @j P N,

p j ě K q ñ p dptj, qq ă ε q.

Given j P N. Want: p j ě K q ñ p dptj, qq ă ε q.

Assume j ě K. Want: dptj, qq ă ε.

Since t is a subsequence of s,

choose a strictly-increasing ` P NN s.t. t “ s ˝ `.

Then `j ě j ě K, so, by choice of K, we get: dps`j , qq ă ε.

Then dptj, qq “ dpps ˝ `qj, qq “ dps`j , qq ă ε, as desired. �

THEOREM 3.14.4. Let X be a metric space, s P XN.

Let t be a subsequence of s.

Assume: s is convergent in X. Then: t is convergent in X.

Proof. Since s is convergent in X, choose q P X s.t. sÑ q in X.

By Theorem 3.14.3, tÑ q in X. Then t is convergent in X. �

THEOREM 3.14.5. Let X and Y be metric spaces.

Let Z :“ X ˆ Y and let s P ZN
bi.

Assume X is proper. Define α : Z Ñ X by: @p P Z, αp “ p1.

Then: Dsubsequence t of s s.t. α ˝ t is convergent in X.

Proof. Since α is Lipschitz-1 from Z to X and since s P ZN
bi,

by Theorem 3.14.2, we get: α ˝ s P XN
bi.

So, since X is proper, we get: α ˝ s is subconvergent in X.

Choose a subsequence v of α ˝ s s.t. v is convergent in X.

Choose a strictly-increasing ` P NN s.t. v “ pα ˝ sq ˝ `.

Let t :“ s ˝ `. Then t is a subsequence of s.

Want: α ˝ t is convergent in X.

We have α ˝ t “ α ˝ ps ˝ `q “ pα ˝ sq ˝ ` “ v.

So, since v is convergent in X, we get:

α ˝ t is convergent in X, as desired. �

THEOREM 3.14.6. Let X and Y be metric spaces.

Let Z :“ X ˆ Y and let t P ZN
bi.
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Assume Y is proper. Define β : Z Ñ Y by: @p P Z, βp “ p2.

Then: Dsubsequence u of t s.t. β ˝ u is convergent in X.

Proof. Unassigned HW. �

THEOREM 3.14.7. Let f be a function and let t P DN
f .

Let u be a subsequence of t. Then f ˝ u is a subsequence of f ˝ t.

Proof. Want: Dstrictly-increasing ` P NN s.t. f ˝ u “ pf ˝ tq ˝ `.

Since u is a subsequence of t,

choose a strictly-increasing ` P NN s.t. u “ t ˝ `.

Then ` is strictly-increasing and ` P NN. Want: f ˝ u “ pf ˝ tq ˝ `.

We have f ˝ u “ f ˝ pt ˝ `q “ pf ˝ tq ˝ `, as desired. �

THEOREM 3.14.8. Let X and Y be metric spaces.

Let Z :“ X ˆ Y and let s P ZN.

Define α : Z Ñ X by: @p P Z, αp “ p1.

Define β : Z Ñ Y by: @p P Z, βp “ p2.

Assume α ˝ u is convergent in X and β ˝ u is convergent in Y .

Then u is convergent in Z.

Proof. Let s :“ α ˝ u and let t :“ β ˝ u. Then ps, tq “ u.

Also, s is convergent in X, so choose a P X s.t. sÑ a in X.

Also, t is convergent in Y , so choose b P Y s.t. tÑ b in Y .

Then, by HW#9-3, we get: ps, tq Ñ pa, bq in X ˆ Y .

So, since u “ ps, tq and since Z “ X ˆ Y ,

we conclude: uÑ pa, bq in Z. Then u is convergent in Z. �

THEOREM 3.14.9. Let X and Y be proper metric spaces.

Then X ˆ Y is proper.

Proof. Let Z :“ X ˆ Y . Want: Z is proper.

Want: @s P ZN
bi, s is subconvergent in Z.

Given s P ZN
bi. Want: s is subconvergent in Z.

Want: Dsubsequence u of s s.t. u is convergent in Z.

Define α : Z Ñ X by: @p P Z, αp “ p1.

By Theorem 3.14.5, choose a subsequence t of s s.t.

α ˝ t is convergent in X.

Define β : Z Ñ Y by: @p P Z, βp “ p2.

Since t is a subsequence of s and since s P ZN
bi,

by Theorem 3.13.3, we conclude: t P ZN
bi.

By Theorem 3.14.6, choose a subsequence u of t s.t.
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β ˝ u is convergent in Y .

Since u is a subsequence of t and since t is a subsequence of s,

by Theorem 3.2.3, we see that u is a subsequence of s.

Want: u is convergent in Z.

Since u is a subsequence of t, by Theorem 3.14.7,

we get: α ˝ u is a subsequence of α ˝ t.

So, since α ˝ t is convergent in X, by Theorem 3.14.4, we get:

α ˝ u is convergent in X.

So, since β ˝ u is convergent in Y , we get: u is convergent in Z. �

THEOREM 3.14.10. R2 is proper.

Proof. By Theorem 3.13.5, R is proper.

So, by Theorem 3.14.9, Rˆ R is proper.

So, since R2 “ Rˆ R, we see that R2 is proper. �

THEOREM 3.14.11. R3 is proper.

Proof. By Theorem 3.13.5, R is proper.

By Theorem 3.14.10, R2 is proper.

Then, by Theorem 3.14.9, R2 ˆ R is proper.

So, since R3 “ R2 ˆ R, we see that R3 is proper. �

Using induction, we may show: @k P N, Rk is proper.

THEOREM 3.14.12. Let X be a metric space.

Then: p X is compact q ô p X is proper and bounded q.

Proof. Proof of ñ:

Assume: X is compact. Want: X is proper and bounded.

By Theorem 3.9.1, X is bounded. Want: X is proper.

Want: @s P XN
bi, s is subconvergent in X.

Given s P XN
bi. Want: s is subconvergent in X.

Since s P XN and X is compact, s is subconvergent in X, as desired.

End of proof of ñ.

Proof of ð:

Assume: X is proper and bounded. Want: X is compact.

Want: @s P XN, s is subconvergent in X.

Given s P XN. Want: s is subconvergent in X.

Since X is bounded and Is Ď X, we get: Is is bounded. Then s P XN
bi.
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So, since X is proper, we see that s is subconvergent in X, as desired.

End of proof of ð. �

DEFINITION 3.14.13. Let X be a metric space and let a P R.

By X is a-bounded, we mean: @p, q P X, dpp, qq ă a.

Note that a sequence in a metric space is Cauchy iff

@ε ą 0, the sequence has an ε-bounded tail,

by which we mean

@ε ą 0, some tail of the sequence has ε-bounded image.

THEOREM 3.14.14. Let X be a metric space.

Then: p X is bounded q ô p Da ě 0 s.t. X is a-bounded q.

THEOREM 3.14.15. Let X and Y be bounded metric spaces.

Then X ˆ Y is bounded.

Proof. Choose a, b ě 0 s.t. X is a-bounded and Y is b-bounded.

Let c :“
?
a2 ` b2. Then X ˆ Y is c-bounded.

Then X ˆ Y is bounded. �

THEOREM 3.14.16. Let X and Y be compact metric spaces.

Then X ˆ Y is compact.

Proof. By ñ of Theorem 3.14.12, X and Y are proper and bounded.

So, by Theorem 3.14.9 and Theorem 3.14.15,

we see that: X ˆ Y is proper and bounded.

Then, by ð of Theorem 3.14.12, we get: X ˆ Y is compact. �

3.15. Density of Q in R.

DEFINITION 3.15.1. Let X be a metric space, T Ď X, ε ą 0.

By T is ε-net in X, we mean: @w P X, Ds P T s.t. dpw, sq ă ε.

THEOREM 3.15.2. Z is 1-net in R.

Proof. Want: @w P R, Ds P Z s.t. dpw, sq ă ε.

Given w P R. Want: Ds P Z s.t. dpw, sq ă ε.

By the Archimedean Principle, choose j P N s.t. j ą 1´ w.

Then w ` j ą 1. Let x :“ w ` j. Then x ą 1. Also, x´ j “ w.

Let A :“ ti P N | i ą xu. By the Archimedan Principle, A ‰ H.

So, since A Ď N, by the Well-Ordering Axiom, we have: min A ‰ /.

Then min A P A. Let k :“ min A. Then k P A.

So, by definition of A, we have: k P N and k ą x.
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Since k ą x ą 1 and k P N, we get k P p1..8q, so k ´ 1 P p0..8q.

Since k ´ 1 ă k “ minA ď A, we get: k ´ 1 R A.

So, since k P p0..8q “ N, we get:  pk ´ 1 ą xq. Then k ´ 1 ď x.

Let s :“ k ´ j ´ 1. As j, k P N Ď Z, s P Z. Want: dpw, sq ă 1.

Since k ´ 1 ď x ă k, we get: k ´ j ´ 1 ď x´ j ă k ´ j.

So, since k ´ j ´ 1 “ s and x´ j “ w and k ´ j “ s` 1,

we get s ď w ă s` 1,

and so 0 ď w ´ s ă 1.

Since w ´ s ě 0, we get: |w ´ s| “ w ´ s.

Then dpw, sq “ |w ´ s| “ w ´ s ă 1, as desired. �

THEOREM 3.15.3. Let X be a metric space, U Ď X, T Ď U , ε ą 0.

Assume T is ε-net in X. Then U is ε-net in X.

Proof. Unassigned HW. �

DEFINITION 3.15.4. Let X be a metric space, T Ď X.

By T is dense in X, we mean: ClXT “ X.

THEOREM 3.15.5. Let X be a metric space, U Ď X, T Ď U .

Assume T is dense in X. Then U is dense in X.

Proof. Want: ClXU “ X. Since ClXU Ď X, we want: X Ď ClXU .

Since T Ď U , ClXT Ď ClXU . Since T is dense in X, ClXT “ X.

Then X “ ClXT Ď ClXU , as desired. �

THEOREM 3.15.6. Let X be a metric space and let A Ď X.

Then Clseq
X A :“ t p P X | Ds P AN s.t. sÑ p in X u.

THEOREM 3.15.7. Let X be a metric space and let A Ď X.

Then A Ď Clseq
X A.

Proof. Want: @p P A, p P Clseq
X A. Given p P A. Want: p P Clseq

X A.

We have: Cp
N Ñ p in X. Want: Ds P AN s.t. sÑ p in X.

Let s :“ Cp
N. Since p P A, we get s P AN. Want sÑ p in X.

Since Cp
N Ñ p inX and since s “ Cp

N, we get: sÑ p inX as desired. �

THEOREM 3.15.8. Let X be a metric space and let A Ď X.

Then: B
seq
X X Ď Clseq

X A.

Proof. Want: @p P Bseq
X X, p P Clseq

X A.

Given p P Bseq
X X. Want: p P Clseq

X A.

Want: Ds P AN s.t. sÑ p in X.
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Since p P Bseq
X X, we know:

Ds P AN s.t. sÑ p in X and Dt P pXzAqN s.t. tÑ p in X.

Then: Ds P AN s.t. sÑ p in X, as desired. �

THEOREM 3.15.9. Let X be a metric space and let A Ď X.

Then: Clseq
X X “ ClXA.

Proof. By HW#11-5, Clseq
X X Ď ClXA. Want: ClXA Ď Clseq

X A.

By Theorem 3.15.7, we have: A Ď Clseq
X A.

By Theorem 3.10.5, we have: BXA “ B
seq
X A.

By Theorem 3.15.8, we have: B
seq
X A Ď Clseq

X A.

Since A Ď Clseq
X A and BXA “ B

seq
X A Ď ClXA, we get:

A
Ť

pBXAq Ď Clseq
X A.

Then ClXA “ A
Ť

pBXAq Ď Clseq
X A, as desired. �

3.16. Compact vs closed and bounded.

THEOREM 3.16.1. Let Y be a metric space, X Ď Y , p P X, r ą 0.

Then BXpp, rq “ pBY pp, rqq XX.

Proof. Unassigned HW. �

The next result is Absoluteness of Bounded:

THEOREM 3.16.2. Let Y be a metric space, X Ď Y , K Ď X.

Then: p K is bounded in X q ô p K is bounded in Y q.

Proof. Proof of ñ: Unassigned HW. End of proof of ñ.

Proof of ð:

Assume K is bounded in Y . Want: K is bounded in X.

Assume K is not bounded in X. Want: Contradiction.

Since K is not bounded in X, while H is bounded in X,

we conclude that K ‰ H.

So, since K is bounded in Y , choose B P BY s.t. K Ď B.

Since X Ě K ‰ H, we get: X ‰ H, so choose p P X.

By the Superset Recentering Theorem, choose C P BY ppq s.t. B Ď C.

Since C P BY ppq, choose r ą 0 s.t. C “ BY pp, rq.

Let A :“ BXpp, rq. By Theorem 3.16.1, we have: A “ C XX.

By hypothesis, we have: K Ď X.

Since K Ď B Ď C and K Ď X , we get: K Ď C XX.

Then K Ď C XX “ A.
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So, since A P BXppq Ď BX , we see that K is bounded in X.

Recall that K is not bounded in X. Contradiction.

End of proof of ñ. �

The next result is called Absoluteness of Limit:

THEOREM 3.16.3. Let Y be a metric space and let X Ď Y .

Let s P XN and let q P X.

Then: p sÑ q in X q ô p sÑ q in Y q.

Proof. Proof of ñ: Unassigned HW. End of proof of ñ.

Proof of ð:

Assume sÑ q in Y . Want: sÑ q in X.

Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dXpsj, qq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dXpsj, qq ă ε q.

Since s is Cauchy in Y , choose K P N s.t., @j P N,

p j ě K q ñ p dY psj, qq ă ε q.

Then K P N. Want: @j P N, p j ě K q ñ p dXpsj, qq ă ε q.

Given j P N. Want: p j ě K q ñ p dXpsj, qq ă ε q.

Assume j ě K. Want: dXpsj, qq ă ε.

Since s P XN, we get sj P X. By hypothesis, we have q P X.

Since sj, q P X, we conclude that dXpsj, qq “ dY psj, qq.

Then dXpsj, qq “ dY psj, qq ă ε, as desired.

End of proof of ð. �

THEOREM 3.16.4. Let Y be a metric space, X Ď Y , s P XN.

Assume s is convergent in X. Then s is convergent in Y .

Proof. Sicne s is convergent in X, choose q P X s.t. sÑ q in X.

Then, by Absoluteness of Limit, we have: sÑ q in Y .

So, since q P X Ď Y , we get: s is convergent in Y , as desired. �

THEOREM 3.16.5. Let Y :“ R and let X :“ p0;8q.

Define s P Y N by: @j P N, sj “ 1{j.

Then s is convergent in Y and s is not convergent in X.

DEFINITION 3.16.6. Let X be a metric space.

Then TX :“ tU Ď X |U is open in Xu and

T 1X :“ tC Ď X |C is closed in Xu.
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THEOREM 3.16.7. Let Y be a metric space, X P T 1Y , s P XN.

Then: p s is convergent in X q ô p s is convergent in Y q.

Proof. By Theorem 3.16.4, we have:

p s is convergent in X q ñ p s is convergent in Y q.

Want: p s is convergent in X q ð p s is convergent in Y q.

Assume: s is convergent in Y . Want: s is convergent in X.

Since s is convergent in Y , choose q P Y s.t. sÑ q in Y .

Since s P XN and sÑ q in Y , we get: q P Clseq
Y X.

Since X P T 1Y , we see that X is closed in Y , so ClYX “ X.

By Theorem 3.15.9, Clseq
Y X “ ClYX. Then q P Clseq

Y X “ ClYX “ X.

Since sÑ q in Y and s P XN and q P X,

it follows, by Absoluteness of Limit, that: sÑ q in X. �

THEOREM 3.16.8. Let Y be a metric space, X P T 1Y , s P XN.

Then: p s is subconvergent in X q ô p s is subconvergent in Y q.

Proof. Proof of ñ: Unassigned HW. End of proof of ñ.

Proof of ð:

Want: p s is subconvergent in X q ð p s is subconvergent in Y q.

Assume: s is subconvergent in Y . Want: s is subconvergent in X.

Since s is subconvergent in Y ,

choose a subsequence t of s s.t. t is convergent in Y .

Since Dt “ N and It Ď Is Ď X, we get: t P XN.

Then, by Theorem 3.16.7, we conclude: t is convergent in X.

So, since t is a subsequence of s, we see that

s is subconvergent in X, as desired.

End of proof of ñ. �

THEOREM 3.16.9. Let X be a metric space and let K Ď X.

Assume K is compact. Then K is closed and bounded in X.

Proof. Since K is compact, by Theorem 3.9.1, K is bounded.

Then K is bounded in K, so, by Absoluteness of Bounded,

K is bounded in X. Want: K is closed in X.

Want: ClXK “ K. Since K Ď ClXK, we want: ClXK Ď K.

Want: @p P ClXK, p P K. Given p P ClXK. Want: p P K.

Since p P ClXK “ Clseq
X K, choose s P KN s.t. sÑ p in X.

Since s P KN and since K is compact, s is subconvergent in K,

so choose a subsequence t of s s.t. t is convergent in K.
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Since t is convergent in K, choose q P K s.t. tÑ q in K.

Since q P K it suffices to show: p “ q.

Since sÑ p in X and since t is a subsequence of s,

by Theorem 3.14.3, we get: tÑ p in X.

Since tÑ p in X and tÑ q in X,

by Theorem 2.15.1, we get: p “ q, as desired. �

THEOREM 3.16.10. Let X be a metric space and let K Ď X.

Assume K is bounded in X. Then KN Ď XN
bi.

Proof. Want: @s P KN, s P XN
bi. Given s P KN. Want: s P XN

bi.

Since s P KN Ď XN, we want: Is is bounded in X.

Since Is Ď K and since K is bounded in X,

we conclude that Is is bounded in X, as desired. �

THEOREM 3.16.11. Let X be a proper metric space and let K Ď X.

Then: p K is compact q ô p K is closed and bounded in X q.

Proof. By Theorem 3.16.9, we have:

p K is compact q ñ p K is closed and bounded in X q.

Want: p K is compact q ð p K is closed and bounded in X q.

Assume: K is closed and bounded in X. Want: K is compact.

Want: @s P KN, s is subconvergent in K.

Given s P KN. Want: s is subconvergent in K.

Since K is closed in X, we get K P T 1X .

So, by Theorem 3.16.8, it suffices to show: s is subconvergent in X.

Since K is bounded in X, by Theorem 3.16.10, we get: KN Ď XN
bi.

Since s P KN Ď XN
bi and since X is proper,

it follows that: s is subconvergent in X, as desired. �

3.17. The unit circle is compact.

DEFINITION 3.17.1. Let X be a metric space and let z P X.

Then dXpz, ‚q : X Ñ r0;8q is defined by:

@p P X, pdXpz, ‚qqp “ dXpz, pq.

By sloppiness, we sometimes write dpz, ‚q for dXpz, ‚q.

THEOREM 3.17.2. Let X be a metric space and let z P X.

Then dXpz, ‚q is Lipschitz-1 from X to R.
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Proof. Let f :“ dXpz, ‚q. Want: f is Lipschitz-1 from X to R.

Want: @p, q P Df , dRpfp, fqq ď dXpp, qq.

Given p, q P Df . Want: dRpfp, fqq ď dXpp, qq.

Since f “ dXpz, ‚q, we get Df “ X. Then p, q P Df “ X.

Let ε :“ dXpp, qq. Want: dRpfp, fqq ď ε.

Want: p fp ď fq ` ε q & p fq ď fp ` ε q.

We have fp “ pdXpz, ‚qp “ dXpz, pq ď pdXpz, qqq ` pdXpq, pqq

“ pdXpz, ‚qqq ` pdXpp, qqq “ fq ` ε. Want: fq ď fp ` ε.

We have fq “ pdXpz, ‚qq “ dXpz, qq ď pdXpz, pqq ` pdXpp, qqq

“ pdXpz, ‚qqp ` pdXpp, qqq “ fp ` ε, as desired. �

THEOREM 3.17.3. Let X and Y be metric spaces.

Let f : X Ñ Y and let U P TY .

Assume that f is continuous from X to Y . Then f˚U P TX .

Proof. Want: f˚U is open in X. Want: IntXpf
˚Uq “ f˚U .

We have: IntXpf
˚Uq Ď f˚U . Want: f˚U Ď IntXpf

˚Uq.

Want: @p P f˚U , p P IntXpf
˚Uq.

Given p P f˚U . Want: p P IntXpf
˚Uq.

Want: DA P BXppq s.t. A Ď f˚U .

Since U P TY , we see that U is open in Y , so IntYU “ U .

Since p P f˚U , we get: fp P U . Then fp P U “ IntYU .

Since fp P IntYU , choose B P BY pfpq s.t. B Ď U .

Since B P BY pfpq, choose ε ą 0 s.t. B “ Bpfp, εq.

By hypothesis, f is continuous from X to Y ,

so f is continuous on Df from X to Y .

As p P f˚U , we get: p P Df . Then f is continuous at p from X to Y ,

so choose δ ą 0 s.t. @q P Df , p dpp, qq ă δ q ñ p dpfp, fqq ă ε q.

Let A :“ BXpp, δq. Then A P BXppq. Want: A Ď f˚U .

Want: @q P A, q P f˚U . Given q P A. Want: q P f˚U .

Since q P A “ BXpp, δq, we see that q P X and that dpp, qq ă δ.

Since f : X Ñ Y , we get Df “ X. Then q P X “ Df .

Since q P Df and since dpp, qq ă δ, by choice of δ,

we see that dpfp, fqq ă ε, and so fq P BY pfp, εq.

Then fq P BY pfp, εq “ B Ď U , and so q P f˚U , as desired. �

THEOREM 3.17.4. Let f be a function. Let A and B be sets.

Then f˚pA
Ť

Bq “ pf˚Aq
Ť

pf˚Bq and

f˚pA
Ş

Bq “ pf˚Aq
Ş

pf˚Bq and
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f˚pAzBq “ pf˚Aqzpf˚Bq.

Also, f˚pA
Ť

Bq “ pf˚Aq
Ť

pf˚Bq.

THEOREM 3.17.5. Let X and Y be metric spaces.

Let f : X Ñ Y and let C P T 1Y .

Assume that f is continuous from X to Y . Then f˚C P T 1X .

Proof. Let U :“ Y zC. Since C P T 1Y , we get: U P TY .

Then, by Theorem 3.17.3, we get: f˚U P TX .

It follows that Xzpf˚Uq P T 1X . Want: f˚C “ Xzpf˚Uq.

As C Ď Y , we get: Y zpY zCq “ C. As f : X Ñ Y , we get: f˚Y “ X.

We have Y zU “ Y zpY zCq “ C, and so C “ Y zU .

Then f˚C “ f˚pY zUq “ pf˚Y qzpf˚Uq “ Xzpf˚Uq, as desired. �

THEOREM 3.17.6. Let X and Y be metric spaces, f : X Ñ Y .

Then: p @U P TY , f˚U P TX q ô p f is continuous from X to Y q.

Proof. By Theorem 3.17.3, we have ð. Want: ñ.

By HW#12-2, we have ñ. �

THEOREM 3.17.7. Let X and Y be metric spaces, f : X Ñ Y .

Then: p @C P T 1Y , f˚C P T 1X q ô p f is continuous from X to Y q.

Proof. By Theorem 3.17.5, we have ð. Want: ñ.

Assume: @C P T 1Y , f˚C P T 1X . Want: f is continuous from X to Y .

Then, by HW#12-2, it suffices to show: @U P TY , f˚U P TX .

Given U P TY . Want: f˚U P TX .

Since U P TY , we get: Y zU P T 1Y . Let C :“ Y zU . Then C P T 1Y .

Then f˚C P T 1X , so Xzpf˚Cq P TX . Want: Xzpf˚Cq “ f˚U .

Since C “ Y zU , we get f˚C “ pf˚Y qzpf˚Uq.

So, since f˚Y “ X, we get f˚C “ Xzpf˚Uq.

Since f˚U Ď X, we conclude that: XzpXzpf˚Uqq “ f˚U .

Then Xzpf˚Cq “ XzpXzpf˚Uqq “ f˚U , as desired. �

THEOREM 3.17.8. Let X be a metric space, p P X. Then tpu P T 1X .

Proof. Let A :“ tpu. Want: A P T 1X .

Want: A is closed in X. Want: ClXA “ A.

We have: A Ď ClXA. Want: ClXA Ď A.

Want: @q P ClXA, q P A. Given q P ClXA. Want: q P A.

We have q P ClXA “ Clseq
X A, so choose s P AN s.t. sÑ q in X.

We have: @j P N, sj P A “ tpu, so sj “ p. Then s “ Cp
N.
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So, since Cp
N Ñ p in X, we see that sÑ p in X.

So, since sÑ q in X, we get: p “ q. Then q “ p P tpu “ A. �

THEOREM 3.17.9. Let X :“ R2 and let C :“ SXp0X , 1q.

Then C is compact.

Proof. Since X is proper, by Theorem 3.16.11,

it suffices to show: C is closed and bounded in X.

Since C “ SXp0X , 1q Ď BXp0x, 2q, we see that C is bounded in X.

Want: C is closed in X. Want: C P T 1X . Let f :“ dXp0X , ‚q.

By Theorem 3.17.2, f is Lipschitz-1 from X to R,

and it follows that: f is continuous from X to R.

By Theorem 3.17.8, we get: t1u P T 1R.

Then, by Theorem 3.17.5, we get: f˚pt1uq P T 1X . Want: f˚pt1uq “ C.

We have f˚pt1uq “ t p P X | fp P t1u u

“ t p P X | fp “ 1 u

“ t p P X | pdp0X , ‚qqp “ 1 u

“ t p P X | dp0X , pq “ 1 u

“ SXp0X , 1q “ C, as desired. �

3.18. The Extreme Value Theorem.

THEOREM 3.18.1. Let A Ď R and let x P R.

Assume: A ď x P A.

Then: x “ max A.

Proof. Want: x “ UEpA
Ş

UBAq. Want: A
Ş

UBA “ txu.

As A ď x, we get: X P UBA. So, since x P A, we get: x P A
Ş

UBA.

Then txu Ď A
Ş

UBA. Want: A
Ş

UBA Ď txu.

Given y P A
Ş

UBA. Want: y P txu. Want: y “ x.

Since y P A ď x, we get: y ď x. Want: x ď y.

Since y P UBA, we get: A ď y. Then x P A ď y, so x ď y. �

THEOREM 3.18.2. Let K Ď R. Say K is compact and nonempty.

Then: max K ‰ /.

Proof. Since K is compact, by Theorem 3.16.9, we conclude:

K is closed and bounded in R.

By hypothesis, we have: K ‰ H.

So, since K is bounded in R, by Theorem 3.9.10, we get: sup K P R.

Let x :“ sup K. Then x P R, so x ‰ /. Want: x “ max K.

By Theorem 3.18.1, it suffices to show: K ď x P K.
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We have K ď sup K “ x, and so K ď x. Want: x P K.

Since K is closed in R, we get: ClRK “ K.

Want: x P ClRK. Want: @B P BRpxq, B XK ‰ H.

Given B P BRpxq. Want: B XK ‰ H. Want: Dy P K s.t. y P B.

Since B P BRpxq, choose ε ą 0 s.t. B “ BRpx, εq.

We have x ą x´ ε, so  px ď x´ εq.

So, as x “ sup K, we get  psup K ď x´ εq.

Then  pK ď x´ εq, so choose y P K s.t. y ą x´ ε.

Then y P K. Want: y P B.

We have y P K ď sup K “ x ă x` ε, so y ă x` ε.

Then x´ ε ă y ă x` ε, so y P px´ ε;x` εq.

Then y P px´ ε;x` εq “ BRpx, εq “ B, as desired. �

THEOREM 3.18.3. Let X and Y be metric spaces.

Let f : X 99K Y and let K Ď Df .

Assume: p K is compact q & p f is continuous from X to Y q.

Then: f˚K is compact.

Proof. Let g :“ f |K. By Theorem 2.11.12,

g is continuous from X to Y .

So, since g : K Ñ Ig, by Absoluteness of Continuity,

g is continuous from K to Ig.
So, since g : K Ñą Ig, by Theorem 3.9.6, we have: Ig is compact.

It suffices to show: Ig “ f˚K. Since K Ď Df , we get K X Df “ K.

Since g “ f |K, we conclude: p Dg “ K q & p @p P K, fp “ gp q.

Then Ig “ t gp | p P Dg u “ t gp | p P K u “ t fp | p P K u

“ t fp | p P K X Df u “ f˚K, as desired. �

THEOREM 3.18.4. Let K Ď R. Then min K “ ´pmaxp´Kqq.

Proof. Unassigned HW. �

THEOREM 3.18.5. Let K Ď R. Say K is compact and nonempty.

Then: min K ‰ / ‰ max K.

Proof. By Theorem 3.18.2, / ‰ max K. Want: min K ‰ /.

Define f : RÑ R by @x P R, fx “ ´x.

Then f is continuous from R to R and K Ď R “ Df .

Then, by Theorem 3.18.3, f˚K is compact.

So, since f˚K “ ´K, we see that ´K is compact.

Then, by Theorem 3.18.2, we see that maxp´Kq ‰ /,
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and it follows that maxp´Kq P ´K.

By Theorem 3.18.4, we have: min K “ ´pmaxp´Kqq.

Then min K “ ´pmaxp´Kqq P ´p´Kq, so min K ‰ /. �

THEOREM 3.18.6. Let s P RN and let a, p P R.

Assume that sÑ p in R and that @j P N, sj ě a.

Then p ě a.

Proof. Assume p ă a. Want: Contradiction.

Let ε :“ a´ p. Then ε ą 0.

Since sÑ p in R, choose K P N s.t., @j P N,

p j ě K q ñ p dpsj, pq ă ε q.

Then dpsK , pq ă ε, so p´ ε ă sk ă p` ε.

By hypothesis, we have: @j P N, sj ě a. Then sK ě a.

Then a ď sK ă p` ε “ p`pa´pq “ a, so a ă a. Contradiction. �

THEOREM 3.18.7. Let s P RN and let b, p P R.

Assume that sÑ p in R and that @j P N, sj ď b.

Then p ď b.

Proof. Unassigned HW. �

THEOREM 3.18.8. Let b P R, a ď b. Then ra; bs is compact.

Proof. Let K :“ ra; bs. Want: K is compact.

By Theorem 3.13.5, R is proper.

So, by Theorem 3.16.11, we want: K is closed and bounded in R.

Let ρ :“ b´ a` 1. Then a` ρ “ b` a.

Since a ď b, we get ρ ě 1. Then ρ ą 0, so a´ ρ ă a.

Since a´ ρ ă a and b ă b` 1, we get ra; bs Ď pa´ ρ; b` 1q.

Then K “ ra; bs Ď pa´ ρ; b` 1q “ pa´ ρ; a` ρq “ BRpa, ρq.

Then K is bounded in R. Want: K is closed in R. Want: ClRK “ K.

Since K Ď ClRK, it suffices to show: ClRK Ď K.

Want: @p P ClRK, p P K. Given p P ClRK. Want: p P K.

Since p P ClRK “ Clseq
R K, choose s P KN s.t. sÑ p in R.

We have: @j P N, sj P K “ ra; bs ě a, so sj ě a.

Then, by Theorem 3.18.6, we get: p ě a.

We have: @j P N, sj P K “ ra; bs ď b, so sj ď b.

Then, by Theorem 3.18.6, we get: p ď b.

Since a ď p ď b, we get: p P ra; bs. Then p P ra; bs “ K. �
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The next theorem is the Extreme Value Theorem:

THEOREM 3.18.9. Let X be a metric space.

Let f : X 99K R, let K Ď Df and let L :“ f˚K.

Assume: K is compact and nonempty.

Assume: f is continuous from X to R.

Then: min L ‰ / ‰ max L.

Proof. By Theorem 3.18.3, we get: L is compact.

Then, by Theorem 3.18.5, we get: min L ‰ / ‰ max L. �

THEOREM 3.18.10. Let f : R 99K R, b P R, a ď b, L :“ f˚pra; bsq.

Assume: ra; bs Ď Df and f is continuous from R to R.

Then: min L ‰ / ‰ max L.

Proof. Let K :“ ra; bs. By Theorem 3.18.8, we get: K is compact.

Then, by Theorem 3.18.9, we get: min L ‰ / ‰ max L. �

3.19. Cauchy sequences and complete metric spaces.

DEFINITION 3.19.1. Let X be a metric space and let s P XN.

Then s is Cauchy in X means: @ε ą 0, DK P N s.t., @i, j P N,

p i, j ě K q ñ p dpsi, sjq ă ε q.

THEOREM 3.19.2. let X be a metric space, s P XN.

Assume: @ε P p0; 1s, DK P N s.t., @i, j P N,

p i, j ě K q ñ p dpsi, sjq ă ε q.

Then s is Cauchy in X.

Proof. Want: @ε ą 0, DK P N s.t., @i, j P N,

p i, j ě K q ñ p dpsi, sjq ă ε q.

Given ε ą 0. Want: DK P N s.t., @i, j P N,

p i, j ě K q ñ p dpsi, sjq ă ε q.

Let δ :“ mintε, 1u. Then δ ď ε and δ ď 1 and δ ą 0.

Since δ P p0; 1s, by hypothesis, choose K P N s.t., @i, j P N,

p i, j ě K q ñ p dpsi, sjq ă ε q.

Then K P N. Want: @i, j P N, p i, j ě K q ñ p dpsi, sjq ă ε q.

Given i, j P N. Want: p i, j ě K q ñ p dpsi, sjq ă ε q.

Assume i, j ě K. Want: dpsi, sjq ă ε.

Since i, j ě K, by choice of K, we have dpsi, sjq ă δ.

Then dpsi, sjq ă δ ď ε, as desired. �
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THEOREM 3.19.3. Let X be a metric space and s P XN.

Assume s is convergent in X. Then s is Cauchy in X.

Proof. Want: @ε ą 0, DK P N s.t., @i, j P N,

p i, j ě K q ñ p dpsi, sjq ă ε q.

Given ε ą 0. Want: DK P N s.t., @i, j P N,

p i, j ě K q ñ p dpsi, sjq ă ε q.

Choose q P X s.t. sÑ q in X. Choose K P N s.t., @j P N,

p j ě K q ñ p dpsj, qq ă ε{2 q.

Then K P N. Want: @i, j P N, p i, j ě K q ñ p dpsi, sjq ă ε q.

Given i, j P N. Want: p i, j ě K q ñ p dpsi, sjq ă ε q.

Assume i, j ě K. Want: dpsi, sjq ă ε.

Since i ě K, by choice of K, we have dpsi, qq ă ε{2.

Since j ě K, by choice of K, we have dpsj, qq ă ε{2.

Then dpq, sjq “ dpsj, qq ă ε{2, so dpq, sjq ă ε{2.

Then dpsi, sjq ď pdpsi, qqq ` pdpq, sjqq ă pε{2q ` pε{2q “ ε. �

The next result is called Absoluteness of Cauchy:

THEOREM 3.19.4. Let Y be a metric space, X Ď Y , s P XN.

Then: p s is Cauchy in X q ô p s is Cauchy in Y q.

Proof. Proof of ñ: Unassigned HW. End of proof of ñ.

Proof of ð:

Assume s is Cauchy in Y . Want: s is Cauchy in X.

Want: @ε ą 0, DK P N s.t., @i, j P N,

p i, j ě K q ñ p dXpsi, sjq ă ε q.

Given ε ą 0. Want: DK P N s.t., @i, j P N,

p i, j ě K q ñ p dXpsi, sjq ă ε q.

Since s is Cauchy in Y , choose K P N s.t., @i, j P N,

p i, j ě K q ñ p dY psi, sjq ă ε q.

Then K P N. Want: @i, j P N, p i, j ě K q ñ p dXpsi, sjq ă ε q.

Given i, j P N. Want: p i, j ě K q ñ p dXpsi, sjq ă ε q.

Assume i, j ě K. Want: dXpsi, sjq ă ε.

Since s P XN, we get si, sj P X. Then dXpsi, sjq “ dY psi, sjq.

Then dXpsi, sjq “ dY psi, sjq ă ε, as desired.

End of proof of ð. �
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DEFINITION 3.19.5. Let X be a metric space.

By X is complete, we mean:

@s P XN, p s is Cauchy in X q ñ p s is convergent in X q.

THEOREM 3.19.6. Rˆ0 is not complete.

Proof. Let X :“ Rˆ0 . Want: X is not complete.

Define s P XN by: @j P N, sj “ 1{j. Then sÑ 0 in R.

Want: s is Cauchy in X and s is not convergent in X.

Since sÑ 0 in R, we see that s is convergent in R.

Then, by Theorem 3.19.3, s is Cauchy in R.

Then, by Absoluteness of Cauchy, s is Cauchy in X.

Want: s is not convergent in X.

Assume: s is convergent in X. Want: Contradiction.

Choose q P R s.t. sÑ q in X.

Then, by Absoluteness of Limits, sÑ q in R.

So, since sÑ 0 in R, by Theorem 2.15.1, we get: q “ 0.

Then 0 “ q P X P Rˆ0 , so 0 ‰ 0. Contradiction. �

THEOREM 3.19.7. Let X be a metric space, s P XN.

Assume s is Cauchy in X. Then s P XN
bi.

Proof. Want: Is is bounded in X. Want: DB P BX s.t. Is Ď B.

Since s is Cauchy in X, choose K P N s.t., @i, j P N,

p i, j ě K q ñ p dpsi, sjq ă 1 q.

Then: @i P N, p i ě K q ñ p dpsi, sKq ă 1 q.

Let q :“ sK . Then: @i P N, p i ě K q ñ p dpsi, qq ă 1 q.

Let M :“ max t dps1, qq , . . . , dpsK , qq u.

Then @i P N, p i ď K q ñ p dpsi, qq ďM q.

Also, since q “ sK , we get dpsK , qq “ 0, so M ě 0, so 0 ďM .

Let B :“ BXpq,M ` 1q. Then B P BX . Want: Is Ď B.

Want: @p P Is, p P B. Given p P Is. Want: p P B.

Want: p P BXpq,M ` 1q. Want: dpp, qq ăM ` 1.

Since p P Is, choose j P Ds s.t. p “ sj. Then j P Ds “ N.

At least one of the following must be true:

(1) j ď K or (2) j ě K.

Case 1:

Recall: @i P N, p i ď K q ñ p dpsi, qq ďM q.

So, since j ď K, we get dpsj, qq ďM .
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Then dpp, qq “ dpsj, qq ďM ăM ` 1, as desired.

End of Case 1.

Case 2:

Recall: @i P N, p i ě K q ñ p dpsi, qq ă 1 q.

So, since j ě K, we get dpsj, qq ă 1.

Also, since 0 ďM , we get 1 ďM ` 1.

Then dpp, qq “ dpsj, qq ă 1 ďM ` 1, as desired.

End of Case 2. �

THEOREM 3.19.8. Let X be a metric space and let s P XN.

Assume: s is Cauchy and subconvergent in X.

Then: s is convergent in X.

Proof. Choose a subsequence t of s s.t. t is convergent in X.

Choose q P X s.t. tÑ q in X. Want: sÑ q in X.

Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dpsj, qq ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dpsj, qq ă ε q.

Since tÑ q, choose L P N s.t., @j P N,

p j ě L q ñ p dptj, qq ă ε{2 q.

Since s is Cauchy, choose M P N s.t., @i, j P N,

p i, j ěM q ñ p dpsi, sjq ă ε{2 q.

Let K :“ maxtL,Mu. Then K P N.

Want: @j P N, p j ě K q ñ p dpsj, qq ă ε q.

Given j P N. Want: p j ě K q ñ p dpsj, qq ă ε q.

Assume j ě K. Want: dpsj, qq ă ε.

Since t is a subsequence of s,

choose a strictly-increasing ` P NN s.t. t “ s ˝ `.

By HW#8-3, we have `j ě j. Then j ě K ěM and `j ě j ě K ěM .

Since j, `j ěM , by choice of M , we have: dpsj, s`jq ă ε{2.

So, since tj “ ps ˝ `qj “ s`j , we get: dpsj, tjq ă ε{2.

Since j ě K ě L, by choice of L, we have: dptj, qq ă ε{2.

Then: dpsj, qq ď pdpsj, tjqq ` pdptj, qqq ă pε{2q ` pε{2q “ ε. �

THEOREM 3.19.9. Let X be a proper metric space.

Then X is complete.

Proof. Want: @s P XN, ps is Cauchy in Xq ñ ps is convergent in Xq.

Given s P XN. Want: ps is Cauchy in Xq ñ ps is convergent in Xq.
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Assume s is Cauchy in X. Want: s is convergent in X.

By Theorem 3.19.7, we have: s P XN
bi.

So, since X is proper, we get: s is subconvergent in X.

Then, by Theorem 3.19.8, s is convergent in X, as desired. �

THEOREM 3.19.10. R is complete.

Proof. By Theorem 3.13.5, R is proper.

Then, by Theorem 3.19.9, R is complete. �

THEOREM 3.19.11. R2 is complete.

Proof. By Theorem 3.14.10, R2 is proper.

Then, by Theorem 3.19.9, R2 is complete. �

Using Theorem 3.14.9 and induction,

we may show: @k P N, Rk is proper.

Then, by Theorem 3.19.9, it follows that: @k P N, Rk is complete.

Unassigned HW: Show that

a product of two complete metric spaces is complete.

DEFINITION 3.19.12. Let X be a metric space and let A :“ Xset.

Define pd : Aˆ AÑ r0;8q by: @p, q P A, pdpp, qq “ mint dXpp, qq , 1u.

Then we define: pX :“ pA , pd q.

THEOREM 3.19.13. Let X be a metric space and let A :“ Xset.

Then pXset “ A. Also, @p P A, B
pXpp, 2q “ A.

THEOREM 3.19.14. @metric space X, we have: pX is bounded.

THEOREM 3.19.15. Let X be a metric space. Let p, q P Xset.

Let d :“ dX and pd :“ d
pX .

Then: (1) p dpp, qq ă 1 q ñ p pdpp, qq “ dpp, qq q.

Also: (2) p dpp, qq ě 1 q ñ p pdpp, qq “ 1 q.

Also: (3) p pdpp, qq ‰ 1 q ñ p dpp, qq ă 1 q.

THEOREM 3.19.16. Let X be a metric space. Let p, q P Xset.

Let d :“ dX and pd :“ d
pX .

Assume: either (1) dpp, qq ă 1 or (2) pdpp, qq ă 1.

Then: pdpp, qq “ dpp, qq

Proof. Case 1:

By (1) of Theorem 3.19.15, we have pdpp, qq “ dpp, qq, as desired.
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End of Case 1.

Case 2:

Since pdpp, qq ă 1, we get: pdpp, qq ‰ 1.

Then, by (3) of Theorem 3.19.15, we have dpp, qq ă 1, as desired.

Then, by (1) of Theorem 3.19.15, we have pdpp, qq “ dpp, qq, as desired.

End of Case 2. �

THEOREM 3.19.17. Let X be a metric space, s P XN
set.

Then: p s is Cauchy in X q ô p s is Cauchy in pX q.

Proof. Let d :“ dX and pd :“ d
pX .

Proof of ð: Unassigned HW. End of proof of ð.

Proof of ñ:

Assume: s is Cauchy in X. Want: s is Cauchy in pX.

By Theorem 3.19.2, want: @ε P p0; 1s, DK P N s.t., @i, j P N,

p i, j ě K q ñ p pdpsi, sjq ă ε q.

Given ε P p0; 1s. Want: DK P N s.t., @i, j P N,

p i, j ě K q ñ p pdpsi, sjq ă ε q.

Since s is Cauchy in X, choose K P N s.t., @i, j P N,

p i, j ě K q ñ p dpsi, sjq ă ε q.

Then K P N. Want: @i, j P N, p i, j ě K q ñ p pdpsi, sjq ă ε q.

Given i, j P N. Want: p i, j ě K q ñ p pdpsi, sjq ă ε q.

Assume: i, j ě K. Want: pdpsi, sjq ă ε.

Since i, j ě K, by choice of K, we have: dpsi, sjq ă ε.

Then dpsi, sjq ă ε P r0; 1q ă 1, so dpsi, sjq ă 1,

so, by Theorem 3.19.16, we have: pdpsi, sjq “ dpsi, sjq.

Then pdpsi, sjq “ dpsi, sjq ă ε, as desired. End of proof of ñ. �

THEOREM 3.19.18. Let X be a metric space, A :“ Xset, s P A
N.

Then: p s is convergent in X q ô p s is convergent in pX q.

Proof. We have pXset “ Xset “ A.

Proof of ð: Unassigned HW. End of proof of ð.

Proof of ñ:

Assume: s is convergent in X. Want: s is convergent in X̂.

Since s is convergent in X, choose q P X s.t. sÑ q in X.
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Then, by ñ of HW#12-5, we get: sÑ q in pX.

Then s is convergent in pX, as desired.

End of proof of ñ. �

THEOREM 3.19.19. Let X be a metric space, A :“ Xset, s P A
N.

Then: p s is subconvergent in X q ô p s is subconvergent in pX q.

Proof. We have pXset “ Xset “ A.

Proof of ð: Unassigned HW. End of proof of ð.

Proof of ñ:

Assume: s is subconvergent in X. Want: s is subconvergent in X̂.

Since s is subconvergent in X, choose t P AN s.t. t is convergent in X.

Then, by ñ of Theorem 3.19.18, we get: t is convergent in X.

Then s is subconvergent in pX, as desired.

End of proof of ñ. �

THEOREM 3.19.20. Let X be a metric space.

Then: p X is compact q ô p pX is compact q.

Proof. Let A :“ Xset. Then A “ pXset.

Proof of ð: Unassigned HW. End of proof of ð.

Proof of ñ:

Assume: X is compact. Want: pX is compact.

Want: @s P AN, s is subconvergent in pX.

Given s P AN. Want: s is subconvergent in pX.

Since X is compact, s is subconvergent in X.

Then, by ñ of Theorem 3.19.19, s is subconvergent in pX, as desired.

End of proof of ñ. �

THEOREM 3.19.21. pR is complete.

Proof. Want: @s P pRN, ps is Cauchy in pRq ñ ps is convergent in pRq.
Given s P pRN. Want: ps is Cauchy in pRq ñ ps is convergent in pRq.
Assume: s is Cauchy in pR. Want: s is convergent in pR.

Since s is Cauchy in pR, by ð of Theorem 3.19.17,

we conclude that s is Cauchy in R.

So, since R is complete, we get: s is convergent in R.

Then, by ñ of Theorem 3.19.18, s is convergent in pR, as desired. �
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THEOREM 3.19.22. pR is nonproper.

Proof. Assume pR is proper. Want: Contradiction.

By Theorem 3.19.14, we see that pR is bounded.

Since pR is proper and bounded, by ð of Theorem 3.14.12,

we see that: pR is compact.

Then, by ð of Theorem 3.19.20, we get: R is compact.

Then, by ñ of Theorem 3.14.12, we get: R proper and bounded.

Then R is bounded. Also, R is unbounded. Contradiction. �

3.20. Continuous injections over compacta are homeomorphisms.

THEOREM 3.20.1. Let K be a compact metric space, C P T 1K.

Then C is compact.

Proof. Want: @s P CN, s is subconvergent in C.

Given s P CN. Want: s is subconvergent in C.

Since s P CN Ď KN and since K is compact,

we conclude: s is subconvergent in K.

So, since C P T 1K , by ð of Theorem 3.16.8,

we see that: s is subconvergent in C. �

Recall (Theorem 3.7.6) that

a continuous bijection may not be a homeomorphism.

The next result says that that doesn’t happen when the domain is

compact.

THEOREM 3.20.2. Let K, Y be metric spaces. Let f : K ãÑą Y .

Assume: p K is compact q & p f is continuous from K to Y q.

Then: f is a homeomorphism from K onto Y .

Proof. Since f : K ãÑą Y and since f is continuous from K to Y ,

it only remains to show: f´1 is continuous from Y to K.

Let g :“ f´1. Then g : Y ãÑą K. Want: g is continuous from Y to K.

By ð of Theorem 3.17.7, want: @C P T 1K , g˚C P T 1Y .

Given C P T 1K . Want: g˚C P T 1Y .

Since K is compact and C P T 1K ,

by Theorem 3.20.1, we get: C is compact.

So, since f is continuous from K to Y ,

by Theorem 3.18.3, we get: f˚C is compact.

Then, by Theorem 3.16.9, we get f˚C is closed in Y , and so f˚C P T 1Y .

Since g “ f´1, we get: g˚C “ f˚C. Then g˚C “ f˚C P T 1Y . �
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3.21. Continuous on compact implies uniformly continuous.

THEOREM 3.21.1. Let a, b P R. Then a` b ď
?

2 ¨
?
a2 ` b2.

Proof. We have: @x P R, x ď |x|. Then a` b ď |a` b|.

Since a` b ď |a` b| “
a

pa` bq2,

it suffices to show:
a

pa` bq2 ď
?

2 ¨
?
a2 ` b2.

It therefore suffices to show: 0 ď pa` bq2 ď 2 ¨ pa2 ` b2q.

We have: @x P R, 0 ď x2. Then 0 ď pa` bq2.

It remains to show: pa` bq2 ď 2 ¨ pa2 ` b2q.

We have: @x P R, 0 ď x2. Then 0 ď pa´ bq2.

Then 0 ď a2 ´ 2ab` b2, so 2ab ď a2 ` b2.

Adding a2 and b2 to both sides gives: a2` 2ab` b2 ď a2` a2` b2` b2.

Then pa` bq2 “ a2 ` 2ab` b2 ď a2 ` a2 ` b2 ` b2 “ 2 ¨ pa2 ` b2q. �

THEOREM 3.21.2. Let X be a metric space.

Then dX is Lipschits-
?

2 from X ˆX to R.

Proof. Let f :“ dX , let V :“ X ˆX and let K :“
?

2.

Want: f is Lipschitz-K from V to R.

Want: @s, t P V , dRpfs, ftq ď K ¨ pdV ps, tqq.

Given s, t P V . Want: dRpfs, ftq ď K ¨ pdV ps, tqq.

Let ε :“ K ¨ pdV ps, tqq. Want: dRpfs, ftq ď ε.

Want: p fs ď ft ` ε q & p ft ď fs ` ε q.

Let a :“ dXps1, t1q and b :“ dXps2, t2q.

Then a “ dXpt1, s1q and b “ dXpt2, s2q.

Then dV ps, tq “ dXˆXp ps1, s2q , pt1, t2q q

“
a

p dXps1, t1q q2 ` p dXps2, t2q q2 “
?
a2 ` b2.

By Theorem 3.21.1, we have: a` b ď
?

2
?
a2 ` b2.

So, since
?

2 “ K and
?
a2 ` b2 “ dV ps, tq, we get: a`b ď K ¨pdV ps, tqq.

So, since K ¨ pdV ps, tqq “ ε, we get: a` b ď ε.

We have fs “ fpsq “ fps1, s2q “ dXps1, s2q

and ft “ fptq “ fpt1, t2q “ dXpt1, t2q.

We compute fs “ dXps1, s2q ď pdXps1, t1qq ` pdXpt1, t2qq ` pdXpt2, s2qq

“ a` ft ` b “ ft ` pa` bq ď ft ` ε.

It remains to show: ft ď fs ` ε.

We compute ft “ dXpt1, t2q ď pdXpt1, s1qq ` pdXps1, s2qq ` pdXps2, t2qq

“ a` fs ` b “ ft ` pa` bq ď fs ` ε. �

THEOREM 3.21.3. Let A, X and Y be metric spaces.

Let f : A 99K X, let g : A 99K Y and let p P A.
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Assume that f is continuous at p from A to X.

Assume that g is continuous at p from A to Y .

Then pf, gq is continuous at p from A to X ˆ Y .

Proof. Let h :“ pf, gq and let Z :“ X ˆ Y .

We wish to show: h is continuous at p from A to Z.

Since f is continuous at p from A to X, we get: p P Df .

Since g is continuous at p from A to Y , we get: p P Dg.

Then p P Df X Dg. Since h “ pf, gq, we get: Dh “ Df X Dg.

Then p P Df X Dg “ Dh.

It remains to show: @ε ą 0, Dδ ą 0 s.t., @q P Dh,

p dpp, qq ă δ q ñ p dphp, hqq ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @q P Dh,

p dpp, qq ă δ q ñ p dphp, hqq ă ε q.

Since f is continuous at p from A to X,

choose λ ą 0 s.t., @q P Df ,

p dpp, qq ă λ q ñ p dpfp, fqq ă ε{
?

2 q.

Since g is continuous at p from A to Y ,

choose µ ą 0 s.t., @q P Df ,

p dpp, qq ă µ q ñ p dpgp, gqq ă ε{
?

2 q.

Let δ :“ mintλ, µu. Then δ ą 0.

Want: @q P Dh, p dpp, qq ă δ q ñ p dphp, hqq ă ε q.

Given q P Dh. Want: p dpp, qq ă δ q ñ p dphp, hqq ă ε q.

Assume: dpp, qq ă δ. Want: dphp, hqq ă ε.

Since dpp, qq ă δ ď λ, by choice of λ, we get: dpfp, fqq ă ε{
?

2.

Since dpp, qq ă δ ď µ, by choice of µ, we get: dpgp, gqq ă ε{
?

2.

Since 0 ď dpfp, fqq ă ε{
?

2, we get: pdpfp, fqqq
2 ă pε{

?
2q2.

Since 0 ď dpgp, gqq ă ε{
?

2, we get: pdpgp, gqqq
2 ă pε{

?
2q2.

Then pdpfp, fqqq
2 ` pdpgp, gqqq

2 ă pε{
?

2q2 ` pε{
?

2q2

“ pε2{2q ` ε2{2q “ ε2.

Since 0 ď pdpfp, fqqq
2 ` pdpgp, gqqq

2 ă ε2,

we conclude that:
a

pdpfp, fqqq2 ` pdpgp, gqqq2 ă
?
ε2.

Then: dphp , hq q “ dp pf, gqp , pf, gqp q

“ dp pfp, gpq , pfq, gqq q

“
a

pdpfp, fqqq2 ` pdpgp, gqqq2 ă
?
ε2 “ ε. �

THEOREM 3.21.4. Let A, X and Y be metric spaces.

Let f P CA
X and g P CA

Y . Then pf, gq P CA
XˆY .
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Proof. Let h :“ pf, gq and let Z :“ X ˆ Y . Want: h P CA
Z .

Since f : AÑ X and g : AÑ Y , we get: h : AÑ Z.

Want: h is continuous from A to Z.

Want: h is continuous on Dh from A to Z.

Want: h is continuous on A from A to Z.

Want: @p P A, h is continuous at p from A to Z.

Given p P A. Want: h is continuous at p from A to Z.

We have: f is continuous from A to X.

Then: f is continuous on Df from A to X.

Then: f is continuous on A from A to X.

So, since p P A, we get: f is continuous at p from A to X.

We have: g is continuous from A to Y .

Then: g is continuous on Dg from A to Y .

Then: g is continuous on A from A to Y .

So, since p P A, we get: g is continuous at p from A to Y .

Since f is continuous at p from A to X

and g is continuous at p from A to Y ,

it follows, from Theorem 3.21.3, that

pf, gq is continuous at p from A to X ˆ Y .

So, since h “ pf, gq and Z “ X ˆ Y , we get:

h is continuous at p from A to Z, as desired. �

DEFINITION 3.21.5. Let f and g be functions.

Then f ˆfn g is the function defind by:

@x, pf ˆfn gqx “

#

pfx1 , gx2q, if x P Df ˆ Dg

/, otherwise.

By sloppiness, we typically denote f ˆfn g by: f ˆ g.

THEOREM 3.21.6. Let f and g be functions. Then:

p Dpf,gq “ Df

Ş

Dg q & p Dfˆg “ Df ˆ Dg q.

THEOREM 3.21.7. Let S, T , X and Y be sets, f P XS, g P Y T .

Then: pf, gq : S
Ş

T Ñ XˆY and fˆg : SˆT Ñ XˆY .

THEOREM 3.21.8. Let X, Y and Z be metric spaces.

Let f P CX
Y and let g P CY

Z . Then g ˝ f P CX
Z .

The next theorem follows from Theorem 2.11.8.

THEOREM 3.21.9. Let S, T , X and Y be metric spaces.

Let f P CS
X and let g P CT

Y . Then f ˆ g P CSˆT
XˆY .
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Proof. Let A :“ S ˆ T , Z :“ X ˆ Y and h :“ f ˆ g. Want: h P CA
Z .

Define σ : AÑ S and τ : AÑ T by: @p P A, σp “ p1 and τp “ p2.

Then σ is Lipschitz-1 from A to S and τ is Lipschitz-1 from A to T .

Then σ is continuous from A to S and τ is continuous from A to T .

Then σ P CA
S and τ P CA

T .

Since σ P CA
S and f P CS

X , we get: f ˝ σ P CA
X .

Since τ P CA
T and g P CT

Y , we get: g ˝ τ P CA
Y .

Then, by Theorem 3.21.4, we have pf ˝ σ, g ˝ τq P CA
XˆY .

So, since Z “ X ˆ Y , we get: pf ˝ σ, g ˝ τq P CA
Z .

It therefore suffices to show that pf ˝ σ, g ˝ τq “ h.

Want: @p P A, pf ˝ σ, g ˝ τqp “ hp.

Given p P A. Want: pf ˝ σ, g ˝ τqp “ hp.

Since p P A “ S ˆ T “ Df ˆ Dg, we get: pf ˆ gqp “ pfp1 , gp2q.

Then p f ˝ σ , g ˝ τ qp “ p pf ˝ σqp , pg ˝ τqp q “ p fσp , gτp q

“ p fp1 , gp2 q “ pfˆgqp “ hp, as desired. �

The next result follows from Absoluteness of Continuity.

THEOREM 3.21.10. Let A and Y be metric spaces.

Let X Ď Y . Then CA
X Ď CA

Y .

The following is a Squeeze Theorem.

THEOREM 3.21.11. Let s P RN.

Assume: @j P N, 0 ď sj ă 1{j. Then sÑ 0 in R.

THEOREM 3.21.12. Let V :“ r0;8q and I :“ r0;8q.

Define α, β P CV
I by: @u P V , αu “

u

1` u2
and βu “ u.

Then: @u P V , r p αu “ 0 q ñ p βu “ 0 q s and

 r @ε ą 0, Dδ ą 0 s.t., @u P V,

p αu ă δ q ñ p βu ă ε q s.

THEOREM 3.21.13. Let V be a compact metric space.

Let I :“ r0;8q and let α, β P CV
I .

Assume: @u P V , p αu “ 0 q ñ p βu “ 0 q.

Then: @ε ą 0, Dδ ą 0 s.t., @u P V,

p αu ă δ q ñ p βu ă ε q.

Proof. Assume  r @ε ą 0, Dδ ą 0 s.t., @u P V,

p αu ă δ q ñ p βu ă ε q s.

Want: Contradiction. Choose ε ą 0 s.t., @δ ą 0, Du P V s.t.
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p αu ă δ q & p βu ě ε q s.

Then: @j P N, Du P V s.t. p αu ă 1{j q & p βu ě ε q s.

By the Axiom of Choice, choose s P V N s.t. @j P N,

p αsj ă 1{j q & p βsj ě ε q s.

Since V is compact, s is subconvergent in V .

Choose a subsequence t of s s.t. t is convergent in V .

Choose a strictly-increasing ` P NN s.t. t “ s ˝ `.

By HW#8-3, we have: @j P N, `j ě j.

Since @j P N, we have `j ě j ą 0, we get: @j P N, 1{`j ď 1{j.

Also, we have: @j P N, tj “ ps ˝ `qj “ s`j .

By choice of s, we know: @j P N, p αpsjq ă 1{j q & p βpsjq ě ε q.

It follows that: @j P N, p αps`jq ă 1{`j q & p βps`jq ě ε q.

Then @j P N, p pα ˝ tqj “ αptjq “ αps`jq ă 1{`j ď 1{j q &

p pβ ˝ tqj “ βptjq “ βps`jq ě ε q.

Then @j P N, p pα ˝ tqj ă 1{j q & p pβ ˝ tqj ě ε q.

Since t is convergent in V , choose q P V s.t. tÑ q in V .

Since q P V and α, β P CV
I Ď CV

R , we conclude:

α and β are both continuous at q from V to R.

So, since tÑ q in V , we get:

α ˝ tÑ αq in R and β ˝ tÑ βq in R.

Since α P CV
I , we get Iα Ď I. Then Iα Ď I “ r0;8q ě 0.

Then: @j P N, pα ˝ tqj “ αptjq P Iα ě 0.

Since @j P N, 0 ď pα ˝ tqj ă 1{j,

by Theorem 3.21.11, we get: α ˝ tÑ 0 in R.

So, since α ˝ tÑ αq in R, by Uniqueness of Limits, we have αq “ 0.

By hypothesis, we have: @u P V , p αu “ 0 q ñ p βu “ 0 q.

So, since q P V and αq “ 0, we see that βq “ 0.

Since @j P N, pβ ˝ tqj ě ε and β ˝ tÑ βq in R,

by Theorem 3.18.6, we get: βq ě ε.

Then 0 ă ε ď βq “ 0, so 0 ă 0. Contradiction. �

THEOREM 3.21.14. Let X be a compact metric space.

Let Y be a metric space. Let f P CY
X .

Then f is uniformaly continuous from X to Y .

Proof. Let V :“ X ˆX, W :“ Y ˆ Y , g :“ f ˆ f and I :“ r0;8q.

Since X is compact, by Theorem 3.14.16, we get: V is compact.

Since f P CY
X , by Theorem 3.21.9, we get: g P CV

W .
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By Theorem 3.21.2, dX is Lipschitz-
?

2 from V to R
and dY is Lipschitz-

?
2 from W to R.

It follows that: dX is continuous from V to R
and dY is continuous from W to R.

So, since IdX Ď I and IdY Ď I, by Absoluteness of Continuity,

we see that: dX is continuous from V to I

and dY is continuous from W to I.

We conclude that: dX P C
V
I and dY P C

W
I .

Since g P CV
W and dY P C

W
I , we see that: dY ˝ g P C

V
I .

Let α :“ dX and let β :“ dY ˝ g. Then α, β P CV
I .

Claim: @u P V , p αu “ 0 q ñ p βu “ 0 q.

Proof of Claim:

Given u P V . Want: p αu “ 0 q ñ p βu “ 0 q.

Assume αu “ 0. Want: βu “ 0.

We have dXpu1, u2q “ αpu1, u2q “ αpuq “ αu “ 0, so dXpu1, u2q “ 0.

Then u1 “ u2. Then fu1 “ fu2 . Then dY pfu1 , fu2q “ 0.

We have gu “ pf ˆ fqu “ pfu1 , fu2q, so gu “ pfu1 , fu2q.

Then βu “ pdY ˝ gqu “ dY pguq “ dY pfu1 , fu2q “ 0, as desired.

End of proof of Claim.

Want: @ε ą 0, Dδ ą 0 s.t., @p, q P Df ,

p dXpp, qq ă δ q ñ p dY pfp, fqq ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @p, q P Df ,

p dXpp, qq ă δ q ñ p dY pfp, fqq ă ε q.

Since V is compact, by the Claim and Theorem 3.21.13,

choose δ ą 0 s.t. @u P V , p αu ă δ q ñ p βu ă ε q.

Then δ ą 0. Want: @p, q P Df , p dXpp, qq ă δ q ñ p dY pfp, fqq ă ε q.

Given p, q P Df . Want: p dXpp, qq ă δ q ñ p dY pfp, fqq ă ε q.

Assume: dXpp, qq ă δ. Want: dY pfp, fqq ă ε.

We have p, q P Df “ X, so pp, qq P X ˆX.

Let u :“ pp, qq. Then u P X ˆX “ V .

We have αu “ αpuq “ αpp, qq “ dXpp, qq ă δ.

Then, by choice of δ, we see that: βu ă ε.

Since u “ pp, qq, we get: u1 “ p and u2 “ q.

It follows that: gu “ pf ˆ fqu “ pfu1 , fu2q “ pfp, fqq.

Then dY pfp, fqq “ dY pguq “ pdY ˝ gqu “ βu ă ε, as desired. �
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3.22. Uniform limits and continuity.

DEFINITION 3.22.1. Let X and Y be sets, f P pY XqN, p P X.

Then f‚ppq P Y
N is defined by: @j P N, pf‚ppqqj “ fjppq.

DEFINITION 3.22.2. Let X be a set and let Y be a metric space.

Let f P pY XqN and let g P Y X .

By f Ñ g pointwise from X to Y , we mean:

@p P X, f‚ppq Ñ gppq in Y .

By f Ñ g uniformly from X to Y , we mean:

@ε ą 0, DK P N s.t., @j P N, @p P X,

p j ě K q ñ p dp fjppq , gppq q ă ε q.

Up to reordering quantifiers, the definitions of uniform and pointwise

limits are the same:

THEOREM 3.22.3. Let X be a set and let Y be a metric space.

Let f P pY XqN and let g P Y X .

Then: r f Ñ g pointwise from X to Y s ô

r @p P X, @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dp fjppq , gppq q ă ε q s.

THEOREM 3.22.4. Let X :“ r0; 1s and let Y :“ R.

Define f P pY XqN by: @j P N, @w P X, fjpwq “ wj. Let g :“ χX
t1u.

Then: r f Ñ g pointwise from X to Y s

& r  p f Ñ g uniformly from X to Y q s

& r @j P N, fj is continuous at 1 from X to Y s

& r  p g is continuous at 1 from X to Y q s.

THEOREM 3.22.5. Let X and Y be metric spaces.

Let f P pY XqN, let g P Y X and let q P X.

Assume: r f Ñ g uniformly from X to Y s

& r @j P N, fj is continuous at q from X to Y s

Then: r g is continuous at q from X to Y s.

Proof. Want: @ε ą 0, Dδ ą 0 s.t., @p P X,

r dpp, qq ă δ s ñ r dp gppq , gpqq q ă ε s.

Given ε ą 0. Want: Dδ ą 0 s.t., @p P X,

r dpp, qq ă δ s ñ r dp gppq , gpqq q ă ε s.

Since f Ñ g uniformly from X to Y ,

choose K P N s.t., @j P X, @z P X,



132 SCOT ADAMS

r j ě K s ñ r dp fjpzq , gpzq q ă ε{3 s.

By hypothesis, @j P N,

fj is continuous at q from X to Y .

Then fK is continuous at q from X to Y . Let h :“ fK .

Then h is continuous at q from X to Y , so

choose δ ą 0 s.t., @p P X,

r dpp, qq ă δ s ñ r dphppq , hpqq q ă ε{3 s.

Then δ ą 0. Want: @p P X, r dpp, qq ă δ s ñ r dp gppq , gpqq q ă ε s.

Given p P X. Want: r dpp, qq ă δ s ñ r dp gppq , gpqq q ă ε s.

Assume: dpp, qq ă δ. Want: dp gppq , gpqq q ă ε.

Since K ě K, it follows, from the choice of K, that

@z P X, dp fKpzq , gpzq q ă ε{3.

Then: dp fKppq , gppq q ă ε{3 and dp fKpqq , gpqq q ă ε{3.

So, since fK “ h, we get:

dphppq , gppq q ă ε{3 and dphpqq , gpqq q ă ε{3.

As dp gppq , hppq q “ dphppq , gppq q ă ε{3, dp gppq , hppq q ă ε{3.

Since dpp, qq ă δ, by choice of δ, we have: dphppq , hpqq q ă ε{3.

Then dp gppq , gpqq q

ď p dp gppq , hppq q q ` p dphppq , hpqq q q ` p dphpqq , gppq q q

ă p ε{3 q ` p ε{3 q ` p ε{3 q “ ε, as desired. �

THEOREM 3.22.6. Let X and Y be metric spaces.

Let f P pCX
Y q

N and let g P Y X .

Assume: f Ñ g uniformly from X to Y . Then: g P CX
Y .

Proof. Want: g is continuous from X to Y .

Want: g is continuous on Dg from X to Y .

Want: g is continuous on X from X to Y .

Want: @q P X, g is continuous at q from X to Y .

Given q P X. Want: g is continuous at q from X to Y .

We have: @j P N, fj P C
X
Y .

Then: @j P N, fj is continuous from X to Y .

Then: @j P N, fj is continuous on Dfj from X to Y .

Then: @j P N, fj is continuous on X from X to Y .

Then: @j P N, fj is continuous at q from X to Y .

Then, by Theorem 3.22.5, g is continuous at q from X to Y . �

THEOREM 3.22.7. Let X and Y be metric spaces.

Let f P pY XqN and let g P Y X .
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Assume f Ñ g uniformly from X to Y .

Then f Ñ g pointwise from X to Y .

Proof. Want: @p P X, f‚ppq Ñ gppq in Y .

Given p P X. Want: f‚ppq Ñ gppq in Y .

Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p dY p pf‚ppqqj , gppq q ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p dY p pf‚ppqqj , gppq q ă ε q.

Since f Ñ g uniformly from X to Y , choose K P N s.t., @j P N, @q P X,

p j ě K q ñ p dY p fjpqq , gpqq q ă ε q.

Then K P N. Want: @j P N, p j ě K q ñ p dY p pf‚ppqqj , gppq q ă ε q.

Given j P N. Want: p j ě K q ñ p dY p pf‚ppqqj , gppq q ă ε q.

Assume: j ě K. Want: dY p pf‚ppqqj , gppq q ă ε.

Since j P N, since p P X and since j ě K, by choice of K,

we see that: dY p fjppq , gppq q ă ε.

Then dY p pf‚ppqqj , gppq q “ dY p fjppq , gppq q ă ε, as desired. �

In HW#13-2, we see that Lipschitz maps carry Cauchy sequences to

Cauchy sequences. Mere continuity is not enough:

THEOREM 3.22.8. Let X :“ p´1; 1q and let Y :“ R.

Define f : X Ñ Y by @w P X, fw “ w{
?

1´ w2.

Define s P XN by @j P N, sj “ j{pj ` 1q.

Then: f is continuous from X to Y and

s is Cauchy in X and

f ˝ s is not Cauchy in Y .

DEFINITION 3.22.9. Let K and Y be metric spaces.

Let Z :“ CK
Y and d :“ dY . Assume: K is compact and nonempty.

Then dKY : Z ˆ Z Ñ r0;8q is defined by:

@f, g P Z, dKY pf, gq “ max Id˝pf,gq.

Let K, Y be metric spaces. Assume K is empty. Then CK
Y “ tHu.

That is, the only function in CK
Y is the empty function.

We have little use for the empty metric space, but,

for the sake of completeness, we define dKY when K is empty:

DEFINITION 3.22.10. Let K and Y be metric spaces.

Let Z :“ CK
Y . Assume: K is empty.
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Then dKY : Z ˆ Z Ñ r0;8q is defined by:

@f, g P Z, dKY pf, gq “ 0.

THEOREM 3.22.11. Let K and Y be metric spaces.

Let Z :“ CK
Y . Assume: K is compact. Then dKY PMpCK

Y q.

The metric dKY is sometimes called the uniform metric on CK
Y .

It is the standard metric on CK
Y .

By sloppiness, we use CK
Y to denote the metric space pCK

Y , d
K
Y q.

Note that dCK
Y
“ dKY . By slopiness, we sometimes use d to denote dKY .

THEOREM 3.22.12. Let K and Y be metric spaces.

Let Z :“ CK
Y , f P ZN, g P Z. Assume K is compact and nonempty.

Then: p f Ñ g in Z q ô p f Ñ g uniformly from K to Y q.

Proof. Proof of ñ: Unassigned Homework. End of proof of ñ.

Proof of ð: Let d :“ dKY .

Assume: f Ñ g uniformly from K to Y . Want: f Ñ g in Z.

Want: @ε ą 0, DL P N s.t., @j P N,

p j ě L q ñ p dp fj , g q ă ε q.

Given ε ą 0. Want: DL P N s.t., @j P N,

p j ě L q ñ p dp fj , g q ă ε q.

Since f Ñ g uniformly from K to Y , choose L P N s.t., @j P N, @p P K,

p j ě L q ñ p dp fjppq , gppq q ă ε q.

Then L P N. Want: @j P N, p j ě L q ñ p dp fj , g q ă ε q.

Given j P N. Want: p j ě L q ñ p dp fj , g q ă ε q.

Assume: j ě L. Want: dp fj , g q ă ε.

As d : Z ˆZ Ñ r0;8q, we get dp fj , g q P r0;8q, and so dp fj , g q ‰ /.

Let α :“ dY ˝ pf, gq. Then dp fj , g q “ max Iα.

Since max Iα “ dp fj , g q ‰ /, we get: max Iα P Iα.

Since dp fj , g q “ max Iα P Iα,

choose p P Dα s.t. dp fj , g q “ αp. Want: αp ă ε.

Since α “ dY ˝ pfj, gq, it follows that Dα Ď Dpfj ,gq.
Since fj, g P C

K
Y , we get: Dfj “ K “ Dg.

Then p P Dα Ď Dpfj ,gq “ Dfj

Ş

Dg “ K
Ş

K “ K.

So, since j ě L, by the choice of L, we get: dY p fjppq , gppq q ă ε.

Then αp “ pdY ˝ pfj, gqqp “ dY p pfj, gqp q “ dY p fjppq , gppq q ă ε.

End of proof of ð. �
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DEFINITION 3.22.13. Let X and Y be sets, S Ď Y X and p P X.

Then evSp : S Ñ Y is defined by: @f P S, pevSp qf “ fp.

THEOREM 3.22.14. Let K and Y be metric spaces.

Let f P pCK
Y q

N and let g P Y K.

Assume: K is compact and

f is Cauchy in CK
Y and

f Ñ g pointwise from K to Y .

Then: f Ñ g uniformly from K to Y .

Proof. Want: @ε ą 0, DL P N s.t., @i P N, @p P K,

r i ě L s ñ r dY p fippq , gppq q ă ε s.

Given ε ą 0. Want: DL P N s.t., @i P N, @p P K,

r i ě L s ñ r dY p fippq , gppq s ă ε q.

Let d :“ dKY . Since f is Cauchy in CK
Y , choose L P N s.t., @i, j P N,

r i, j ě L s ñ r dp fi , fj q ă ε{2 s.

Then L P N. Want: @i P N, @p P K,

r i ě L s ñ r dY p fippq , gppq s ă ε q.

Given i P N, p P K. Want: r i ě L s ñ r dY p fippq , gppq q ă ε s.

Assume: i ě L. Want: dY p fippq , gppq q ă ε.

By assumption, f Ñ g pointwise from K to Y , so f‚ppq Ñ gppq in Y ,

so choose M P N s.t., @j P N, r j ěM s ñ r dY p pf‚ppqqj , gppq q ă ε{2 s.

Let j :“ maxtL,Mu. Then j P N and j ě L and j ěM .

Since j ě L, by choice of L, we get: dp fi , fj q ă ε{2.

Since j ěM , by choice of M , we get: dp pf‚ppqqj , gppq q ă ε{2.

Then: dp fjppq , gppq q “ dp pf‚ppqqj , gppq q ă ε{2.

Let E :“ evZp . By HW#13-4, E is Lipschitz-1 from Z to Y .

Then dY pEfi , Efj q ď 1 ¨ pdp fi , fj qq.

We have: Efi “ Epfiq “ pevKp qpfiq “ fippq

and Efj “ Epfjq “ pevKp qpfjq “ fjppq.

Then dY p fippq , fjppq q “ dY pEfi , Efj q

ď 1 ¨ pdp fi , fj qq “ dp fi , fj q ă ε{2.

So, since dY p fjppq , gppq q ă ε{2, we conclude that:

r dY p fippq , fjppq q s ` r dY p fjppq , gppq q s ă r ε{2 s ` r ε{2 s.

By the Triangle Inequality,

dY p fippq , gppq q ď r dY p fippq , fjppq q s ` r dY p fjppq , gppq q s.

Then dY p fippq , gppq q ď r dY p fippq , fjppq q s ` r dY p fjppq , gppq q s

ă r ε{2 s ` r ε{2 s “ ε, as desired. �
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THEOREM 3.22.15. Let K be a compact metric space.

Then K is complete.

Proof. Since K is compact, by ñ of Theorem 3.14.12,

we conclude that: K proper and bounded.

Then K is proper, so, by Theorem 3.19.9, K is complete. �

DEFINITION 3.22.16. Let Y be a metric space and s P Y N.

Then: Y- lim s :“ UEtq P Y | sÑ q in Y u.

Writers often omit the “Y -” and simply write “lim s”. Also, common

is to pick an unbound “dummy variable”, like j, and write “ lim
jÑ8

sj”.

THEOREM 3.22.17. Let Y be a metric space, s P Y N, p P Y .

Then: p sÑ p in Y q ô p Y- lim s “ p q.

In the preceding theorem, ñ follows from uniqueness of limits.

In the preceding theorem, ð follows from the definition of Y- lim.

THEOREM 3.22.18. Let Y be a metric space and let s P Y N.

Assume s is convergent in Y .

Then / ‰ Y- lim s P Y .

THEOREM 3.22.19. Let X be a set and let Y be a metric space.

Let f P pY XqN and let g P Y X .

Then: p f Ñ g pointwise from X to Y q

ô p @p P X, f‚ppq Ñ gppq in Y q

ô p @p P X, Y- limpf‚ppqq “ gppq q.

Note that, in the following theorem, by Theorem 3.22.15, K is com-

plete. Thus both the domain K and the target Y are complete metric

spaces, and the conclusion is that CK
Y is a complete metric space.

We do not attempt to generalize by weakening the assumption that

K is compact; in fact, in this writeup, we do not specify any standard

metric CK
Y , except in the case where K is compact.

In a later theorem (Theorem 3.22.22), we show that CK
Y may be

nonproper, and therefore noncompact.

THEOREM 3.22.20. Let K and Y be metric spaces.

Assume: K is compact and Y is complete.

Then: CK
Y is complete.
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Proof. Let Z :“ CK
Y . Want: Z is complete.

Want: @f P ZN, p f is Cauchy in Z q ñ p f is convergent in Z q.

Given f P ZN. Want: p f is Cauchy in Z q ñ p f is convergent in Z q.

Assume: f is Cauchy in Z. Want: f is convergent in Z.

Want: Dg P Z s.t. f Ñ g in Z.

By HW#13-5, @p P K, f‚ppq is Cauchy in Y .

So, since Y is complete, we conclude:

@p P K, f‚ppq is convergent in Y .

Define g P Y K by: @p P K, gppq “ Y- limpf‚ppqq.

Then g P Y K “ Z. Want: f Ñ g in Z.

Then: @p P K, f‚ppq Ñ gppq in Y .

Then: f Ñ g pointwise from K to Y .

So, since f is Cauchy in Z and since Z “ CK
Y , it follows,

by Theorem 3.22.14, that f Ñ g uniformly from K to Y .

Then, by Theorem 3.22.12, f Ñ g in Z, as desired. �

THEOREM 3.22.21. Let K and Y be metric spaces.

Assume: K is compact.

Let Z :“ CK
Y , let f P ZN and let h P Y KzZ.

Assume: f Ñ h pointwise from K to Y .

Then: f is not subconvergent in Z.

Proof. Assume f is subconvergent in Z. Want: Contradiction.

Choose a subsequence φ of f s.t. φ is convergent in Z.

Choose g P Z s.t. φÑ g in Z.

Since g P Z and h R Z, we see that: g ‰ h.

Choose p P K s.t. gppq ‰ hppq.

Since φÑ g in Z and since Z “ CK
Y , it follows,

by Theorem 3.22.14, that φÑ g uniformly from K to Y .

Then, by Theorem 3.22.7,we have: φÑ g pointwise from K to Y .

By hypothesis, f Ñ h pointwise from K to Y .

Then: φ‚ppq Ñ gppq in Y and f‚ppq Ñ hppq in Y .

Let E :“ evZp . Recall: φ is a subsequence of f .

Then: E ˝ φ is a subsequence of E ˝ f .

So, since E ˝ φ “ φ‚ppq and since E ˝ f “ f‚ppq,

we conclude that φ‚ppq is a subsequence of f‚ppq.

So, since f‚ppq Ñ hppq in Y , we see that φ‚ppq Ñ hppq in Y .

Since φ‚ppq Ñ gppq in Y and since φ‚ppq Ñ hppq in Y , we conclude,
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by uniqueness of limits, that gppq “ hppq.

By choice of p, we have: gppq ‰ hppq. Contradiction. �

THEOREM 3.22.22. Let K :“ r0; 1s and let Y :“ R.

Then: CK
Y is nonproper.

Proof. Let Z :“ CK
Y . Want: Z is nonproper.

Want: Df P ZN
bi s.t. f is not subconvergent in Z.

Define f P ZN by: @j P N, @x P K, fjpxq “ xj.

Let g :“ C0
K . Then g P CK

Y “ Z.

Also: @j P N, we have dZpfj, gq “ dKY pfj, gq “ 1, so fj P BZpg, 1q.

Then If Ď BZpg, 1q. Then If is bounded in Z.

So, as f P ZN, we get f P ZN
bi. Want: f is not subconvergent in Z.

Let h :“ χK
t1u. Then h P Y K .

As h is not continuous at 1 from K to Y , we get: h R Z.

Then f Ñ h pointwise from K to Y and h P Y XzZ.

Then, by Theorem 3.22.21, we get: f is not subconvergent in Z. �

From Theorem 3.22.20 and Theorem 3.22.22, we see that the metric

space C
r0;1s
R is both complete and nonproper. So, while proper implies

complete, the converse is NOT true; complete does not imply proper.

We already observed this; see Theorem 3.19.21 and Theorem 3.19.22.

4. Derivatives

4.1. DNZ and BNZ and CVZ.

DEFINITION 4.1.1. Let X be a metric space, f a function, p P X.

Then f is defined near p in X means:

DB P BXppq s.t. B Ď Df .

DEFINITION 4.1.2. Let X and Y be metric spaces.

Let f : X 99K Y and let p P X.

Then f is bounded near p from X to Y means:

DB P BXppq s.t. p B Ď Df q & p f˚B is bounded in Y q.

DEFINITION 4.1.3. We define:

DNZ :“ t f : R 99K R | f is defined near 0 in R u
and BNZ :“ t f : R 99K R | f is bounded near 0 from R to R u
and CVZ :“ t f P DNZ | p f is continuous 0 from R to R q &

p h0 “ 0 q u.
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THEOREM 4.1.4. Let f : RÑ R. Then:

r f P BNZ s ô r Dδ,K ą 0 s.t., @x P R, p |x| ă δ q ñ p |fx| ď K q s.

Proof. Proof of ð: Unassigned HW. End of proof of ð.

Proof of ñ: Assume: f P BNZ.

Want: Dδ,K ą 0 s.t., @x P R, p |x| ă δ q ñ p |fx| ă K q.

Since f P BNZ, we see that f is bounded near 0 from R to R,

so choose B P BRp0q s.t. pB Ď Df q & p f˚B is bounded in R q.
Since f˚B is bounded in R, choose C P BR s.t. f˚B Ď C.

By the Recentering Theorem, choose D P BRp0q s.t. C Ď D.

Since B,D P BRp0q, choose δ,K ą 0 s.t.

p B “ BRp0, δq q & p D “ BRp0, Kq q.

Then δ,K ą 0. Want: @x P R, p |x| ă δ q ñ p |fx| ă K q.

Given x P R. Want: p |x| ă δ q ñ p |fx| ă K q.

Assume |x| ă δ. Want: |fx| ă K.

Since B Ď Df , we get: B
Ş

Df “ B.

We have dRpx, 0q “ |x´ 0| “ |x| ă δ, and so x P BRp0, δq.

Then x P BRp0, δq “ B “ B
Ş

Df , so fx P f˚B.

Then fx P f˚B Ď C Ď D “ BRp0, Kq, so dRpfx, 0q ă K.

So, since dRpfx, 0q “ |fx ´ 0| “ |fx|,

we conclude that |fx| ă K, as desired.

End of proof of ð. �

THEOREM 4.1.5. Let f : RÑ R. Then:

r f P CVZ s ô r @ε ą 0, Dδ ą 0 s.t., @x P R, p |x| ă δ q ñ p |fx| ď ε q s.

Proof. This is HW#14-1. �

THEOREM 4.1.6. Let f P CVZ and let B P BRp0q.

Then: DA P BRp0q s.t. p A Ď Df q & p f˚A Ď B q.

Proof. Since B P BRp0q, choose ε ą 0 s.t. B “ BRp0, εq.

By Theorem 4.1.5, choose δ ą 0 s.t., @x P R,

p |x| ă δ q ñ p |fx| ă ε q.

Let A :“ BRp0, δq. Then A P BRp0q. Want: pA Ď Df q& p f˚A Ď B q.

Claim: A Ď Df .

Proof of Claim:

Want: @x P A, x P Df . Given x P A. Want: x P Df .

Since x P A “ BRp0, δq, we get dRpx, 0q ă δ.
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Then |x| “ |x´0| “ dRpx, 0q ă δ, so, by choice of δ, we get: |fx| ă ε.

Then fx ‰ /, and so x P Df , as desired.

End of proof of Claim.

By the claim, it suffices to show: f˚A Ď B.

Want: @y P f˚A, y P B. Given y P f˚A. Want: y P B.

Since y P f˚A, choose x P A
Ş

Df s.t. y “ fx.

Since x P A
Ş

Df Ď A “ BRp0, δq, we get: dRpx, 0q ă δ.

Then |x| “ |x´0| “ dRpx, 0q ă δ, so, by choice of δ, we get: |fx| ă ε.

Then dRpfx, 0q “ |fx ´ 0| “ |fx| ă ε, and so fx P BRp0, εq.

Then y “ fx P BRp0, εq “ B, as desired. �

THEOREM 4.1.7. DNZ Ě BNZ Ě CVZ.

Proof. By HW#14-2, we have CVZ Ď BNZ. Want: BNZ Ď DNZ.

Want: @f P BNZ, f P DNZ. Given f P BNZ. Want: f P DNZ.

Since f P BNZ, we see that f is bounded near 0 from R to R,

so choose B P BRp0q s.t. pB Ď Df q & p f˚B is bounded in R q.
Since B P BRp0q and B Ď Df , we get: f is defined near 0 in R.

Then f P DNZ, as desired. �

We showed graphs to show that

not every element of BNZ is vanishing at 0 and

not every element of BNZ that vanishes at 0

is continuous at 0 and

not every element of DNZ is bounded near 0.

Consequently, DNZ Ľ BNZ Ľ CVZ.

DEFINITION 4.1.8. Let X be a metric space.

Let f : X 99K R, let g : X Ñ r0;8q and let p P X.

By g envelopes f near p in X, we mean:

DB P BXppq s.t. ´g ď f ď g on B.

THEOREM 4.1.9. Let f : R 99K R. Then:

r p f P BNZ q ô p DK ě 0 s.t. CK
R envelopes f near 0 q s

& r p f P CVZ q ô p @ε ě 0, Cε
R envelopes f near 0 q s.

Proof. Unassigned HW. �

DEFINITION 4.1.10. Let S Ď R and let T be a set of functionals.

Then S ¨setset T :“ t a ¨ f | p a P S q& p f P

T q u.
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We typically omit the “setset”, and write “S ¨ T”.

We often omit the “¨”, and write “ST”.

DEFINITION 4.1.11. Let S and T be a sets of functionals.

Then S `setset T :“ t f`g | p f P S q& p g P T q u.

Also, S ¨setset T :“ t f ¨ g | p f P S q& p g P T q u.

We typically omit the “setset”, and write “S ` T” and “S ¨ T”.

We often omit the “¨”, and write “ST”.

For any two sets S and T of functionals, we have:

S ` T “ T ` S and ST “ TS.

THEOREM 4.1.12. Let f : R 99K R, g P DNZ.

Assume: f “ g near 0 in R. Then: f P DNZ.

THEOREM 4.1.13. Let f : R 99K R, g P BNZ.

Assume: f “ g near 0 in R. Then: f P BNZ.

THEOREM 4.1.14. Let f : R 99K R, g P CVZ.

Assume: f “ g near 0 in R. Then: f P CVZ.

The preceding three theorems express that DNZ, BNZ and CVZ are

all “zero-local” conditions. That is, given the restriction f to a ball

around zero in R, we can determine whether or not f satisfies the

condition. We do not need to know how f behaves far away from zero.

DEFINITION 4.1.15. Let S be a set of functionals. By S is v.op.-

closed, we mean: p R ¨ S Ď S q & p S ` S Ď S q.

In the preceding definition, “v.op.-closed” is an abbreviation for

“vector-operation-closed”. Unassigned HW: Show DNZ is v.op.-closed.

From HW#13-3, BNZ and CVZ are both v.op.-closed, as well.

THEOREM 4.1.16. BNZ ¨ CVZ Ď CVZ.

Proof. Want: @h P BNZ ¨ CVZ, h P CVZ.

Given h P BNZ ¨ CVZ. Want: h P CVZ.

By HW#14-1, it suffices to show: @ε ą 0, Dδ ą 0 s.t., @x P R,

p |x| ă δ q ñ p |hx| ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P R,

p |x| ă δ q ñ p |hx| ă ε q.

Since h P BNZ ¨ CVZ, choose f P BNZ and g P CVZ s.t. h “ fg.

Since f P BNZ, by Theorem 4.1.4, choose λ,K ą 0 s.t., @x P R,
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p |x| ă λ q ñ p |fx| ă K q.

Since g P CVZ, by Theorem 4.1.4, choose µ ą 0 s.t., @x P R,

p |x| ă µ q ñ p |gx| ă ε{K q.

Let δ :“ mintλ, µu. Then: δ ą 0 and δ ď λ and δ ď µ.

Want: @x P R, p |x| ă δ q ñ p |hx| ă ε q.

Given x P R. Want: p |x| ă δ q ñ p |hx| ă ε q.

Since |x| ă δ ď λ, by choice of λ, we have: |fx| ă K.

Since |x| ă δ ď µ, by choice of µ, we have: |gx| ă ε{K.

Since 0 ď |fx| ă K and 0 ď |gx| ă ε{K, we get: |fx| ¨ |gx| ă K ¨ pε{Kq.

Then |hx| “ |pfgqx| “ |fx ¨ gx| “ |fx| ¨ |gx| ă K ¨ pε{Kq “ ε. �

Unassigned HW: Show DNZ ¨DNZ Ď DNZ.

From HW#13-4, BNZ ¨ BNZ Ď BNZ.

From Theorem 4.1.16, BNZ ¨ CVZ Ď CVZ. Also CVZ Ď BNZ.

Then CVZ ¨ CVZ Ď BNZ ¨ CVZ Ď CVZ,

so CVZ ¨ CVZ Ď CVZ.

4.2. Little-o and big-O functions, and homogeneous polynomi-

als.

Recall that | ‚ | : RÑ R. Also: @x P R, | ‚ |x “ |x|.

DEFINITION 4.2.1. p‚q :“ idR.

THEOREM 4.2.2. @x P R, p‚qx “ x.

It is our convention, in this course, that 00 “ 1.

Then, for any functional f , we have f 0 “ C1
Df

.

Note, also, that, for any functional f , we have f 1 “ f .

THEOREM 4.2.3. p | ‚ |0 “ C1
R “ p‚q

0 q

& p | ‚ |1 “ | ‚ | q & p p‚q1 “ p‚q q

& p | ‚ |2 “ p‚q2 q & p | ‚ |4 “ p‚q4 q

& p | ‚ |6 “ p‚q6 q & p | ‚ |8 “ p‚q8 q.

In the preceding theorem, the pattern established, for even powers

continues.

We graphed p‚q3 and ´p‚q3 and noted that

the union of the graphs of | ‚ |3 and ´| ‚ |3

is the same as

the union of the graphs of p‚q3 and ´p‚q3.
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DEFINITION 4.2.4. Let S be a set of functionals, f a functional.

Then S ¨setfn f :“ S ¨ tfu and f ¨fnset S :“

tfu ¨ S.

We typically omit “setfn” and “fnset”, and write “S ¨ f” and “f ¨S”.

We often omit the “¨”, and write “Sf” and “fS”.

For any set S of functionals, for any functional g, we have:

Sg “ tfg | f P Su and gS “ tgf | f P Su.

For any set S of functionals, for any functional f , we have: Sf “ fS.

DEFINITION 4.2.5. Let j P N0. Then:

Oj :“ CVZ ¨ | ‚ |j and pOj :“ BNZ ¨ | ‚ |j.

Note that O0 “ CVZ and that pO0 “ BNZ.

Recall that CVZ Ĺ BNZ Ĺ DNZ.

Then O0 “ CVZ Ď BNZ Ď DNZ.

Also, pO0 “ BNZ Ď DNZ, and pO0 “ BNZ Ę CVZ.

From Theorem 4.1.16, BNZ ¨ CVZ Ď CVZ.

Also, for all j P N0, we have: | ‚ |j P BNZ.

Then, for all j P N0, we have: Oj Ď CVZ ¨BNZ “ BNZ ¨CVZ Ď CVZ.

Then, for all j P N0, we have: Oj Ď CVZ Ď BNZ Ď DNZ.

Also, for all j P N, we have | ‚ |j P CVZ.

Then, for all j P N, we have: pOj Ď BNZ ¨ CVZ Ď CVZ.

Then, for all j P N, we have pOj Ď CVZ Ď BNZ Ď DNZ.

However, recall that pO0 “ BNZ Ę CVZ.

Since CVZ Ď BNZ, we conclude: @j P N0, Oj Ď pOj.

THEOREM 4.2.6. Let f : R 99K R and let j P N0. Then:

r p f P pOj q ô p DK ě 0 s.t. K ¨ | ‚ |j envelopes f near 0 q s

& r p f P Oj q ô p @ε ě 0, ε ¨ | ‚ |j envelopes f near 0 q s.

For all f : R 99K R, for all j P N, we have
f

| ‚ |j
R DNZ Ě BNZ Ě CVZ.

We make an adjustment to correct for this difficulty:

DEFINITION 4.2.7. Let f : R 99K R and let j P Z. Then:

f`j :“ adj00 pf ¨ | ‚ |
jq and f´j :“ f`´j.

For any f : R 99K R, for any j P Z, we have: f´j :“ adj00

ˆ

f

| ‚ |j

˙

For any f : R 99K R, we have: f`0 “ f “ f´0 .
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Let f : R 99K R and let j, k P Z. Then:

r pf`j q
`
k “ f`j`k s & r pf´j q

´
k “ f´j`k s &

r pf`j q
´
k “ f`j´k “ f´k´j s & r pf´j q

`
k “ f`k´j “ f´j´k s.

For any f : R 99K R, we have: pf`j q
´
j “ adj00f “ pf

´
j q
`
j .

THEOREM 4.2.8. Let f : R 99K R, let j P Z and let g :“ f´j .

Then Dg “ pDf q
`
0 . Also, p 0 P Df q ñ p Dg “ Df q.

For any f P DNZ, for any j P Z, we have: Df`j
“ Df “ Df´j

.

For any f P DNZ, for any j P Z, we have: f`j , f
´
j P DNZ.

For any f P DNZ, we have: adj00f “ f`0 P DNZ.

For any f : R 99K R, we have: p f0 “ 0 q ñ p adj00f “ f q.

THEOREM 4.2.9. We have:

p @f P CVZ, adj00f “ f P CVZ q & p @f P BNZ, adj00f P BNZ q.

We graphed p‚q{| ‚ | and p‚q2{| ‚ |.

We noted that p‚q2{| ‚ | “ | ‚ |2{| ‚ | ‰ | ‚ |.

We graphed p‚q´1 and pp‚q2q´1 .

We noted that p‚q´1 R CVZ and p‚q´1 P BNZ Ď DNZ.

We noted that pp‚q2q´1 “ p| ‚ |
2q
´
1 “ | ‚ | P CVZ Ď BNZ Ď DNZ.

THEOREM 4.2.10. Let f : R 99K R, j P N0. Assume f0 “ 0.

Then: p f P Oj q ô p f´j P CVZ q.

Proof. Since f0 “ 0, it follows that: adj00f “ f .

Proof of ñ:

Assume f P Oj. Want: f´j P CVZ.

Since f P Oj “ CVZ ¨ | ‚ |j, choose φ P CVZ s.t. f “ φ ¨ | ‚ |j.

Since φ P CVZ, by Theorem 4.2.9, we get: adj00φ P CVZ.

Then f “ adj00f “ adj00pφ ¨ | ‚ |
jq “ φ`j .

Then f´j “ pφ
`
j q
´
j “ adj00φ P CVZ, as desired.

End of proof of ñ.

Proof of ð:

Assume f´j P CVZ. Want: f P Oj.

Let g :“ f´j ¨ | ‚ |
j. Then g P CVZ ¨ | ‚ |j “ Oj. Want: g “ f .

We have g0 “ pf
´
j ¨ | ‚ |

jq0 “ pf
´
j q0 ¨ |0|

j “ 0. Then adj00g “ g.

Then g “ adj00g “ adj00pf
´
j ¨ | ‚ |

jq “ pf´j q
`
j “ adj00f “ f , as desired.

End of proof of ð. �
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THEOREM 4.2.11. Let f : R 99K R, j P N0. Assume f0 “ 0.

Then: p f P pOj q ô p f´j P BNZ q.

Proof. This is HW#14-5. �

THEOREM 4.2.12. Let f, g : R 99K R.

Assume: f “ g near 0 in R.

Then: p f0 “ 0 q ô p g0 “ 0 q.

Also: @j P N0, f´j “ g´j near 0 in R.

THEOREM 4.2.13. Let f, g : R 99K R, j P N0.

Assume: f “ g near 0 in R.

Assume g P Oj. Then f P Oj.

THEOREM 4.2.14. Let f, g : R 99K R, j P N0.

Assume: f “ g near 0 in R.

Assume g P pOj. Then f P pOj.

The preceding two theorems express that:

@j P N0, Oj and pOj are both “zero-local” conditions.

DEFINITION 4.2.15. Define
?
‚ :R99KR by: @x P R, p

?
‚qx“

?
x.

DEFINITION 4.2.16. Let f be a functional.

Then we define: p |f | :“ | ‚ | ˝ f q & p
?
f :“

?
‚ ˝ f q.

Let f be a functional. Recall: f 0 “ C1
R.

Also, @j P N, f j “ f ¨ ¨ ¨ f is the j-fold product of f with itself.

DEFINITION 4.2.17. Let f be a functional, j P N.

Then we define: f´j :“
1

f j
.

DEFINITION 4.2.18. Let f be a functional, j P Z.

Then we define: f j`p1{2q :“ f j ¨
?
f .

THEOREM 4.2.19. Let f be a functional and let x be an object.

Then: r |f |x “ |fx| s & r p
?
fqx “

?
fx s

& r @j P Z, pf jqx “ pfxqj s
& r @j P Z, pf j`p1{2qqx “ pfxqj`p1{2q s.

THEOREM 4.2.20. Let j P N0. Then p‚qj P pOjzOj.

Proof. Let f :“ p‚qj. Want: f P pOjzOj.

We have: either (1) j “ 0 or (2) j ‰ 0.
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Case (1):

We have p‚qj “ p‚q0 “ C1
R P BNZzCVZ “ pO0zO0 “ pOjzOj.

End of Case (1).

Case (2):

We have j P N0zt0u “ N. Then fp0q “ 0j “ 0.

So, by Theorem 4.2.11 and Theorem 4.2.10,

it suffices to show f´j P BNZzCVZ.

Since f´j “ pp‚q
j
q
´
j “ adj00

ˆ

f

| ‚ |j

˙

“ adj00

ˆ

p‚qj

| ‚ |j

˙

, we see that:
ˆ

@x ą 0, f´j pxq “
xj

xj
“ 1

˙

&

ˆ

f0 “ 0

˙

&

ˆ

@x ă 0, f´j pxq “
xj

´xj
“ ´1

˙

.

Then f´j P BNZzCVZ, as desired.

End of Case (2). �

THEOREM 4.2.21. Let j P N. Then Oj Ĺ pOj.

Proof. We have Oj “ CVZ ¨ | ‚ |j Ď BNZ ¨ | ‚ |j “ pOj.

Want: Df s.t. p f R Oj q & p f P pOj q.

Let f :“ | ‚ |j. Want: p f R Oj q & p f P pOj q.

Since f0 “ 0, by Theorem 4.2.11 and Theorem 4.2.10,

it suffices to show f´j P BNZzCVZ.

Since pf´j q0 “ 0 “ padj00pC
1
Rqq0

and since @x P Rˆ0 , pf´j qx “ 1 “ padj00pC
1
Rqqx,

we conclude: f´j “ adj00pC
1
Rq.

Then: f´j “ adj00pC
1
Rq P BNZzCVZ, as desired. �

THEOREM 4.2.22. Let j P N0. Then pOj`1 Ĺ Oj.

Proof. We have | ‚ | P CVZ. Recall: BNZ ¨ CVZ Ď CVZ.

Then: pOj`1 “ BNZ ¨ | ‚ |j`1 “ BNZ ¨ | ‚ | ¨ | ‚ |j

P BNZ ¨ CVZ ¨ | ‚ |j Ď CVZ ¨ | ‚ |j “ Oj.

Want: Df s.t. p f R pOj`1 q & p f P Oj q.

Let f :“ | ‚ |j`p1{2q. Want: p f R pOj`1 q & p f P Oj q.

Since f0 “ 0, by Theorem 4.2.11 and Theorem 4.2.10,

it suffices to show: p f´j`1 R BNZ q & p f´j P CVZ q.

Since pf´j`1q0 “ 0 “ padj00p| ‚ |
´1{2qq0
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and since @x P Rˆ0 , pf´j`1qx “ |x|
´1{2 “ padj00p| ‚ |

´1{2qqx,

we conclude: f´j`1 “ adj00p| ‚ |
´1{2q.

Then: f´j`1 “ adj00p| ‚ |
´1{2q R BNZ. Want: f´j P CVZ.

Since pf´j q0 “ 0 “ padj00p| ‚ |
1{2qq0

and since @x P Rˆ0 , pf´j qx “ |x|
1{2 “ padj00p| ‚ |

1{2qqx,

we conclude: f´j “ adj00p| ‚ |
1{2q.

Since p| ‚ |1{2q0 “ |0|
1{2 “ 0, we get: adj00p| ‚ |

1{2q “ | ‚ |1{2.

Then: f´j “ adj00p| ‚ |
1{2q “ | ‚ |1{2 P CVZ, as desired. �

THEOREM 4.2.23. Let j P N0. Then Oj ` Oj Ď Oj.

Proof. Recall: CVZ` CVZ Ď CVZ.

Then: Oj ` Oj “ pCVZ ¨ | ‚ |jq ` pCVZ ¨ | ‚ |jq

“ pCVZ`CVZq ¨ | ‚ |j Ď CVZ ¨ | ‚ |j “ Oj, as desired. �

THEOREM 4.2.24. Let j P N0. Then Oj and pOj are v.op.-closed.

Proof. Unassigned HW. �

THEOREM 4.2.25. Let j, k P N0. Then Oj ¨ pOk Ď Oj`k.

Proof. Recall: CVZ ¨ BNZ Ď CVZ.

Then: Oj ¨ pOk “ pCVZ ¨ | ‚ |jq ¨ pBNZ ¨ | ‚ |kq

“ pCVZ ¨ BNZq ¨ | ‚ |j`k Ď CVZ ¨ | ‚ |j`k “ Oj`k. �

THEOREM 4.2.26. Let j, k P N0. Then:

p pOj ¨ pOk Ď pOj`k q & p Oj ¨ pOk Ď Oj`k q

& p pOj ¨ Ok Ď Oj`k q & p Oj ¨ Ok Ď Oj`k q.

Proof. Unassigned HW. �

DEFINITION 4.2.27. For all j P N0, let Hj :“ R ¨ p‚qj.

We have: @j P N0,

Hj “ t f : RÑ R | Da P R s.t., @x P R, fx “ axj u.

DEFINITION 4.2.28. We define:

C :“ H0 and L :“ H1 and Q :“ H2 and K :“ H3.

THEOREM 4.2.29. @j P N0, Hj is v.op.-closed.

THEOREM 4.2.30. @j, k P N0, Hj ¨Hk Ď Hj`k.

DEFINITION 4.2.31. We define: 0 :“ C0
R.

THEOREM 4.2.32. Let j P N0. Then Hj Ď pOj and Hj

Ş

Oj “ t0u.
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Proof. By Theorem 4.2.20, we have: p‚qj P pOj.

By Theorem 4.2.24, pOj and Oj are v.op.-closed,

and so R ¨ pOj Ď pOj and R ¨ Oj Ď Oj.

Then: Hj “ R ¨ p‚qj Ď R ¨ pOj Ď pOj. Want: Hj

Ş

Oj “ t0u.

We have: 0 “ 0¨p‚qj P Hj. Also: 0 “ C0
R “ C0

R ¨|‚|
j P CVZ¨|‚|j “ Oj.

Since 0 P Hj and 0 P Oj, we get 0 P Hj

Ş

Oj, so t0u Ď Hj

Ş

Oj.

Want: Hj

Ş

Oj Ď t0u. Want: @f P Hj

Ş

Oj, f P t0u.

Given f P Hj

Ş

Oj. Want: f P t0u. Want: f “ 0.

Since f “ Hj “ R ¨ p‚qj, choose a P R s.t. f “ a ¨ p‚qj.

Want: a “ 0. Assume a ‰ 0. Want: Contradiction.

Since 1{a P R and f P Oj, we get: p1{aq ¨ f P R ¨ Oj.
Since f “ a ¨ p‚qj, we get: p1{aq ¨ f “ p‚qj.

Then p‚qj “ p1{aq ¨ f P R ¨ Oj Ď Oj, and so p‚qj P Oj.

By Theorem 4.2.20, we have: p‚qj R Oj. Contradiction. �

THEOREM 4.2.33. We have:

C Ď pO0 and C X O0 “ t0u and

L Ď pO1 and LX O1 “ t0u and

Q Ď pO2 and QX O2 “ t0u and

K Ď pO3 and K X O3 “ t0u.

DEFINITION 4.2.34. Let S and T be sets of functions.

Then: T ˝setset S :“ t g ˝ f | p g P T q & p f P S qu.

We typically omit “setset” and simply write “T ˝ S”.

DEFINITION 4.2.35. Let f be a function, S a set of functions.

Then: f ˝fnset S :“ tfu ˝ S

and S ˝setfn f :“ S ˝ tfu.

We typically omit “fnset” and “setfn”, and write “f ˝S” and “S ˝f”.

THEOREM 4.2.36. We have:

(1) DNZ ˝ CVZ Ď DNZ and

(2) BNZ ˝ CVZ Ď BNZ and

(3) CVZ ˝ CVZ Ď CVZ.

Proof. Proof of (1):

Want: @h P DNZ ˝ CVZ, h P DNZ.

Given h P DNZ ˝ CVZ. Want: h P DNZ.
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Want: DA P BRp0q s.t. A Ď Dh.

Since h P DNZ ˝ CVZ, choose g P DNZ and f P CVZ s.t. h “ g ˝ f .

Since g P DNZ, choose B P BRp0q s.t. B Ď Dg.

By Theorem 4.1.6, choose A P BRp0q s.t. p A Ď Df q & p f˚A Ď B q.

Then A P BRp0q. Want: A Ď Dh.

Want: @x P A, x P Dh. Given x P A. Want: x P Dh.

Since x P A Ď Df , we get x P AX Df . Then fx P f˚A.

Since fx P f˚A Ď B Ď Dg, it follows that gfx ‰ /.

Since hx “ pg ˝ fqx “ gfx ‰ /, it follows that x P Dh, as desired.

End of proof of (1).

Proof of (2): Unassigned HW. End of proof of (2).

Proof of (3). Unassigned HW. End of proof of (3). �

THEOREM 4.2.37. Let g :“ C0
p´1;1q.

Define f : RÑ R by: @x P R, fx “ x` 2.

Then f P BNZ Ď DNZ and g P CVZ Ď BNZ Ď DNZ.

Also, g ˝ f R DNZ Ě BNZ Ě CVZ.

Proof. Unassigned HW: Show that f P BNZ and that g P CVZ.

Then, since CVZ Ď BNZ Ď DNZ, it remains to show: g ˝ f R DNZ.

We have pg ˝ fq0 “ gf0 “ g2 “ /, so 0 ‰ Dg˝f .

Then g ˝ f is not defined near 0 in R, so g ˝ f R DNZ. �

THEOREM 4.2.38. Let X be a metric space and let A Ď X.

Assume that A is bounded in X.

Then ClXA is bounded in X.

Proof. Let C :“ ClXA. Want: C is bounded in X.

Want: Dt ą 0 s.t. C is t-bounded in X.

Since A is bounded in X, choose s ą 0 s.t. A is s-bounded in X.

Let t :“ s` 2. Then t ą 0. Want: C is t-bounded in X.

Want: @p, q P C, dXpp, qq ă t. Given p, q P C. Want: dXpp, qq ă t.

Since p, q P C “ ClXA, we get pBXpp, 1qq X A ‰ H ‰ pBXpq, 1qq X A.

Choose y P pBXpp, 1qq X A and z P pBXpq, 1qq X A.

Then y, z P A. So, since A is s-bounded, we get: dXpy, zq ă s.

Since y P BXpp, 1q, it follows that dXpp, yq ă 1.

Since z P BXpq, 1q, it follows that dXpz, qq ă 1.

By the triangle inequality, dXpp, qq ď pdXpp, yqq`pdXpy, zqq`pdXpz, qqq.

Then dXpp, qq ă 1` s` 1 “ s` 2 “ t, as desired. �
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THEOREM 4.2.39. Let X be a proper metric space and let A Ď X.

Assume: A is bounded in X. Then ClXA is compact.

Proof. By Theorem 4.2.38, ClXA is bounded in X.

So, since ClXA is closed in X and since X is proper,

it follows, from Theorem 3.16.11, that ClXA is compact. �

Recall: @x, y P R, d
pRpx, yq “ mint |x´ y| , 1 u

and dRpx, yq “ |x´ y|.

THEOREM 4.2.40. Let f :“ idR and let A :“ R.

Then: f is a homeomorphism from pR to R and f˚A “ A.

Also: A is bounded in pR and f˚A is unbounded in R.

Proof. Unassigned HW. Hint: Use Theorem 3.19.18. �

THEOREM 4.2.41. Let X and Y be metric spaces, A Ď X, f P CX
Y .

Assume: X is proper and A is bounded in X.

Then: f˚A is bounded in Y .

Proof. By Theorem 4.2.39, ClXA is compact.

Let B :“ ClXA. Then B is compact.

Since f P CX
Y , we have: f is continuous from X to Y .

Then, by Theorem 3.18.3, f˚B is compact.

Then, by Theorem 3.9.1, f˚B is bounded in Y .

Since A Ď ClXA “ B, we get: f˚A Ď f˚B.

So, since f˚B is bounded in Y , it follows that f˚A is bounded in Y . �

THEOREM 4.2.42. CR
R ˝ BNZ Ď BNZ.

Proof. Want: @h P CR
R ˝ BNZ, h P BNZ.

Given h P CR
R ˝ BNZ. Want: h P BNZ.

Want: DB P BRp0q s.t. p B Ď Dh q & p h˚B is bounded in R q.
Since h P CR

R ˝ BNZ, choose g P CR
R and f P BNZ s.t. h “ g ˝ f .

Since f P BNZ, we know: f is bounded near 0 in R,

so choose B P BRp0q s.t. p B Ď Df q & p f˚B is bounded in R q.
Then B P BRp0q. Want: p B Ď Dh q & p h˚B is bounded in R q.
Since f P BNZ, we get f : R 99K R, and so If Ď R.

Since g P CR
R , we get g : RÑ R, and so Dg “ R.

Since B Ď Df and since f˚B Ď If Ď R “ Dg, we conclude: B Ď Dg˝f .

Recall: h “ g ˝ f . Then: B Ď Dg˝f “ Dh.

It remains to show: h˚B is bounded in R.



CLASS NOTES 151

Since g P CR
R and R is proper and f˚B is bounded in R,

it follows, from Theorem 4.2.41, that g˚pf˚Bq is bounded in R.

So, since h˚B “ pg˝fq˚B “ g˚pf˚Bq, we get: h˚B is bounded in R. �

Warning: Define f : RÑ R by: @x P R, fx “ x` 2. Let g :“ C0
p´1;1q.

By Theorem 4.2.37, we have: f P BNZ and g ˝ f R BNZ.

Unassigned HW: Show, @j P N0, that | ‚ |j P CR
R .

THEOREM 4.2.43. Let φ P BNZ and let j P N0.

Then |φ|j P BNZ.

Proof. We have: |φ|j “ | ‚ |j ˝ φ P CR
R ˝ BNZ Ď BNZ. �

By Theorem 4.2.37, we have: CVZ ˝ BNZ Ę DNZ.

Then pO0 ˝ pO0 “ BNZ ˝ BNZ Ď CVZ ˝ BNZ Ę DNZ Ě BNZ “ pO0,

and it follows that: pO0 ˝ pO0 Ę pO0.

The next theorem asserts that, for positive integers j, k, pOk˝ pOj Ď pOj`k.

THEOREM 4.2.44. Let j, k P N0. Then pOk ˝ pOj Ď pOj`k.

Proof. Want: @h P pOk ˝ pOj, h P pOj`k.

Given h P pOk ˝ pOj. Want: h P pOj`k.

Since h P pOk ˝ pOj, choose f P pOj and g P pOk s.t. h “ g ˝ f .

Since j P N, we get: pOj Ď pO1.

Then f P pOj Ď pO1 Ď O0 “ CVZ, so f P CVZ.

Since f P pOj “ BNZ ˝ | ‚ |j, choose φ P BNZ s.t. f “ φ ˝ | ‚ |j.

Since g P pOk “ BNZ ˝ | ‚ |k, choose ψ P BNZ s.t. g “ ψ ˝ | ‚ |k.

Then: @x P R, hx “ pg ˝ fqx “ gpfxq

“ pψ ¨ | ‚ |kqpfxq

“ rψpfxqs ¨ r | fx |k s

“ rψpfxqs ¨ r | pφ ¨ | ‚ |
jqx |k s

“ rψpfxqs ¨ r | φx ¨ |x|
j |k s

“ rψpfxqs ¨ r |φx |
k s ¨ r | |x|j |k s

“ rψpfxqs ¨ r |φx |
k s ¨ r |x|jk s

“ pψ ˝ fqx ¨ p|φ|
kqx ¨ p| ‚ |jkqx

“ p pψ ˝ fq ¨ |φ|k ¨ | ‚ |jk qx
Then: h “ pψ ˝ fq ¨ |φ|k ¨ | ‚ |jk.

Since φ P BNZ, by Theorem 4.2.43, we have: |φ|k P BNZ.

By (2) of Theorem 4.2.36, we have: BNZ ˝ CVZ Ď BNZ.

By HW#13-4, we conclude that: BNZ ¨ BNZ Ď BNZ.
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Then: h “ p ψ ˝ f q ¨ |φ|k ¨ | ‚ |jk

P pBNZ ˝ CVZq ¨ BNZ ¨ | ‚ |jk

Ď BNZ ¨ BNZ ¨ | ‚ |jk

Ď BNZ ¨ | ‚ |jk.

Then: h P BNZ ¨ | ‚ |jk “ pOjk, as desired. �

4.3. Double-translates of functions R 99K R.

DEFINITION 4.3.1. Let f : R 99K R and let x P R.

Then fT
x : R 99K R is defined by:

@h P R, fT
x phq “ rfpx` hqs ´ rfpxqs.

Then: @f : R 99K R, @x, h P R, we have: pfT
x qh “ fx`h ´ fx.

Then: @f : R 99K R, @x P RzDf , @h P R, we have: pfT
x qh “ /.

Then: @f : R 99K R, @x P RzDf , we have: fT
x “ H.

Consequently, it is only useful to study fT
x when x P Df .

We will call fT
x the “double-translate of f based at x.

It is not a scalar; it is a function R 99K R.

The next theorem, in part, asserts that

the graph of the double-translate

passes through the origin in R2.

It also describes how

the domain of the double-translate

is related to

the domain of the original function.

It also gives two examples of how

properties of the double translate fT
x near 0

are related to

properties of the original function f near x.

THEOREM 4.3.2. Let f : R 99K R, let x P Df and let φ :“ fT
x .

Then: r φ0 “ 0 s & r Dφ “ Df ´ x s

& r p φ is defined near 0 in R q
ô p f is defined near x in R q s

& r p φ is continuous at 0 from R to R q
ô p f is continuous at x from R to R q s.

THEOREM 4.3.3. Let f, g : R 99K R and let x P R.

Then: pf ` gqTx “ fT
x ` gTx .

Proof. Unassigned HW. �
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THEOREM 4.3.4. Let a P R, f : R 99K R, x P R.

Then pafqTx “ a ¨ fT
x

Proof. Unassigned HW. �

THEOREM 4.3.5. Let f, g : R 99K R and let x P Df

Ş

Dg.

Then pfgqTx “ fx ¨ g
T
x ` gx ¨ f

T
x ` f

T
x ¨ g

T
x .

Proof. Let U :“ pfgqTx and let V :“ fx ¨ g
T
x ` gx ¨ f

T
x ` f

T
x ¨ g

T
x .

Want: U “ V . Want: @h P R, Uh “ Vh.

Given h P R. Want: Uh “ Vh.

Let a :“ fx, A :“ fx`h, b :“ gx, B :“ gx`h.

Then: pfT
x qh “ fx`h´ fx “ A´ a and pgTx qh “ gx`h´ gx “ B´ b.

Also, pfx ¨ g
T
x qh “ fx ¨ rpg

T
x qhs “ apB ´ bq.

Also, pgx ¨ f
T
x qh “ gx ¨ rpf

T
x qhs “ bpA´ aq.

Also, pfT
x ¨ g

T
x qh “ rpf

T
x qhs ¨ rpg

T
x qhs “ pA´ aqpB ´ bq.

Also, pfgqx “ fx ¨ gx “ ab and pfgqx`h “ fx`h ¨ gx`h “ AB.

We have Vh “ pfx ¨ g
T
x qh ` pgx ¨ f

T
x qh ` pfT

x ¨ g
T
x qh

“ apB ´ bq ` bpA´ aq ` pA´ aqpB ´ bq

“ aB ´ ab` bA´ ba` AB ´ Ab´ aB ` ab

“ ´ ba` AB.

Then Uh “ ppfgq
T
xqh “ pfgqx`h ´ pfgqx “ AB ´ ab

“ ´ ba` AB “ Vh. �

THEOREM 4.3.6. Let f, g : R 99K R, let x P Df and let y :“ fx.

Then pg ˝ fqTx “ gTy ˝ fT
x .

Proof. Let U :“ pg ˝ fqTx and let V :“ gTy ˝ fT
x .

Want: U “ V . Want: @h P R, Uh “ Vh.

Given h P R. Want: Uh “ Vh.

Let k :“ pfT
x qh. Then: k “ fx`h ´ fx.

So, since y “ fx, we get: y ` k “ fx ` fx`h ´ fx “ fx`h.

Since pfT
x qh “ k, we get: pgTy ˝ fT

x qh “ pg
T
y qk.

Then Vh “ pg
T
y ˝ fT

x qh “ pg
T
y qk “ gy`k ´ gy, so Vh “ gy`k ´ gy.

Then Uh “ ppg ˝ fq
T
xqh “ pg ˝ fqx`h ´ pg ˝ fqx “ gfx`h

´ gfx .

So, since fx`h “ y ` k and fx “ y, we get: Uh “ gy`k ´ gy.

Then Uh “ gy`k ´ gy “ Vh, as desired. �

4.4. Linearizations and the D-derivative.
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DEFINITION 4.4.1. Let f : R 99K R and let x P R.

Then: LINSxf :“ t L P L | fT
x ´ L P O1 u.

Also, Dxf :“ UE pLINSxf q.

The set LINSxf is the set of “linearizations of f at x”.

Eventually, we will show that LINSxf has at most one element.

The linear function Dxf is the “D-derivative of f at x”.

It is not a scalar; it is a linear function from R to R.

Intuition: Its graph is the tangent line to the graph of fT
x at the origin.

The D-derivative of f at x is the unique linearization of f at x,

provided such a linearization exists.

THEOREM 4.4.2. Let f : R 99K R and let x P R.

Assume: LINSxf ‰ H. Then: fT
x P pO1.

Proof. Choose L P LINSxf . Then p L P L q & p fT
x ´ L P O1 q.

We have: fT
x ´ L P O1 Ď pO1 and L P L “ H1 Ď pO1.

Then fT
x “ pf

T
x ´ Lq ` L P

pO1 ` pO1 “ pO1, as desired. �

THEOREM 4.4.3. Let f : R 99K R, let x P R and let L P L.

Assume: L P LINSxf . Then: Dxf “ L.

Proof. Since Dxf “ UEpLINSxfq, we wish to show: LINSxf “ tLu.

Since L P LINSxf , we get tLu Ď LINSxf . Want: LINSxf Ď tLu.

Want: @M P LINSxf , M P tLu.

Given M P LINSxf . Want: M P tLu.

Since L P LINSxf , we get LINSxf ‰ H, so,

by Theorem 4.4.2, we see that fT
x P

pO1.

Then fT
x P

pO1 Ď O0 “ CVZ Ď BNZ Ď DNZ, so fT
x P DNZ.

Since fT
x P DNZ, it follows that: fT

x ´ fT
x “ 0 near 0 in R.

Then p fT
x ´ L q ´ p fT

x ´ M q “M ´ L near 0 in R.

Since L,M P LINSxf , we get fT
x ´ L P O1 and fT

x ´ M P O1.

Then p fT
x ´ L q ´ p fT

x ´ M q P O1 ´ O1 Ď O1.

So, since p fT
x ´ L q ´ p fT

x ´ M q “M ´ L near 0 in R,

and since O1 is a zero-local condition, we get: M ´ L P O1.

Also, M ´ L P L´ L Ď L “ H1. Recall: H1

Ş

O1 “ t0u.

Then M ´ L P H1

Ş

O1 “ t0u, so M ´ L “ 0, so M “ L P tLu. �

4.5. The prime-derivative.
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THEOREM 4.5.1. Let m P R.

Define L : RÑ R by: @x P R, Lx “ mx.

Then: L “ m ¨ p‚q P R ¨ p‚q “ L and L1 “ m ¨ 1 “ m.

The point of the preceding theorem is that,

to get the slope of a linear function L,

you can simply compute L1.

DEFINITION 4.5.2. Let f : R 99K R.

Then f 1 : RÑ R is defined by: @x P R, f 1x “ pDxfq1.

The function f 1 is called the derivative or prime-derivative of f .

The prime-derivative of f at x, denoted f 1x, is a scalar.

Recall that the D-derivative of f at x is not a scalar;

it is a linear function from R to R.

To compute the prime-derivative of at x,

you can simply take the slope of the D-derivative of f at x.

Recall the intuition:

The graph of the D-derivative of f at x is

the tangent line to the graph of fT
x at the origin.

So, since that tangent line is parallel to

the tangent line to the graph of f at px, fxq,

we conclude:

the prime-derivative of f at x is the slope of

the tangent line to the graph of f at px, fxq.

THEOREM 4.5.3. Define f : RÑ R by: @x P R, fx “ x2.

Then: f 13 “ 6.

Proof. Define L P L and Q P Q by:

@h P R, Lh “ 6h and Qh “ h2.

We have: @h P R, pfT
3 qh “ f3`h ´ f3 “ p3` hq2 ´ 32

“ p9` 6h` h2q ´ 9 “ 6h` h2

“ Lh `Qh “ pL`Qqh.

Then fT
3 “ L ` Q, so fT

3 ´ L “ Q.

So, since Q P Q “ H2 Ď pO2 Ď O1,

we get: fT
3 ´ L P O1, and so L P LINS3f .

Then, by Theorem 4.4.3, D3f “ L.

Then f 13 “ pD3fq1 “ L1 “ 6 ¨ 1 “ 6. �
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THEOREM 4.5.4. Define f : RÑ R by: @x P R, fx “ x2.

Let x P R. Then: f 1x “ x2.

Proof. Unassigned HW. Hint: Take the preceding proof and replace:

3 by x, 6 by 2x and 9 by x2. �

THEOREM 4.5.5. Let f : R 99K R and let x P R.

Assume: LINSxf ‰ H. Then x P Df 1.

Proof. Choose L P LINSxf . By Theorem 4.4.3, we have: Dxf “ L.

We have L P LINSxf Ď L, so L : RÑ R, so L1 ‰ H.

Then f 1x “ pDxfq1 “ L1 ‰ /, so x P Df 1 , as desired. �

THEOREM 4.5.6. Let f : R 99K R and let x P Df 1.

Then Dxf P LINSxf Ď L.

Proof. By definition of LINSxf , we have LINSxf Ď L.

It remains to show: Dxf P LINSxf . Since x P Df 1 , we get f 1x ‰ /.

So, since f 1x “ pDxfq1, we get pDxfq1 ‰ /, so Dxf ‰ /.

So, since Dxf “ UEpLINSxfq, we get UEpLINSxfq ‰ /,

and it follows that UEpLINSxfq P LINSxf .

Then Dxf “ UEpLINSxfq P LINSxf , as desired. �

THEOREM 4.5.7. Let f : R 99K R and let x P Df 1.

Then: f is defined near x in R
and f is continuous at x from R to R.

Proof. By Theorem 4.4.2, we have fT
x P

pO1.

Then fT
x P

pO1 Ď O0 “ CVZ, so fT
x P CVZ,

so fT
x is continuous at 0 from R to R.

Then, by Theorem 4.3.2, f is continuous at x from R to R.

Want: f is defined near x in R.

We have fT
x P CVZ Ď BNZ Ď DNZ, so fT

x P DNZ,

so fT
x is defined near 0 in R.

Then, by Theorem 4.3.2, f is defined near x in R, as desired. �

THEOREM 4.5.8. Let f :“ C1
r2;3s. Then f 12 “ / “ f 13.

Proof. Since  p f is defined near 2 q,

by Theorem 4.5.7, we conclude: 2 R Df 1 .

Also, since  p f is defined near 3 q,

by Theorem 4.5.7, we conclude: 3 R Df 1 .

Since 2 R Df 1 and 3 R Df 1 , we conclude: f 12 “ / “ f 13. �
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THEOREM 4.5.9. Let f : R 99K R. Then Df 1 Ď Df .

Proof. Want: @x P Df 1 , x P Df . Given x P Df 1 . Want: x P Df .

By Theorem 4.5.7, we see that f is defined near x,

so choose B P BRpxq s.t. B Ď Df .

Since B P BRpxq, we get: x P B. Then x P B Ď Df . �

4.6. Basic properties of D-derivatives.

THEOREM 4.6.1. Let f, g : R 99K R and let x P Df 1
Ş

Dg1.

Then: (1) Dxpf ` gq “ Dxf ` Dxg

and (2) Dxpfgq “ fx ¨ Dxg ` gx ¨ Dxf .

Proof. Proof of (1): Unassigned HW. End of proof of (1).

Proof of (2):

By Theorem 4.5.9, x P Df

Ş

Dg.

Then fx P If Ď R and gx P Ig Ď R.

By Theorem 4.5.6, we haveDxf P LINSxf Ď L andDxg P LINSxg Ď L.

Then LINSxf ‰ H ‰ LINSxg, so, by Theorem 4.4.2,

we get: fT
x P

pO1 and gTx P
pO1.

Let s :“ fx, t :“ gx, L :“ Dxf , M :“ Dxg.

Then s, t P R and L,M P L.

So, since L is v.op.-closed, we see that: sM ` tL P L.

Since fx ¨ Dxg ` gx ¨ Dxf “ sM ` tL,

we wish to prove: Dxpfgq “ sM ` tL.

Then, by Theorem 4.4.3, we wish to show: sM ` tL P LINSxpfgq.

Since sM ` tL P L, we need only show: pfgqTx ´ psM ` tLq P O1.

By Theorem 4.3.5, pfgqTx “ fx ¨ g
T
x ` gx ¨ f

T
x ` f

T
x ¨ g

T
x .

Let φ :“ fT
x and ψ :“ gTx . Then pfgqTx “ s ¨ ψ ` t ¨ φ` φ ¨ ψ.

Then pfgqTx ´ psM ` tLq “ s ¨ pψ ´Mq ` t ¨ pφ´Mq ` φ ¨ ψ.

Since L “ Dxf P LINSxf , we get fT
x ´ L P O1.

Then φ´ L “ fT
x ´ L P O1.

Since M “ Dxg P LINSxg, we get gTx ´ M P O1.

Then ψ ´M “ gTx ´ M P O1.

Also, we have: φ “ fT
x P

pO1 and ψ “ gTx P
pO1.

Then: φ ¨ ψ P pO1 ¨ pO1 Ď pO2.

Then pfgqTx ´ psM ` tLq “ s ¨ pφ´ Lq ` t ¨ pψ ´Mq ` φ ¨ ψ

P R ¨ O1 ` R ¨ O1 ` pO2
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Ď O1 ` O1 ` O1

Ď O1, as desired.

End of proof of (2). �

THEOREM 4.6.2. Let a P R, let f : R 99K R and let x P Df 1.

Then: Dxpa ¨ fq “ a ¨ Dxf .

Proof. Unassigned HW. �

THEOREM 4.6.3. Let f and g be functionals. Let h be a function.

Then pf ` gq ˝ h “ pf ˝ hq ` pg ˝ hq.

Proof. Want: @x, ppf ` gq ˝ hqx “ ppf ˝ hq ` pg ˝ hqqx.

Given x. Want: ppf ` gq ˝ hqx “ ppf ˝ hq ` pg ˝ hqqx.

We have ppf ˝ hq ` pg ˝ hqqx “ pf ˝ hqx ` pg ˝ hqx “ fhx ` ghx .

Then ppf ` gq ˝ hqx “ pf ` gqhx “ fhx ` ghx “ ppf ˝ hq ` pg ˝ hqqx. �

THEOREM 4.6.4. Let f :“ C3
R, g :“ C4

R, h :“ p‚q2.

Then h ˝ pf ` gq ‰ ph ˝ fq ` ph ˝ gq.

Proof. We have pf ` gq1 “ f1 ` g1 “ 3` 4 “ 7.

We have ph ˝ fq1 “ hf1 “ h3 “ 9 and ph ˝ g1 “ h4 “ 16.

Then pph ˝ fq ` ph ˝ gqq1 “ ph ˝ fq1 ` ph ˝ gq1 “ 9` 16 “ 25.

Then ph ˝ pf ` gqq1 “ hpf`gq1 “ h7 “ 49 ‰ 25 “ pph ˝ fq ` ph ˝ gqq1, so

ph ˝ pf ` gqq1 ‰ pph ˝ fq ` ph ˝ gqq1.

Then h ˝ pf ` gq ‰ ph ˝ fq ` ph ˝ gq, as desired. �

THEOREM 4.6.5. Let L P L and s, t P R. Then Ls`t “ Ls ` Lt.

Proof. Unassigned HW. �

THEOREM 4.6.6. Let f and g be functionals. Let L P L.

Then L ˝ pf ` gq “ pL ˝ fq ` pL ˝ gq.

Proof. Want: @x, pL ˝ pf ` gqqx “ ppL ˝ fq ` pL ˝ gqqx.

Given x. Want: pL ˝ pf ` gqqx “ ppL ˝ fq ` pL ˝ gqqx.

Let s :“ fx and t :“ gx.

Then ppL ˝ fq ` pL ˝ gqqx “ pL ˝ fqx ` pL ˝ gqx “ Lfx ` Lgx “ Ls ` Lt.

Also, pf ` gqx “ fx ` gx “ s` t. By Theorem 4.6.5, Ls`t “ Ls `Lt.

Then pL˝pf`gqqx “ Lpf`gqx “ Ls`t “ Ls`Lt “ ppL˝fq`pL˝gqqx. �

THEOREM 4.6.7. Let f, g : R 99K R, let x P Df 1 and let y :“ fx.

Assume: y P Dg1. Then: Dxpg ˝ fq “ pDygq ˝ pDxfq.
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Proof. By Theorem 4.5.9, x P Df and y P Dg.

Then fx P If Ď R and gy P Ig Ď R.

By Theorem 4.5.6, we have Dxf P LINSxf Ď L and Dyg P LINSyg Ď L.

Then LINSxf ‰ H, so, by Theorem 4.4.2, we get: fT
x P

pO1.

Let L :“ Dxf , M :“ Dyg. Then L,M P L.

Then M ˝ L P L ˝ L “ H1 ˝H1 Ď H1 “ L.

Since pDygq ˝ pDxfq “M ˝ L, we wish to prove: Dxpg ˝ fq “M ˝ L.

Then, by Theorem 4.4.3, we wish to show: M ˝ L P LINSxpg ˝ fq.

Since M ˝ L P L, we need only show: pg ˝ fqTx ´ pM ˝ Lq P O1.

By Theorem 4.3.6, pg ˝ fqTx “ gTy ˝ fT
x .

Let φ :“ fT
x and ψ :“ gTy . Then pg ˝ fqTx “ ψ ˝ φ.

Since L “ Dxf P LINSxf , we get fT
x ´ L P O1.

Then φ´ L “ fT
x ´ L P O1.

Since M “ Dyg P LINSyg, we get gTy ´ M P O1.

Then ψ ´M “ gTy ´ M P O1.

Let R :“ φ´ L and S :“ ψ ´M . Then R, S P O1.

Also, L`R “ φ and M ` S “ ψ.

Since M P L, by Theorem 4.6.6,

we get: M ˝ pL`Rq “ pM ˝ Lq ` pM ˝Rq.

Then ψ ˝ φ “ pM ` Sq ˝ φ

“ pM ˝ φq ` pS ˝ φq

“ pM ˝ pL`Rqq ` pS ˝ φq

“ pM ˝ Lq ` pM ˝Rq ` pS ˝ φq.

We have M ˝R P L ˝ O1 “ H1 ˝ O1 Ď pO1 ˝ O1 Ď O1.

Recall: fT
x P

pO1. Then S ˝ φ “ S ˝ fT
x P O1 ˝ pO1 Ď O1.

Then: pψ ˝φq ´ pM ˝Lq “ pM ˝Rq ` pS ˝φq P O1 ` O1 Ď O1. �

4.7. Basic properties of prime-derivatives.

THEOREM 4.7.1. Let f, g : R 99K R and let x P Df 1
Ş

Dg1.

Then: (1) pf ` gq1x “ f 1x ` g1x
and (2) pfgq1x “ fx ¨ g

1
x ` gx ¨ f

1
x.

Proof. Proof of (1): Unassigned HW. End of proof of (1).

Proof of (2):

By Theorem 4.6.1, we have Dxpfgq “ fx ¨ Dxg ` gx ¨ Dxf .

Let s :“ fx, t :“ gx, L :“ Dxf , M :“ Dxg.

Then Dxpfgq “ fx ¨ Dxg ` gx ¨ Dxf “ s ¨ M ` t ¨ L.
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Also, we have: f 1x “ pDxfq1 “ L1 and g1x “ pDxgq1 “M1.

Then pfgq1x “ pDxpfgqq1 “ ps ¨ M ` t ¨ Lq1
“ s ¨ M1 ` t ¨ L1

“ fx ¨ g
1
x ` gx ¨ f

1
x.

End of proof of (2). �

THEOREM 4.7.2. Let a P R, let f : R 99K R and let x P Df 1.

Then: pa ¨ fq1x “ a ¨ f 1x.

Proof. Unassigned HW. �

THEOREM 4.7.3. Let L,M P L. Then pM ˝ Lq1 “M1 ¨ L1.

Proof. Since M P L “ R ¨ p‚q, choose t P R s.t. M “ t ¨ p‚q.

Then: M1 “ t ¨ 1 “ t and ML1 “ t ¨ L1.

Then pM ˝ Lq1 “ML1 “ t ¨ L1 “M1 ¨ L1, as desired. �

THEOREM 4.7.4. Let f, g : R 99K R, let x P Df 1 and let y :“ fx.

Assume: y P Dg1. Then: pg ˝ fq1x “ g1y ¨ f
1
x.

Proof. By Theorem 4.6.7, we have Dxpg ˝ fq “ pDygq ˝ pDxfq.

Let L :“ Dxf and M :“ Dyg.

Then Dxpg ˝ fq “ pDygq ˝ pDxfq “ M ˝ L.

By Theorem 4.7.3, we have: pM ˝ Lq1 “M1 ¨ L1.

Also, we have: f 1x “ pDxfq1 “ L1 and g1y “ pDygq1 “M1.

Then: pg ˝ fq1x “ pDxpg ˝ fqq1 “ pM ˝ Lq1 “M1 ¨ L1 “ g1y ¨ f
1
x. �

4.8. Fermat’s Theorem.

DEFINITION 4.8.1. Let f be a functional and let p P Df .

Then f has a global strict-maximum means: f ă fp on pDf q
ˆ
p .

Also, f has a global strict-minimum means: f ą fp on pDf q
ˆ
p .

Also, f has a global semi-maximum means: f ď fp on pDf q
ˆ
p .

Also, f has a global semi-minimum means: f ě fp on pDf q
ˆ
p .

Also, f has a global strict-extremum means:

f has a global strict-maximum or global strict-minimum at p.

Also, f has a global semi-extremum means:

f has a global semi-maximum or global semi-minimum at p.

DEFINITION 4.8.2. Let X be a metric space, fX 99K R, p P Df .

Then f has a local strict-maximum means:

DB P BXppq s.t. f ă fp on Bˆp .
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Also, f has a local strict-minimum means:

DB P BXppq s.t. f ą fp on Bˆp .

Also, f has a local semi-maximum means:

DB P BXppq s.t. f ď fp on Bp.

Also, f has a local semi-minimum means:

DB P BXppq s.t. f ě fp on Bp.

Also, f has a local strict-extremum means:

f has a local strict-maximum or local strict-minimum at p.

Also, f has a local semi-extremum means:

f has a local semi-maximum or local semi-minimum at p.

THEOREM 4.8.3. Let j P N0, φ P Oj, ε ą 0.

Then |φ| ď ε ¨ | ‚ |j near 0 in R.

Proof. Want: DB P BRp0q s.t. |φ| ď ε ¨ | ‚ |j on B.

Since φ P Oj “ CVZ ¨ | ‚ |j, choose ψ P CVZ s.t. φ “ ψ ¨ | ‚ |j.

Since ψ P CVZ, by Theorem 4.1.5, choose δ ą 0 s.t., @x P R,

p |x| ă δ q ñ p |ψx| ă ε q.

Let B :“ BRp0, δq. Then B P BRp0q. Want: |φ| ď ε ¨ | ‚ |j on B.

Want: @x P B, |φ|x ď pε ¨ | ‚ |
jqx.

Given x P B. Want: |φ|x ď pε ¨ | ‚ |
jqx.

Since x P B “ BRp0, δq, we get: dRpx, 0q ă δ.

Since |x| “ |x´ 0| “ dRpx, 0q ă δ, by choice of δ, we get: |ψx| ă ε.

Then |φ|x “ |φx| “ |pψ ¨ | ‚ |
jqx| “ | ψx ¨ |x|

j | “ |ψx| ¨ |x|
j.

Since |x| ě 0 and since |ψx| ă ε, we get |ψx| ¨ |x|
j ď ε ¨ |x|j.

Then |φ|x “ |ψx| ¨ |x|
j ď ε ¨ |x|j “ pε ¨ | ‚ |jqx, as desired. �

THEOREM 4.8.4. Let f : R 99K R and let c P Df 1.

Assume: f has a local semi-maximum at c in R.

Then: f 1c “ 0.

Proof. Since c P Df 1 , we get: f 1c ‰ /.

Let L :“ Dcf . Then, since L1 “ f 1c, we get L1 ‰ /. Then L ‰ /.

Since UEpLINScfq “ Dcf “ L ‰ /, we get UEpLINScfq P LINScf .

Then L “ Dcf “ UEpLINScfq P LINScf , so L P LINScf .

Since L P LINScf and since f has a local semi-maximum at c in R,

it follows, from, HW#1-3, that: L “ 0.

Then f 1c “ L1 “ 01 “ 0, as desired. �

The next result is called Fermat’s Theorem.
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THEOREM 4.8.5. Let f : R 99K R and let c P Df 1.

Assume: f has a local semi-extremum at c in R.

Then: f 1c “ 0.

Proof. Since f has a local semi-extremum at c in R,

at least one of the following must be true:

(1) f has a local semi-maximum at c in R
or (2) f has a local semi-minimum at c in R.

Case 1: By Theorem 4.8.4, f 1c “ 0, as desired. End of Case 1.

Case 2: Let g :“ ´f .

Since f has a local semi-minimum at c in R,

it follows that g has a local semi-maximum at c in R.

Since c P Df 1 and g “ ´f , we get g1c “ ´f
1
c. Want: g1c “ 0.

Since c P Df 1 , we get f 1c P If 1 . So, since If 1 Ď R, we get f 1c P R.

Since f 1c P R, we see that ´f 1c P R, and so ´f 1c ‰ /.

Since g1c “ ´f
1
c ‰ /, we get c P Dg1 . Then, by Theorem 4.8.4, g1c “ 0.

End of Case 2. �

4.9. The Second Derivative Tests.

The next result is the Quadratic Taylor Theorem:

THEOREM 4.9.1. Let f : R 99K R, x P Df2, m :“ f 1x and a :“ f2x{2.

Let L :“ m ¨ p‚q and let Q :“ a ¨ p‚q2. Then: fT
p ´ L´Q P O2.

Proof. THIS WILL BE PROVED IN A LATER CLASS. �

The next result is the Positive Second Derivative Test:

THEOREM 4.9.2. Let f : R 99K R and let x P Df2.

Assume: p f 1x “ 0 q & p f2x ą 0 q.

Then: f has a local strict-minimum at x in R.

Proof. Let φ :“ fT
p . Want: φ has a local strict-minimum at 0 in R.

Let m :“ f 1x and let a :“ f2x{2. Then: pm “ 0 q& p a ą 0 q.

Let L :“ m ¨p‚q and Q :“ a ¨p‚q2. By Theorem 4.9.1, fT
p ´L´Q P O2.

Since m “ 0, we get: L “ m ¨ p‚q “ 0 ¨ p‚q “ 0.

Then φ´Q “ φ´ 0´Q “ fT
p ´ L´Q P O2, so φ´Q P O2.

Then, by HW#1-4, φ has a local strict-minimum at 0 in R. �
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The next result is the Negative Second Derivative Test:

THEOREM 4.9.3. Let f : R 99K R and let x P Df2.

Assume: p f 1x “ 0 q & p f2x ă 0 q.

Then: f has a local strict-maximum at x in R.

Proof. Unassigned HW. �

4.10. Basic properties of derivatives.

THEOREM 4.10.1. Let s P R. Then pCs
Rq
1 “ 0.

Proof. Let f :“ Cs
R. Want: f 1 “ 0.

Want: @x P R, f 1x “ 0x. Given x P R. Want: f 1x “ 0x.

We have: @h P R, pfT
x qh “ fx`h ´ fx “ s´ s “ 0 “ 0h.

Then fT
x “ 0. Then fT

x ´ 0 “ 0´ 0 “ 0 P O1, so fT
x ´ 0 P O1.

So, since 0 “ 0 ¨ p‚q P L, we conclude that 0 P LINSxf .

Then Dxf “ 0. Then f 1x “ pDxfq1 “ 01 “ 0 “ 0x, as desired. �

THEOREM 4.10.2. Let f, g : R 99K R and let c P R.

Assume: f “ g near c in R. Then: p Dcf “ Dcg q & p f 1c “ g1c q.

Proof. By HW#1-5, we have: LINScf Ď LINScg.

Also, by HW#1-5 (interchanging f and g), we have: LINScg Ď LINScf .

Then LINScf “ LINScg. Then UEpLINScfq “ UEpLINScgq.

Then Dcf “ UEpLINScfq “ UEpLINScgq “ Dcg.

It remains only to show: f 1c “ g1c.

We have f 1c “ pDcfq1 “ pDcgq1 “ g1c, as desired. �

THEOREM 4.10.3. Let f : R 99K R and let c, s P R.

Assume: f “ s near c in R. Then: f 1c “ 0.

Proof. Since f “ s near c in R, we conclude: f “ Cs
R near c in R.

Then, by Theorem 4.10.2, it follows that: f 1c “ pC
s
Rq
1
c.

By Theorem 4.10.1, we see that: pCs
Rq
1 “ 0.

Then: f 1c “ pC
s
Rq
1
c “ 01c “ 0, as desired.

�

4.11. Rolle’s Theorem.

THEOREM 4.11.1. Let K be a nonempty compact metric space.

Let g : K Ñ R. Assume g is continuous from K to R.

Then: Dp, q P K s.t. gp ď g ď gq on K.
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Proof. Let L :“ Ig. Then g : K Ñą L.

So, since g is cointuous from K to L,

by Theorem 3.9.6, we see: L is compact,

and it follows that: L is closed and bounded in R.

Also, since K ‰ H, it follows that: L ‰ H.

Then, by Theorem 3.18.5, we get: min L ‰ / ‰ max L.

Let s :“ min L and t :“ max L. Then s ‰ / ‰ t.

Then s, t P L and s ď L ď t. Then L ď t and L ě s.

Since s, t P L “ Ig, choose p, q P Dg s.t. gp “ s and gq “ t.

Then p, q P Dg “ K. Want: gp ď g ď gq on K.

Want: s ď g ď t on K.

Want: @x P K, s ď gx ď t.

Given x P K. Want: s ď gx ď t.

Since x P K “ Dg, it follows that gx P Ig.
Then gx P Ig “ L ď t. Want gx ě s.

We have gx P Ig “ L ě s, as desired. �

THEOREM 4.11.2. Let f : R 99K R, b P R, a ă b, g : ra; bs Ñ R.

Assume: g is continuous from R to R and ga “ gb.

Then: Dc P pa; bq s.t. g has a global semi-extremum at c.

Proof. Let K :“ ra; bs. Since a ă b, we get: K ‰ H.

Since K is closed and bounded in R and since R is proper,

we conclude that K is compact.

By hypothesis, we have: g : K Ñ R.

By absoluteness of continuity, g is continuous from K to R.

By Theorem 4.11.1, choose p, q P K s.t. gp ď g ď gq on K.

Exactly one of the following is true:

(1) tp, qu Ď ta, bu or (2) tp, qu Ę ta, bu.

Case 1:

Let c :“ pa` bq{2. Then a ă c ă b, so c P pa; bq.

Want: g has a global semi-extremum at c.

Want: g has a global semi-maximum at c.

Want: g ď gc on Dg. Want: g “ gc on Dg.

Want: @x P Dg, gx “ gc. Given x P Dg. Want: gx “ gc.

We have: p P tp, qu Ď ta, bu, so gp P tga, gbu.

Also: q P tp, qu Ď ta, bu, so gq P tga, gbu.
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Let y :“ ga. Then y “ ga “ gb. Then tga, gbu “ tyu.

Then gp, gq P tga, gbu “ tyu, so gp “ y “ gq.

So, since gp ď g ď gq on K, we get: y ď g ď y on K.

Then g “ y on K. That is, @s P K, gs “ y.

So, since x P Dg “ K and since c P pa; bq Ď ra; bs “ K,

we conclude: gx “ y and gc “ y.

Then gx “ y “ gc, as desired.

End of Case 1.

Case 2:

Since tp, qu Ę ta, bu, choose c P tp, qu s.t. c ‰ ta, bu.

We have c P tp, qu Ď K “ ra; bs and c R ta, bu.

Then: c P ra; bszta, bu “ pa; bq.

Want: g has a global semi-extremum at c.

Since gp ď g ď gq on K, we get:

p g ď gq on K q & p g ě gp on K q.

So, since c P tp, qu, we get:

p g ď gc on K q _ p g ě gc on K q.

So, since K “ Dg, we get:

p g ď gc on Dg q _ p g ě gc on Dg q.

That is, either g has a global semi-maximum at c

or g has a global semi-minimum at c.

Then g has a global semi-extremum at c, as desired.

End of Case 2. �

THEOREM 4.11.3. Let X be a metric space and f : X 99K R.

Let K Ď Df and g :“ f |K and c P IntXK.

Assume: g has a global strict-maximum at c.

Then: f has a local strict-maximum at c in X.

Proof. Want: DB P BXpcq s.t. f ă fc on Bˆc .

Since c P IntXK, choose B P BXpcq s.t. B Ď K.

Then B P BXpcq. Want: f ă fc on Bˆc .

Since K Ď Df and g “ f |K, we see that: Dg “ K.

Since g “ f |K, it follows that g “ f on K.

So, since Kˆ
c Ď K, we get: g “ f on Kˆ

c .

We have c P IntXK Ď K, so pf |Kqc “ fc. Then gc “ pf |Kqc “ fc.

Since B Ď K, it follows that Bˆc Ď Kˆ
c .

Since g has a global strict-maximum at c and since Dg “ K,



166 SCOT ADAMS

we conclude that: g ă gc on Kˆ
c .

So, since g “ f on Kˆ
c and since gc “ fc, we get: f ă fc on Kˆ

c .

So, since Bˆc Ď Kˆ
c , we get: f ă fc on Bˆc . �

THEOREM 4.11.4. Let X be a metric space and f : X 99K R.

Let K Ď Df and g :“ f |K and c P IntXK.

Assume: g has a global strict-minimum at c.

Then: f has a local strict-minimum at c in X.

Proof. Unassigned HW. �

THEOREM 4.11.5. Let X be a metric space and f : X 99K R.

Let K Ď Df and g :“ f |K and c P IntXK.

Assume: g has a global semi-maximum at c.

Then: f has a local semi-maximum at c in X.

Proof. Unassigned HW. �

THEOREM 4.11.6. Let X be a metric space and f : X 99K R.

Let K Ď Df and g :“ f |K and c P IntXK.

Assume: g has a global semi-minimum at c.

Then: f has a local semi-minimum at c in X.

Proof. Unassigned HW. �

THEOREM 4.11.7. Let X be a metric space and f : X 99K R.

Let K Ď Df and g :“ f |K and c P IntXK.

Assume: g has a global semi-extremum at c.

Then: f has a local semi-extremum at c in X.

Proof. Unassigned HW. �

THEOREM 4.11.8. Let X be a metric space and f : X 99K R.

Let K Ď Df and c P IntXK.

Assume that f has a global strict-maximum at c.

Then f has a local strict-maximum at c in X.

Proof. Let K :“ Df and let g :“ f |K. Then g “ f .

So, since f has a global strict-maximum at c,

we conclude that: g has a global strict-maximum at c.

Then, by Theorem 4.11.3, f has a local strict-maximum at c in X. �

In class, we explained why, in Theorem 4.11.8, it is insufficient to

assume only that c P K; we need c P IntXK.
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Recall: @a, b P R, ra; bs P T 1R and IntRra; bs “ pa; bq.

DEFINITION 4.11.9. Let f : R 99K R and let S Ď R.

By f is c/d on S, we mean:

p f is continuous on S from R to R q & p IntRS Ď Df 1 q.

That is, @S Ď R, c/d on S means:

continuous on S and differentiable on IntRS.

In particular, @a, b P R, c/d on ra; bs means:

continuous on ra; bs and differentiable on pa; bq.

The next theorem is Rolle’s Theorem:

THEOREM 4.11.10. Let f : R 99K R, let b P R, and let a ă b.

Assume: f is c/d on ra; bs and fa “ fb.

Then: Dc P pa; bq s.t. f 1c “ 0.

Proof. Since f is c/d on ra; bs we get:

both f is continuous on ra; bs from R to R and pa; bq Ď Df 1 .

Let K :“ ra; bs. Then f is continuous on K from R to R,

so, by Theorem 2.11.12, f |K is continuous on K from R to R.

Let g :“ f |K. Then g is continuous on K from R to R.

Since a, b P ra; bs “ K and g “ f |K, we get: ga “ fa and gb “ fb.

By hypothesis, fa “ fb. Then ga “ fa “ fb “ gb, so ga “ gb.

Then, by Theorem 4.11.2, choose c P pa; bq s.t.

g has a global semi-extremum at c.

Then c P pa; bq. Want: f 1c “ 0.

We have c P pa; bq “ IntRra; bs “ IntRK.

Then, by Theorem 4.11.7, f has a local semi-extremum at c in R.

We have: c P pa; bq Ď Df 1 .

Then by Fermat’s Theorem (Theorem 4.8.5), we get f 1c “ 0. �

4.12. Mean Value Theorem.

DEFINITION 4.12.1. Let f : RÑ R and a, b P R.

Then: DQf
ab :“

fb ´ fa
b´ a

.

THEOREM 4.12.2. Let f : R 99K R, a, h P R, b :“ a` h.

Then: DQf
ab “

pfT
a qh

h
.
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THEOREM 4.12.3. Let f : R 99K R, a, b P Df .

Assume a ‰ b. Let m :“ DQf
ab.

Let L :“ m ¨ p‚q, g :“ f ´ L.

Then: ga “ gb.

Proof. We have

ˆ

fb ´ fa
b´ a

˙

¨ pb´ aq “ fb ´ fa.

So, since m “ DQf
ab “

fb ´ fa
b´ a

, we get m ¨ pb´ aq “ fb ´ fa.

Then Lb ´ La “ m ¨ b´m ¨ a “ m ¨ pb´ aq “ fb ´ fa.

Since Lb ´ La “ fb ´ fa, we get: fa ´ La “ fb ´ Lb.

Then ga “ pf´Lqa “ fa´La “ fb´Lb “ pf´Lqb “ gb, as desired. �

DEFINITION 4.12.4. Let L : RÑ R.

By L is algebraically linear, we mean:

@s, t P R, Ls`t “ Ls ` Lt
and @c P R, @t P R, Lc¨t “ c ¨ Lt.

THEOREM 4.12.5. Let L : RÑ R.

Assume L is algebraically linear.

Let m :“ L1. Then L “ m ¨ p‚q.

Proof. Want: @x P R, Lx “ pm ¨ p‚qqx.

Given x P R. Want: Lx “ pm ¨ p‚qqx.

We have Lx “ Lx¨1 “ x ¨L1 “ x ¨m “ m ¨x “ pm ¨ p‚qqx, as desired. �

THEOREM 4.12.6. Let L : RÑ R.

Then: p L P L q ô p L is algebraically linear q.

Proof. Unassigned HW. �

THEOREM 4.12.7. Let L P L and x P R. Then LT
x “ L.

Proof. Want: @h P R, pLT
xqh “ Lh.

Given h P R. Want: pLT
xqh “ Lh.

Since L is algebraically linear, we get: Lx`h “ Lx ` Lh.

We have pLT
xqh “ Lx`h ´ Lx “ Lx ` Lh ´ Lx “ Lh, as desired. �

THEOREM 4.12.8. Let L P L and x P R. Then DxL “ L.

Proof. By Theorem 4.12.7, LT
x “ L. Then LT

x ´ L “ 0.

Since LT
x ´ L “ 0 P O1, we conclude: L P LINSxL.

Then, by Theorem 4.4.3, we get DxL “ L, as desired. �
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THEOREM 4.12.9. Let m P R and L :“ m¨p‚q. Then L1 “ Cm
R .

Proof. Want: @x P R, L1x “ pC
m
R qx.

Given x P R. Want: L1x “ pC
m
R qx. By Theorem 4.12.8, DxL “ L.

Then L1x “ pDxLq1 “ L1 “ m ¨ 1 “ m “ pCm
R qx, as desired. �

The next theorem is the Mean Value Theorem:

THEOREM 4.12.10. Let f : R 99K R, let b P R, let a ă b.

Assume f is c/d on ra; bs. Then Dc P pa; bq s.t. f 1c “ DQf
ab.

Proof. Let m :“ DQf
ab, L :“ m ¨ p‚q, B :“ Cm

R .

By Theorem 4.12.9, we have: L1 “ B.

Then DL1 “ DB “ R. Then ra; bs Ď DL1 . Then L is c/d on ra; bs.

So, since f is c/d on ra; bs, it follows that f ´ L is c/d on ra; bs.

Let g :“ f ´ L. Then g is c/d on ra; bs.

By Theorem 4.12.3, we get: ga “ gb.

By Rolle’s Theorem (Theorem 4.11.10), choose c P pa; bq s.t. g1c “ 0.

Then c P pa; bq. Want: f 1c “ DQf
ab.

Since f is c/d on ra; bs, we get IntRra; bs Ď Df 1 .

We have c P pa; bq “ IntRra; bs Ď Df 1 , so c P Df 1 .

Since Df 1 Ď R, we get: Df 1
Ş

R “ Df 1 .

Then c P Df 1 “ Df 1
Ş

R “ Df 1
Ş

DL1 .

Then, by linearity of differentiation, we see that pf ´ Lq1c “ f 1c ´ L
1
c.

So, since f ´ L “ g and L1 “ B, we get g1c “ f 1c ´Bc.

So, since g1c “ 0 and Bc “ pC
m
R qc “ m, we get 0 “ f 1c ´m, so m “ f 1c.

Then f 1c “ m “ DQf
ab, as desired. �

DEFINITION 4.12.11. Let f : R 99K R and let S Ď Df .

Then DQf
S :“ tDQf

ab | p a, b P S q& p a ‰ b qu.

DEFINITION 4.12.12. Let f be a function.

By f is constant, we mean: Dy s.t., @x P Df , fx “ y.

THEOREM 4.12.13. Let f : R 99K R and let S Ď Df .

Then: (1) p 0 R DQf
S q ô p f |S is one-to-one q

and (2) p DQf
S Ď t0u q ô p f |S is constant q

and (3) p DQf
S ą 0 q ô p f |S is strictly-increasing q

and (4) p DQf
S ě 0 q ô p f |S is semi-increasing q

and (5) p DQf
S ă 0 q ô p f |S is strictly-decreasing q

and (6) p DQf
S ď 0 q ô p f |S is semi-decreasing q.

Proof. Unassigned HW. �
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DEFINITION 4.12.14. Let S Ď R.

By S is an interval, we mean: @a, b P S, ra; bs Ď S.

Let p, q P R. Then pp; qq, rp; qq, pp; qs and rp, qs are all intervals.

Let p P R. Then p´8; pq, p´8, ps, pp,8q and rp,8q are all intervals.

Also, p´8;8q is an interval. Note that R “ p´8;8q.

THEOREM 4.12.15. Let f : R 99K R and let S Ď Df 1.

Assume that S is an interval. Then DQf
S Ď f 1˚S.

Proof. Want: @m P DQf
s , m P f 1˚S.

Given m P DQf
s . Want: m P f 1˚S.

Since m P DQf
s , choose a, b P S s.t. p a ‰ b q & p m “ DQf

ab q.

Since S is an interval and a, b P S, we get: ra; bs P S.

By hypothesis, S Ď Df 1 . Then ra; bs Ď S Ď Df 1 .

Since ra; bs Ď Df 1 , we conclude: f is c/d on ra; bs.

By the Mean Value Theorem (Theorem 4.12.10),

choose c P pa; bq s.t. f 1c “ DQf
ab.

We have c P pa; bq Ď ra; bs Ď S, so c P S.

So, since c P S Ď Df 1 , we get c P S X Df 1 . Then f 1c P f
1
˚S.

Then m “ DQf
ab “ f 1c P f

1
˚S, as desired. �

THEOREM 4.12.16. Let f : R 99K R and let S Ď Df 1.

Assume that S is an interval.

Then: (1) p 0 R f 1˚S q ñ p f |S is one-to-one q

and (2) p f 1˚S Ď t0u q ñ p f |S is constant q

and (3) p f 1˚S ą 0 q ñ p f |S is strictly-increasing q

and (4) p f 1˚S ě 0 q ñ p f |S is semi-increasing q

and (5) p f 1˚S ă 0 q ñ p f |S is strictly-decreasing q

and (6) p f 1˚S ď 0 q ñ p f |S is semi-decreasing q.

Proof. Unassigned HW.

Hint: Combine Theorem 4.12.15 with Theorem 4.12.13. �

The converses of (1) and (3) of Theorem 4.12.16 both fail because of:

Let f :“ p‚q3 and let S :“ R.

Here, f is 1-1 and strictly-increasing, but 0 P f 1˚S and  pf 1˚S ą 0q.
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The converse of (5) of Theorem 4.12.16 fails because of:

Let f :“ ´p‚q3 and let S :“ R.

Here f is strictly-decreasing, but  pf 1˚S ă 0q.

Converses of (2), (4) and (6) of Theorem 4.12.16 happen only when

#S “ 1. See Theorem 4.12.20, below.

DEFINITION 4.12.17. We define sgn : RÑ t´1, 0, 1u by:

@x P R, sgnx “

$

’

’

&

’

’

%

1, if x ą 0

0, if x “ 0

´1, if x ă 0.

THEOREM 4.12.18. Let a, b P R.

Assume: |b´ a| ď |a|{2. Then: sgnb “ sgna.

Proof. Let ε :“ |a|{2. Then |b´ a| ď ε, so a´ ε ď b ď a` ε.

Exactly one of the following holds:

(1) a ą 0 or (2) a “ 0 or (3) a ă 0.

Case (1): Since a ą 0, we get: |a| “ a and a{2 ą 0.

Then b ě a´ ε “ a´ p|a|{2q “ a´ pa{2q “ a{2 ą 0, so b ą 0.

Since a ą 0, we get sgna “ 1. Since b ą 0, we get sgnb “ 1.

Then sgnb “ 1 “ sgna, as desired.

End of Case (1).

Case (2): Since a “ 0 and ε “ |a|, we get: ε “ 0.

Then |b´ a| ď ε “ 0, so, since |b´ a| ě 0, we get |b´ a| “ 0.

Then b “ a. Then sgnb “ sgna, as desired. End of Case (2).

Case (3): Since a ă 0, we get: |a| “ ´a and a{2 ă 0.

Then b ď a` ε “ a` p|a|{2q “ a` p´a{2q “ a{2 ă 0, so b ă 0.

Since a ă 0, we get sgna “ ´1. Since b ă 0, we get sgnb “ ´1.

Then sgnb “ ´1 “ sgna, as desired.

End of Case (3). �

We express Theorem 4.12.18 by saying:

if |b´ a| ď |a|{2, then b “mimics” a.

THEOREM 4.12.19. Let φ : R 99K R, k P N0, H P Hkzt0u.

Assume: φ´H P Ok.

Then: DB P BRp0q s.t., @x P B, sgnφx “ sgnHx
.
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Proof. Since H P Hk, we have H : RÑ R, so @x P R, Hx P R.

Then, by Theorem 4.12.18, it suffices to show:

Dδ ą 0 s.t., @x P BRp0, δq, |φx ´Hx| ď |Hx|{2.

Since H P Hk, choose c P R s.t. H “ c ¨ p‚qk.

As H ‰ 0, we get c ‰ 0, so |c| ą 0. Let ε :“ |c|{2. Then ε ą 0.

By hypothesis, φ´H P Ok. Let R :“ φ´H. Then R P Ok.

Choose δ ą 0 s.t., @x P R, p |x| ă δ q ñ p |Rx| ă ε ¨ |x|k q.

Then δ ą 0. Want: @x P BRp0, δq, |φx ´Hx| ď |Hx|{2.

Given x P BRp0, δq. Want: |φx ´Hx| ď |Hx|{2.

Since x P BRp0, δq, we get: dRpx, 0q ă δ.

Then |x| “ |x´ 0| “ dRpx, 0q ă δ, so,

by choice of δ, |Rx| ă ε ¨ |x|k.

We have Hx “ pc ¨ p‚q
kqx “ c ¨ xk, so |Hx| “ |c| ¨ |x|

k.

Then: |Hx|{2 “ p|c|{2q ¨ |x|
k “ ε ¨ |x|k.

Then: |φx´Hx| “ |pφ´Hqx| “ |Rx| ď ε ¨ |x|k “ |Hx|{2, as desired. �

We express Theorem 4.12.19 by saying:

if H P Hk and φ´H P Ok, then φ “mimics” H near 0.

That is,

if a function is approximated by a homogeneous k-polynomial,

with sub-k remainder,

then the function “mimics” the polynomial near 0.

In class, we drew some graphs to indicate this geometrically.

THEOREM 4.12.20. Let f : R 99K R, S Ď R. Assume: #S ‰ 1.

Then: (1) p f |S is one-to-one q œ p 0 R f 1˚S q

and (2) p f |S is constant q ñ p f 1˚S Ď t0u q

and (3) p f |S is strictly-increasing q œ p f 1˚S ą 0 q

and (4) p f |S is semi-increasing q ñ p f 1˚S ě 0 q

and (5) p f |S is strictly-decreasing q œ p f 1˚S ă 0 q

and (6) p f |S is semi-decreasing q ñ p f 1˚S ď 0 q.

Proof. Proof of (1)-(5): Unassigned HW. End of proof of (1)-(5).

Proof of (6): Want: @m P f 1˚S, m ď 0.

Given m P f 1˚S. Want: m ď 0.

Assume m ą 0. Want: Contradiction.

Since m P f 1˚S, choose x P S X Df 1 s.t. m “ f 1x.

Let L :“ Dxf . Then L1 “ f 1x “ m, so L1 “ m.

Since m P f 1˚S, we get m ‰ /, so L1 ‰ /, so L ‰ /.
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Then L P LINSxf . Then L P L and fT
x ´ L P O1.

Let φ :“ fT
x . Then φ´ L P O1.

Since L P L “ H1 and since φ´ L P O1,

by Theorem 4.12.19, choose δ ą 0 s.t., @h P BRp0, δq,

r p Lh ą 0 q ñ p φh ą 0 q s

and r p Lh ă 0 q ñ p φh ă 0 q s.

Since p x P S X Df 1 Ď S q & p #S ‰ 1 q,

we get Sˆx ‰ H, so choose z P Sˆx .

Since z ‰ x, exactly one of the following must hold:

(A) z ą x or (B) z ă x.

Case (A):

Let γ :“ z ´ x. Then γ ą 0 and x` γ “ z.

Then x` γ “ z P Sˆx Ď S. Recall: x P S.

Since x, x` γ P S and since S is an interval,

it follows that rx;x` γs Ď S.

Let h :“ mintγ, δ{2u. Then: p h ą 0 q & p h ď γ q & p h ă δ q.

Recall: L1 “ m. Then Lh “ Lh¨1 “ h ¨ L1 “ h ¨m.

So, since h,m ą 0, we conclude that Lh ą 0.

We have h ą 0 ą ´δ and h ă δ, so ´δ ă h ă δ, so h P p´δ; δq.

Since h P p´δ; δq “ BRp0, δq and since Lh ą 0,

by choice of δ, we get: φh ą 0.

Since 0 ă h ď γ, we get x ă x` h ď x` γ, so x` h P px;x` γs.

Then x` h P px;x` γs Ď rx;x` γs Ď S.

Since x, x` h P S, since x ď x` h and since f |S is semi-decreasing,

we conclude that: fx ě fx`h. Then fx`h ´ fx ď 0.

Then 0 ă φh “ pf
T
x qh “ fx`h ´ fx ď 0, so 0 ă 0. Contradiction.

End of Case (A).

Case (B):

Let γ :“ x´ z. Then γ ą 0 and x´ γ “ z.

Then x´ γ “ z P Sˆx Ď S. Recall: x P S.

Since x´ γ, x P S and since S is an interval,

it follows that rx´ γ;xs Ď S.

Let h :“ mintγ, δ{2u. Then: p h ą 0 q & p h ď γ q & p h ă δ q.

Recall: L1 “ m. Then L´h “ L´h¨1 “ ´h ¨ L1 “ ´h ¨m.

So, since h,m ą 0, we conclude that Lh ă 0.

We have ´h ă 0 ă δ and ´h ą ´δ, so ´δ ă ´h ă δ, so ´h P p´δ; δq.
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Since ´h P p´δ; δq “ BRp0, δq and since L´h ă 0,

by choice of δ, we get: φ´h ă 0.

Since ´γ ď ´h ă 0, we get x´ γ ď x´ h ă x, so x´ h P rx´ γ;xq.

Then x´ h P rx´ γ;xq Ď rx´ γ;xs Ď S.

Since x´ h, x P S, since x´ h ď x and since f |S is semi-decreasing,

we conclude that: fx´h ě fx. Then fx´h ´ fx ě 0.

Then 0 ą φ´h “ pf
T
x q´h “ fx´h ´ fx ě 0, so 0 ą 0. Contradiction.

End of Case (B).

End of proof of (6). �

4.13. Taylor’s Theorem, second order.

THEOREM 4.13.1. Let f : R 99K R. Assume f0 “ 0.

Then: fT
0 “ f .

Proof. Want: @h P R, pfT
0 qh “ fh.

Given h P R. Want: pfT
0 qh “ fh.

We have pfT
0 qh “ f0`h ´ f0 “ fh ´ 0 “ fh. �

THEOREM 4.13.2. Let L P L. Assume L1 “ 0. Then L “ 0.

Proof. @x P R, Lx “ Lx¨1 “ x¨L1 “ x¨0 “ 0 “ 0x. Then L “ 0. �

THEOREM 4.13.3. Let f : R 99K R. Assume: f0 “ f 10 “ 0.

Then: f P O1.

Proof. Since f0 “ 0, by Theorem 4.13.1, we conclude that fT
0 “ f .

Let L :“ D0f . Then L “ UEpLINS0fq and L1 “ f 10 “ 0.

Then L1 “ 0 ‰ /, so L ‰ /, so L P LINS0f .

Then L P L and fT
0 ´ L P O1.

Since L P L and L1 “ 0, by Theorem 4.13.2, we see that L “ 0.

Then f “ f ´ 0 “ fT
0 ´ L P O1, as desired. �

THEOREM 4.13.4. @f : R 99K R, @a, b P R, DQf
ab “ DQf

ba.

THEOREM 4.13.5. Let f : R 99K R and let a, b P R.

Let α :“ minta, bu and let β :“ maxta, bu. Then DQf
ab “ DQf

αβ.

THEOREM 4.13.6. Let f : R 99K R and let a, b P R.

Assume ra|bs Ď Df 1. Then: Dc P ra|bs s.t. f 1c ¨ pb´ aq “ fb ´ fa.
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Proof. We know: (1) a “ b or (2) a ‰ b.

Case (1):

Let c :“ a. Then c “ a P ra|bs. Want: f 1c ¨ pb´ aq “ fb ´ fa.

Since a, b P ra|bs Ď Df 1 Ď Df , we get fa, fb P If .
Since c “ a P ra|bs Ď Df 1 , we get f 1c P If 1 .
Then fa, fb P If Ď R and f 1c P If 1 Ď R, so fa, fb, f

1
c P R.

Since a “ b, we get b´ a “ 0.

Since a “ b, we get fa “ fb, so fb ´ fa “ 0.

Then f 1c ¨ pb´ aq “ f 1c ¨ 0 “ 0 “ fb ´ fa.

End of Case (1).

Case (2):

Let α :“ minta, bu and let β :“ maxta, bu. Then α ď β.

Since a ‰ b, we get α ‰ β. So, as α ď β, we get: α ă β.

Since rα; βs “ ra|bs Ď Df 1 , we get: f is c/d on rα; βs.

By the Mean Value Theorem, choose c P pα; βq s.t. f 1c “ DQf
αβ.

Then c P pα; βq Ď rα; βs “ ra|bs. Want: f 1c ¨ pb´ aq “ fb ´ fa.

By Theorem 4.13.5, we conclude: DQf
ab “ DQf

αβ.

Since a, b P R and a ‰ b, we get b´ a P Rˆ0 , so
b´ a

b´ a
“ 1.

We have f 1c “ DQf
αβ “ DQf

αβ “ DQf
ab “

fb ´ fa
b´ a

.

Then f 1c ¨ pb´ aq “ pfb ´ faq ¨
b´ a

b´ a
“ pfb ´ faq ¨ 1 “ fb ´ fa.

End of Case (2). �

THEOREM 4.13.7. Let f : R 99K R and let k P N0.

Assume: p f 1 P Ok q & p f0 “ 0 q. Then: f P Ok`1.

Proof. Want: @ε ą 0, Dδ ą 0 s.t., @x P R,

p |x| ă δ q ñ p |fx| ď ε ¨ |x|k`1 q.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P R,

p |x| ă δ q ñ p |fx| ď ε ¨ |x|k`1 q.

Since f 1 P Ok, choose δ ą 0 s.t., @x P R,

p |x| ă δ q ñ p |f 1x| ď ε ¨ |x|k q.

Then δ ą 0. Want: @x P R,

p |x| ă δ q ñ p |fx| ď ε ¨ |x|k`1 q.

Given x P R. Want: p |x| ă δ q ñ p |fx| ď ε ¨ |x|k`1 q.

Assume: |x| ă δ. Want: |fx| ď ε ¨ |x|k`1.
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Since f0 “ 0, it follows that: fx ´ f0 “ 0.

By Theorem 4.13.6, choose c P r0|xs s.t. f 1c ¨ px´ 0q “ fx ´ f0.

So, since x´ 0 “ x and since fx ´ f0 “ 0, we get: f 1c ¨ x “ fx.

Since c P r0|xs, it follows that |c| ď |x|.

Since |c| ď |x| ă δ, by choice of δ, we get: |f 1c| ď ε ¨ |c|k.

Then |fx| “ |f
1
c ¨x| “ |f

1
c| ¨ |x| ď ε ¨ |c|k ¨ |x| ď ε ¨ |x|k ¨ |x| “ ε ¨ |x|k`1. �

THEOREM 4.13.8. Let f : R 99K R.

Assume: f0 “ f 10 “ f20 “ 0. Then f P O2.

Proof. Let g :“ f 1. Then g0 “ f 10 “ 0 and g10 “ f20 “ 0.

Since g0 “ g10 “ 0, by Theorem 4.13.3, we get: g P O1.

Since f 1 “ g P O1 and f0 “ 0, by Theorem 4.13.7, we get f P O2. �

THEOREM 4.13.9. Let f : R 99K R, x P Df and h P R.

Then: pfT
x q

T
h “ fT

x`h.

Proof. Let g :“ fT
x . Want: gTh “ fT

x`h.

Want: @s P R, pgThqs “ pf
T
x`hqs.

Given s P R. Want: pgThqs “ pf
T
x`hqs.

Since x P Df , we get fx P If .
Since fx P If Ď R, we get: fx ´ fx “ 0.

Then: pfx`h`s ´ fxq ´ pfx`h ´ fxq “ fx`h`s ´ fx`h.

Then pgThqs “ gh`s ´ gh “ pfT
x qh`s ´ pf

T
x qh

“ pfx`h`s ´ fxq ´ pfx`h ´ fxq “ fx`h`s ´ fx`h
“ pfT

x`hqs, as desired. �

THEOREM 4.13.10. Let f : R 99K R, x P Df , g :“ fT
x , h P R.

Then: LINSxg “ LINSx`hf .

Proof. By Theorem 4.13.9, we have pfT
x q

T
h “ fT

x`h. Then gTh “ fT
x`h.

Then LINShg “ tL P L | gTh ´ L P O1u

“ tL P L | fT
x`h ´ L P O1u “ LINSx`hf . �

THEOREM 4.13.11. Let f : R 99K R, x P Df , g :“ fT
x , h P R.

Then: Dhg “ Dx`hf and g1h “ f 1x`h.

Proof. By Theorem 4.13.10, LINSxg “ LINSx`hf .

Then Dhg “ UEpLINSxgq “ UEpLINSx`hfq “ Dx`hf .

It remains to show that: g1h “ f 1x`h.

We have g1h “ pDhgq1 “ pDx`hfq1 “ f 1x`h, as desired. �
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DEFINITION 4.13.12. Let a and b be objects.

Then a “˚ b means: p b ‰ / q ñ p a “ b q.

Also, a ˚“ b means: p a ‰ / q ñ p a “ b q.

We read “a “˚ b” as

“a is contingent equal to b, with the contingency on b”.

We read “a ˚“ b” as

“a is contingent equal to b, with the contingency on a”.

The next two theorems restate linearity of derivatives, the product

rule and the chain rule, all in the language of contingent equalities.

THEOREM 4.13.13. Let f, g : R 99K R and x P R.

Then: pf ` gq1x “
˚ f 1x ` g1x

and pf ¨ gq1x “
˚ f 1x ¨ gx ` fx ¨ g

1
x

and pg ˝ fq1x “
˚ g1fx ¨ f

1
x.

THEOREM 4.13.14. Let c P R, f : R 99K R and x P R.

Then: pc ¨ fq1x “
˚ c ¨ f 1x.

We can sometimes “remove the contingency”:

THEOREM 4.13.15. @a, b, r p a “˚ b ‰ / q ñ p a “ b q s

& r p a “˚ b ‰ / q ñ p a “ b q s.

If we have contingencies simlutaneously on both sides, then the con-

tingency is removable:

THEOREM 4.13.16. Let a and b be objects.

Then: r p a “˚ b q & p a ˚“ b q s ñ r a “ b s.

Idea of proof: at least one of the following must hold:

a “ / “ b or a ‰ / or b ‰ /.

In the first case, a “ b by contraction.

In the second, removing the contingency from a ˚“ b, we get a “ b.

In the third, removing the contingency from a “˚ b, we get a “ b.

QED

The following captures that the derivative commutes with scalar mul-

tiplication, in the language of contingent equality:

THEOREM 4.13.17. Let f : R 99K R and let a, x P R.

Then pa ¨ fq1x “
˚ a ¨ f 1x.
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Theorem 4.13.17 follows from Theorem 4.7.2.

The following captures additivity of the derivative, along with the

product and chain rules, all in the language of contingent equality:

THEOREM 4.13.18. Let f, g : R 99K R and let x P R.

Then pf ` gq1x “
˚ f 1x ` g

1
x

and pf ¨ gq1x “
˚ f 1x ¨ gx ` fx ¨ g

1
x

and pg ˝ fq1x “
˚ g1fx ¨ f

1
x.

Theorem 4.13.18 follows from Theorem 4.7.1 and Theorem 4.7.4.

THEOREM 4.13.19. Let a P Rˆ0 , f : R 99K R, x P R.

Then pa ¨ fq1x “ a ¨ f 1x

Proof. We have pa ¨ fq1x “
˚ a ¨ f 1x.

It therefore suffices to show: a ¨ f 1x “
˚ pa ¨ fq1x.

Let g :“ a ¨ f . Want: a ¨ f 1x “
˚ g1x.

Let b :“ 1{a. Then: b ¨ g “ b ¨ a ¨ f “ 1 ¨ f “ f .

Then f “ b ¨ g. Also, pb ¨ gq1x “
˚ b ¨ g1x.

Then a ¨ f 1x “ a ¨ pb ¨ gq1x “
˚ a ¨ b ¨ g1x “ 1 ¨ g1x “ g1x, as desired. �

THEOREM 4.13.20. Let f, g : RÑ R.

Then: @x P R, pf ` gq2x “
˚ f2x ` g

2
x.

Proof. By Theorem 4.13.18, we have:

@x P R, pf ` gq1x “
˚ f 1x ` g

1
x.

Then: @x P R, pf ` gq1x “
˚ pf 1 ` g1qx.

Let α :“ f 1` g1 and β :“ pf ` gq1. Then: @x P R, βx “
˚ αx.

Then, by HW#2-4, we get: @x P R, β1x “
˚ α1x.

Therefore: @x P R, pf ` gq2x “
˚ pf 1 ` g1q1x.

By Theorem 4.13.18 (with f replaced by f 1 and g by g1), we have:

@x P R, pf 1 ` g1q1x “
˚ f2x ` g

2
x.

Then: @x P R, pf ` gq2x “
˚ pf 1 ` g1q1x “

˚ f2x ` g
2
x.

Then: @x P R, pf ` gq2x “
˚ f2x ` g

2
x, as desired. �

THEOREM 4.13.21. Let m, c P R and let ψ : RÑ R.

Assume: @x P R, ψx “ mx` cx2.

Then: @x P R, r p ψ1x “ m` 2cx q & p ψ2x “ 2c q s.

Proof. Define L,Q : RÑ R by: @x P R, p Lx “ mx q & p Qx “ cx2 q.

We have: @x P R, ψx “ mx` cx2 “ Lx `Qx “ pL`Qqx.
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Then @x P R, ψx “ pL`Qqx. Then ψ “ L`Q.

By HW#2-2, we know: @x P R, p L1x “ m q & p L2x “ 0 q.

By HW#2-3, we know: @x P R, p Q1x “ 2cx q & p Q2x “ 2c q.

Given x P R. Want: p ψ1x “ m` 2cx q & p ψ2x “ 2c q.

We have: ψ1x “ pL`Qq1x “
˚ L1x `Q

1
x “ m` 2cx ‰ /,

and so ψ1x “ m` 2cx. Want: ψ2x “ 2c.

We have: ψ2x “ pL`Qq2x “
˚ L2x `Q

2
x “ 2c ‰ /,

and so: ψ2x “ 2c. �

THEOREM 4.13.22. Let ` P N, f P H`. Then f 1 P H`´1.

Proof. Since f Q H`, choose c P R s.t. f “ c ¨ p‚q`.

Since c ¨ ` ¨ p‚q`´1 P H`´1, it suffices to show: f 1 “ c ¨ ` ¨ p‚q`´1.

Want: @x P R, f 1x “ pc ¨ ` ¨ p‚q
`´1qx.

Given x P R. Want: f 1x “ pc ¨ ` ¨ p‚q
`´1qx.

By HW#2-1, we have: pp‚q`q1 “ ` ¨ p‚q`´1.

Then f 1x “ pc ¨ p‚q`q1x “
˚ c ¨ pp‚q`q1x “ c ¨ p` ¨ p‚q`´1qx “ c ¨ ` ¨x`´1 ‰ /.

Then f 1x “ c ¨ ` ¨ x`´1 “ pc ¨ ` ¨ p‚q`´1qx, as desired. �

THEOREM 4.13.23. Let φ : R 99K R and ψ : RÑ R.

Assume: Dψ1 “ R. Then: pφ´ ψq1 “ φ1 ´ ψ1.

Proof. Let ρ :“ φ´ ψ. Want: ρ1 “ φ1 ´ ψ1.

Want: @x P R, ρ1x “ pφ
1 ´ ψ1qx.

Given x P R. Want: ρ1x “ pφ
1´ψ1qx. Want: ρ1x “ φ1x´ψ

1
x.

Since ρ1x “ pφ´ψq1x “
˚ φ1x´ψ

1
x, it suffices to show: ρ1x

˚“ φ1x´ψ
1
x.

Want: φ1x ´ ψ
1
x “

˚ ρ1x. Since φ : RÑ R, we get: ψ ´ ψ “ 0.

Then ρ` ψ “ φ` ψ ´ ψ “ φ` 0 “ φ, so φ “ ρ` ψ.

We have x P R “ Dψ1 , so ψ1x P Iψ1 .
Since ψ1x P Iψ1 Ď R, we get: ψ1x ´ ψ

1
x “ 0.

We have φ1x “ pρ` ψq1x “
˚ ρ1x ` ψ

1
x, so φ1x “

˚ ρ1x ` ψ
1
x.

Then φ1x ´ ψ
1
x “

˚ ρ1x ` ψ
1
x ´ ψ

1
x “ ρ1x ` 0 “ ρ1x, as desired. �

THEOREM 4.13.24. Let φ : R 99K R and ψ : RÑ R.

Assume: Dψ2 “ R. Then: pφ´ ψq2 “ φ2 ´ ψ2.

Proof. Since R “ Dψ2 Ď Dψ1 and since Dψ1 Ď R, we get: Dψ1 “ R.

Then, by Theorem 4.13.23, we get: pφ´ ψq1 “ φ1 ´ ψ1.

Let α :“ φ1 and β :“ ψ1. Then: pφ´ ψq1 “ α ´ β.

Then α1 “ φ2 and β1 “ ψ2 and pφ´ ψq2 “ pα ´ βq1.

We have Dβ “ Dψ1 “ R and Iβ “ Iψ1 Ď R, so β : RÑ R.
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So, since Dβ1 “ Dψ2 “ R, it follows,

from Theorem 4.13.23, that: pα ´ βq1 “ α1 ´ β1.

Then pφ´ ψq2 “ pα ´ βq1 “ α1 ´ β1 “ φ2 ´ ψ2. �

THEOREM 4.13.25. Let m, c P R and let ρ, g : R 99K R.

Assume: @x P R, ρx “ gx ´mx´ cx
2.

Then: @x P R, r p ρ1x “ g1x ´m´ 2cx q & p ρ2x “ g2x ´ 2c q s.

Proof. Define ψ : RÑ R by: @x P R, ψx “ mx` cx2.

By Theorem 4.13.21, @x P R, ψ2x “ 2c.

Since @x P R, ψ2x “ 2c ‰ /, we get @x P R, x P Dψ2 , and so R Ď Dψ2 .

Since R Ď Dψ2 Ď Dψ1 Ď R, we get Dψ1 “ R and Dψ2 “ R.

Then, by Theorem 4.13.24 and Theorem 4.13.23,

we get: pg ´ ψq1 “ g1 ´ ψ1 and pg ´ ψq2 “ g2 ´ ψ2.

We have: @x P R, ρx “ gx ´ pmx` cx
2q “ gx ´ ψx “ pg ´ ψqx.

Then: @x P R, ρx “ pg ´ ψqx. Then: ρ “ g ´ ψ.

Then: ρ1 “ pg´ψq1 “ g1´ψ1 and ρ2 “ pg´ψq2 “ g2´ψ2.

Given x P R. Want: r p ρ1x “ g1x ´m´ 2cx q & p ρ2x “ g2x ´ 2c q s.

By Theorem 4.13.21, we have: p ψ1x “ m` 2cx q & p ψ2x “ 2c q.

Then ρ1x “ pg
1 ´ ψ1qx “ g1x ´ ψ

1
x “ g1x ´m´ 2cx. Want: ψ2x “ 2c.

We have ρ2x “ pg
2 ´ ψ2qx “ g2x ´ ψ

2
x “ g2x ´ 2c, as desired. �

THEOREM 4.13.26. Let λ, µ : R 99K R and let a P R.

Assume: @h P R, µh “ λh`a. Then: @h P R, µ1h “ λ1h`a.

Proof. Define S, T : RÑ R by: @h P R, pSh “ h´ a q& pTh “ h` a q.

By HW#2-5, S 1 “ C1
R “ T 1. Also, S ˝ T “ idR “ T ˝ S.

We have: @h P R, µh “ λh`a “ λTh “ pλ ˝ T qh. Then µ “ λ ˝ T .

Then µ ˝ S “ λ ˝ T ˝ S “ λ ˝ idR “ λ, so µ ˝ S “ λ.

Given h P R. Want: µ1h “ λ1h`a. Let k :“ h`a. Want: µ1h “ λ1k.

We have: Th “ h` a “ k and Sk “ k ´ a “ h.

Then µ1h “ pλ ˝ T q1h “
˚ λ1Th ¨ T

1
h “ λ1k ¨ 1 “ λ1k,

so µ1h “˚ λ1k.

It suffices to show: µ1h
˚“ λ1k. Want: λ1k “

˚ µ1h.

We have λ1k “ pµ ˝ Sq1k “
˚ µ1Sk

¨ S 1k “ µ1h ¨ 1 “ µ1h, as desired. �

THEOREM 4.13.27. Let f : R 99K R and a P R and g :“ fT
a .

Then: @h P R, g2h “ f2h`a.

Proof. By Theorem 4.13.11, we have: @h P R, g1h “ f 1h`a.

Let µ :“ g1 and λ :“ f 1. Then: @h P R, µh “ λh`a.
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Then, by Theorem 4.13.26, @h P R, µ1h “ λ1h`a.

Then: @h P R, g2h “ µ1h “ λ1h`a “ f2h`a, as desired. �

The next result is called the Second Order Taylor Theorem:

THEOREM 4.13.28. Let f : R 99K R and a P Df2.

Let m :“ f 1a and c :“ f2a {2 and L :“ m ¨ p‚q and Q :“ c ¨ p‚q2.

Then: fT
a ´ L ´ Q P O2.

Proof. Since a P Df , it follows that pfT
a q0 “ 0.

Let g :“ fT
a . Then g0 “ 0. Want: g ´ L´Q P O2.

Let ρ :“ g ´ L´Q. Want: ρ P O2.

By Theorem 4.13.8, it suffices to show: ρ0 “ ρ10 “ ρ20 “ 0.

By Theorem 4.13.11, we have: @h P R, g1h “ f 1h`a.

Then g10 “ f 10`a “ f 1a “ m.

By Theorem 4.13.27, we have: @h P R, g2h “ f2h`a.

Since c “ f2a {2, we get: 2c “ f2a .

Then g20 “ f20`a “ f2a “ 2c.

By Theorem 4.13.25 (with x replaced by h), we conclude:

@h P R, r p ρ1h “ g1h ´m´ 2ch q & p ρ2h “ g2h ´ 2c q s.

We have: g0 “ 0 and g10 “ m and g20 “ 2c.

Then ρ0 “ g0 ´m ¨ 0´ c ¨ 0
2 “ 0´ 0´ 0 “ 0

and ρ10 “ g10 ´m´ 2c ¨ 0 “ m´m´ 0 “ 0

and ρ20 “ g20 ´ 2c “ 2c´ 2c “ 0.

We therefore have: g0 “ g10 “ g20 “ 0, as desired. �

The next result is called the Second Derivative Test for Maxima:

THEOREM 4.13.29. Let f : R 99K R and let a P R.

Assume: p f 1a “ 0 q & p f2a ă 0 q.

Then: f has a local strict-maximum at a in R.

Proof. Want: fT
a has a local strict-maximum at 0 in R.

We have f 1a “ 0 ‰ /, so a P Df 1 . Then a P Df 1 Ď Df , so pfT
a q0 “ 0.

Let g :“ fT
a . Want: g has a local strict-maximum at 0 in R.

Want: DB P BRp0q s.t. g ă g0 on Bˆ0 .

We have g0 “ pf
T
a q0 “ 0. Want: DB P BRp0q s.t. g ă 0 on Bˆ0 .

Let m :“ f 1a and c :“ f2a {2 and L :“ m ¨ p‚q and Q :“ c ¨ p‚q2.

By Theorem 4.13.28, we have: fT
a ´ L ´ Q P O2.

Since m “ f 1a “ 0, we get m ¨ p‚q “ 0. Then: L “ m ¨ p‚q “ 0.

Then: g ´ Q “ g ´ 0 ´ Q “ fT
a ´ L ´ Q P O2.
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So, by Theorem 4.12.19, choose B P BRp0q s.t., @h P B, sgngh “ sgnQh
.

Then B P BRp0q. Want: g ă 0 on Bˆ0 .

Want: @h P Bˆ0 , gh ă 0. Given h P Bˆ0 . Want: gh ă 0.

Since f2a ă 0 and c “ f2a {2, we get: c ă 0.

Since h P Bˆ0 Ď Rˆ0 , we get: h2 ą 0.

So, since c ă 0, we get ch2 ă 0. Then Qh “ pc ¨ p‚q
2qh “ ch2 ă 0.

Since Qh ă 0, we get: sgnQh
“ ´1. Then sgngh “ sgnQh

“ ´1.

Since sgngh “ ´1, we conclude that gh ă 0, as desired. �

4.14. Some basic limit theorems.

THEOREM 4.14.1. Let u ą 1, a P R. Then Dj P N s.t. uj ą a.

Proof. Assume: @j P N, uj ď a. Want: Contradiction.

Define s P RN by: @j P N, sj “ uj.

Then: p @j P N, sj`1 “ u ¨ sj q & p sj ą 1 q.

Since u ą 1, we know: @j P N, sj ¨ u ą sj ¨ 1.

Then: @j P N, sj`1 “ u ¨ sj “ sj ¨ u ą sj ¨ 1 “ sj.

Then: @j P N, sj`1 ą sj, so s is strictly-increasing.

We have: @j P N, 0 ă 1 ă sj and sj “ uj ď a, so 0 ă sj ď a.

Then Is Ď p0; as, so Is is bounded in R.

Since s is strictly-increasing and since Is is bounded in R,

it follows (from Theorem 3.11.4) that s is convergent in R.

Choose q P R s.t. sÑ q in R. Define ` P NN by `j “ j ` 1.

We have: @j P N, `j`1 “ j ` 2 ą j ` 1 “ `j,

so ` is strictly-increasing.

Then s ˝ ` is a subsequence of s.

So, since sÑ q in R, we get: s ˝ `Ñ q in R.

We have: @j P N, pu ¨ sqj “ u ¨ sj “ sj`1 “ s`j “ ps ˝ `qj,

so u ¨ s “ u ˝ `.

Since u ¨ s “ u ˝ ` and since u ˝ `Ñ q in R
we get: u ¨ sÑ q in R.

On the other hand, since sÑ q in R, we conclude u ¨ sÑ u ¨ q in R.

Since both u ¨ sÑ q in R and u ¨ sÑ u ¨ q in R,

we get: q “ u ¨ q. Then pu´ 1q ¨ q “ 0.

Since u ą 1, we get u´ 1 ą 0, so u´ 1 ‰ 0.

So, since pu´ 1q ¨ q “ 0, it follows that q “ 0.

Since @j P N, sj ą 1 and since sÑ q in R,

we conclude: q ě 1.

Then 0 “ q ě 1 ą 0, so 0 ą 0. Contradiction. �
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THEOREM 4.14.2. Let c P p0; 1q.

Define z P RN0 by: @j P N0, zj “ cj.

Then z Ñ 0 in R.

Proof. Want: @ε ą 0, DK P N0 s.t., @j P rK..8q, |zj| ă ε.

Given ε ą 0. Want: DK P N0 s.t., @j P rK..8q, |zj| ă ε.

Let u :“ 1{c. By Theorem 4.14.1, choose K P N s.t. uK ą 1{ε.

Then K P N Ď N0. Want: @j P rK..8q, |zj| ă ε.

Given j P rK..8q. Want: |zj| ă ε.

Since uK ą 1{ε ą 0, we conclude: 1{puKq ă 1{p1{εq.

Then cK “ p1{uqK “ 1{puKq ă 1{p1{εq “ ε, so cK ă ε.

Given j P rK..8q. Want: |zj| ă ε.

Since c ą 0, we get cK ą 0. Since 0 ă c ă 1, we get cj´K ă 1.

Since cK ą 0 and since cj´K ă 1,

we conclude: cK ¨ cj´K ă cK ¨ 1.

Since c ą 0, it follows that cj ą 0. Then zj “ cj ą 0, so |zj| “ zj.

Then: |zj| “ zj “ cj “ cK ¨ cj´K ă cK ¨ 1 “ cK ă ε. �

THEOREM 4.14.3. Let b P p0;8qN0 and c P p0; 1q and k P N0.

Assume: @j P rk..8q, bj`1{bj ď c. Then: bÑ 0 in R.

Proof. Want: @ε ą 0, DK P N0 s.t., @j P rK..8q, |bj| ă ε.

Given ε ą 0. Want: DL P N0 s.t., @j P rL..8q, |bj| ă ε.

Define r P p0;8qN by: @j P N, rj “ bk`j{bk`j´1.

Then, @j P N, we have: rj ď c.

Then, @i P N, we have: ri ¨ ri´1 ¨ ri´2 ¨ ¨ ¨ r1 ď ci.

Also, @i P N, we have: ri ¨ ri´1 ¨ ri´2 ¨ ¨ ¨ r1

“
bk`i
bk`i´1

¨
bk`i´1

bk`i´2

¨
bk`i´2

bk`i´3

¨ ¨ ¨
bk`1

bk
“

bk`i
bk

.

We conclude: @i P N, bk`i{bk ď ci.

Let a :“ bk. Then: @i P N, bk`i{a ď ci.

Also, since b P p0;8qN0 , we get a P p0;8q. Then a ą 0.

Define z P RN0 by: @j P N0, zj “ cj.

By Theorem 4.14.2, we have: z Ñ 0 in R.

Choose R P N0 s.t., @i P rR..8q, |zi| ă ε{a.

Let M :“ R ` 1. Then M P N. Also, rM..8q Ď rR..8q.

Let L :“M ` k. Then L P N0. Want: @j P rL..8q, |bj| ă ε.

Given j P rL..8q. Want: |bj| ă ε.

Since j P rL..8q and since L´ k “M , we get j ´ k P rM..8q.

Recall: @i P N, bk`i{a ď ci. Let i :“ j ´ k. Then: i P rM..8q.
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Also, k ` i “ j Since i P rM..8q and since M P N, we get i P N.

Then: bj “ bk`i{a ď ci. So, since a ą 0, we get: bj ď a ¨ ci.

Since i P rM..8q Ď rR..8q, by choice of R, we have |zi| ă ε{a.

Since c P p0; 1q ą 0, we get ci ą 0. Then |ci| “ ci.

By definition of z, we have zi “ ci. Then ci “ |ci| “ |zi| ă ε{a.

Since ci ă ε{a and since a ą 0, we get: a ¨ ci ă ε.

Then bj ď a ¨ ci ă ε, as desired. �

THEOREM 4.14.4. Let α, β P R. Then:

p α ď β q ô p @η ą 0, α ď β ` η q.

Proof. Proof of ñ:

Assume: α ď β. Want: @η ą 0, α ď β ` η.

Given η ą 0. Want: α ď β ` η.

Since η ą 0, it follows that η ě 0. Then β ` η ě β ` 0.

Then α ď β “ β ` 0 ď β ` η, as desired.

End of proof of ñ.

Proof of ð:

Assume: @η ą 0, α ď β ` η. Want: α ď β.

Assume α ą β. Want: Contradiction.

We have α ´ β ą 0. Let η :“ pα ´ βq{2. Then η ą 0.

Then, by our assumption, α ď β ` η. Then α ´ β ď η.

Since η “ pα ´ βq{2, we get 2η “ α ´ β.

Then 2η “ α ´ β ď η, so 2η ď η, so 2η ´ η ď η ´ η.

Then η “ 2η ´ η ď η ´ η “ 0, so η ď 0.

Then 0 ě η ą 0, so 0 ą 0. Contradiction.

End of proof of ð. �

THEOREM 4.14.5. Let f : R 99K R and let x,m P R.

Then: p f 1x “ m q ô p @ε ą 0, Dδ ą 0 s.t., @h P p´δ; δq,

|fx`h ´ fx ´m ¨ h| ď ε ¨ |h| q.

Proof. Define L P L by: @h P R, Lh “ m ¨ h.

We have: @h P R, pfT
x qh “ fx`h ´ fx. Let ρ :“ fT

x ´ L.

Then: @h P R, ρh “ pfTx ´ Lqh “ pfT
x qh ´ Lh “ fx`h ´ fx ´m ¨ h.

Then: @h P R, ρh “ fx`h ´ fx ´m ¨ h.

Want: p f 1x “ m q ô p @ε ą 0, Dδ ą 0 s.t., @h P p´δ; δq, |ρh| ď ε¨|h| q.

Know: p ρ P O1 q ô p @ε ą 0, Dδ ą 0 s.t., @h P p´δ; δq, |ρh| ď ε¨|h| q.

Want: p f 1x “ m q ô p ρ P O1 q.
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By definition of L, we conclude: p f 1x “ m q ô p Dxf “ L q.

By Theorem 4.4.3, we conclude: p Dxf “ L q ô p fT
x ´ L P O1 q.

Then: p f 1x “ m q ô p Dxf “ L q

ô p fT
x ´ L P O1 q ô p ρ P O1 q. �

THEOREM 4.14.6. Let s P RN0. Assume s is convergent in R.

Then tsj`1 ´ sj | j P N0u is bounded in R.

Proof. Define t P RN0 by: @j P N0, tj “ sj`1.

Let u :“ t´ s. Then: @j P N0, uj “ pt´ sqj “ tj ´ sj “ sj`1 ´ sj,

so Iu “ tsj`1 ´ sj | j P N0u. Want: Iu is bounded in R.

Since s is convergent in R, choose q P R s.t. sÑ q in R.

By HW#3-1, tÑ q in R. Then t´ sÑ q ´ q in R.

So, since t´ s “ u and q ´ q “ 0, we get: uÑ 0 in R.

Then u is convergent in R, so Iu is bounded in R, as desired. �

4.15. Differentiation commutes with uniform limit.

We illustrated in class that: Dφ, ψ P pRRqN, Df, g P RR

such that φÑ f pointwise from R to R
and ψ Ñ g pointwise from R to R
and @j P N, pφjq

1 “ ψj
and f 1 ‰ g.

That is, differentiation does not commute with pointwise limit.

In this section, we will show:

differentiation DOES commute with UNIFORM limit.

DEFINITION 4.15.1. Let X be a set and let S Ď X.

Let Y be a metric space. Let f P pPFXY q
N and let g P PFXY .

By f Ñ g pointwise on S from X to Y , we mean:

@p P S, f‚ppq Ñ gppq in Y .

By f Ñ g uniformly on S from X to Y , we mean:

@ε ą 0, DK P N s.t., @j P N, @p P S,

p j ě K q ñ p dp fjppq , gppq q ă ε q.

Let X be a set and let S Ď X. Let Y be a metric space.

Let f P pPFXY q
N and let g P PFXY .

Note that, if f Ñ g uniformly on S from X to Y ,

then f Ñ g pointwise on S from X to Y .

Also, note that, if f Ñ g pointwise on S from X to Y ,

then S Ď Dg

Ş

Df1

Ş

Df2

Ş

Df3

Ş

¨ ¨ ¨ .
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THEOREM 4.15.2. Let φ, ψ P pPFR
Rq

N and let f, g P PFR
R.

Let U be an open subset of R.

Assume: φÑ f pointwise on U from R to R
and ψ Ñ g uniformly on U from R to R
and @j P N, pφjq

1 “ ψj.

Then: f 1 “ g.

Proof. Want: @x P U , f 1x “ gx. Given x P U . Want: f 1x “ gx.

By Theorem 4.14.5, we wish to show:

@ε ą 0, Dδ ą 0 s.t., @h P p´δ; δq, |fx`h´fx´gx ¨h| ď ε ¨ |h|.

Given ε ą 0. Want: Dδ ą 0 s.t., @h P p´δ; δq, |fx`h´fx´m ¨h| ď ε ¨ |h|.

Since U is an open subset of R, we know that U “ IntRU .

Since x P U “ IntRU , choose S P BRpUq s.t. S Ď U .

Since S P BRpUq, choose α ą 0 s.t. S “ BRpx, αq.

Then px´ α;x` αq “ BRpx, αq “ S Ď U .

Since ψ Ñ g uniformly on U from R to R,

choose k P N s.t., @j P rk..8q, |g ´ ψj| ă ε{8 on U .

Since pφkq
1 “ ψk on U and since x P U ,

we conclude: pφkq
1
x “ pψkqx.

Let Φ :“ φk and Ψ :“ ψk. Then: Φ1x “ Ψ.

Since Φ1x “ Ψ, by Theorem 4.14.5, choose β ą 0 s.t.,

@h P p´β; βq, |Φx`h ´ Φx ´Ψx ¨ h| ď pε{2q ¨ |h|.

Let δ :“ mintα, βu. Then δ ą 0.

Want: @h P p´δ; δq, |fx`h ´ fx ´m ¨ h| ď ε ¨ |h|.

Given h P p´δ; δq. Want: |fx`h ´ fx ´m ¨ h| ď ε ¨ |h|.

Since 0 ă δ ď α and 0 ă δ ď β, we get:

both p´δ; δq Ď p´α;αq and p´δ; δq Ď p´β; βq.

Then h P p´δ; δq Ď p´α;αq and h P p´δ; δq Ď p´β; βq.

Since h P p´β; βq, by choice of β, we get: |Φx`h´Φx´Ψx¨h| ď pε{2q¨|h|.

Let A :“ Φx`h ´ Φx ´Ψx ¨ h and let B :“ fx`h ´ fx ´ gx ¨ h.

Then |A| ď pε{2q ¨ |h|. Want: |B| ď ε ¨ |h|.

Since |B| ď |B ´ A| ` |A| ď |B ´ A| ` pε{2q ¨ |h|,

it suffices to show: |B ´ A| ď pε{2q ¨ |h|.

By Theorem 4.14.4, it suffices to prove: @η ą 0,

|B ´ A| ď pε{2q ¨ |h| ` η.

Given η ą 0. Want: |B ´ A| ď pε{2q ¨ |h| ` η.

Since h P p´α;αq, we get: x` h P px´ α;x` αq.
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Then x` h P px´ α;x` αq Ď U , so x` h P U .

Since x, x`h P U and φÑ f pointwise on U from R to R, we get:

both φ‚pxq Ñ fpxq in R and φ‚px` hq Ñ fpx` hq in R.

Since ψ Ñ g uniformly on U from R to R,

and since uniform convergence implies pointwise convergence,

we conclude: ψ Ñ g pointwise on U from R to R.

So, since x P U , we get: ψ‚pxq Ñ gpxq in R.

We have proved: φ‚px` hq Ñ fpx` hq in R
and φ‚pxq Ñ fpxq in R
and ψ‚pxq Ñ gpxq in R.

So, since B “ fx`h ´ fx ´ gx ¨ h “ rfpx ` hqs ´ rfpxqs ´ rgpxqs ¨ h,

we get: rφ‚px` hqs ´ rφ‚pxqs ´ rψ‚pxqs ¨ hÑ B in R.

Choose ` P N such that, @j P r`..8q,

| prφ‚px` hqs ´ rφ‚pxqs ´ rψ‚pxqs ¨ hqj ´ B | ă η.

Let m :“ maxtk, `u. Then m P rk..8q and m P r`..8q.

Since m P r`..8q, by choice of `, we conclude:

| prφ‚px` hqs ´ rφ‚pxqs ´ rψ‚pxqs ¨ hqm ´ B | ă η.

Let C :“ prφ‚px` hqs ´ rφ‚pxqs ´ rψ‚pxqs ¨ hqm. Then |C ´B| ă η.

Then |B ´A| ď |B ´C| ` |C ´A| “ |C ´A| ` |C ´B| ď |C ´A| ` η.

Then: |B ´ A| ď |C ´ A| ` η.

It therefore suffices to prove: |C ´ A| ď pε{2q ¨ |h|.

Let σ :“ φm ´ φk and let τ :“ ψm ´ ψk.

We know: @j P N, pφjq
1 “ ψj on U .

We conclude: σ1 “ τ on U . Then: U Ď Dσ1 .

Recall both that Φ “ φk and that Ψ “ ψk.

We have A “ Φx`h ´ Φx ´Ψx ¨ h

“ pφkqx`h ´ pφkqx ´ pψkqx ¨ h.

We have C “ prφ‚px` hqs ´ rφ‚pxqs ´ rψ‚pxqs ¨ hqm
“ rφmpx` hqs ´ rφmpxqs ´ rψmpxqs ¨ h

“ pφmqx`h ´ pφmqx ´ pψmqx ¨ h.

So, since A “ pφkqx`h ´ pφkqx ´ pψkqx ¨ h.

we get C ´ A “ σx`h ´ σx ´ τx ¨ h.

Since px´ α;x` αq is an interval, and since x, x` h P px´ α;x` αq,

we get rx|x` hs Ď px´ α;x` αq.

So, since px´ α;x` αq Ď U , we get: rx|x` hs Ď U .

So, since U Ď Dσ1 , we get: rx|x` hs Ď Dσ1 .

Then, by Theorem 4.13.6, choose q P rx|x` hs s.t. σx`h ´ σx “ σ1q ¨ h.

Since q P rx|x` hs Ď U , we conclude: q P U .
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So, since σ1 “ τ on U , we conclude: σ1q “ τ 1q.

We have: σx`h ´ σx “ σ1q ¨ h “ τq ¨ h.

Then C ´ A “ σx`h ´ σx ´ τx ¨ h “ τq ¨ h´ τx ¨ h.

Then C ´ A “ τq ¨ h ` p´ τx ¨ h q.

Then |C ´ A| ď |τq ¨ h| ` | ´ τx ¨ h| “ |τq| ¨ |h| ` | ´ τx| ¨ |h|.

“ |τq| ¨ |h| ` |τx| ¨ |h|.

Then |C ´ A| ď |τq| ¨ |h| ` |τx| ¨ |h|.

Want: |C ´ A| ď pε{4q ¨ |h| ` pε{4q ¨ |h|.

Want: |τq| ď ε{4 and |τx| ď ε{4.

Since @j P rk..8q, |g ´ ψj| ă ε{8 on U ,

snd since k,m P rk..8q,

we conclude: |g ´ ψk| ă ε{8 on U and |g ´ ψm| ă ε{8 on U .

By hypothesis, ψ Ñ g uniformly on U from R to R.

Then U Ď Dg. Then |ψm ´ ψk| ď |ψm ´ g| ` |g ´ ψk| on U ,

Since τ “ ψm ´ ψk,

and since |ψm ´ ψk| ď |ψm ´ g| ` |g ´ ψk| on U ,

and since |ψm ´ g| “ |g ´ ψm|,

we get |τ | ď |g ´ ψm| ` |g ´ ψk| on U .

Then |τ | ď pε{8q ` pε{8q on U ,

and so |τ | ď ε{4 on U .

So, since q, x P U , we conclude: |τq| ď ε{4 and |τx| ď ε{4. �

4.16. Power series.

A function with domain N0 will be called a zero-sequence.

The theory of 0-sequences is completely parallel to that of sequences.

For example:

DEFINITION 4.16.1. Let X be a metric space and let s P XN0.

Then s is Cauchy in X means:

@ε ą 0, DK P N0 s.t., @i, j P rK..8q, dpsi, sjq ă ε.

Also, @q P X, sÑ q in X means:

@ε ą 0, DK P N0 s.t., @j P rK..8q, dpsj, qq ă ε.

Also, s is convergent in X means: Dq P X s.t. sÑ q in X.

Also, X- lim s :“ UEtq P X | sÑ q in Xu.

DEFINITION 4.16.2. Let s be a zero-sequence.

Then s‚´1 is the sequence defined by: @j P N, ps‚´1qj “ sj´1.

THEOREM 4.16.3. Let X be a complete metric space, s P XN0.

Assume: s is Cauchy in X. Then: s is convergent in X.
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Idea of proof:

Since s is Cauchy in X, s‚´1 is Cauchy in X.

Then, as X is complete, s‚´1 is convergent in X.

Then s is convergent in X. QED

We have the Principle of Zero-Induction:

THEOREM 4.16.4. Let S Ď N0.

Assume: p 0 P S q & p @j P S, j ` 1 P S q.

Then: S “ N0.

Idea of proof:

Since S Ď N0, S ` 1 Ď N.

Since 0 P S, 1 P S ` 1.

Since @j P S, j ` 1 P S

we conclude: @j P S ` 1, j ` 1 P S ` 1.

Then, by the Principle of Mathematical Induction, S ` 1 “ N.

Then S “ N´ 1 “ N0. QED

The following can be proved by Zero-Induction:

THEOREM 4.16.5. Let u P R. Then: @k P N0,

p1´ uqp1` u` u2 ` ¨ ¨ ¨ ` ukq “ 1´ uk`1.

THEOREM 4.16.6. Let u P r0; 1q, k P N0.

Then: 1` u` u2 ` ¨ ¨ ¨ ` uk ď 1{p1´ uq.

THEOREM 4.16.7. Let u P r0; 1q, k P N0, M ě 0.

Then: M `Mu`Mu2 ` ¨ ¨ ¨ `Muk ď M{p1´ uq.

DEFINITION 4.16.8. Let S Ď R. Then |S| :“ t|x| s.t. x P Su.

THEOREM 4.16.9. Let S Ď R. Then:

p S is bounded in R q ñ p |S|is bounded in R q.

Proof. We have: @x P R,
ˇ

ˇ |x|
ˇ

ˇ “ |x|. It follows that:

@x P R, @K ě 0, p x P BRp0, Kq q ô p |x| P BRp0, Kq q.

Then: @K ě 0, p S Ď BRp0, Kq q ô p |S| Ď BRp0, Kq q.

Then: p S is bounded in R q ô p DK ě 0 s.t. S Ď BRp0, Kq q

ô p DK ě 0 s.t. |S| Ď BRp0, Kq q

ô p |S| is bounded in R q. �

DEFINITION 4.16.10. Let a P RN0, x P R.

Then: TSax :“ t a0 , a1x , a2x
2 , . . . u.
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“TS” stands for “Terms of Series”.

DEFINITION 4.16.11. Let a P RN0, j P N0.

Then PjSS
a : RÑ R is defined by: @x P R,

PjSS
a
x “ a0 ` a1x ` a2x

2 ` ¨ ¨ ¨ ` ajx
j.

“PSS” stands for “Partial Sum of Series”.

Note that PjSS
a “ a0 ` a1p‚q ` a2p‚q

2 ` ¨ ¨ ¨ ` ajp‚q
j;

this is a (not necessarily homogeneous) polynomial.

DEFINITION 4.16.12. Let a P RN0.

Then P‚SS
a P pRRqN0 is defined by: @j P N0, pP‚SS

aqj “ PjSS
a.

DEFINITION 4.16.13. Let a P RN0, x P R.

Then P‚SS
a
x P RN0 is defined by: @j P N0, pP‚SS

a
xqj “ PjSS

a
x.

DEFINITION 4.16.14. Let a P RN0.

Then RCa :“ supts ě 0 |TSas is bounded in Ru.

“RC” stands for “Radius of Convergence”.

DEFINITION 4.16.15. Let a P RN0, ρ :“ RCa.

Then ICa :“ p´ρ; ρq.

“IC” stands for “Interval of Convergence”.

DEFINITION 4.16.16. Let X and Y be sets, f P pY XqN, p P X.

Then f‚ppq P Y
N is defined by: @j P N, pf‚ppqqj “ fjppq.

DEFINITION 4.16.17. Let a P RN0. Then a is denoted

0pa0, a1, a2, . . .q.

THEOREM 4.16.18. Let a P RN0 and let r ă RCa.

Then: Ds ą r s.t. TSas is bounded in R.

Proof. Let T :“ ts ě 0 |TSas is bounded in Ru.
Since r ă RCa “ supT , we conclude:  psupT ď rq.

Then  pT ď rq, so choose s P T s.t.  ps ď rq.

Then s ą r. Want: TSas is bounded in R.

Since s P T , we get: TSas is bounded in R, as desired. �

THEOREM 4.16.19. Let a P RN0 and let x P R.

Assume: |x| ą RCa. Then: P‚SS
a
x is not convergent in R.
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Proof. Assume P‚SS
a
x is convergent in R. Want: Contradiction.

Let u :“ P‚SS
a
x. Then u is convergent in R.

By Theorem 4.14.6, tuj`1 ´ uj | j P N0u is bounded in R.

Let D :“ tuj`1 ´ uj | j P N0u. Then D is bounded in R.

We have: @j P N0,

uj`1 ´ uj “ Pj`1SS
a
x ´ PjSS

a
x

“ pa0 ` a1x` ¨ ¨ ¨ ` ajx
j ` aj`1x

j`1q

´ pa0 ` a1x` ¨ ¨ ¨ ` ajx
jq “ aj`1x

j`1.

Then D “ tuj`1 ´ uj | j P N0u “ t a1x , a2x
2 , a3x

3 , . . . u.

Since D is bounded in R and ta0u is bounded in R,

we see that ta0u
Ť

D is bounded in R.

Then, by Theorem 4.16.9, | ta0u
Ť

D | is bounded in R.

We have | ta0u
Ť

D | “ t |a0| , |a1| ¨ |x| , |a2| ¨ |x|
2 , |a3| ¨ |x|

3 , . . . u.

Let E :“ TSa|x|. Then E “ t a0 , a1 ¨ |x| , a2 ¨ |x|
2 , a3 ¨ |x|

3 , . . . u.

Then |E| “ t |a0| , |a1| ¨ |x| , |a2| ¨ |x|
2 , |a3| ¨ |x|

3 , . . . u “ | ta0u
Ť

D |.

So, since | ta0u
Ť

D | is bounded in R, we get: |E| is bounded in R.

Then, by Theorem 4.16.9, E is bounded in R.

Let T :“ ts ě 0 |TSas is bounded in Ru. Then RCa “ sup T .

Since E “ TSa|x| and since E is bounded in R, we get: |x| P T .

By hypothesis, |x| ą RCa. Then |x| P T ď sup T “ RCa ă |x|.

Then |x| ă |x|. Contradiction. �

THEOREM 4.16.20. Let a P RN0 and let x P ICa.

Then P‚SS
a
x is convergent in R.

Proof. Let b :“ P‚SS
a
x. Want: b is convergent in R.

Want: b is Cauchy in R.

Want: @ε ą 0, DK P N0 s.t., @i, j P rK..8q, |bi ´ bj| ă ε.

Given ε ą 0. Want: DK P N0 s.t., @i, j P rK..8q, |bi ´ bj| ă ε.

Let α :“ |a| and let ρ :“ RCa. By HW#4-4, ρ “ RCα.

Since x P ICa “ p´ρ; ρq, we conclude: |x| ă ρ.

Let r :“ |x|. Since r “ |x| and 0 ď |x| ă ρ, we get r P r0; ρq.

Let c :“ P‚SS
α
r . Since r P r0; ρq “ r0; RCαq, by HW#4-3,

we conclude: c is convergent in R.

Then c is Cauchy in R, so choose K P N0 s.t.,

@i, j P rK..8q, |ci ´ cj| ă ε.

Then K P N0. Want: @i, j P rK..8q, |bi ´ bj| ă ε.

Given i, j P rK..8q. Want: |bi ´ bj| ă ε.

Since i, j P rK..8q, by choice of K, we have: |ci ´ cj| ă ε.
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By HW#4-2, we conclude that: |bi ´ bj| ď |ci ´ cj|.

Then: |bi ´ bj| ď |ci ´ cj| ă ε. �

DEFINITION 4.16.21. Let a P RN0.

Then SSa : ICa Ñ R is defined by:

@x P ICa, SSax “ R- lim P‚SS
a
x.

DEFINITION 4.16.22. Let a :“ 0

ˆ

1

0!
,

1

1!
,

1

2!
,

1

3!
,

1

4!
, . . .

˙

.

Then we define: exp :“ SSa.

By HW#4-1, we have Dexp “ R.

More colloquially, we would say:

“Let exp : RÑ R be defined by:

@x P R, expx “
1

0!
`
x

1!
`
x2

2!
`
x3

3!
`
x3

4!
` ¨ ¨ ¨.”

Our main remaining goal in this section is to show that

differentiation of power series

works via term-by-term differentiation.

In particular, we will show that exp1 “ exp.

DEFINITION 4.16.23. Let a P RN0. Then a˚ P RN0 is defined by:

@j P N0, a˚j :“ pj ` 1q ¨ aj`1.

We have: @a P RN0 , a˚ “ 0p a1 , 2 ¨ a2 , 3 ¨ a3 , 4 ¨ a4 , . . .q.

THEOREM 4.16.24. Let a :“ 0

ˆ

1

0!
,

1

1!
,

1

2!
,

1

3!
,

1

4!
, . . .

˙

.

Then: a˚ “ a.

By the preceding theorem, to show exp1 “ exp, it suffices to show:

@a P RN0 , pSSaq1 “ SSa
˚

.

We begin with the partial sum version:

THEOREM 4.16.25. Let a P RN0 and let j P N.

Then: pPjSS
aq1 “ Pj´1SS

a˚.

Proof. Since PjSS
a “ a0 ` a1 ¨ p‚q ` a2 ¨ p‚q

2 ` ¨ ¨ ¨ ` aj ¨ p‚q
j,

we get: pPjSS
aq1 “ a1 ` 2 ¨ a2 ¨ p‚q ` ¨ ¨ ¨ ` j ¨ aj ¨ p‚q

j´1.

So, since Pj´1SS
a˚ “ a1 ` 2 ¨ a2 ¨ p‚q ` ¨ ¨ ¨ ` j ¨ aj ¨ p‚q

j´1,

we get: pPjSS
aq1 “ Pj´1SS

a˚ , as desired. �

DEFINITION 4.16.26. Let X be a set and let S Ď X.

Let Y be a metric space. Let f P pPFXY q
N0 and let g P PFXY .
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By f Ñ g pointwise on S from X to Y , we mean:

@p P S, f‚ppq Ñ gppq in Y .

By f Ñ g uniformly on S from X to Y , we mean:

@ε ą 0, DK P N0 s.t., @j P N0, @p P S,

p j ě K q ñ p dp fjppq , gppq q ă ε q.

Let X be a set and let S Ď X. Let Y be a metric space.

Let f P pPFXY q
N0 and let g P PFXY .

Note that, if f Ñ g uniformly on S from X to Y ,

then f Ñ g pointwise on S from X to Y .

Also, note that, if f Ñ g pointwise on S from X to Y ,

then S Ď Dg

Ş

Df0

Ş

Df1

Ş

Df2

Ş

¨ ¨ ¨ .

DEFINITION 4.16.27. Let X and Y be sets, f P pY XqN0, p P X.

Then f‚ppq P Y
N0 is defined by: @j P N0, pf‚ppqqj “ fjppq.

THEOREM 4.16.28. Let a P RN0 and let r P r0,RCaq.

Then: P‚SS
a to SSa uniformly on r´r; rs from R to R.

Proof. Let f :“ P‚SS
a, g :“ SSa, T :“ r´r; rs.

Then T “ r´r; rs Ď p´RCa,RCaq “ ICa, so T Ď ICa.

We wish to show: f Ñ g uniformly on T from R to R.

Want: @ε ą 0, DK P N0 s.t., @i P rK..8q, |g ´ fi| ă ε on T .

Given ε ą 0. Want: DK P N0 s.t., @i P rK..8q, |g ´ fi| ă ε on T .

By HW#4-4, we have: ICa “ IC|a|.

Since r P r´r; rs “ T Ď ICa “ IC|a|, we get r P IC|a|.

Then P‚SS
|a|
r is convergent in R, and P‚SS

|a|
r Ñ SS

|a|
r in R.

Let c :“ P‚SS
|a|
r and let z :“ SS

|a|
r . Then cÑ z in R.

Choose K P N0 s.t., @i P rK..8q, |z ´ ci| ă ε.

Then K P N0. Want: @i P rK..8q, |g ´ fi| ă ε on T .

Given i P rK..8q. Want: |g ´ fi| ă ε on T .

Want: @x P T , |g ´ fi|x ă ε.

Given x P T . Want: |g ´ fi|x ă ε.

Since i P rK..8q, by choice of K, we get: |z ´ ci| ă ε.

It therefore suffices to show: |g ´ fi|x ď |z ´ ci|.

Want: @η ą 0, |g ´ fi|x ď |z ´ ci| ` η.

Given η ą 0. Want: |g ´ fi|x ď |z ´ ci| ` η.

We have x P T Ď ICa.

Then P‚SS
a
x is convergent in R, and P‚SS

a
x Ñ SSax in R.

Let b :“ P‚SS
a
x. Recall: g “ SSa. Then bÑ gx in R.
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Choose L P N0 s.t., @j P rL..8q, |gx ´ bj| ă η{2.

Recall: cÑ z in R.

Choose M P N0 s.t., @j P rM..8q, |z ´ cj| ă η{2.

Let j :“ maxtL,Mu. Then j P rL..8q and j P rM..8q.

Since j P rL..8q, by choice of L, we get: |gx ´ bj| ă η{2.

Since j P rM..8q, by choice of M , we get: |z ´ cj| ă η{2.

Since f “ P‚SS
a, we get fi “ PiSS

a, and so pfiqx “ PiSS
a
x.

Then bi “ pP‚SS
a
xqi “ PiSS

a
x “ pfiqx.

By HW#4-2, |bj ´ bi| ď |cj ´ ci|.

Then: |g ´ fi|x “ |gx ´ pfiqx|

“ |gx ´ bi|

ď |gx ´ bj| ` |bj ´ bi|

ă pη{2q ` |bj ´ bi|

ď pη{2q ` |cj ´ ci|

ď pη{2q ` |cj ´ z | ` |z ´ ci|

ď pη{2q ` |z ´ cj| ` |z ´ ci|

ă pη{2q ` pη{2q ` |z ´ ci|

“ |z ´ ci| ` η, as desired. �

Unassigned HW:

Let X be a set, let S Ď X and let Y be a metric space.

Let α P pPFXY q
N0 and let ω P PFXY .

Assume that: αÑ ω uniformly on S from X to Y .

Define β P pPFXY q
N by: @j P N, βj “ αj´1.

Show that: β Ñ ω uniformly on S from X to Y .

Unassigned HW:

Let X be a set, let S Ď X and let Y be a metric space.

Let α P pPFXY q
N0 and let ω P PFXY .

Assume that: αÑ ω uniformly on S from X to Y .

Define β P pPFXY q
N by: @j P N, βj “ αj.

Show that: β Ñ ω uniformly on S from X to Y .

THEOREM 4.16.29. Let a P RN0. Then: pSSaq1 “ SSa
˚

.

Proof. Let b :“ a˚ and f :“ SSa and g :“ SSb. Want: f 1 “ g.

Let U :“ ICa. By HW#4-5, RCa “ RCb.

Then U “ ICb. Then: DSSa “ U “ DSSb .

Want: @x P U , pSSaq1x “ SSbx.

Given x P U . Want: pSSaq1x “ SSbx.
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Let ρ :“ RCa. Then x P ICa “ p´ρ; ρq, so |x| ă ρ.

Let r :“
|x| ` ρ

2
. Then |x| ă r ă ρ.

Since |x| ă r, we get: x P p´r; rq.

By Theorem 4.16.28, we have:

P‚SS
a Ñ SSa uniformly on r´r; rs from R to R

and P‚SS
b Ñ SSb uniformly on r´r; rs from R to R.

Define φ, ψ P pPFR
Rq

N by: @j P N,

φj “ PjSS
a and ψj “ Pj´1SS

b.

Then φ Ñ SSa uniformly on r´r; rs from R to R
and ψ Ñ SSb uniformly on r´r; rs from R to R.

Recall that f “ SSa and that g “ SSb.

Then φ Ñ f uniformly on r´r; rs from R to R
and ψ Ñ g uniformly on r´r; rs from R to R.

So, as p´r; rq Ď r´r; rs, we conclude:

φ Ñ f uniformly on p´r; rq from R to R
and ψ Ñ g uniformly on p´r; rq from R to R.

Since uniform convergence implies pointwise convergence, we get:

φ Ñ f pointwise on p´r; rq from R to R.

By Theorem 4.16.25, @j P N, pPjSS
aq1 “ Pj´1SS

a˚ .

Then, @j P N, pφjq
1 “ pPjSS

aq1 “ Pj´1SS
a˚ “ Pj´1SS

b “ ψj.

Then, by Theorem 4.15.2, f 1 “ g, as desired. �

5. Multivariable Differential Calculus

5.1. Euclidean spaces.

THEOREM 5.1.1. p5q “ p1 ÞÑ 5q P R1 and 5 P R and p5q ‰ 5.

THEOREM 5.1.2. We have: R1
Ş

R “ H.

DEFINITION 5.1.3. ES :“ tRu
Ť

tR1 , R2 , R3 , . . .u.

An element of ES is called a Euclidean space.

We will call R the scalar space or scalar Euclidean space.

An element of tR1,R2,R3, . . .u will be called a

vector space or vector Euclidean space.

Recall that any element of R is called a scalar.

Elements of R1
Ť

R2
Ť

R3
Ť

¨ ¨ ¨ will be called Euclidean vectors or,

simply, vectors in this course.
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Note that
Ť

ES “ RY R1 Y R2 Y R3 Y ¨ ¨ ¨ .

Then
Ť

ES is the set of all objects that are either scalar or vector.

In the next definition, “v/s” is read “vector or scalar”:

DEFINITION 5.1.4. Let x be an object.

By x is a v/s, we mean: x P
Ť

ES.

THEOREM 5.1.5. p2, 3q is a v/s and 5 is a v/s

and p´3, 6, 5q is a v/s and t´3, 6, 5u is NOT a v/s.

THEOREM 5.1.6. @m P N, @x P Rm, @j P r1..ms, xj P R.

DEFINITION 5.1.7. Let m P N, V :“ Rm. Then IV :“ r1..ms.

THEOREM 5.1.8. @V P ESztRu, @j P IV , xj P R.

DEFINITION 5.1.9. @x P R, x0 :“ x.

THEOREM 5.1.10. 70 “ 7 P R.

THEOREM 5.1.11. @x P R, x0 “ x P R.

DEFINITION 5.1.12. IR :“ t0u.

THEOREM 5.1.13. @x P R, @j P IR, xj “ x P R.

THEOREM 5.1.14. @V P ES, @j P IV , xj P R.

Let V P ES. Then IV is called the indexing set of V .

THEOREM 5.1.15. Let V P ES and x, y P V .

Then: p x “ y q ô p @j P IV , xj “ yj q.

DEFINITION 5.1.16. Let V P ES.

Then 0V P V is defined by: @j P IV , p0V qj “ 0.

THEOREM 5.1.17. p 0R “ 0 q &p 0R1 “ p0q q & p 0R2 “ p0, 0q q

& p 0R3 “ p0, 0, 0q q & p 0R4 “ p0, 0, 0, 0q q & p 0R5 “ p0, 0, 0, 0, 0q q.

DEFINITION 5.1.18. Let V P ES and let x, y P V .

Then x ‚ y :“
ÿ

jPIV

xj ¨ yj.

THEOREM 5.1.19. 4 ‚ 2 “ 40 ¨ 20 “ 4 ¨ 2 “ 8.

THEOREM 5.1.20. p4q ‚ p2q “ p4q1 ¨ p2q1 “ 4 ¨ 2 “ 8.

THEOREM 5.1.21. p3, 6q ‚ p8, 7q “ p3, 6q1 ¨ p8, 7q1 ` p3, 6q2 ¨ p8, 7q2
“ 3 ¨ 8` 6 ¨ 7 “ 24` 42 “ 66.
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DEFINITION 5.1.22. Let V,W P ES and x P V and y P W .

Assume V ‰ W . Then x ‚ y :“ / and x` y :“ /.

Let x :“ p5, 6q and y :“ p7, 8, 9q. If we think of x and y as functionals,

x “

ˆ

1 ÞÑ 5

2 ÞÑ 6

˙

and y “

¨

˝

1 ÞÑ 7

2 ÞÑ 8

3 ÞÑ 9

˛

‚,

then, as 5` 7 “ 12 and 6` 8 “ 14, we compute

x` y “

ˆ

1 ÞÑ 12

2 ÞÑ 14

˙

“ p12, 14q.

On the other hand, thinking of x and y as vectors,

since x P R2 and since y P R3 and since R2 ‰ R3,

by the preceding definition, we compuate x` y “ /.

Each object, has a type and the meaning of x` y depends on

whether we type x and y as functionals or as vectors.

We could avoid this confusion

by introducing, say, vector`vector to indicate vector addition.

Then x` y “ p12, 14q and x vector`vector y “ /.

However, vector`vector is simply hard to read.

We have decided, instead, to use ` to denote

both addition of functionals and addition of vectors,

and the reader has to determine, by context, which is meant.

Frownie is infective:

DEFINITION 5.1.23. @x, x ‚/ :“ / and / ‚ x :“ /.

THEOREM 5.1.24. r 4 ‚ p2q “ / s & r p3, 6q ‚ p2, 4, 7q “ / s

& r p2, 8q ‚/ “ / “ / ‚ 6 s.

THEOREM 5.1.25. r 3 ¨ p5, 8q “ p15, 24q s & r 3 ‚ p5, 8q “ / s.

The next two theorems can be summarized as: “‚ is bilinear”.

THEOREM 5.1.26. Let V P ES, x, y, z P V .

Then px` yq ‚ z “ px ‚ zq ` py ‚ zq and x ‚ py ` zq “ px ‚ yq ` px ‚ zq.

THEOREM 5.1.27. Let V P ES, c P R, x, y P V .

Then pc ¨ xq ‚ y “ c ¨ px ‚ yq and x ‚ pc ¨ yq “ c ¨ px ‚ yq.

The next theorem can be summarized as:

“‚ is commutative (a.k.a. symmetric)”.

THEOREM 5.1.28. Let V P ES, x, y P V . Then x ‚ y “ y ‚ x.
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DEFINITION 5.1.29. @a, b, δab :“

#

1, if a “ b

0, if a ‰ b.

DEFINITION 5.1.30. Let V P ES and j P IV .

Then εVj P V is defined by: @i P IV , pεVj qi “ δij.

THEOREM 5.1.31. Let V :“ R3. Then:

r εV1 “ p1, 0, 0q s & r εV2 “ p0, 1, 0q s & r εV3 “ p0, 0, 1q s.

THEOREM 5.1.32. εR0 “ 1.

THEOREM 5.1.33. Let V :“ R3 and x :“ p´3, 6, 5q.

Then: x ‚ εV2 “ p3, 6,´5q ‚ p0, 1, 0q “ 6 “ x2.

THEOREM 5.1.34. @V P ES, @x P V, @j P IV , x ‚ εVj “ xj.

THEOREM 5.1.35. Let V :“ R3 and x :“ p´3, 6, 5q. Then:

x “ p´3, 6, 5q “ ´3εV1 ` 6εV2 ` 5εV3 “ x1ε
V
1 ` x2ε

V
2 ` x3ε

V
3 .

THEOREM 5.1.36. Let V P ES and x P V .

Then: x “
ÿ

jPIV

xjε
V
j .

DEFINITION 5.1.37. Let V P ES and j P IV .

Then πVj : V Ñ R is defined by: @x P V , πVj pxq “ xj.

THEOREM 5.1.38. Let V :“ R3 and x :“ p´3, 6, 5q. Then:

r πV1 pxq “ ´3 s & r πV2 pxq “ 6 s & r πV3 pxq “ 5 s.

THEOREM 5.1.39. πR
0 p4q “ 40 “ 4.

THEOREM 5.1.40. πR
0 “ idR.

THEOREM 5.1.41. @V P ES, @x P V, @j P IV , πVj pxq “ xj “ x ‚ εVj .

DEFINITION 5.1.42. @V P ES, ΠV :“ tπVj | j P IV u.

THEOREM 5.1.43. Let V :“ R3. Then: ΠV “ t πV1 , π
V
2 , π

V
3 u.

THEOREM 5.1.44. ΠR “ t idR u.

DEFINITION 5.1.45. Let X and Y be sets.

Then: PFXY :“ tf | f : X 99K Y u.

Let X and Y be sets. Then PFXY “
ď

WĎX

Y W .
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DEFINITION 5.1.46. Let Y be a set and let f be an object.

By f is a Y -function, we mean: p f is a function q & p If Ď Y q.

DEFINITION 5.1.47. Let V P ES, f a V -function and j P IV .

Then: πjf :“ πVj ˝ f .

THEOREM 5.1.48. Let f : R2 Ñ R3 be defined by:

@x P R2, fx “ px1x2 , x
2
1 ` x

2
2 , x

3
1 ´ 6x1x2 q.

Then, @x P R2, we have:

r pπ1fqx “ x1x2 s & r pπ2fqx “ x2
1`x

2
2 s & r pπ3fqx “ x3

1´6x1x2 s.

DEFINITION 5.1.49. Let A,B P
Ť

ES.

Then A`B :“ tx` y |x P A, y P B, x` y ‰ /u.
Also, A´B :“ tx´ y |x P A, y P B, x´ y ‰ /u.
Also, A ‚B :“ tx ‚ y |x P A, y P B, x ‚ y ‰ /u.

DEFINITION 5.1.50. Let x P
Ť

ES, A Ď
Ť

ES.

Then x` A :“ txu ` A. Also, A` x :“ A` txu.

Also, x´ A :“ txu ´ A. Also, A´ x :“ A´ txu.

Also, x ‚ A :“ txu ‚ A. Also, A ‚ x :“ A ‚ txu.

DEFINITION 5.1.51. Let A Ď R and B Ď
Ť

ES.

Then A¨B :“ tc¨y | c P A, y P Bu. Also, B ¨A :“ ty ¨c | c P A, y P Bu.

DEFINITION 5.1.52. Let c P R, B Ď ES.

Then c ¨B :“ tcu ¨B. Also, B ¨ c :“ B ¨ tcu.

DEFINITION 5.1.53. Let A Ď R, y P
Ť

ES.

Then A ¨ y :“ A ¨ tyu. Also, y ¨ A :“ tyu ¨ A.

In the last three definitions, “¨” is sometimes omitted.

DEFINITION 5.1.54. Let f be an object.

By f is a v/s-function, we mean: f is a p
Ť

ESq-function.

That is, by a “v/s-function”, we mean a function whose image con-

sists of vectors and scalars.

THEOREM 5.1.55. Let V P ES and let f be a V -function.

Then f is a v/s-function.

Recall that a “functional” is a scalar-valued function, or a real-valued

function, or an R-function, or an R-valued function; in other words, a

function whose image consists of scalars.
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THEOREM 5.1.56. Let f be a functional. Then f is a v/s-function.

DEFINITION 5.1.57. Let c P R, f a v/s-function.

Then c ¨ f and f ¨ c are the v/s-functions defined by:

@x, r pc ¨ fqx “ c ¨ fx s & r pf ¨ cqx “ fx ¨ c s.

Again, ¨ is often omitted, but no ‚ or ` or ´.

DEFINITION 5.1.58. Let f and g be v/s-functions.

Then f ` g is the v/s-function defined by:

@x, pf ` gqx “ fx ` gx.

Also, f ´ g is the v/s-function defined by:

@x, pf ´ gqx “ fx ´ gx.

Also, f ‚ g is the v/s-function defined by:

@x, pf ‚ gqx “ fx ‚ gx.

THEOREM 5.1.59. Define f, g : R2 Ñ R3 by: @x P R2,

fx “ p x1x2 , x
2
1 ` x

2
2 , x

3
1 ´ 6x1x2 q and gx “ p 0 , 1 , 8x2 q.

Then, @x P R2, pf ` gqx “ p x1x2 , x
2
2 ` x

2
2 ` 1 , x3

1 ´ 6x1x2 ` 8x2 q

& pf ‚ gqx “ x2
1 ` x

2
2 ` rx

3
1 ` 6x1x2s ¨ r8x2s.

DEFINITION 5.1.60. Let f be a functional, g a v/s-function.

Then f ¨ g and g ¨ f are the v/s-functions defined by:

@x, r pf ¨ gqx “ fx ¨ gx s & r pg ¨ fqx “ gx ¨ fx s.

Again, ¨ is often omitted.

THEOREM 5.1.61. Define f : R2 Ñ R and g : R2 Ñ R3 by:

@x P R2, r fx “ x5
1 ´ 9x4

2 s& r gx “ p 0 , 1 , 8x1x2 q s.

Then, @x P R2,

pf ¨ gqx “ p 0 , x5
1 ´ 9x4

2 , rx
5
1 ´ 9x4

2s ¨ r8x1x2s q “ pg ¨ fqx.

DEFINITION 5.1.62. Let f be a v/s-function, v P
Ť

ES.

Then f ` v and v ` f are the v/s-functions defined by: @x,

pf ` vqx “ fx ` v and pv ` fqx “ v ` fx.

Also, f ´ v and v ´ f are the v/s-functions defined by: @x,

pf ´ vqx “ fx ´ v and pv ´ fqx “ v ´ fx.

Also, f ‚ v and v ‚ f are the v/s-functions defined by: @x,

pf ‚ vqx “ fx ‚ v and pv ‚ fqx “ v ‚ fx.

Again, no ‚ or ` or ´ is ever omitted.

DEFINITION 5.1.63. Let F and G be sets of v/s-functions.

Then F `G :“ tf ` g | f P F, g P Gu.
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Also, F ´G :“ tf ´ g | f P F, g P Gu.

Also, F ‚G :“ tf ‚ g | f P F, g P Gu.

In the preceding definition, F ` G, F ´ G and F ‚ G are all sets of

v/s-functions.

DEFINITION 5.1.64. Let f be a v/s-function, G a set of v/s-functions.

Then f `G :“ tfu `G. Also, G` f :“ G` tfu.

Also, f ´G :“ tfu ´G. Also, G´ f :“ G´ tfu.

Also, f ‚G :“ tfu ‚G. Also, G ‚ f :“ G ‚ tfu.

DEFINITION 5.1.65. Let F be a set of v/s-functions, B Ď
Ť

ES.

Then F `B :“ tf ` v | f P F, v P Bu.

Also, B ` F :“ tv ` f | f P F, v P Bu.

Also, F ´B :“ tf ´ v | f P F, v P Bu.

Also, B ´ F :“ tv ´ f | f P F, v P Bu.

Also, F ‚B :“ tf ‚ v | f P F, v P Bu.

Also, B ‚ F :“ tv ‚ f | f P F, v P Bu.

DEFINITION 5.1.66. Let f be a v/s-function, B Ď
Ť

ES.

Then f `B :“ tfu `B. Also, B ` f :“ B ` tfu.

Also, f ´B :“ tfu ´B. Also, B ´ f :“ B ´ tfu.

Also, f ‚B :“ tfu ‚B. Also, B ‚ f :“ B ‚ tfu.

DEFINITION 5.1.67. Let F be a set of v/s-functions, v P
Ť

ES.

Then F ` v :“ F ` tvu. Also, v ` F :“ tvu ` F .

Also, F ´ v :“ F ´ tvu. Also, v ´ F :“ tvu ´ F .

Also, F ‚ v :“ F ‚ tvu. Also, v ‚ F :“ tvu ‚ F .

DEFINITION 5.1.68. Let F be a set of functionals.

Let G be a set of v/s-functions.

Then F ¨G :“ tf ¨ g | f P A, g P Bu.

Also G ¨ F :“ tg ¨ f | f P A, g P Bu.

DEFINITION 5.1.69. Let f be a functional.

Let G be a set of v/s-functions.

Then f ¨G :“ tfu ¨G. Also G ¨ f :“ G ¨ tfu.

DEFINITION 5.1.70. Let F be a set of v/s-functions.

Let g be a functional.

Then F ¨ g :“ F ¨ tgu. Also g ¨ F :“ tgu ¨ F .
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DEFINITION 5.1.71. Let A Ď R, G a set of v/s-functions.

Then A ¨G :“ tc ¨ g | c P A, g P Gu.

Also, G ¨ A :“ tg ¨ c | c P A, g P Gu.

DEFINITION 5.1.72. Let c P R, G a set of v/s-functions.

Then c ¨G :“ tcu ¨G. Also, G ¨ c :“ G ¨ tcu.

DEFINITION 5.1.73. Let A Ď R, g a v/s-function.

Then A ¨ g :“ A ¨ tgu. Also, g ¨ A :“ tgu ¨ A.

In all of the preceding defitions, keep in mind that

¨, ‚ and ‚ are all commutative, but ´ is not.

So, for example, in the last definition, g ¨ A “ A ¨ g.

We also have a dot product on any matrix space:

DEFINITION 5.1.74. Let p, q P N and let A,B P Rpˆq.

Then A ‚B :“
p
ÿ

i“1

q
ÿ

j“1

Aij ¨Bij.

Keep in mind that this dot prouct is scalar-valued.

It is NOT the same as matrix multiplication.

5.2. Basics of dot product and the standard norm.

THEOREM 5.2.1. @V P ES, @x P V , x ‚ x “
ÿ

jPIV

x2
j .

THEOREM 5.2.2. Let V P ES and let x P V .

Then: r x ‚ x ě 0 s & r px ‚ x “ 0q ô p x “ 0V q s.

DEFINITION 5.2.3. @x P
Ť

ES, |x| :“
?
x ‚ x.

The notation “|x|” is read “the norm of x”.

THEOREM 5.2.4. We have: |p5,´2, 1q| “
?

25` 4` 1 “
?

30.

The next theorem is expressed by saying:

| ‚ | separates zero.

THEOREM 5.2.5. Let V P ES, x P V .

Then: p |x| “ 0 q ô p x “ 0V q.

THEOREM 5.2.6. Let x P
Ť

ES and let c P R.

Then: pc ¨ xq ‚ pc ¨ xq “ c2 ¨ px ‚ xq.

Also: |c ¨ x| “ |c| ¨ |x|.
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The formula |c ¨ x| “ |c| ¨ |x| is expressed by saying:

| ‚ | is absolute homogeneous.

THEOREM 5.2.7. Let V P ES and let j P IV .

Then: p εVj ‚ εVj “ 1 q & p |εVj | “ 1 q.

DEFINITION 5.2.8. Let V P ES. Then SV :“ tx P V s.t. |x| “ 1u.

In the last definition, SV is called the unit sphere in V .

Also, the elements of SV are called unit vectors.

Every standard basis vector is a unit vector:

THEOREM 5.2.9. Let V P ES, j P IV . Then εVj P SV .

THEOREM 5.2.10. Let V P ES. Then SV ‰ H.

The next result asserts that every Euclidean vector can be written

as its norm times a unit vector; such a form for the vector is called

a “polar form”. Unassigned HW: Show that every nonzero Euclidean

vector has a unique polar form, but, for zero, the form is not unique.

THEOREM 5.2.11. Let V P ES and let x P V .

Then Du P SV s.t. x “ |x| ¨ u.

Proof. Either (1) x “ 0V or (2) x ‰ 0V .

Case (1): Since x “ 0V , we get: |x| “ 0.

Since SV ‰ H, choose u P SV .

Then u P SV and we wish to show: x “ |x| ¨ u.

We have x “ 0V “ 0 ¨ u “ |x| ¨ u, as desired.

End of Case (1).

Case (2): Since x ‰ 0V , we get: |x| ‰ 0. Then p1{|x|q ¨ |x| “ 1.

Since |x| ě 0 and |x| ‰ 0, we get |x| ą 0. Then 1{|x| ą 0.

Let a :“ 1{|x|. Then a ą 0. Then |a| “ a. Let u :“ a ¨ x.

We have a¨|x| “ p1{|x|q¨|x| “ 1. Then |u| “ |a¨x| “ |a|¨|x| “ a¨|x| “ 1.

Then u P SV . Want: x “ |x| ¨ u.

We have x “ 1 ¨ x “ pa ¨ |x|q ¨ x “ |x| ¨ pa ¨ xq “ |x| ¨ u, as desired.

End of Case (2). �

We also have a standard norm on any matrix space:

DEFINITION 5.2.12. Let p, q P N and let A P Rpˆq.

Then |A| :“
?
A ‚ A.
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5.3. Cauchy-Schwarz. The next theorem is Weak Cauchy-Schwarz:

THEOREM 5.3.1. Let V P ES, x, y P V . Then x ‚ y ď |x| ¨ |y|.

Proof. Choose t, u P SV s.t. px “ |x| ¨ t q& p y “ |y| ¨ u q.

Want: p|x| ¨ tq ‚ p|y| ¨ uq ď |x| ¨ |y|.

By bilinearity, we have: p|x| ¨ tq ‚ p|y| ¨ uq “ |x| ¨ |y| ¨ pt ‚ uq.

Want: |x| ¨ |y| ¨ pt ‚ uq ď |x| ¨ |y|. Want: t ‚ u ď 1.

Since t, u P SV , we get: |t| “ 1 “ |u|.

Then: 0 ď |t´ u|2 “ pt´ uq ‚ pt´ uq “ pt ‚ tq ´ 2 ¨ pt ‚ uq ` pu ‚ uq

“ |t|2´2 ¨ pt ‚uq` |u|2 “ 12´2 ¨ pt ‚uq`12 “ 2´2 ¨ pt ‚uq.

Then 0 ď 2´ 2 ¨ pt ‚ uq, so 2 ¨ pt ‚ uq ď 2, so t ‚ u ď 1. �

The next theorem is Cauchy-Schwarz:

THEOREM 5.3.2. Let V P ES, x, y P V . Then |x ‚ y| ď |x| ¨ |y|.

Proof. Since |x ‚ y| “ maxtx ‚ y , ´px ‚ yq u,

it suffices to show p x ‚ y ď |x| ¨ |y| q & p ´px ‚ yq ď |x| ¨ |y| q.

By Weak Cauchy-Schwarz, x ‚ y ď |x| ¨ |y|. Want: ´px ‚ yq ď |x| ¨ |y|.

By Weak Cauchy-Schwarz, p´xq ‚ y ď | ´ x| ¨ |y|.

We have p´xq ‚ y “ pp´1q ¨ xq ‚ y “ p´1q ¨ px ‚ yq “ ´px ‚ yq.

We have | ´ x| “ |p´1q ¨ x| “ | ´ 1| ¨ |x| “ 1 ¨ |x| “ |x|.

Then ´px ‚ yq “ p´xq ‚ y ď | ´ x| ¨ |y| “ |x| ¨ |y|, as desired. �

5.4. The 1-norm.

DEFINITION 5.4.1. @V P ES, @x P V , }x} :“
ř

jPIV |xj|.

The quantity }x} is called the one-norm of x.

THEOREM 5.4.2. Let x :“ p5,´2, 1q.

Then |x| “
?

25` 4` 1 “
?

30 and }x} “ 5` 2` 1 “ 8.

THEOREM 5.4.3. @finite set I, @a P r0;8qI , we have:
˜

ÿ

jPI

aj

¸2

ě
ÿ

iPI

a2
i .

Proof. We have:
˜

ÿ

jPI

aj

¸2

“

«

ÿ

jPI

aj

ff

¨

«

ÿ

kPI

ak

ff

“
ÿ

jPI

ÿ

kPI

ajak ě
ÿ

iPI

aiai “
ÿ

iPI

a2
i . �

THEOREM 5.4.4. Let V P ES, m :“ #IV , x P V .

Then: |x| ď }x} ď
?
m ¨ |x|.
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Proof. We have:

}x}2 “

˜

ÿ

jPIV

|xj|

¸2

ě
ÿ

jPIV

|xj|
2
“

ÿ

jPIV

x2
j “ |x|2.

Then 0 ď |x|2 ď }x}2, so
a

|x|2 ď
a

}x}2, so |x| ď }x}.

It remains to show: }x} ď
?
m ¨ |x|.

We have: @j P IV , Da P t´1, 1u s.t. a ¨ xj “ |xj|.

For all j P IV , let Aj :“ ta P t´1, 1u s.t. a ¨ xj “ |xj|u.

Then we have: @j P IV , Aj ‰ H.

Choose s P V s.t., @j P IV , sj P Aj.

Then @j P IV , we have sj ¨ xj “ |xj|.

Also, @j P IV , we have sj P Aj Ď t´1, 1u, and so s2
j “ 1.

Then |s|2 “
ÿ

jPIV

s2
j “

ÿ

jPIV

1 “ #IV “ m. Then |s| “
a

|s|2 “
?
m.

By Weak Cauchy-Schwarz, s ‚ x ď |s| ¨ |x|.

Then: }x} “
ÿ

jPIV

|xj| “
ÿ

jPIV

sj ¨ xj “ s ‚ x ď |s| ¨ |x| “
?
m ¨ |x|. �

THEOREM 5.4.5. Let a, b P R.

Then:
?
a2 ` b2 ď |a| ` |b| ď

?
2 ¨
?
a2 ` b2.

Proof. By Theorem 5.4.4,

|pa, bq| ď }pa, bq} ď
?

2 ¨ |pa, bq|.

Then:
?
a2 ` b2 ď |a| ` |b| ď

?
2 ¨
?
a2 ` b2. �

We also have a one-norm on any matrix space:

DEFINITION 5.4.6. Let p, q P N and let A P Rpˆq.

Then }A} :“
p
ÿ

i“1

q
ÿ

j“1

|Aij|.

5.5. The standard metrics on a Euclidean space.

THEOREM 5.5.1. Let V P ES and let x, y P V .

Then |x` y| ď |x| ` |y|.

Proof. By weak Cauchy-Schwarz, x ‚ y ď |x| ¨ |y|.

Then 2 ¨ px ‚ yq ď 2 ¨ |x| ¨ |y|.

Then |x|2 ` 2 ¨ px ‚ yq ` |y|2 ď |x|2 ` 2 ¨ |x| ¨ |y| ` |y|2.

Then |x` y|2 “ px` yq ‚ px` yq

“ px ‚ xq ` 2 ¨ px ‚ yq ` py ‚ yq

“ |x|2 ` 2 ¨ px ‚ yq ` |y|2

ď |x|2 ` 2 ¨ |x| ¨ |y| ` |y|2 “ p|x| ` |y|q2.
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Then 0 ď |x` y|2 ď p|x| ` |y|q2, so
a

|x` y|2 ď
a

p|x| ` |y|q2.

Since |x` y| ě 0 and |x| ` |y| ě 0, we conclude:
a

|x` y|2 “ |x` y| and
a

p|x| ` |y|q2 “ |x| ` |y|.

Then |x` y| “
a

|x` y|2 ď
a

p|x| ` |y|q2 “ |x| ` |y|, as desired. �

THEOREM 5.5.2. Let V P ES.

Define d : V ˆ V Ñ r0;8q by: @x, y P V , dpx, yq “ |y ´ x|.

Then: d PMpV q.

Proof. We wish to show:

(1) @x, y P V , p dpx, yq “ 0 q ô px “ y q.

and (2) @x, y P V , dpx, yq “ dpy, xq.

and (3) @x, y, z P V , dpx, zq ď r dpx, yq s ` r dpy, zq s.

Proof of (1): Given x, y P V . Want: p dpx, yq “ 0 q ô px “ y q.

We have: p dpx, yq “ 0 q ô p |y´x| “ 0 q ô p y´x “ 0V q ô px “ y q.

End of proof of (1).

Proof of (2): Given x, y P V . Want: dpx, yq “ dpy, xq.

We have: dpx, yq “ |y ´ x| “ |p´1q ¨ px´ yq|

“ | ´ 1| ¨ |x´ y| “ 1 ¨ rdpy, xqs “ dpy, xq.

End of proof of (2).

Proof of (3): Given x, y, z P V . Want: dpx, zq ď r dpx, yq s ` r dpy, zq s.

We have dpx, zq “ |z ´ x| “ | pz ´ yq ` py ´ xq |

ď |z ´ y| ` |y ´ x| “ r dpy, zq s ` r dpx, yq s

“ r dpx, yq s ` r dpy, zq s.

End of proof of (3). �

Notation: Let V P ES and define d : V ˆ V Ñ r0;8q by:

@x, y P V , dpx, yq “ |y ´ x|.

Then the metric space pV, dq is denoted V .

THEOREM 5.5.3. Let V P ES and let x, y P V .

Then dV px, yq “ |y ´ x|.

5.6. Multivariable polynomials.

DEFINITION 5.6.1. Let X and Y be sets. Then CXY :“ tCz
X | z P Y u.

Then CXY is the set of constant functions from X to Y .
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THEOREM 5.6.2. Let V :“ R2, W :“ R3, α :“ εW1 , C :“ C8α
V .

Then C P CVW .

DEFINITION 5.6.3. Let V,W P ES and let k P N0.

Then MVW
k :“ CVW ¨ ΠV ¨ ΠV ¨ ¨ ¨ ¨ ¨ ΠV ,

with k copies of ΠV .

The logic purist would dislike the preceding definition, preferring:

DEFINITION 5.6.4. Let V,W P ES and let F :“ W V .

Define Φ : 2F Ñ 2F by: @S Ď F , ΦS “ S ¨ ΠV .

Then, for all k P N0, we define: MVW
k :“ Φk

˝pCVW q.

Elements of MVW
k are called k-monomials from V to W .

THEOREM 5.6.5. Let V :“ R2 and let W :“ R3.

Define f : V Ñ W by: @x, y P R, fpx, yq “ p 8x3y , 0 , 0 q.

Then f PMVW
4 .

Proof. Let α :“ εW1 , C :“ C8α
V , X :“ πV1 , Y :“ πV2 .

Then f “ C ¨X3 ¨Y “ C ¨X ¨X ¨X ¨Y P CVW ¨πV ¨πV ¨πV ¨πV “MVW
4 . �

DEFINITION 5.6.6. Let V be a set, let W P ES and let S Ď W V .

By S is v.op.-closed, we mean:

S ` S Ď S and R ¨ S Ď S.

That is, S is closed under vector addition and scalar multiplication.

We leave it to the reader to verify that,

@set V , @W P ES, CVW is v.op.-closed.

In particular, we get closure under scalar multiplication:

@set V , @W P ES, R ¨ CVW Ď CVW .

Let X :“ R2. We also leave it to the reader to verify that,

MXR
1 `MXR

1 ĘMXR
1 ,

so MXR
1 is NOT v.op.-closed.

However, MXR
1 IS closed under scalar multiplication:

THEOREM 5.6.7. Let V,W P ES and let k P N0.

Then R ¨MVW
k ĎMVW

k .

Proof. Let A :“ ΠV ¨ ΠV ¨ ¨ ¨ ¨ ¨ ΠV , with k copies of ΠV .

Then MVW
k “ CVW ¨A. Then R¨MVW

k “ R¨CVW ¨A Ď CVW ¨A “MVW
k . �
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DEFINITION 5.6.8. Let V,W P ES and let k P N0.

Then HVW
k :“ tφ1 ` ¨ ¨ ¨ ` φm |m P N, φ1, . . . , φm PMVW

k u.

Elements of HVW
k are called k-polynomials from V to W .

So a k-polynomial is, by definition, a sum of k-monomials.

Another perspective: The function space HVW
k is exactly

the closure of MVW
k under vector operations.

Since MVW
k was already closed under scalar multiplication,

we only needed to close it under vector addition for v.op.-closure.

In particular, we record:

THEOREM 5.6.9. Let V,W P ES and let k P N0.

Then HVW
k is v.op.-closed.

THEOREM 5.6.10. Let V :“ R2 and W :“ R3.

Define g : V Ñ W by: @x, y P R,

gpx, yq “ p x4 ` 6x3y , 7x2y2 `
?

2xy3 , 9x4 ` y4 q.

Then: g P HVW
4 .

Proof. Let α :“ εW1 , β :“ εW2 , γ :“ εW3 , X :“ πV1 , Y :“ πV2 .

Then g “ Cα
V ¨X

4 ` C3α
V ¨X3 ¨ Y

` C7β
V ¨X2 ¨ Y 2 ` C

?
2β

V ¨X ¨ Y 3

` C9γ
V ¨X4 ` Cγ

V ¨ Y
4,

so g PMVW
4 `MVW

4 `MVW
4 `MVW

4 `MVW
4 `MVW

4 Ď HVW
4 . �

THEOREM 5.6.11. Let V,W P ES. Then CVW “MVW
0 “ HVW

0 .

DEFINITION 5.6.12. Let V,W P ES.

Then: LVW :“ HVW
1 and QV

W :“ HVW
2 and KV

W :“ HVW
3 .

Let V,W P ES. Then:

element of CVW are called constant functions from V to W and

element of LVW are called linear functions from V to W and

element of KV
W are called cubic functions from V to W .

We next argue that linear is the same as “algebraically linear”:

THEOREM 5.6.13. Let V,W P ES and let f : V Ñ W .

Then: p f P LVW q ô

p r @c P R, @x P V, fc¨x “ c ¨ fx s

& r @x, y P V, fx`y “ fx ` fy s q.

Proof. Unassigned HW. �
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The next two theorems show that constants and linear functions are

all Lipschitz.

Consequently, they are all uniformly continuous, and, therefore, con-

tinuous.

THEOREM 5.6.14. Let V and W be metric spaces, and let C P CVW .

Then C is Lipschitz-0 from V to W .

Proof. Unassigned HW. �

THEOREM 5.6.15. Let V,W P ES and let L P LVW .

Then L is Lipschitz from V to W .

Proof. Want: DK ě 0 s.t. L is Lipschitz-K from V to W .

Let A :“ max t |LεVj | s.t. j P IV u, m :“ #IV , K :“ A ¨
?
m.

Then K ě 0. Want: L is Lipschitz-K from V to W .

Want: @x, y P V , dpLx, Lyq ď K ¨ rdpx, yqs.

Given x, y P V . Want: dpLx, Lyq ď K ¨ rdpx, yqs.

Let I :“ IV . For all j P I, let ej :“ εVj . For all j P I, let qj :“ Lej .

Since x “
ÿ

jPI

xj ¨ ej and L is algebraically linear, we get: Lx “
ÿ

jPI

xj ¨ qj.

Since y “
ÿ

jPI

yj ¨ ej and L is algebraically linear, we get: Ly “
ÿ

jPI

yj ¨ qj.

By definition of A, we have:

@j P I, |qj| ď A.

By Cauchy-Schwarz, we have:

@j P I, |pyj ´ xjq ¨ qj| ď |yj ´ xj| ¨ |qj|.

We have }y ´ x} “
ÿ

jPI

|yi ´ xi| and }y ´ x} ď
?
m ¨ |y ´ x|.

Then dpLx, Lyq “ |Ly ´ Lx| “

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ÿ

jPI

yjqj

¸

´

˜

ÿ

jPI

xjqj

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPI

pyjqj ´ xj ¨ qjq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPI

ˆ

pyj ´ xjq ¨ qj

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

jPI

|pyj ´ xjq ¨ qj|

ď
ÿ

jPI

ˆ

|yj ´ xj| ¨ |qj|

˙
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ď
ÿ

jPI

ˆ

|yj ´ xj| ¨ A

˙

“

ˆ

ÿ

jPI

|yj ´ xj|

˙

¨ A

“ }y ´ x} ¨ A ď
?
m ¨ |y ´ x| ¨ A

“ A ¨
?
m ¨ |y ´ x| “ K ¨ rdpx, yqs. �

MATERIAL ABOVE IS COVERED ON MIDTERM 1 SPRING 2020

5.7. Bilinear multiplications.

DEFINITION 5.7.1. Let U , V and W be sets and let ˚ : UˆV Ñ W .

Then, @x P U , @y P V , we denote ˚px, yq by x ˚ y.

Also, @x P U , the function x ˚ ‚ : V Ñ W is defined by:

@y P V , px ˚ ‚qy “ x ˚ y.

Also, @y P V , the function ‚ ˚ y : U Ñ W is defined by:

@x P U , p‚ ˚ yqx “ x ˚ y.

DEFINITION 5.7.2. Let U, V,W P ES. Then:

BUVW :“ t ˚ : U ˆ V Ñ W | p@x P U, x ˚ ‚ P LVW q &

p@y P V, ‚ ˚ y P LUW q u.

THEOREM 5.7.3. Define ˚ : Rˆ RÑ R by:

@a, b P R, a ˚ b “ a ¨ b.

Then ˚ P BRR
R .

THEOREM 5.7.4. Let V P ES. Define ˚ : Rˆ V Ñ V by:

@a P R, @x P V , a ˚ x “ a ¨ x.

Then ˚ P BV R
V .

THEOREM 5.7.5. Let V P ES. Define ˚ : V ˆ V Ñ R by:

@x, y P V , x ˚ y “ x ‚ y.

Then ˚ P BV VR .

THEOREM 5.7.6. Let U :“ R3, V :“ R4, W :“ R and

A :“

»

–

0 2π 4 6

´1 3 ´5
?

7

´2 7 8 9

fi

fl.

Define ˚ : U ˆ V Ñ W by:

@x P U , @y P V , x ˚ y “

3
ÿ

j“1

4
ÿ

k“1

xj ¨ Ajk ¨ yk.

Then ˚ P BUVW .

Continuing in the theme of the last theorem, there is a map

R3ˆ4 Ñ BR3,R4

R .
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It is not hard to show that this map is

algebraically linear and bijective onto BR3,R4

R .

More generally, @p, q P N, there is an algebraically linear bijection

Rpˆq ãÑą BRp,Rq

R .

Also, @p, q,m P N, there is an algebraically linear bijection

Rpˆqˆm ãÑą BRp,Rq

Rm .

In this course, we will content ourselves with quadratic approxima-

tions (the Second Order Taylor Theorem), which means that we will

use many bilinar maps. Were we to focus on cubic approximations

(Third Order Taylor), we would need to develop the bookkeeping of

trilinear maps. Quartic and Higher order polynomial approximations

would require quadrilinear and higher order multilinear maps.

Just as we showed that linear maps are Lipschitz (Theorem 5.6.15),

we now show that bilinear maps are “doubly Lipschitz”:

THEOREM 5.7.7. Let U, V,W P ES and let ˚ P BUVW .

Then: DL ě 0 s.t., @x P U , @y P V , |x ˚ y| ď L ¨ |x| ¨ |y|.

Proof. Let ` :“ #IU , m :“ #IV , J :“ IV , K :“ IW .

Let A :“ max t |εUj ˚ ε
V
k | s.t. j P J, k P K, u.

Let L :“ A ¨
?
` ¨
?
m. Then L ě 0.

Want: @x P U , @y P V , |x ˚ y| ď L ¨ |x| ¨ |y|.

Given x P U , y P V . Want: |x ˚ y| ď L ¨ |x| ¨ |y|.

By the reproducing formula, x “
ÿ

jPJ

xjε
U
j and y “

ÿ

kPK

ykε
V
k .

Then: x ˚ y “

˜

ÿ

jPJ

xjε
U
j

¸

˚

˜

ÿ

jPJ

ykε
V
k

¸

.

By bilinearity,

˜

ÿ

jPJ

xjε
U
j

¸

˚

˜

ÿ

jPJ

ykε
V
k

¸

“
ÿ

jPJ

ÿ

kPK

“

xj ¨ yk ¨ pε
U
j ˚ ε

V
k q
‰

.

Then: x ˚ y “
ÿ

jPJ

ÿ

kPK

“

xj ¨ yk ¨ pε
U
j ˚ ε

V
k q
‰

.

Then, by subadditivity, |x ˚ y| ď
ÿ

jPJ

ÿ

kPK

|xj ¨ yk ¨ pε
U
j ˚ ε

V
k q|.

Then, by absolute homogeneity, |x ˚ y| ď
ÿ

jPJ

ÿ

kPK

p |xj| ¨ |yk| ¨ |ε
U
j ˚ ε

V
k | q.

Then, by choice of A, |x ˚ y| ď
ÿ

jPJ

ÿ

kPK

p |xj| ¨ |yk| ¨ A q.
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By the distributive law,

˜

ÿ

jPJ

|xj|

¸

¨

˜

ÿ

kPK

|yk|

¸

“
ÿ

jPJ

ÿ

kPK

p |xj| ¨ |yk| q.

So, by commutativity of multiplication and the distributive law,

A ¨

˜

ÿ

jPJ

|xj|

¸

¨

˜

ÿ

kPK

|yk|

¸

“
ÿ

jPJ

ÿ

kPK

p |xj| ¨ |yk| ¨ A q.

So, since }x} “
ÿ

jPJ

|xj| and }y} “
ÿ

kPK

|yk|, we get

A ¨ }x} ¨ }y} “
ÿ

jPJ

ÿ

kPK

p |xj| ¨ |yk| ¨ A q.

By Theorem 5.4.4, }x} ď
?
` ¨ |x| and }y} ď

?
m ¨ |y|.

Then |x ˚ y| ď
ÿ

jPJ

ÿ

kPK

p |xj| ¨ |yk| ¨ A q

“ A ¨ }x} ¨ }y} ď A ¨
?
` ¨ |x| ¨

?
m ¨ |y|

“ L ¨ |x| ¨ |y|, as desired. �

DEFINITION 5.7.8. Let U, V,W P ES and let ˚ P BUVW .

Let f be a U-function and let g be a V -function.

Then f ˚ g is the W -function defined by: @t, pf ˚ gqt “ ft ˚ gt.

DEFINITION 5.7.9. Let U, V,W P ES and let ˚ P BUVW .

Let F be a set of U-functions and let G be a set of V -functions.

Then F ˚G :“ t f ˚ g | f P F, g P G u.

DEFINITION 5.7.10. Let U, V,W P ES and let ˚ P BUVW .

Let f be a U-function and let G be a set of V -functions.

Then f ˚G :“ t f ˚ g | g P G u.

DEFINITION 5.7.11. Let U, V,W P ES and let ˚ P BUVW .

Let F be a set of U-functions and let g be a V -function.

Then F ˚ g :“ t f ˚ g | f P F u.

DEFINITION 5.7.12. Let U, V,W P ES and let ˚ P BUVW .

Let X Ď U-function and let G be a set of V -functions.

Then X ˚G :“ tx ˚ g |x P X, g P G u.

DEFINITION 5.7.13. Let U, V,W P ES and let ˚ P BUVW .

Let x P U and let g be a V -function.

Then x ˚ g is the W -function defined by: @t, px ˚ gqt “ x ˚ gt.

DEFINITION 5.7.14. Let U, V,W P ES and let ˚ P BUVW .

Let f be a U-function and let y P V .

Then f ˚ y is the W -function defined by: @t, pf ˚ yqt “ ft ˚ y.
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DEFINITION 5.7.15. Let U, V,W P ES and let ˚ P BUVW .

Let F be a set of U-functions and let Y Ď V .

Then F ˚ Y :“ t f ˚ y | f P F, y P Y u.

DEFINITION 5.7.16. Let U, V,W P ES and let ˚ P BUVW .

Let X Ď U and let Y Ď V .

Then X ˚ Y :“ tx ˚ y |x P X, y P Y u.

DEFINITION 5.7.17. Let U, V,W P ES and let ˚ P BUVW .

Let x P U and let Y Ď V .

Then x ˚ Y :“ tx ˚ y | y P Y u.

DEFINITION 5.7.18. Let U, V,W P ES and let ˚ P BUVW .

Let X Ď U and let y P V .

Then X ˚ y :“ tx ˚ y |x P X u.

THEOREM 5.7.19. Let S, U, V,W P ES, k, ` P N0 and ˚ P BUVW .

Then: MSU
k ˚ MSV

` Ď MSW
k``.

Proof. Want: @h PMSU
k ˚ MSV

` , h PMSW
k``.

Given h PMSU
k ˚ MSV

` . Want: h PMSW
k``.

Since h PMSU
k ˚ MSV

` , choose f PMSU
k and g PMSV

` s.t. h “ f ˚ g.

As f PMSU
k , choose C P CSU and α1, . . . , αk P ΠS s.t. f “ C ¨ α1 ¨ ¨ ¨αk.

As g PMSV
` , choose D P CSV and β1, . . . , β` P ΠS s.t. g “ D ¨ β1 ¨ ¨ ¨ β`.

By bilinearity of ˚, as α1, . . . , αk, β1, . . . , β` are all functionals, we get:

@t P S, pf ˚ gqt “ ppC ˚Dq ¨ α1 ¨ ¨ ¨αk ¨ β1 ¨ ¨ ¨ β`qt.

Then f ˚ g “ pC ˚Dq ¨ α1 ¨ ¨ ¨αk ¨ β1 ¨ ¨ ¨ β`.

Since C P CSU and D P CSV and ˚ : UˆV Ñ W , we conclude: C˚D P CSW .

So, since α1, . . . , αk, β1, . . . , βk P ΠS, we see that:

pC ˚Dq ¨ α1 ¨ ¨ ¨αk ¨ β1 ¨ ¨ ¨ β` P MSW
k``.

Then: h “ f ˚g “ pC ˚Dq ¨α1 ¨ ¨ ¨αk ¨β1 ¨ ¨ ¨ β` P MSW
k``, as desired. �

THEOREM 5.7.20. Let S, U, V,W P ES, k, ` P N0 and ˚ P BUVW .

Then: HSU
k ˚ HSV

` Ď HSW
k``.

Proof. Want: @h P HSU
k ˚ HSV

` , h P HSW
k``.

Given h P HSU
k ˚ HSV

` . Want: h P HSW
k``.

Since h P HSU
k ˚ HSV

` , choose f P HSU
k and g P HSV

` s.t. h “ f ˚ g.

As f PMSU
k , choose m P N, φ1, . . . , φm PMSU

k s.t. f “ φ1 ` ¨ ¨ ¨ ` φm.

As g PMSV
` , choose n P N, ψ1, . . . , ψn PMSV

k s.t. g “ ψ1 ` ¨ ¨ ¨ ` ψn.

By bilinearity, we have:

˜

m
ÿ

j“1

φj

¸

˚

˜

n
ÿ

k“1

ψk

¸

“

m
ÿ

j“1

n
ÿ

k“1

pφj ˚ ψkq,
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Then: h “ f ˚ g “

˜

m
ÿ

j“1

φj

¸

˚

˜

n
ÿ

k“1

ψk

¸

“

m
ÿ

j“1

n
ÿ

k“1

pφj ˚ ψkq.

It therefore suffices to show: @j P r1..ms, @k P r1..ns, φj ˚ψk P MSW
k``.

Given j P r1..ms, k P r1..ns. Want: φj ˚ψk P MSW
k``.

By Theorem 5.7.19, MSU
k ˚ MSV

` Ď MSW
k``.

Then: φj ˚ ψk P MSU
k ˚ MSV

` Ď MSW
k``, as desired. �

THEOREM 5.7.21. Let S, U P ES, k, ` P N0.

Then: HSU
k

‚ HSU
` Ď HSR

k``.

Proof. Define ˚ P BUUR by: @x, y P U , x ˚ y “ x ‚ y.

Let V :“ U and W :“ R. Then ˚ P BUVW .

By Theorem 5.7.20, we have: HSU
k ˚ HSV

` Ď HSW
k``.

Then HSU
k

‚ HSV
` “ HSU

k ˚ HSV
` Ď HSW

k`` “ HSR
k``, as desired. �

THEOREM 5.7.22. Let S P ES, k, ` P N0.

Then: HSR
k ¨ HSR

` Ď HSR
k``.

Proof. Define ˚ P BRR
R by: @a, b P R, a ˚ b “ a ¨ b.

Let V :“ R and W :“ R. Then ˚ P BUVW .

By Theorem 5.7.20, we have: HSU
k ˚ HSV

` Ď HSW
k``.

Then HSR
k ¨ HSR

` “ HSU
k ˚ HSU

` Ď HSW
k`` “ HWR

k``, as desired. �

THEOREM 5.7.23. Let S P ES, k, ` P N0. Then: @m P N,

@f1, . . . , fm P HSR
k , f1 ¨ ¨ ¨ fm P HSR

km.

Proof. Unassigned HW. Hint: Use induction, starting with:

Let A :“ tm P N | @f1, . . . , fm P HSR
k , f1 ¨ ¨ ¨ fm P HSR

kmu.

Want: A “ N. �

THEOREM 5.7.24. Let S, U P ES, k, ` P N0.

Then: HSU
k ¨ HSR

` Ď HSU
k``.

Proof. Define ˚ P BUR
U by: @x P U , @a P R, x ˚ a “ x ¨ a.

Let V :“ R and W :“ U . Then ˚ P BUVW .

By Theorem 5.7.20, we have: HSU
k ˚ HSV

` Ď HSW
k``.

Then HSU
k ¨ HSR

` “ HSU
k ˚ HSV

` Ď HSW
k`` “ HSU

k``, as desired. �

THEOREM 5.7.25. Let V,W,X P ES, k P N0.

Then: LWX ˝ MVW
k Ď MV X

k .

Proof. Want: @h P LWX ˝ MVW
k , h PMV X

k .

Given h P LWX ˝ MVW
k . Want: h PMV X

k .
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Since h P LWX ˝ MVW
k , choose g P LWX and f PMVW

k s.t. h “ g ˝ f .

As f PMVW
k , choose C P CVW and α1, . . . , αk P ΠV s.t. f “ C ¨α1 ¨ ¨ ¨αk.

Since g P LWX , we know that g is algebrically linear.

Then: @t P S, pg ˝ fqt “ ppg ˝ Cq ¨ α1 ¨ ¨ ¨αkqt.

Then: g ˝ f “ pg ˝ Cq ¨ α1 ¨ ¨ ¨αk.

Since C P CVW and g : W Ñ X, we get: g ˝ C P CVX .

So, since α1, . . . , αk P ΠV , we get: pg ˝ Cq ¨ α1 ¨ ¨ ¨αk P MV X
k .

Then h “ g ˝ f “ pg ˝ Cq ¨ α1 ¨ ¨ ¨αk P MV X
k , as desired. �

THEOREM 5.7.26. Let V,W,X P ES, k P N0.

Then: LWX ˝ HVW
k Ď HV X

k .

Proof. Want: @h P LWX ˝ HVW
k , h P HV X

k .

Given h P LWX ˝ HVW
k . Want: h P HV X

k .

Since h P LWX ˝ HVW
k , choose g P LWX and f P HVW

k s.t. h “ g ˝ f .

As f P HVW
k , choose m P N, φ1, . . . , φm PMVW

k s.t. f “ φ1` ¨ ¨ ¨ ` φm.

Since g P LWX , we know that g is algebrically linear.

Then: @t P S, pg ˝ fqt “ ppg ˝ φ1q ` ¨ ¨ ¨ ` pg ˝ φmqqt.

Then: g ˝ f “ pg ˝ φ1q ` ¨ ¨ ¨ ` pg ˝ φmq.

By Theorem 5.7.25, LWX ˝ MVW
k Ď MV X

k .

Then, @j P r1..ms, g ˝ φj P LWX ˝ MVW
k Ď MV X

k .

Then: pg ˝ φ1q ` ¨ ¨ ¨ ` pg ˝ φmq P HV X
k .

Then h “ g˝f “ pg˝φ1q`¨ ¨ ¨`pg˝φmq P HV X
k , as desired. �

THEOREM 5.7.27. Let V,W,X P ES, k P N0.

Then: MWX
` ˝ HVW

k Ď HV X
k` .

Proof. Want: @h PMWX
` ˝ HVW

k , h P HV X
k .

Given h PMWX
` ˝ HVW

k . Want: h P HV X
k .

Since h PMWX
` ˝ HVW

k , choose g PMWX
` and f P HVW

k s.t. h “ g ˝f .

As g PMWX
` , choose C P CWX and α1, . . . , α` P ΠW s.t. g “ C ¨α1 ¨ ¨ ¨α`.

Then: @t P S, pg ˝ fqt “ ppC ˝ fq ¨ pα1 ˝ fq ¨ ¨ ¨ pα` ˝ fqqt.

Then: g ˝ f “ pC ˝ fq ¨ pα1 ˝ fq ¨ ¨ ¨ pα` ˝ fq.

Let β :“ pα1 ˝ fq ¨ ¨ ¨ pα` ˝ fq. Then g ˝ f “ pC ˝ fq ¨ β.

Since f P HVW
k , we conclude that f : V Ñ W .

So, since C P CWX , we get: C ˝ f P CVX . Then C ˝ f P CVX “ HV X
0 .

We have: α1 , . . . , α` P ΠW Ď LWR .

By Theorem 5.7.26, we have: LWR ˝ HVW
k Ď HV R

k .

Then: α1 ˝ f, . . . , α` ˝ f P LWR ˝ HVW
k Ď HV R

k .

Then, by Theorem 5.7.23, pα1 ˝ fq ¨ ¨ ¨ pα` ˝ fq P HV R
k` .
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Then: β “ pα1 ˝ fq ¨ ¨ ¨ pα` ˝ fq P HV R
k` .

By Theorem 5.7.24, we have: HV X
0 ¨HV R

k` Ď HV X
k` .

Then: h “ g ˝f “ pC ˝fq ¨β P HV X
0 ¨HV R

k` Ď HV X
k` , as desired. �

THEOREM 5.7.28. Let V,W,X P ES, k, ` P N0.

Then: HWX
` ˝ HVW

k Ď HV X
k` .

Proof. Want: @h P HWX
` ˝ HVW

k , h P HV X
k .

Given h P HWX
` ˝ HVW

k . Want: h P HV X
k .

Since h P HWX
` ˝ HVW

k , choose g P HWX
` and f P HVW

k s.t. h “ g ˝ f .

As g P HWX
` , choose m P N, ψ1, . . . , ψm PMWX

` s.t. g “ ψ1`¨ ¨ ¨`ψm.

Then: @t P S, pg ˝ fqt “ ppψ1 ˝ fq ` ¨ ¨ ¨ ` pψm ˝ fqqt.

Then: g ˝ f “ pψ1 ˝ fq ` ¨ ¨ ¨ ` pψm ˝ fq.

By Theorem 5.7.27, we have: MWX
` ˝ HVW

k Ď HV X
k` .

Then: ψ1 ˝ f , . . . , ψm ˝ f P MWX
` ˝ HVW

k Ď HV X
k` .

So, since HV X
k` is v.op.-closed, pψ1 ˝ fq ` ¨ ¨ ¨ ` pψm ˝ fq P HV X

k` .

Then h “ g ˝ f “ pψ1 ˝ fq ` ¨ ¨ ¨ ` pψm ˝ fq P HV X
k` , as desired. �

5.8. Continuity of polynomials.

THEOREM 5.8.1. Let V,W P ES, f, g : V 99K W , t P V .

Assume: f and g are both continuous at t from V to W .

Then f ` g is continuous at t from V to W .

Proof. Let h :“ f ` g. Want: h is continuous at t from V to W .

Want: @ε ą 0, Dδ ą 0 s.t., @x P Dh,

r dpx, tq ă δ s ñ r dphx, htq ă ε s.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P Dh,

r dpx, tq ă δ s ñ r dphx, htq ă ε s.

Let σ :“ ε{2. Then σ ą 0.

So, as f is continuous at t from V to W , choose λ ą 0 s.t., @x P Df ,

r dpx, tq ă λ s ñ r dpfx, ftq ă σ s.

Also, as g is continuous at t from V to W , choose µ ą 0 s.t., @x P Dg,

r dpx, tq ă µ s ñ r dpgx, gtq ă σ s.

Let δ :“ mintλ, µu. Then δ ą 0.

Want: @x P Dh, r dpx, tq ă δ s ñ r dphx, htq ă ε s.

Given x P Dh. Want: r dpx, tq ă δ s ñ r dphx, htq ă ε s.

Assume: dpx, tq ă δ. Want: dphx, htq ă ε.

Since x P Dh “ Df`g “ Df

Ş

Dg, we get: x P Df and x P Dg.

So, since dpx, tq ă δ ď λ, by choice of λ, we have: dpfx, ftq ă σ.

Also, since dpx, tq ă δ ď µ, by choice of µ, we have: dpgx, gtq ă σ.
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Since h “ f ` g, we get both hx “ fx ` gx and ht “ ft ` gt.

Since σ “ ε{2, we get σ ` σ “ ε.

Then: dphx, htq “ dpfx ` gx, ft ` gtq “ | pfx ` gxq ´ pft ` gtq |

“ | pfx ´ ftq ` pgx ´ gtq | ď | fx ´ ft | ` | gx ´ gt |

“ r dpfx, ftq s ` r dpgx, gtq s ď σ ` σ “ ε. �

THEOREM 5.8.2. Let V,W P ES, t P V . Then, @` P N,

@α1, . . . , α` : V 99K W ,

rα1, . . . , α` are all continuous at t from V to W s

ñ rα1 ` ¨ ¨ ¨ ` α` is continuous at t from V to W s.

Proof. Unassigned HW. Hint: Use induction, starting with:

Let A :“ t` P N | @α1, . . . , α` : V 99K W ,

rα1, . . . , α` are all continuous at t from V to W s

ñ rα1 ` ¨ ¨ ¨ ` α` is continuous at t from V to W s u.

Want: A “ N. �

THEOREM 5.8.3. Let S, U, V,W P ES, let ˚ P BUVW and let t P S.

Let f : S 99K U and let g : S 99K V .

Assume that f is continuous at t from S to U .

Assume that g is continuous at t from S to V .

Then f ˚ g is continuous at t from S to W .

Proof. Let h :“ f ˚ g. Want: h is continuous at t from S to W .

Want: @ε ą 0, Dδ ą 0 s.t., @x P Dh,

r dpx, tq ă δ s ñ r dphx, htq ă ε s.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P Dh,

r dpx, tq ă δ s ñ r dphx, htq ă ε s.

Choose L ě 0 s.t., @p P U , @q P V , |p ˚ q| ď L ¨ |p| ¨ |q|.

Let a :“ ft and b :“ gt and σ :“ min

"

1 ,
ε

pL` 1q ¨ p|b| ` |a| ` 1q

*

.

Then: σ ď 1 and L ¨ σ ¨ p|b| ` |a| ` 1q ă ε.

Also, we have: σ ą 0.

So, as f is continuous at t from S to V , choose λ ą 0 s.t., @x P Df ,

r dpx, tq ă λ s ñ r dpfx, ftq ă σ s.

Also, as g is continuous at t from S to W , choose µ ą 0 s.t., @x P Dg,

r dpx, tq ă µ s ñ r dpgx, gtq ă σ s.

Let δ :“ mintλ, µu. Then δ ą 0.

Want: @x P Dh, r dpx, tq ă δ s ñ r dphx, htq ă ε s.

Given x P Dh. Want: r dpx, tq ă δ s ñ r dphx, htq ă ε s.
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Assume: dpx, tq ă δ. Want: dphx, htq ă ε.

Since x P Dh “ Df˚g “ Df

Ş

Dg, we get: x P Df and x P Dg.

So, since dpx, tq ă δ ď λ, by choice of λ, we have: dpfx, ftq ă σ.

Also, since dpx, tq ă δ ď µ, by choice of µ, we have: dpgx, gtq ă σ.

Recall that a “ ft and b “ gt. Then ht “ pf ˚ gqt “ ft ˚ gt “ a ˚ b.

Let A :“ fx and B :“ gx. Then hx “ pf ˚ gqx “ fx ˚ gx “ A ˚B.

Also, we have: |A´ a| “ |fx ´ ft| “ dpfx, ftq ă σ.

Also, we have: |B ´ b| “ |gx ´ gt| “ dpgx, gtq ă σ.

By bilinearity, we have:

rA˚Bs ´ ra˚bs “ r pA´aq˚b s ` r a˚pB´bq s ` r pA´aq˚pB´bq s.

Recall: σ ď 1 and L ¨ σ ¨ p | b | ` | a | ` 1 q ă ε.

Then:

dphx, htq “ dpA ˚B, a ˚ bq “ | rA ˚Bs ´ ra ˚ bs | “

“ | r pA´ aq ˚ b s ` r a ˚ pB ´ bq s ` r pA´ aq ˚ pB ´ bq s |

ď | pA´ aq ˚ b | ` | a ˚ pB ´ bq | ` | pA´ aq ˚ pB ´ bq |

ď L ¨ |A´ a | ¨ | b | ` L ¨ | a | ¨ |B ´ b | ` L ¨ |A´ a | ¨ |B ´ b |

ď L ¨ σ ¨ | b | ` L ¨ | a | ¨ σ ` L ¨ σ ¨ σ

“ L ¨ σ ¨ p | b | ` | a | ` σ q

ď L ¨ σ ¨ p | b | ` | a | ` 1 q ă ε, as desired. �

THEOREM 5.8.4. Let S, U P ES, let f, g : S 99K U and let t P S.

Assume that f and g are both continuous at t from S to U .

Then f ‚ g is continuous at t from S to R.

To use Theorem 5.8.3 to prove the preceeding theorem,

define ˚ P BUUR by: @x, y P U , x ˚ y “ x ‚ y.

THEOREM 5.8.5. Let S P ES, let f, g : S 99K R and let t P S.

Assume that f and g are both continuous at t from S to R.

Then f ¨ g is continuous at t from S to R.

To use Theorem 5.8.3 to prove the preceeding theorem,

define ˚ P BRR
R by: @a, b P R, a ˚ b “ a ¨ b.

The preceding theorem can be used the prove the following theorem,

by induction on k.

THEOREM 5.8.6. Let S P ES and let t P S. Then, @k P N,

@α1, . . . , αk : S 99K R,

p α1, . . . , αk are all continuous at t from S to R q
ô p α1 ¨ ¨ ¨αk is continuous at t from S to R q.
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THEOREM 5.8.7. Let S, U P ES, f : S 99K U , g : S 99K R, t P S.

Assume that f is continuous at t from S to U .

Assume that g is continuous at t from S to R.

Then f ¨ g is continuous at t from S to U .

To use Theorem 5.8.3 to prove the preceeding theorem,

define ˚ P BUR
U by: @x P U , @a P R, x ˚ a “ x ¨ a.

THEOREM 5.8.8. Let V,W P ES, k P N0, f PMVW
k .

Then f is continuous from V to W .

Proof. Since f PMVW
k , choose φ P CVW and α1, . . . , αk P ΠV

such that: f “ φ ¨ α1 ¨ ¨ ¨αk.

Since α1, . . . , αk P ΠV Ď LVW ,

we conclude that α1, . . . , αk are all Lipschitz from V to R,

and so α1, . . . , αk are all continuous from V to R.

Then α1 ¨ ¨ ¨αk is continuous from V to R.

Since φ P CVW , we conclude that φ is Lipschitz-0 from V to W ,

and so φ is continuous from V to W .

Then φ ¨ α1 ¨ ¨ ¨αk is continuous from V to W .

So, since f “ φ ¨ α1 ¨ ¨ ¨αk, we conclude that:

f is continuous from V to W , as desired. �

THEOREM 5.8.9. Let V,W P ES, k P N0, f P HVW
k .

Then f is continuous from V to W .

Proof. Since f P HVW
k , choose ` P N and α1, . . . , α` PMVW

k

such that: f “ α1 ` ¨ ¨ ¨ ` αk.

By the preceding theorem,

α1, . . . , α` are all continuous from V to R.

Then α1 ` ¨ ¨ ¨ ` α` is continuous from V to R.

So, since f “ α1 ` ¨ ¨ ¨ ` α`, we conclude that:

f is continuous from V to W , as desired. �

5.9. Homogeneity of (homogeneous) polynomials.

THEOREM 5.9.1. Let V,W P ES, k P N0, f PMVW
k , x P V , c P R.

Then: fc¨x “ ck ¨ fx.

Proof. Since f PMVW
k , choose φ P CVW and α1, . . . , αk P ΠV

s.t. f “ φ ¨ α1 ¨ ¨ ¨αk.

For all j P r1..ks, as αj P ΠV Ď LVR , we get: pαjqc¨x “ c ¨ ppαjqxq.



220 SCOT ADAMS

Since φ P CVW , we conclude: φc¨x “ φx.

Then fc¨x “ pφ ¨ α1 ¨ ¨ ¨αkqc¨x
“ φc¨x ¨ rpα1qc¨xs ¨ ¨ ¨ rpαkqc¨xs

“ φx ¨ rc ¨ ppα1qxqs ¨ ¨ ¨ rc ¨ ppαkqxqs

“ ck ¨ φx ¨ rpα1qxs ¨ ¨ ¨ rpαkqxs

“ ck ¨ pφ ¨ α1 ¨ ¨ ¨αkqx
“ ck ¨ fx, as desired. �

THEOREM 5.9.2. Let V,W P ES, k P N0, f P HVW
k , x P V , c P R.

Then: fc¨x “ ck ¨ fx.

Proof. Since f PMVW
k , choose ` P N and α1, . . . , α` PMVW

k

s.t. f “ α1 ` ¨ ¨ ¨ ` αk.

By the preceding theorem, @j P r1..`s, we have: pαjqc¨x “ ck ¨ ppαjqxq.

Then fc¨x “ pα1 ` ¨ ¨ ¨ ` αkqc¨x
“ rpα1qc¨xs ` ¨ ¨ ¨ ` rpαkqc¨xs

“ rck ¨ ppα1qxqs ` ¨ ¨ ¨ ` rc
k ¨ ppαkqxqs

“ ck ¨ rppα1qxq ` ¨ ¨ ¨ ` ppαkqxqs

“ ck ¨ rpα1 ` ¨ ¨ ¨ ` αkqxs

“ ck ¨ fx, as desired. �

5.10. Tensors of linear and bilinear maps.

DEFINITION 5.10.1. Let V,W P ES and let L : V Ñ W .

By L is algebraically linear, we mean:

@u, v P V , Lu`v “ Lu ` Lv
and @c P R, @v P V , Lc¨v “ c ¨ Lv.

DEFINITION 5.10.2. Let V,W P ES. Then:

ALVW :“ t f : V Ñ W | f is algebraically linear u.

THEOREM 5.10.3. Let V,W P ES. Then MVW
1 Ď ALVW .

Proof. Want: @M PMVW
1 , M P ALVW .

Given M PMVW
1 . Want: M P ALVW .

Choose C P CVW and p P ΠV s.t. M “ C ¨ p.

Unassigned HW: Show that ΠV Ď ALVR . Then p P ALVR .

Unassigned HW: Show that CVW ¨ALVR Ď ALVW .

Then M “ C ¨ p P CVW ¨ALVR Ď ALVR . �

THEOREM 5.10.4. Let V,W P ES. Then LVW Ď ALVW .
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Proof. Want: @L P LVW , L P ALVW .

Given L P LVW . Want: L P ALVW .

Since L P LVW “ HVW
1 , choose k P N and φ1, . . . , φk PMVW

1

such that L “ φ1 ` ¨ ¨ ¨ ` φk.

By Theorem 5.10.3, MVW
1 Ď ALVW .

Unassigned HW: Show ALVW `ALVW Ď ALVW .

Then, as φ1, . . . , φk PMVW
1 Ď ALVW , we get: φ1 ` ¨ ¨ ¨ ` φk P ALVW .

Then L “ φ1 ` ¨ ¨ ¨ ` φk P ALVW . �

DEFINITION 5.10.5. We define:

@α, β P N, Rα b Rβ :“ Rαˆβ

and @β P N, Rb Rβ :“ Rβ

and @α P N, Rα b R :“ Rα

and Rb R :“ R.

DEFINITION 5.10.6. Let α, β P N, V :“ Rα, W :“ Rβ.

Then: @L P ALVW , rLs P W b V is defined by:

@j P r1..βs, @i P r1..αs, rLsji “ pLpεVi qq ‚ ε
W
j .

Also: @S P W b V , LinSVW P LVW is defined by:

@v P V , LinSVW pvq “
β
ÿ

j“1

α
ÿ

i“1

Sji ¨ vi ¨ ε
W
j .

When the Euclidean spaces are obvious, we sometimes omit V and

W , and write “LinS”, instead of “LinSVW”.

THEOREM 5.10.7. Define L : R3 Ñ R2 by: @x, y, z P R,

Lpx, y, zq “ p 2x` 3y ´ 7z , 4x´ y ´ 9z q.

Then L P ALR3

R2 and rLs “

„

2 3 ´7

4 ´1 ´9



P R2ˆ3
“ R3

b R2.

DEFINITION 5.10.8. Let α P N, V :“ Rα, W :“ R.

Then: @L P ALVW , rLs P W b V is defined by:

@i P r1..αs, rLsi “ pLpεVi qq ‚ 1.

Also: @S P W b V , LinSVW P LVW is defined by:

@v P V , LinSVW pvq “
α
ÿ

i“1

Si ¨ vi ¨ 1.

When the Euclidean spaces are obvious, we sometimes omit V and

W , and write “LinS”, instead of “LinSVW”.

DEFINITION 5.10.9. Let β P N, V :“ R, W :“ Rβ.

Then: @L P ALVW , rLs P W b V is defined by:
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@j P r1..βs, rLsj “ pLp1qq ‚ εWj .

Also: @S P W b V , LinSVW P LVW is defined by:

@v P V , LinSVW pvq “
β
ÿ

j“1

Sj ¨ v ¨ ε
W
j .

When the Euclidean spaces are obvious, we sometimes omit V and

W , and write “LinS”, instead of “LinSVW”.

DEFINITION 5.10.10. Let β P N, V :“ R, W :“ R.

Then: @L P ALVW , rLs P W b V is defined by:

rLs “ pLp1qq ‚ 1.

Also: @S P W b V , LinSVW P LVW is defined by:

@v P V , LinSVW pvq “ S ¨ v ¨ 1.

When the Euclidean spaces are obvious, we sometimes omit V and

W , and write “LinS”, instead of “LinSVW”.

THEOREM 5.10.11. Let V,W P ES, L P ALVW . Then LinrLs “ L.

Proof. Unassigned HW. �

THEOREM 5.10.12. Let V,W P ES. Then ALVW “ LVW .

Proof. By Theorem 5.10.4, we have: LVW Ď ALVW .

Want: ALVW Ď LVW . Given L P ALVW . Want: L P LVW .

We have L “ LinrLs P LVW , as desired. �

THEOREM 5.10.13. Let V,W P ES, S P W b V . Then rLinSs “ S.

Proof. Unassigned HW. �

Let V,W P ES. Then

L ÞÑ rLs : LVW Ñ W b V and S ÞÑ LinS : W b V

are bijections are are inverses of one another.

DEFINITION 5.10.14. We define:

@i, j P N, i}j :“ pi, jq

and @j P N, 0}j :“ j

and @i P N, i}0 :“ i

and 0}0 :“ 0.

We can now fold the eight formulas in

Definition 5.10.6, Definition 5.10.8,

Definition 5.10.9 and Definition 5.10.10

into two:
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THEOREM 5.10.15. Let V,W P ES.

Then: @L P ALVW , @j P IW , @i P IV , rLsj}i “ pLpεVi qq ‚ ε
W
j .

Also: @S P W b V , @v P V , LinSpvq “
β
ÿ

jPIW

α
ÿ

iPIV

Sj}i ¨ vi ¨ ε
W
j .

DEFINITION 5.10.16. We define:

@α, β, γ P N, Rα b Rβˆγ :“ Rαˆβˆγ

@α, β, γ P N, Rα,β b Rγ :“ Rαˆβˆγ

and @β, γ P N, Rb Rβˆγ :“ Rβˆγ

and @α, β P N, Rαˆβ b R :“ Rαˆβ.

DEFINITION 5.10.17. We define:

@i, j, k P N, i}pj, kq :“ pi, j, kq

@i, j, k P N, pi, jq}k :“ pi, j, kq

and @j, k P N, 0}pj, kq :“ pj, kq

and @i, j P N, pi, jq}0 :“ pi, jq.

DEFINITION 5.10.18. Let V,W P ES.

Then: @B P BVW , rBs P X b V bW is defined by:

@k P IX , @i P IV , @j P IW , rBsk}i}j “ pBpεVi , ε
W
j qq ‚ ε

X
k .

Also: @T P X b V bW , BilinTVWX P BVWX is defined by:

@v P V , @w P W , BilinTVWXpv, wq “
ÿ

kPIX

ÿ

iPIV

ÿ

jPIW

Tk}i}j ¨ vi ¨ wj ¨ ε
X
k .

When the Euclidean spaces are obvious, we sometimes omit V and

W and X, and write “BilinT”, instead of “BilinTVWX”.

5.11. Polarization and diagonal restriction.

DEFINITION 5.11.1. Let V,W P ES and ˚ P BV VW .

Then Qd˚ : V Ñ W is defined by: @v P V , Qd˚v “ v ˚ v.

Let V,W P ES. According to HW#5-5, Qd˚ P QV
W .

Let V,W P ES. The next two results can be summarized as saying:

˚ ÞÑ Qd˚ : BV VW Ñ QV
W is algebraically linear.

THEOREM 5.11.2. let V,W P ES and B,C P BV VW .

Then QdB`C “ QdB `QdC.

THEOREM 5.11.3. let V,W P ES and a P R and B P BV VW .

Then Qda¨B “ a ¨QdB.
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THEOREM 5.11.4. Let V,W P ES and F PMVW
2 .

Then D˚ P BV VW s.t. Qd˚ “ F .

Proof. Since F PMVW
2 ,

choose C P CVW and p, q P ΠV s.t. F “ C ¨ p ¨ q.

Since C P CVW , choose w P W s.t. C “ Cw
V .

Define ˚ : V ˆ V Ñ W by @u, v P V , u ˚ v “ w ¨ pu ¨ qv.

Since p, q P ΠV Ď LVR , it follows that: ˚ P BV VW . Want: Qd˚ “ F .

Want: @v P V , Qd˚v “ Fv. Given v P V . Want: Qd˚v “ Fv.

We have Cv “ pC
w
V qv “ w. Then w “ Cv.

Then: Qd˚v “ v ˚ v “ w ¨ pv ¨ qv “ Cv ¨ pv ¨ qv
“ pC ¨ p ¨ qqv “ Fv, as desired. �

Let V,W P ES. The next result can be summarized as saying:

˚ ÞÑ Qd˚ : BV VW Ñ QV
W is surjective.

THEOREM 5.11.5. Let V,W P ES and F P QV
W .

Then D˚ P BV VW s.t. Qd˚ “ F .

Proof. Since F P QV
W “ HVW

2 , choose k P N and ψ1, . . . , ψk PMVW
2

s.t. F “ ψ1 ` ¨ ¨ ¨ ` ψk.

By Theorem 5.11.4, @j P r1..ks, choose Bj P BV VW s.t. ψj “ QdBj .

Let ˚ :“ B1 ` ¨ ¨ ¨ `Bk. Then ˚ P BV VW . Want: Qd˚ “ F .

We have Qd˚ “ QdB1`¨¨¨`Bk “ QdB1 ` ¨ ¨ ¨ `QdBk

“ ψ1 ` ¨ ¨ ¨ ` ψk “ F , as desired. �

5.12. Principal minors and positive definiteness.

DEFINITION 5.12.1. Let V,W P ES. Then:

SBVW :“ t ˚ P BV VW | @u, v P V, u ˚ v “ v ˚ u u.

DEFINITION 5.12.2. Let V,W P ES and let ˚ P BV VW .

Then Sym˚ : V ˆ V Ñ W is defined by:

@u, v P V , Sym˚
pu, vq “

u ˚ v ` v ˚ u

2
.

Unassigned HW: Let V,W P ES and let ˚ P SBVW . Show: Sym˚
“ ˚.

Monastery and convent story about the joys of polarization . . .

DEFINITION 5.12.3. Let m P N and let A P Rmˆm.

Assume that A is symmetric.

Then PMA denotes the set of principal minors of A.
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THEOREM 5.12.4. Let m P N, V :“ Rm, B P SBVR , Q :“ QdB.

Then: p Q ą 0 on V ˆ0V q ô p PMrBs ą 0 q.

Proof. Omitted. Belongs in a linear algebra course. �

We described the Multivariable Second Derivative for Minima.

We’ll come back to this later.

5.13. Multivariable DNZ, BNZ, CVZ, big-O and little-o.

DEFINITION 5.13.1. Let V,W P ES. Then 0VW :“ C0W
V .

DEFINITION 5.13.2. Let f be a v/s-function.

Then |f | is the functional defined by:

@x, |f |x “ |fx|.

DEFINITION 5.13.3. Let V,W P ES. Then:

DNZVW :“ t f : V 99K W | f is defined near 0V in V u,

BNZVW :“ t f : V 99K W | f is bounded near 0V from V to W u,

CVZVW :“ t f P DNZVW | p f0V “ 0W q &

p f is continuous at 0V from V to W q u.

THEOREM 5.13.4. Let V,W P ES.

Then DNZVW and BNZVW and CVZVW are all v.op-closed.

THEOREM 5.13.5. Let V,W P ES and let f, g : V 99K W .

Assume: g “ f near 0V in V .

Then: r p f P DNZVW q ô p g P DNZVW q s

& r p f P BNZVW q ô p g P BNZVW q s

& r p f P CVZVW q ô p g P CVZVW q s.

THEOREM 5.13.6. Let V,W P ES and let f, g : V 99K W . Then:

rf P BNZVW s ô rDδ, L ą 0 s.t., @x P V, p|x| ă δq ñ p|fx| ď Lqs

and

rf P CVZVW s ô r@ε ą 0, Dδ ą 0 s.t., @x P V, p|x| ă δq ñ p|fx| ď εqs.

DEFINITION 5.13.7. Let V,W P ES and let k P N0.

Then: pOVW
k :“ pBNZVW q ¨ p| ‚ |

k
V q

& OVWk :“ pCVZVW q ¨ p| ‚ |
k
V q.

THEOREM 5.13.8. Let V,W P ES and let k P N0.

Then pOVW
k and OVWk are both v.op.-closed.
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THEOREM 5.13.9. Let V,W P ES, k P N0 and f, g : V 99K W .

Assume: g “ f near 0V in V .

Then: r p f P pOVW
k q ô p g P pOVW

k q s

& r p f P OVWk q ô p g P OVWk q s.

THEOREM 5.13.10. Let V,W P ES, k P N0, f : V 99K W . Then:

rf P pOVW
k s ô rDδ, L ą 0 s.t., @x P V, p|x| ă δq ñ p|fx| ď L ¨ |x|kqs

and

rf P OVWk s ô r@ε ą 0, Dδ ą 0 s.t., @x P V, p|x| ă δq ñ p|fx| ď ε¨|x|kqs.

MATERIAL ABOVE IS COVERED ON MIDTERM 2 SPRING 2020

THEOREM 5.13.11. Let V P ES. Then SV is compact.

Proof. Since SV P BV p0V , 2q, we see that SV is bounded in V .

So, since V is proper, it suffices to show: SV is closed in V .

Want: SV P T 1V . We have SV “ p| ‚ |V q
˚pt1uq.

Because finite sets in metric spaces are closed,

we conclude that t1u P T 1R.

Since | ‚ |V is Lipschitz-1 from V to R,

it follows that | ‚ |V is continuous from V to R.

Then, we have: @C P T 1R, p| ‚ |V q
˚pCq P T 1V .

Then p| ‚ |V q
˚pt1uq P T 1V . Then SV “ p| ‚ |V q

˚pt1uq P T 1V . �

THEOREM 5.13.12. Let V,W P ES and let k P N0.

Then: HVW
k Ď pOVW

k .

Proof. Want: @f P HVW
k , f P pOVW

k . Given f P HVW
k . Want: f P pOVW

k .

Want: Dδ, L ą 0 s.t., @x P V , p |x| ă δ q ñ p |fx| ď L ¨ |x|k q.

We have f P HVW
k , so f is continuous from V to W .

So, since SV is compact, we see that f˚SV is compact as well.

Then f˚SV is closed and bounded in W .

Since f˚SV is bounded in W ,

choose L ą 0 s.t. f˚SV Ď BW p0W , Lq.

Let δ :“ 1. Then δ, L ą 0.

Want: @x P V , p |x| ă δ q ñ p |fx| ď L ¨ |x|k q.

Given x P V . Want: p |x| ă δ q ñ p |fx| ď L ¨ |x|k q.

Assume |x| ă δ. Want: |fx| ď L ¨ |x|k.

By polar decomposition, choose u P SV s.t. x “ |x| ¨ u.

Let c :“ |x|. Then x “ c ¨ u. Also, as c ě 0, we get: |c| “ c.

We have fx “ fcu “ ck ¨ fu, so |fx| “ |c|
k ¨ |fu|.
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Then, as |c| “ c, this gives: |fx| “ ck ¨ |fu|.

Since f P HVW
k , we conclude: Df “ V .

Recall: u P SV . Then u P SV Ď V “ Df . Then u P SV
Ş

Df .

Then fu P f˚SV Ď BW p0W , Lq, so dW pfu, 0W q ă L.

Then |fu| “ |fu ´ 0| “ dW pfu, 0W q ă L, and so |fu| ď L.

So, since |x|k ě 0, we get: |fu| ¨ |x|
k ď L ¨ |x|k.

Recall that |fx| “ ck ¨ |fu| and that c “ |x|.

Then |fx| “ ck ¨ |fu| “ |fu| ¨ c
k “ |fu| ¨ |x|

k ď L ¨ |x|k, as desired. �

THEOREM 5.13.13. Let V,W P ES and k P N0 and f P OVWk .

Let u P SV and ε ą 0. Then Dt ą 0 s.t. |ft¨u| ă ε ¨ tk.

Proof. Choose δ ą 0 s.t., @x P V , r |x| ă δ s ñ r |fx| ď pε{2q¨|x|
k s.

Let t :“ δ{2. Then t ą 0. Want: |ft¨u| ă ε ¨ tk.

Let x :“ t ¨ u. Want: |fx| ă ε ¨ tk.

Since u P SV , we get: |u| “ 1. Since t ą 0, we get: |t| “ t.

Then |x| “ |t ¨ u| “ |t| ¨ |u| “ t ¨ 1 “ t. Then pε{2q ¨ |x|k “ pε{2q ¨ tk.

Since |x| “ t “ δ{2 ă δ, by choice of δ, we get: |fx| ď pε{2q ¨ |x|
k.

Since t ą 0, it follows that tk ą 0.

So, since ε{2 ă ε, we get: pε{2q ¨ tk ă ε ¨ tk.

Then: |fx| ď pε{2q ¨ |x|
k “ pε{2q ¨ tk ă ε ¨ tk, as desired. �

THEOREM 5.13.14. Let V,W P ES and k P N0.

Then: HVW
k

Ş

OVWk “ t0VW u.

Proof. Since 0VW P HVW
k and 0VW P OVWk , we get 0VW P HVW

k

Ş

OVWk .

Then t0VW u Ď HVW
k

Ş

OVWk . Want: HVW
k

Ş

OVWk Ď t0VW u.

Want: @f P HVW
k

Ş

OVWk , f P t0VW u.

Given f P HVW
k

Ş

OVWk . Want: f P t0VW u. Want: f “ 0VW .

Assume that f ‰ 0VW . Want: Contradiction.

Since f P HVW
k , we get Df “ V . Also D0V

W
“ V .

So, since f ‰ 0VW , choose y P V s.t. fy ‰ p0
V
W qy.

By polar decomposition, choose u P SV s.t. y “ |y| ¨ u.

Let c :“ |y|. Then y “ c ¨ u.

Since ck ¨ fu “ fc¨u “ fy ‰ p0
V
W qy “ pC

0W
V qy “ 0W , we get fu ‰ 0W .

Then |fu| ą 0. Let ε :“ |fu|. Then ε ą 0.

By the preceding theorem, choose t ą 0 s.t. |ft¨u| ă ε ¨ tk.

Then tk ¨ ε “ ε ¨ tk ą |ft¨u|, so tk ¨ ε ą |ft¨u|.

Then tk ¨ ε ą |ft¨u| “ |t
k ¨ fu| “ |t|

k ¨ |fu| “ tk ¨ ε,

and so tk ¨ ε ą tk ¨ ε. Contradiction. �
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THEOREM 5.13.15. Let V,W P ES. Then CVZVW Ď BNZVW .

Proof. Unassigned HW. Hint: Follow the proof of Theorem 4.2.37. �

THEOREM 5.13.16. Let V,W P ES, k P N0. Then OVWk Ď pOVW
k .

Proof. We have: OVWk “ CVZVW ¨ | ‚ |
k Ď BNZVW ¨ | ‚ |

k “ pOVW
k . �

5.14. Bilinear products of function spaces.

THEOREM 5.14.1. Let S, U, V,W P ES and let ˚ P BVWW .

Then BNZSU ˚ CVZSV Ď CVZSW .

Proof. Want: @h P BNZSU ˚ CVZSV , h P CVZSW .

Given h P BNZSU ˚ CVZSV . Want: h P CVZSW .

Want: @ε ą 0, Dδ ą 0 s.t., @t P S, p|t| ă δq ñ p|ht| ď εq.

Given ε ą 0. Want: Dδ ą 0 s.t., @t P S, p|t| ă δq ñ p|ht| ď εq.

As h P BNZSU ˚ CVZSV , choose f P BNZSU , g P CVZSV s.t. h “ f ˚ g.

Since f P BNZSU , choose K,α ą 0 s.t.,

@t P S, p|t| ă αq ñ p|ft| ď Kq.

Since ˚ is bilinear, and therefore double-Lipschitz, choose L ě 0 s.t.,

@x P U , @y P V , |x ˚ y| ď L ¨ |x| ¨ |y|.

Since g P CVZSV , choose β ą 0 s.t.,

@t P S, p|t| ă βq ñ

ˆ

|gt| ď
ε

pL` 1q ¨K

˙

.

Let δ :“ mintα, βu. Then δ ą 0.

Want: @t P S, p|t| ă δq ñ p|ht| ď εq.

Given t P S. Want: p|t| ă δq ñ p|ht| ď εq.

Assume: |t| ă δ. Want: |ht| ď ε.

Since |t| ă δ ď α, by choice of α, we get: |ft| ď K.

Since |t| ă δ ď β, by choice of β, we get: |gt| ď
ε

pL` 1q ¨K
.

Since |ft| ď K and |gt| ď
ε

pL` 1q ¨K
, we get: ft ‰ / ‰ gt.

Then t P Df and t P Dg. Then ft P If Ď U and gt P Ig Ď V .

Let x :“ ft and y :“ gt. Then x P U and y P V .

So, by choice of L, we get: |x ˚ y| ď L ¨ |x| ¨ |y|.

We have |x| “ |ft| ď K and |y| “ |gt| ď
ε

pL` 1q ¨K
.

Since 0 ď |x| ď K and 0 ď |y| ď
ε

pL` 1q ¨K
,

we conclude that |x| ¨ |y| ď
ε

L` 1
,

and so, as L ě 0, we get L ¨ |x| ¨ |y| ă ε.
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We have ht “ pf ˚ gqt “ ft ˚ gt “ x ˚ y.

Then |ht| “ |x ˚ y| ď L ¨ |x| ¨ |y| ă ε, and so |ht| ď ε, as desired. �

THEOREM 5.14.2. Let S P ES. Then BNZSR ¨ CVZSR Ď CVZSR.

Proof. Define ˚ P BRR
R by: @a P R, @b P R, a ˚ b “ a ¨ b.

Then BNZSR ¨ CVZSR “ BNZSR ˚ CVZSR Ď CVZSR, as desired. �

THEOREM 5.14.3. Let S, U P ES. Then BNZSU ¨ CVZSR Ď CVZSU .

Proof. Define ˚ P BUR
U by: @x P U , @c P R, x ˚ c “ x ¨ c.

Then BNZSU ¨ CVZSR “ BNZSU ˚ CVZSR Ď CVZSU , as desired. �

THEOREM 5.14.4. Let S, U P ES. Then BNZSU ‚ CVZSU Ď CVZSR.

Proof. Define ˚ P BUUR by: @x P U , @y P U , x ˚ y “ x ‚ y.

Then BNZSU ¨ CVZSU “ BNZSU ˚ CVZSU Ď CVZSR, as desired. �

THEOREM 5.14.5. Let S, U, V,W P ES and let ˚ P BUVW .

Then BNZSU ˚ BNZSV Ď BNZSW
and CVZSU ˚ BNZSV Ď CVZSW
and BNZSU ˚ CVZSV Ď CVZSW
and CVZSU ˚ CVZSV Ď CVZSW .

Proof. Unassigned HW. �

THEOREM 5.14.6. Let S P ES. Then CVZSR ¨ CVZSR Ď CVZSU .

Proof. Define ˚ P BRR
R by: @a P R, @b P R, a ˚ b “ a ¨ b.

Then CVZSR ¨ CVZSR “ CVZSR ˚ CVZSR Ď CVZSR, as desired. �

THEOREM 5.14.7. Let S, U, V,W P ES and ˚ P BUVW and k, ` P N0.

Then pOSU
k ˚ pOSV

` Ď pOSW
k``

and OSUk ˚ pOSV
` Ď OSWk``

and pOSU
k ˚ OSV` Ď OSWk``

and OSUk ˚ OSV` Ď OSWk``.

Proof. Unassigned HW. �

THEOREM 5.14.8. Let V P ES. Then | ‚ |V P CVZVR .

Proof. Since D|‚|V “ V and I|‚|V Ď R, we get: | ‚ |V P DNZVR .

Also, we have: p| ‚ |V q0V “ |0V | “ 0 “ 0R.

It remains to show: | ‚ |V is continuous at 0V from V to R.

By HW#3-5(a), we know that | ‚ |V is Lipschitz-1 from V to R,

and so | ‚ |V is continuous from V to R.

Then | ‚ |V is continuous at 0V from V to R. �
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THEOREM 5.14.9. Let V,W P ES, k P N0. Then pOVW
k`1 Ď OVWk .

Proof. We have: pOVW
k`1 “ BNZVW ¨ | ‚ |

k`1
V

“ BNZVW ¨ | ‚ |V ¨ | ‚ |kV

Ď BNZVW ¨ CVZVW ¨ | ‚ |
k
V

Ď CVZVW ¨ | ‚ |kV “ OVWk . �

5.15. Compositions of function spaces.

THEOREM 5.15.1. Let V,W,X P ES.

Then BNZWX ˝ CVZVW Ď BNZVX .

Proof. Want: @h P BNZWX ˝ CVZVW , h P BNZVX .

Given h P BNZWX ˝ CVZVW . Want: h P BNZVX .

Want: Dδ, L ą 0 s.t., @x P V , p|x| ă δq ñ p|hx| ď Lq.

As h P BNZWX ˝ CVZVW , choose g P BNZWX , f P CVZVW s.t. h “ g ˝ f .

Since g P BNZWX , choose ε, L ą 0 s.t.,

@y P W , p|y| ă εq ñ p|gy| ď Lq.

Since f P CVZVW , choose δ ą 0 s.t.,

@x P V , p|x| ă δq ñ p|fx| ď ε{2q.

Then δ, L ą 0. Want: @x P V , p|x| ă δq ñ p|hx| ď Lq.

Given x P V . Want: p|x| ă δq ñ p|hx| ď Lq.

Assume: |x| ă δ. Want: |hx| ď L.

Since ε ą 0, we get: ε{2 ă ε. Let y :“ fx.

Since |x| ă δ, by choice of δ, we get:

|fx| ď ε{2.

Since |y| “ |fx| ď ε{2 ă ε, by choice of ε, we get: |gy| ď L.

We have hx “ pg ˝ fqx “ gfx “ gy. Then |hx| “ |gy| ď L. �

THEOREM 5.15.2. Let V,W,X P ES.

Then CVZWX ˝ CVZVW Ď CVZVX .

Proof. Unassigned HW. �

Warning: As we observed earlier, we have:

CVZR
R ˝ BNZR

R Ę DNZR
R.

So, if BNZ or (any larger function space) appears on the RHS of ˝,

then all bets are off.

THEOREM 5.15.3. Let V,W P ES, φ P CVZVW .

Then: p |φ| P CVZVR q & p @` P N, |φ|` P CVZVR q.
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Proof. We have |φ| “ p| ‚ |W q ˝ φ P CVZWR ˝ CVZVW Ď CVZVR .

Want: @` P N, |φ|` P CVZVR .

As |φ| P CVZVR , by Theorem 5.14.6 and induction on `, we get:

@` P N, |φ|` P CVZVR , as desired. �

THEOREM 5.15.4. Let V,W,X P ES and k, ` P N.

Then: pOWX
` ˝ OVWk Ď OV Xk` .

Proof. Want: @h P pOWX
` ˝ OVWk , h P OV Xk` .

Given h P pOWX
` ˝ OVWk . Want: h P OV Xk` .

Since h P pOWX
` ˝ OVWk , choose g P pOWX

` and f P OVWk s.t. h “ g ˝ f .

Since g P pOWX
` , choose ψ P BNZWX s.t. g “ ψ ¨ | ‚ |`W .

Since f P OVWk , choose φ P CVZVW s.t. f “ φ ¨ | ‚ |kV .

We have: @t P V , ft “ pφ ¨ | ‚ |
k
V q “ φt ¨ |t|

k, so

pg ˝ fqt “ gpftq “ rψpftqs ¨ |ft|
` “ rpψ ˝ fqts ¨ | rφt ¨ |t|

ks |`

“ rpψ ˝ fqts ¨ |φt|
` ¨ |t|k` “ ppψ ˝ fq ¨ |φ|` ¨ | ‚ |k`V qt.

Then: g ˝ f “ pψ ˝ fq ¨ |φ|` ¨ | ‚ |k`V .

We have f P OVWk Ď OVW0 “ CVZVW ,

so ψ ˝ f P BNZWX ˝ CVZVW Ď BNZVX .

Since |φ| “ | ‚ |W ˝ φ P CVZWR ˝ CVZVW Ď CVZVR , we get |φ|` P CVZVR .

Then g ˝ f “ pψ ˝ fq ¨ |φ|` ¨ | ‚ |kV

P BNZVX ¨ CVZVR ¨ | ‚ |
k`
V

Ď CVZVR ¨ | ‚ |k`V “ OV Xk , as desired. �

THEOREM 5.15.5. Let V,W,X P ES, and k, ` P N.

Then pOWX
k ˝ pOVW

` Ď pOV X
k`

and OWX
k ˝ pOVW

` Ď OV Xk`
and pOWX

k ˝ OVW` Ď OV Xk`
and OWX

k ˝ OVW` Ď OV Xk` .

Proof. One of these is the preceding theorem, and the rest are proved

similarly and left as unassigned HW. �

5.16. The multi-variable D-derivative.

DEFINITION 5.16.1. Let V,W P ES, f : V 99K W , q P V .

Then fT
q : V 99K W is defined by: @h P V , pfT

q qh “ fq`h ´ fq.

DEFINITION 5.16.2. Let V,W P ES, f : V 99K W , q P V .

Then: LINSqf :“ t L P LVW | fT
q ´ L P OVW1 u.

THEOREM 5.16.3. Let V,W P ES, f : V 99K W , q P V .

Assume: LINSqf ‰ H. Then: fT
q P

pOVW
1 .
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Proof. Choose L P LINSqf . Then L P LVW and fT
q ´ L P OVW1 .

Since L P LVW , we get L : V Ñ W , and so L´ L “ 0VW .

Then fT
q ´ L` L “ fT

q . We have L P LVW “ HVW
1 Ď pOVW

1 .

Then fT
q “ pf

T
q ´ Lq ` L P OVW1 ` L Ď pOVW

1 ` pOVW
1 Ď pOVW

1 . �

THEOREM 5.16.4. Let V,W P ES, f : V 99K W , q P V .

Then: #LINSqf ď 1.

Proof. Want: @L,M P LINSqf , L “M .

Given L,M P LINSqf . Want: L “M .

We have fT
q ´ L P OVW1 and fT

q ´M P OVW1 ,

and so pfT
q ´ Lq ´ pf

T
q ´Mq P OVW1 ´ OVW1 Ď OVW1 .

We have fT
q P

pOVW
1 Ď DNZVW , so fT

q ´ f
T
q “ 0VW near 0V in V .

Then pfT
q ´ Lq ´ pf

T
q ´Mq “M ´ L near 0V in V .

So, since pfT
q ´ Lq ´ pf

T
q ´Mq P OVW1 and since OVW1 is zero-local,

we conclude: M ´ L P OVW1 .

Also, M ´ L P LVW ´ LVW Ď LVW “ HVW
1 .

Then M ´ L P HVW
1

Ş

OVW1 “ t0VW u.

Then M ´ L “ 0VW , and so L “M , as desired. �

DEFINITION 5.16.5. Let V,W P ES, f : V 99K W , q P V .

Then: Dqf :“ UEpLINSqfq.

THEOREM 5.16.6. Let V,W P ES, f : V 99K W , q P V .

Assume: Dqf ‰ /.

Then: p fT
q P

pOVW
1 q

& p f is defined near q in V q

& p f is continuous at q from V to W q.

Proof. Since UEpLINSqfq “ Dqf ‰ /, we get: LINSqf ‰ H.

Then fT
q P

pOVW
1 . Want: p f is defined near q in V q

& p f is continuous at q from V to W q.

We have fT
q P

pOVW
1 Ď OVW1 Ď OVW0 “ CVZVW .

Then: p fT
q is defined near 0V in V q

& p fT
q is continuous at 0V from V to W q.

Then: p f is defined near q in V q

& p f is continuous at q from V to W q,

as desired. �

THEOREM 5.16.7. Let V,W P ES, f : V 99K W , L P LVW , q P V .

Assume: L P LINSqf . Then: Dqf “ L.
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Proof. Since L P LINSqf and #LINSqf ď 1, we get: LINSqf “ tLu.

Then Dqf “ UEpLINSqfq “ UEtLu “ L, as desired. �

THEOREM 5.16.8. Let V :“ R2 and q :“ p1,´1q.

Define f : V Ñ R by: @x, y P R, fpx, yq “ x3 ` 9xy ` 3y2.

Define L P LVR by: @s, t P R, Lps, tq “ ´6s` 3t. Then: Dqf “ L.

Proof. Want: L P LINSqf . Want: fT
q ´ L P OV R

1 .

We have: @s, t P R,

fT
q ps, tq “ fq`ps,tq ´ fq “ fps`1,t´1q ´ fp1,´1q

“ rps` 1q3 ` 9 ¨ ps` 1q ¨ pt´ 1q ` 3 ¨ pt´ 1q2s

´ r 13 ` 9 ¨ 1 ¨ p´1q ` 3 ¨ p´1q2 s

“ ps3 ` 3s2 ` 3sq ` p9st´ 9s` 9tq ` p3t2 ´ 6tq

“ p´6s` 3tq ` p3s2 ` 9st` 3t2q ` s3

“ pLps, tq q ` p3s2 ` 9st` 3t2q ` s3.

Let S :“ πV1 and T :“ πV2 . Then: @s, t P R,

pfT
q ´ Lqps, tq “ p fTq ps, tq q ´ p Lps, tq q

“ p 3s2 ` 9st ` 3t2 q ` s3

“ p p3S2 ` 9ST ` 3T 2q ` S3 qps, tq.

Then fT
q ´ L “ p 3S2 ` 9ST ` 3T 2 q ` S3.

Then fTq ´ L P pMV R
2 `MV R

2 `MV R
2 q `MV R

3

Ď HV R
2 `HV R

3 Ď pOV R
2 ` pOV R

3

Ď OV R
1 ` OV R

1 Ď OV R
1 , as desired. �

5.17. Miscellaneous. The following is the D-derivative chain rule.

THEOREM 5.17.1. Let V,W,X P ES.

Let f : V 99K W , let g : W 99K X and let q P X.

Then: Dqpg ˝ fq “˚ pDfqgq ˝ pDqfq.

Proof. I owe you. �

Here is a definition we needed in class:

DEFINITION 5.17.2. Let V,W P ES.

Let f : V 99K W and let j P IV .

Then: Bjf :“ ∇εVj
f .

The notation “Bjf” is read “the jth partial derivative of f”.
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monomials, 207
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Test, 163

net, 106
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partial derivative, 233

pointwise limit, 131, 185, 193
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Positive Second Derivative

Test, 162

Power set, 27

prime-derivative, 155

Principle of Mathematical

Induction, 20

Principle of Zero-Induction,

189

proper, 101

Quadratic Taylor Theorem, 162

Recentering Theorem, 43

relation, 11

relative metric, 43

restriction, 16

Rolle’s Theorem, 167

scalar, 35

scalar Euclidean space, 195

scalar space, 195

Schroeder-Bernstein Theorem,

24

Second Derivative Test for

Maxima, 181

Second Order Taylor Theorem,

181

semi-decreasing, 78

semi-increasing, 78

sequence, 38

sequentially continuous, 53

singleton set, 10

strictly-decreasing, 78

strictly-increasing, 77

subconvergent, 80
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Taylor Theorem, Second Order,

181

tensor, 35
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uncountable, 25

underlying metric, 42

underlying set, 42

uniform limit, 131, 185, 193

uniform metric, 134

uniformly continuous, 53

unit sphere, 203

unit vectors, 203

upper bounds, 17

v.op.-closed, 207

v/s, 196

v/s-function, 199

vector, 35

vector Euclidean space, 195

vector space, 195

vectors, 195

vertical line test, 11

Weak Cauchy-Schwarz, 204

Well-ordering axiom, 20

zero-sequence, 188
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