## Homework for MATH 4604 (Advanced Calculus II) Spring 2020

Homework 8: Due on Tuesday 31 March
8-1. Let $\quad V, W \in \mathrm{ES}, \quad f: V \rightarrow W, \quad q, u \in V$.
Assume: $\quad f=0_{W}$ near $q$ in $V$.
Show: $\quad \nabla_{u} f=0_{W}$ near $q$ in $V$.
8-2. Let $\quad V, W \in \mathrm{ES}, \quad f: V \rightarrow W, \quad q \in V$.
Assume: $\quad f=0_{W}$ near $q$ in $V$.
Show: $\quad \forall k \in \mathbb{N}, \quad \forall u_{1}, \ldots, u_{k} \in V$,

$$
\nabla_{u_{k}} \cdots \nabla_{u_{1}} f=0_{W} \text { near } q \text { in } V .
$$

8-3. Let $W \in \mathrm{ES}, \quad \phi: \mathbb{R} \rightarrow W, \quad t \in \mathbb{R}$.
Assume: $\quad \phi=0$ near $t$ in $\mathbb{R}$.
Show: $\quad \phi_{t}^{\prime}=0$.
8-4. Let $\quad V:=\mathbb{R}^{2}, \quad f: V \rightarrow \mathbb{R}$.
Let $S:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2} \leqslant y \leqslant 3 x^{2}\right\}$.
Assume: $\quad f=0$ on $V \backslash S$.
Show: $\quad \forall k \in \mathbb{N}, \quad \forall u_{1}, \ldots, u_{k} \in V$,

$$
\nabla_{u_{k}} \cdots \nabla_{u_{1}} f=0 \text { on } V \backslash S
$$

8-5. Let $\quad V:=\mathbb{R}^{2}, \quad f: V \rightarrow \mathbb{R}, \quad u \in V$.
Let $\quad S:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2} \leqslant y \leqslant 3 x^{2}\right\}$.
Assume: $\quad f=0$ on $V \backslash S . \quad$ Assume: $\quad f_{0_{V}}=0$.
Show: $\quad\left(\nabla_{u} f\right)_{0_{V}}=0$.
Homework 7: Due on Wednesday 25 March
7-1. Let $\quad V \in \mathrm{ES}, \quad x, u \in V, \quad s \in \mathbb{R}$.
Show: $\quad\left(\alpha_{x}^{u}\right)_{s}^{\mathbb{T}}=\alpha_{0_{V}}^{u}$.
7-2. Let $\quad V \in \mathrm{ES}, \quad x, u \in V, \quad s \in \mathbb{R}$.
Show: $\quad\left(\alpha_{x}^{u}\right)_{s}^{\prime}=u$.
7-3. Let $V \in \mathrm{ES}, \quad f: V \rightarrow W, \quad q, u \in V$.
Define $S: V \rightarrow V$ by: $\forall x \in V, \quad S_{x}=x+q$.
Show: $\quad \nabla_{u}(f \circ S)=\left(\nabla_{u} f\right) \circ S$.
7-4. Let $\quad V, W \in \mathrm{ES}, \quad C \in \mathcal{C}_{W}^{V}, \quad u \in V$.
Show: $\quad \nabla_{u} C=\mathbf{0}_{W}^{V}$.

7-5. Let $\quad V, W \in \mathrm{ES}, \quad f, g: V \rightarrow-W, \quad x, u \in V$.
Assume: $\quad f=g$ near $x$ in $V$.
Show: $f \circ \alpha_{x}^{u}=g \circ \alpha_{x}^{u}$ near 0 in $\mathbb{R}$.

## Homework 6: Due on Wednesday 18 March

6-1. Let $V, W \in \mathrm{ES}$, let $* \in \mathcal{B}_{W}^{V V}$ and let $\#:=$ Sym $^{*}$.
Show: $\quad \# \in \mathcal{S} \mathcal{B}_{W}^{V} \quad$ and $\quad \mathrm{Qd}^{\#}=\mathrm{Qd}^{*}$.
6-2. Let $V, W \in \mathrm{ES}$, let $* \in \mathcal{S B}_{W}^{V}$ and let $Q:=\mathrm{Qd}^{*}$.
Show: $\quad \forall u, v \in V, \quad u * v=\frac{Q_{u+v}-Q_{u}-Q_{v}}{2}$.

6-3. Let $V:=\mathbb{R}^{2}$ and $W:=\mathbb{R}$. Define $Q: V \rightarrow W$ by:

$$
\forall x, y \in \mathbb{R}, \quad Q(x, y)=3 x^{2}-4 x y+5 y^{2} .
$$

Let $B \in \mathcal{S B}_{W}^{V} . \quad$ Assume: $\mathrm{Qd}^{B}=Q . \quad$ Show: $[B]=\left[\begin{array}{cc}3 & -2 \\ -2 & 5\end{array}\right]$.
6-4. Let $V:=\mathbb{R}^{2}$. Define $Q: V \rightarrow \mathbb{R}$ by:

$$
\forall x, y \in \mathbb{R}, \quad Q(x, y)=2 x^{2}+6 x y+5 y^{2} .
$$

Show: $Q>0$ on $V_{0_{V}}^{\times}$.
6-5. Let $V:=\mathbb{R}^{2}$. Define $Q: V \rightarrow \mathbb{R}$ by:

$$
\forall x, y \in \mathbb{R}, \quad Q(x, y)=2 x^{2}+6 x y+4 y^{2} .
$$

Find $x, y \in \mathbb{R}$ s.t. $Q(x, y)<0$.

## Homework 5: Due on Tuesday 3 March

5-1. Let $\quad \alpha, \beta \in \mathbb{N}, \quad V:=\mathbb{R}^{\alpha}, \quad W:=\mathbb{R}^{\beta}, \quad L \in \mathcal{A} \mathcal{L}_{W}^{V}$.
Show: $\operatorname{Lin}^{[L]}=L$.
5-2. Let $\quad \alpha, \beta \in \mathbb{N}, \quad V:=\mathbb{R}^{\alpha}, \quad W:=\mathbb{R}^{\beta}, \quad S \in W \otimes V$.
Show: $\left[\operatorname{Lin}^{S}\right]=S$.
5-3. Let $\quad \alpha, \beta, \gamma \in \mathbb{N}, \quad V:=\mathbb{R}^{\alpha}, \quad W:=\mathbb{R}^{\beta}, \quad X:=\mathbb{R}^{\gamma}$.
Let $L \in \mathcal{L}_{W}^{V}$ and let $M \in \mathcal{L}_{X}^{W} . \quad$ Show: $\quad[M \circ L]=[M] \cdot[L]$.
5-4. Let $\quad \alpha, \beta, \gamma \in \mathbb{N}, \quad V:=\mathbb{R}^{\alpha}, \quad W:=\mathbb{R}^{\beta}, \quad X:=\mathbb{R}^{\gamma}$.
Let $B \in \mathcal{B}_{X}^{V W} . \quad$ Show: $\quad \operatorname{Bilin}^{[B]}=B$.
5-5. Let $\quad \alpha, \gamma \in \mathbb{N}, \quad V:=\mathbb{R}^{\alpha}, \quad X:=\mathbb{R}^{\gamma}, \quad * \in \mathcal{B}_{X}^{V V}$.
Define $Q: V \rightarrow X$ by: $\forall v \in V, Q_{v}=v * v$. Show: $Q \in \mathcal{Q}_{X}^{V}$.
Homework 4: Due on Tuesday 25 February

4-1. Define $a \in \mathbb{R}^{\mathbb{N}_{0}}$ by: $\forall j \in \mathbb{N}_{0}, a_{j}=1 /(j!)$. Show: $\mathrm{RC}_{a}=\infty$.
4-2. Let $a \in \mathbb{R}^{\mathbb{N}_{0}}, \quad x, r \in \mathbb{R}, \quad i, j \in \mathbb{N}_{0}, \quad b:=P_{\bullet} S S_{x}^{a}, \quad c:=P_{\bullet} S S_{r}^{|a|}$.
Assume: $|x| \leqslant r . \quad$ Show: $\left|b_{j}-b_{i}\right| \leqslant\left|c_{j}-c_{i}\right|$.
4-3. Let $\alpha \in[0 ; \infty)^{\mathbb{N}_{0}}, \quad r \in\left[0 ; \mathrm{RC}_{\alpha}\right), \quad c:=P \cdot S S_{r}^{\alpha}$.
Show: $c$ is convergent in $\mathbb{R}$.
4-4. Let $a \in \mathbb{R}^{\mathbb{N}_{0}}$ and let $\alpha:=|a|$. Show: $\mathrm{RC}_{a}=\mathrm{RC}_{\alpha}$.
4-5. Let $a \in \mathbb{R}^{\mathbb{N}_{0}}$. Show: $\mathrm{RC}_{a}=\mathrm{RC}_{a^{*}}$.
Homework 3: Due on Tuesday 18 February
3-1. Let $X$ be a metric space, $\quad s \in X^{\mathbb{N}}, \quad q \in X, \quad m \in \mathbb{N}$.
Define $t \in X^{\mathbb{N}}$ by: $\forall j \in \mathbb{N}, \quad t_{j}=s_{j+m}$.
Assume: $t \rightarrow q$ in $X$. Show: $s \rightarrow q$ in $X$.
3-2. Let $X$ and $Y$ be metric spaces, $\quad s \in X^{\mathbb{N}}, \quad t \in Y^{\mathbb{N}}$.
Show: $\quad[(s, t)$ is Cauchy in $X \times Y]$
$\Leftrightarrow[(s$ is Cauchy in $X) \&(t$ is Cauchy in $Y)]$.
3-3. Let $X$ and $Y$ be complete metric spaces.
Show $X \times Y$ is complete.
3-4. Let $p, q, r \in \mathbb{N}, A \in \mathbb{R}^{p \times q}, B \in \mathbb{R}^{q \times r}$. Show: $|A B| \leqslant|A| \cdot|B|$.
3 -5. Let $V \in \mathrm{ES}$. Show:
(a) $|\bullet|_{V}$ is Lipschitz- 1 from $V$ to $\mathbb{R}$
and $\quad(\mathrm{b})\|\bullet\|_{V}$ is Lipschitz- $\sqrt{\# \mathcal{I}_{V}}$ from $V$ to $\mathbb{R}$.
Homework 2: Due on Tuesday 11 February
2-1. Show: $\quad \forall \ell \in \mathbb{N}, \quad\left((\bullet)^{\ell}\right)^{\prime}=\ell \cdot(\bullet)^{\ell-1}$.
2-2. Let $m \in \mathbb{R}, L: \mathbb{R} \rightarrow \mathbb{R}$. Assume: $\forall x \in \mathbb{R}, L_{x}=m \cdot x$.
Show: $\left(\forall x \in \mathbb{R}, L_{x}^{\prime}=m\right) \&\left(\forall x \in \mathbb{R}, L_{x}^{\prime \prime}=0\right)$.
2-3. Let $c \in \mathbb{R}, Q: \mathbb{R} \rightarrow \mathbb{R}$. Assume: $\forall x \in \mathbb{R}, Q_{x}=c \cdot x^{2}$.
Show: $\left(\forall x \in \mathbb{R}, Q_{x}^{\prime}=2 \cdot c \cdot x\right) \&\left(\forall x \in \mathbb{R}, Q_{x}^{\prime \prime}=2 \cdot c\right)$.
$2-4$. Let $\alpha, \beta: \mathbb{R} \rightarrow \mathbb{R}$. Assume: $\forall x \in \mathbb{R}, \beta_{x}={ }^{*} \alpha_{x}$. Show: $\forall x \in \mathbb{R}, \quad \beta_{x}^{\prime}={ }^{*} \alpha_{x}^{\prime}$.

2-5. Let $a \in \mathbb{R}$. $\quad$ Define $T: \mathbb{R} \rightarrow \mathbb{R}$ by: $\quad \forall h \in \mathbb{R}, T_{h}=h+a$. Show: $\quad T^{\prime}=C_{\mathbb{R}}^{1}$.

## Homework 1: Due on Tuesday 4 February

1 -1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $p \in \mathbb{D}_{f}$.
Show: $\quad(f$ has a global strict-maximum at $p)$
$\Leftrightarrow \quad\left(f_{p}^{\mathbb{T}}\right.$ has a global strict-maximum at 0$)$.
1-2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$, let $c \in \mathbb{R}$, let $L \in \operatorname{LINS}_{c} f$ and let $\varepsilon>0$.
Show: $\quad L-\varepsilon \cdot|\bullet| \leqslant f_{c}^{\mathbb{T}} \leqslant L+\varepsilon \cdot|\bullet|$ near 0 in $\mathbb{R}$.
1 -3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$, let $c \in \mathbb{R}$ and let $L \in \operatorname{LINS}_{c} f$.
Assume: $\quad f$ has a local semi-maximum at $c$ in $\mathbb{R}$.
Show: $\quad L=\mathbf{0}$.
$1-4$. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$, let $a>0$ and let $Q:=a \cdot(\bullet)^{2}$.
Assume: $\quad \phi-Q \in \mathcal{O}_{2}$.
Show: $\quad \phi$ has a local strict-minimum at 0 in $\mathbb{R}$.
$1-5$. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ and let $c \in \mathbb{R}$.
Assume: $\quad f=g$ near $c$ in $\mathbb{R}$.
Show: $\quad \operatorname{LINS}_{c} f \subseteq \operatorname{LINS}_{c} g$.

