Writeup on measures for MATH 4604 (Advanced Calculus II)
Spring 2015

Definition: \(\mathbb{N} := \{1, 2, 3, \ldots\} \).

Definition: For any set \(X \), by \(2^X \) we denote the set of all subsets of \(X \).

Definition: If \(S \) is a set of sets, then \(S \) is **pairwise-disjoint** means: for all \(S, S' \in S \), we have: \([S \neq S'] \Rightarrow [S \cap S' = \emptyset] \).

Definition: Let \(n \in \mathbb{N} \) and let \(B \subseteq \mathbb{R}^n \). Then \(B \) is a **box** means: either (there exist intervals \(I_1, \ldots, I_n \subseteq \mathbb{R} \) such that \(B = I_1 \times \cdots \times I_n \)) or \((B = \emptyset) \).

Examples: \([1, 2] \times [3, 4] \) and \((1, 2) \times (3, 4) \) and \([4, 6] \times \{2\} \times (-1, 1)\) and \(\mathbb{R}^4 \) and \(\emptyset \) are boxes.

Definition: For all \(n \in \mathbb{N} \), by \(B_n \) we denote the set of all boxes in \(\mathbb{R}^n \).

Remark: For any \(n \in \mathbb{N} \), for any \(A, B \in B_n \), we have \(A \cap B \in B_n \).

Definition: Let \(X \) be a set and let \(S \subseteq 2^X \). We define

\[
\langle S \rangle^\emptyset_{\text{fin} \cup} := \{ \cup F \mid F \subseteq S \text{ is finite and nonempty} \} \cup \{ \emptyset \},
\]

\[
\langle S \rangle^\emptyset_{\text{fin} \cap} := \{ \cap F \mid F \subseteq S \text{ is finite and nonempty} \} \cup \{ X \},
\]

\[
\langle S \rangle^\emptyset_{\text{fin} \cup} := \{ \emptyset \},
\]

\[
\langle S \rangle^\emptyset_{\text{fin} \cap} := \{ \emptyset \}.
\]

Remark (cupcap): Let \(X \) be a set and let \(S \subseteq 2^X \). Then

\[
\left(\left[\langle S \rangle^\emptyset_{\text{fin} \cup} = S \right] \Leftrightarrow \left[(\forall A, B \in S, A \cup B \in S \text{ and } (\emptyset \in S) \right] \right)
\]

and

\[
\left(\left[\langle S \rangle^\emptyset_{\text{fin} \cap} = S \right] \Leftrightarrow \left[(\forall A, B \in S, A \cap B \in S \text{ and } (X \in S) \right] \right).
\]

Definition: Let \(X \) be a set and let \(S \subseteq 2^X \). Then \(S \) is a **Boolean algebra** (or **algebra of sets** or, simply **algebra**) on \(X \) means: \(\langle S \rangle^\emptyset_{\text{fin} \cup} = \langle S \rangle^X_{\text{fin} \cap} = \langle S \rangle^\emptyset_{\text{fin} \cap} = S \).

Remark: Let \(X \) be a set and let \(S \subseteq 2^X \). Assume that \(\langle S \rangle^X_{\text{fin} \cap} \subseteq S \) and that \(\langle S \rangle^\emptyset_{\text{fin} \cap} \subseteq S \). Then \(S \) is an algebra on \(X \).

Proof: We have \(X \in \langle S \rangle^X_{\text{fin} \cap} \subseteq S \). Then \(\emptyset = X \setminus X \in \langle S \rangle^\emptyset_{\text{fin} \cap} \subseteq S \). By definition of \(\langle S \rangle^X_{\text{fin} \cap} \), we know that \(\langle S \rangle^X_{\text{fin} \cap} \supseteq S \). Then \(\langle S \rangle^X_{\text{fin} \cap} = S \). Since \(\emptyset \in S \), we see, by definition of \(\langle S \rangle^\emptyset_{\text{fin} \cap} \), that \(\langle S \rangle^\emptyset_{\text{fin} \cap} \supseteq S \). Then \(\langle S \rangle^\emptyset_{\text{fin} \cap} = S \). It remains to show that \(\langle S \rangle^\emptyset_{\text{fin} \cup} = S \). Given \(A, B \in S \). By Remark (cupcap), we wish to show that \(A \cup B \in S \).

We have \(X \setminus A, X \setminus B \in \langle S \rangle^\emptyset_{\text{fin} \cap} = S \). Then \((X \setminus A) \cap (X \setminus B) \in \langle S \rangle^X_{\text{fin} \cap} = S \). Then \(A \cup B = X \setminus [(X \setminus A) \cap (X \setminus B)] \in \langle S \rangle^\emptyset_{\text{fin} \cup} = S \), as desired. QED
Definition: Let X be a set and let $S \subseteq 2^X$. Then S is a **near algebra** on S means: $\langle S \rangle_{\text{fin}} \cap S \subseteq S$ and $\langle S \rangle \setminus \langle S \rangle_{\text{fin}} \cap S = \emptyset$.

Warning: For all $n \in \mathbb{N}$, $\langle B_n \rangle \setminus B_n$, so B_n is NOT an algebra on \mathbb{R}^n. However:

Fact: For all $n \in \mathbb{N}$, B_n is a near algebra on \mathbb{R}^n.

Theorem: Let X be a set, and let $S \subseteq 2^X$ be a near algebra on X. Then $\langle S \rangle_{\text{fin}} \cap S$ is an algebra on X.

Proof: This follows from Homework Problem #51. QED

Definition: Let $n \in \mathbb{N}$. Then we define $K_n := \langle B_n \rangle_{\text{fin} \cap S}$. A subset $K \subseteq \mathbb{R}^n$ is called a **kidset** if $K \in K_n$.

Definition: Let $n \in \mathbb{N}$, and let $B \in B_n$. Then, for all integers $j \in [1, n]$, we define $B_j := \pi_{j}^{(n)}(B)$.

For any $n \in \mathbb{N}$, for any $B \in B_n$, we have $B_1, \ldots, B_n \in S$ and $B = B_1 \times \cdots \times B_n$.

Definition: Let $n \in \mathbb{N}$ and let $B \in B_n$. Then B is **degenerate** means: either $B = \emptyset$ or there exists an integer $j \in [1, n]$ such that $\#(B_j) = 1$.

Definition: For all $n \in \mathbb{N}$, we define $v_n^B : B_n \to [0, \infty]$ by

$$v_n(B) = \begin{cases} 0, & \text{if } B \text{ is degenerate} \\ \infty, & \text{if } B \text{ is nondegenerate and unbounded} \\ [\ell(B_1)] \cdots [\ell(B_n)], & \text{if } B \text{ is nondegenerate and bounded.} \end{cases}$$

We will make the following conventions on addition and multiplication in $\mathbb{R} \cup \{\infty\}$:

(i) For all $a \in \mathbb{R}$, $a + \infty = \infty$.

(ii) For all $a > 0$, $a \cdot \infty = \infty$.

The conventions (i) and (ii) will be adopted throughout this writeup. Additionally, we will sometimes make the “volume convention” that $0 \times \infty = 0$. With the volume convention, for any box B in \mathbb{R}^n, we have $v_n^B(B) = [\ell(B_1)] \cdots [\ell(B_n)]$.

Definition: Let X be a set and let $S_0 \subseteq S \subseteq 2^X$. Then we define:

$$FD_S(S_0) := \{ F \subseteq S_0 | F \text{ is finite and pairwise-disjoint, and } \cup F \in S \}.$$
In the preceding definition, “FD” stands for finite decomposition. An element of \(FD_S(S_0) \) is simply a partition of an element of \(S \) by sets in \(S_0 \). (Recall that a partition of a set is a pairwise-disjoint collection of subsets, whose union is the set.)

Definition: Let \(X \) be a set and let \(S \subseteq 2^X \) and let \(m : S \rightarrow [0, \infty] \). Then, for any \(S_0 \subseteq S \), \(m \) is \(S_0 \)-additive means: for all \(F \in FD_S(S_0) \), we have \(m(\cup F) = \sum_{F \in F} [m(F)] \). Also, \(m \) is finitely additive means: \(m \) is \(S \)-additive.

To say that \(m \) is \(S_0 \)-additive is to say: Any time we have a partition of a set in \(S \) by subsets that are in \(S_0 \), then the measure of the original set is the sum of the measures of the partitioning sets. Consequently, to say that \(m \) is finitely additive is to say: Any time we have a partition of a set in \(S \) by subsets that are in \(S \), then the measure of the original set is the sum of the measures of the partitioning sets.

Our next goal is to show, for all \(n \in \mathbb{N} \), that \(v^S_n : B_n \rightarrow [0, \infty] \) is finitely additive. We begin with a lemma that allows for some extension of additivity:

Lemma (extAdd): Let \(X \) be a set, let \(S \subseteq 2^X \), let \(S_0 \subseteq S \) and let \(m : S \rightarrow [0, \infty] \) be \(S_0 \)-additive. Define \(S_1 := (\langle S_0 \rangle^0_{\text{fin} \cup}) \cap S \). Then \(m : S \rightarrow [0, \infty] \) is \(S_1 \)-additive.

Proof: Given \(F \in FD_S(S_1) \). We wish to show that \(m(\cup F) = \sum_{F \in F} [m(F)] \).

From the definition of \(FD_S(S_1) \), we know that \(F \) is pairwise-disjoint, that \(\cup F \subseteq S \) and that \(F \subseteq S_1 \); then \(F \in S_1 \subseteq S \) and \(F \in S_1 \subseteq \langle S_0 \rangle^0_{\text{fin} \cup} \subseteq \langle S_0 \backslash \{\emptyset\} \rangle^0_{\text{fin} \cup} \). For all \(F \in F \), choose a pairwise-disjoint finite \(G_F \subseteq S_0 \backslash \{\emptyset\} \) such that \(F = \cup G_F \); then

\[
G_F \in FD_F(S_0) \subseteq FD_S(S_0),
\]

so, since \(F = \cup G_F \) and \(m \) is \(S_0 \)-additive, we get \(m(F) = m(\cup G_F) = \sum_{G \in G_F} [m(G)] \).

For all \(F, F' \in F \), we have

\[
[F \neq F'] \quad \Rightarrow \quad [F \cap F' = \emptyset] \quad \Rightarrow \quad [(\cup G_F) \cap (\cup G_{F'}) = \emptyset],
\]

so, since \(\emptyset \notin G_F \) and \(\emptyset \notin G_{F'} \), we conclude that:

\[
[F \neq F'] \quad \Rightarrow \quad [G_F \cap G_{F'} \neq \emptyset].
\]

Let \(G := \bigcup_{F \in F} G_F \). Then \(G \subseteq S_0 \backslash \{\emptyset\} \). By the associative law of addition, we conclude that

\[
\sum_{G \in G} [m(G)] = \sum_{F \in F} \left[\sum_{G \in G_F} [m(G)] \right].
\]

Recall that: for all \(F \in F \), \(\sum_{G \in G_F} [m(G)] = m(F) \). Therefore,

\[
\sum_{G \in G} [m(G)] = \sum_{F \in F} [m(F)].
\]

By the associative law of unions, we conclude that

\[
\cup G = \bigcup_{F \in F} (\cup G_F). \quad \text{Recall that: for all } F \in F, \cup G_F = F. \quad \text{Therefore, } \cup G = \bigcup_{F \in F} F = \cup F.
\]

Claim: \(G \) is pairwise-disjoint. **Proof of claim:** Given \(G, G' \in G \). Assume \(G \neq G' \). We wish to show that \(G \cap G' = \emptyset \). Choose \(F, F' \in F \) such that \(G \in G_F \) and \(G' \in G_{F'} \). If
Given $F = F'$, then because \mathcal{G}_F is pairwise-disjoint, we get $G \cap G' = \emptyset$, as desired. We therefore assume that $F \neq F'$. Then, as \mathcal{F} is pairwise-disjoint, we get $F \cap F' = \emptyset$. We have $G \subseteq \cup \mathcal{G}_F = F$ and $G' \subseteq \cup \mathcal{G}_F' = F'$. Then $G \cap G' \subseteq F \cap F' = \emptyset$. End of proof of claim.

We have $\cup \mathcal{G} = \cup \mathcal{F} \in \mathcal{S}$ and $\mathcal{G} \subseteq \mathcal{S}_0$. So, by the Claim, we see that $\mathcal{G} \in FD_\mathcal{S}(\mathcal{S}_0)$. So, since m is \mathcal{S}_0-additive, it follows that $m(\cup \mathcal{G}) = \sum_{G \in \mathcal{G}} [m(G)]$. So, since $\cup \mathcal{G} = \cup \mathcal{F}$ and since $m(\cup \mathcal{G}) = \sum_{G \in \mathcal{G}} [m(G)] = \sum_{F \in \mathcal{F}} [m(F)]$, we get $m(\cup \mathcal{F}) = \sum_{F \in \mathcal{F}} [m(F)]$, as desired. QED

Corollary (impliesFA): Let X be a set, let $\mathcal{S} \subseteq 2^X$ and let $m : \mathcal{S} \to [0, \infty]$. Assume, for all finite $\mathcal{F} \subseteq \mathcal{S}$, that there exists $\mathcal{S}_0 \subseteq \mathcal{S}$ such that m is \mathcal{S}_0-additive and such that $\mathcal{F} \subseteq \langle \mathcal{S}_0 \rangle^{\emptyset}_{\text{fin}\cup\mathcal{U}}$. Then m is finitely additive.

Proof: Given $\mathcal{F} \in FD_\mathcal{S}(\mathcal{S})$. We wish to prove that $m(\cup \mathcal{F}) = \sum_{F \in \mathcal{F}} [m(F)]$.

By assumption, choose $\mathcal{S}_0 \subseteq \mathcal{S}$ such that m is \mathcal{S}_0-additive and such that $\mathcal{F} \subseteq \langle \mathcal{S}_0 \rangle^{\emptyset}_{\text{fin}\cup\mathcal{U}}$. Let $\mathcal{S}_1 := \langle \mathcal{S}_0 \rangle^{\emptyset}_{\text{fin}\cup\mathcal{U}} \cap \mathcal{S}$. We have $\mathcal{F} \in FD_\mathcal{S}(\mathcal{S})$ and $\mathcal{F} \subseteq \mathcal{S}_1$, so $\mathcal{F} \in FD_\mathcal{S}(\mathcal{S}_1)$.

By Lemma (extAdd), m is \mathcal{S}_1-additive. Then $m(\cup \mathcal{F}) = \sum_{F \in \mathcal{F}} [m(F)]$, as desired. QED

Definition: Let $k \in \mathbb{N}$, let $a_1, \ldots, a_k \in \mathbb{R}$ and let $A := \{a_1, \ldots, a_k\}$. Assume that $a_1 < a_2 < \cdots < a_k$. Then we define $\mathcal{I}_A \subseteq \mathcal{I}$ by

$$
\mathcal{I}_A := \{-\infty, a_1\}, \{a_1\}, (a_1, a_2), \{a_2\}, \{a_2, a_3\}, \{a_3\}, \ldots, \{a_{k-1}\}, (a_{k-1}, a_k), \{a_k\}, (a_k, \infty\}.
$$

Fact: Let $A \subseteq \mathbb{R}$ be finite and nonempty. Then ℓ is \mathcal{I}_A-additive.

Proof: This is Homework Problem #52. QED

Remark: For all finite $\mathcal{F} \subseteq \mathcal{I}$, there exists a nonempty finite $A \subseteq \mathbb{R}$ such that $\mathcal{F} \subseteq \langle \mathcal{I}_A \rangle^{\emptyset}_{\text{fin}\cup\mathcal{U}}$.

Theorem (lengthFA): The length function $\ell : \mathcal{I} \to [0, \infty]$ is finitely additive.

Proof: Given a finite $\mathcal{F} \subseteq \mathcal{I}$. By Corollary (impliesFA), we wish to prove that there exists $\mathcal{S}_0 \subseteq \mathcal{I}$ such that ℓ is \mathcal{S}_0-additive and such that $\mathcal{F} \subseteq \langle \mathcal{S}_0 \rangle^{\emptyset}_{\text{fin}\cup\mathcal{U}}$.

By the Remark above, choose a nonempty finite $A \subseteq \mathbb{R}$ such that $\mathcal{F} \subseteq \langle \mathcal{I}_A \rangle^{\emptyset}_{\text{fin}\cup\mathcal{U}}$. Let $\mathcal{S}_0 := \mathcal{I}_A$. Then $\mathcal{F} \subseteq \langle \mathcal{S}_0 \rangle^{\emptyset}_{\text{fin}\cup\mathcal{U}}$, and it remains to show that ℓ is \mathcal{S}_0-additive. By the Fact above, ℓ is \mathcal{I}_A-additive, so, since $\mathcal{I}_A = \mathcal{S}_0$, we are done. QED

We have $\mathcal{B}_1 = \mathcal{I} \cup \{\emptyset\}$. Also, for all $I \in \mathcal{I}$, we have $v_1^\mathcal{B}(I) = \ell(I)$. Also, $v_1^\mathcal{B}(\emptyset) = 0$. We then leave it as an unassigned exercise to use Theorem (lengthFA) to show that the function $v_1^\mathcal{B} : \mathcal{B}_1 \to [0, \infty]$ is finitely additive. Our next goal is to show that $v_2^\mathcal{B} : \mathcal{B}_2 \to [0, \infty]$ is also finitely additive.

Definition: For all $A, B \subseteq 2^\mathbb{R}$, we define $A \ast B := \{A \times B \mid A \in A, B \in B\}$.

4
Fact: Let $A, B \in \mathbb{R}$ be two finite nonempty sets. Then the function $v_2^B : B_2 \to [0, \infty]$ is \((\mathcal{I}_A * \mathcal{I}_B)\)-additive.

Proof: This is Homework Problem 53. QED

Remark: Let $\mathcal{F} \subseteq B_2$ and assume that \mathcal{F} is finite. Then there exist subsets $A, B \subseteq \mathbb{R}$ such that A and B are both finite and nonempty and such that $\mathcal{F} \subseteq \langle \mathcal{I}_A * \mathcal{I}_B \rangle^\theta_{\text{fin}}$.

Proof: This is Homework Problem 54. QED

Theorem (areaFA): The function $v_2^B : B_2 \to [0, \infty]$ is finitely additive.

Proof: Given a finite $\mathcal{F} \subseteq B_2$. By Corollary (impliesFA), we wish to prove that there exists $S_0 \subseteq B_2$ such that v_2^B is S_0-additive and such that $\mathcal{F} \subseteq \langle S_0 \rangle^\theta_{\text{fin}}$.

By the Remark above, choose two nonempty finite subsets $A, B \subseteq \mathbb{R}$ such that we have $\mathcal{F} \subseteq \langle \mathcal{I}_A * \mathcal{I}_B \rangle^\theta_{\text{fin}}$. Let $S_0 := \mathcal{I}_A * \mathcal{I}_B$. Then $\mathcal{F} \subseteq \langle S_0 \rangle^\theta_{\text{fin}}$, and it remains to show that v_2^B is S_0-additive.

By the Fact above, v_2^B is $(\mathcal{I}_A * \mathcal{I}_B)$-additive, so, since $\mathcal{I}_A * \mathcal{I}_B = S_0$, we are done. QED

Theorem (volFA): For all $n \in \mathbb{N}$, the function $v_n^B : B_n \to [0, \infty]$ is finitely additive.

This last theorem is proved by arguments similar to those in the proof of Theorem (areaFA). Our next goal is to extend v_n^B to a finitely additive $v_n^K : K_n \to [0, \infty]$. Recall that K_n is the set of kidsets in \mathbb{R}^n. We begin with:

Lemma (sumSum): Let X be a set and let $S \subseteq 2^X$. Assume, for all $S, T \in S$, that $S \cap T \in S$. Let $m : S \to [0, \infty]$ be finitely additive. Let $\mathcal{F}, \mathcal{G} \subseteq S$. Assume that \mathcal{F} and \mathcal{G} are both finite and pairwise-disjoint. Assume that $\bigcup \mathcal{F} = \bigcup \mathcal{G}$. Then $\sum_{F \in \mathcal{F}} [m(F)] = \sum_{G \in \mathcal{G}} [m(G)]$.

Proof: For all $F \in \mathcal{F}$ and $G \in \mathcal{G}$, we have $F \cap G \in S$.

For all $F \in \mathcal{F}$, we have $F = \bigcup_{G \in \mathcal{G}} [F \cap G]$. So, since m is finitely additive, we see, for all $F \in \mathcal{F}$, that $m(F) = \sum_{G \in \mathcal{G}} [m(F \cap G)]$. Similarly, for all $G \in \mathcal{G}$, we have $G = \bigcup_{F \in \mathcal{F}} [F \cap G]$, and so $m(G) = \sum_{F \in \mathcal{F}} [m(F \cap G)]$.

Then $\sum_{F \in \mathcal{F}} [m(F)] = \sum_{F \in \mathcal{F}} \left[\sum_{G \in \mathcal{G}} [m(F \cap G)] \right] = \sum_{G \in \mathcal{G}} \left[\sum_{F \in \mathcal{F}} [m(F \cap G)] \right] = \sum_{G \in \mathcal{G}} [m(G)]$. QED

Theorem (uniqueExt): Let X be a set and let $S \subseteq 2^X$. Let $A := \langle S \rangle^\theta_{\text{fin}}$. Let the two functions $\mu, \nu : A \to [0, \infty]$ both be S-additive. Assume that $\mu|S = \nu|S$. Then $\mu = \nu$.

Proof: Given $A \in A$. We wish to prove that $\mu(A) = \nu(A)$.

Choose $F \subseteq S$ such that F is finite and pairwise disjoint and such that $A = \bigcup F$. Because μ is S-additive, we see that $\mu(A) = \sum_{F \in \mathcal{F}} [\mu(F)]$. Because ν is S-additive, we see
that \(\nu(A) = \sum_{F \in \mathcal{F}} [\nu(F)] \). For all \(F \in \mathcal{F} \), we have \(F \in \mathcal{S} \), so
\[
\mu(F) = (\mu|\mathcal{S})(F) = (\nu|\mathcal{S})(F) = \nu(F).
\]
Then \(\mu(A) = \sum_{F \in \mathcal{F}} [\mu(F)] = \sum_{F \in \mathcal{F}} [\nu(F)] = \nu(A) \), as desired. QED

We will extend \(v_n^{\mathcal{B}} \) to kidsets by the following "Measure Extension Theorem":

Theorem (msrExt): Let \(X \) be a set and let \(\mathcal{S} \subseteq 2^X \). Assume, for all \(S, T \in \mathcal{S} \), that \(S \cap T \in \mathcal{S} \). Let \(m : \mathcal{S} \to [0, \infty] \) be finitely additive. Let \(\mathcal{A} := \langle \mathcal{S}\rangle_{\text{fin}}^{\emptyset} \). Then there exists a unique finitely additive function \(\mu : \mathcal{A} \to [0, \infty] \) such that \(\mu|\mathcal{S} = m \).

Proof: Uniqueness follows from Theorem (uniqueExt), so we need only prove existence.

For all \(A \in \mathcal{A} \), by definition of \(\mathcal{A} \), choose \(\mathcal{F}_A \subseteq \mathcal{S} \) such that \(\mathcal{F}_A \) is pairwise-disjoint and finite, and such that \(A = \bigcup \mathcal{F}_A \). Let \(\mu : \mathcal{A} \to [0, \infty] \) be defined by \(\mu(A) = \sum_{F \in \mathcal{F}_A} [m(F)] \).

For all \(S \in \mathcal{S} \), because \(m \) is \(\mathcal{S} \)-additive, because \(\mathcal{F}_S \subseteq \mathcal{S} \) and because \(S = \bigcup \mathcal{F}_S \), it follows that \(m(S) = \sum_{F \in \mathcal{F}_S} [m(F)] \), i.e., that \(m(S) = \mu(S) \). Then \(m = \mu|\mathcal{S} \). It remains to show that \(\mu \) is finitely additive, i.e., that \(\mu \) is \(\mathcal{A} \)-additive. By Lemma (extAdd), since \(\mathcal{A} = \langle \mathcal{S}\rangle_{\text{fin}}^{\emptyset} \cap \mathcal{A} \), it suffices to show that \(\mu \) is \(\mathcal{S} \)-additive. Given \(\mathcal{G} \in \mathcal{F}_A(\mathcal{S}) \). We wish to prove that \(\mu(\bigcup \mathcal{G}) = \sum_{G \in \mathcal{G}} [\mu(G)] \).

By definition of \(\mathcal{F}_A(\mathcal{S}) \), we know that \(\mathcal{G} \) is finite and pairwise-disjoint, that \(\mathcal{G} \subseteq \mathcal{S} \) and that \(\bigcup \mathcal{G} \in \mathcal{A} \). Because \(\mathcal{G} \subseteq \mathcal{S} \) and \(m = \mu|\mathcal{S} \), we see, for all \(G \in \mathcal{G} \), that \(m(G) = \mu(G) \). Then \(\sum_{G \in \mathcal{G}} [m(G)] = \sum_{G \in \mathcal{G}} [\mu(G)] \). Let \(A := \bigcup \mathcal{G} \). Then \(A \in \langle \mathcal{S}\rangle_{\text{fin}}^{\emptyset} = \mathcal{A} \). Let \(\mathcal{F} := \mathcal{F}_A \). Then \(\mathcal{F} \) is finite and pairwise-disjoint. Also, \(\mathcal{F} \subseteq \mathcal{S} \) and \(A = \bigcup \mathcal{F} \). Also, \(\mu(A) = \sum_{F \in \mathcal{F}} [m(F)] \).

We have \(\bigcup \mathcal{G} = A = \bigcup \mathcal{F} \), so, by Lemma (sumSum), we have \(\sum_{F \in \mathcal{F}} [m(F)] = \sum_{G \in \mathcal{G}} [m(G)] \).

Then \(\mu(\bigcup \mathcal{G}) = \mu(A) = \sum_{F \in \mathcal{F}} [m(F)] = \sum_{G \in \mathcal{G}} [m(G)] = \sum_{G \in \mathcal{G}} [\mu(G)] \), as desired. QED

Definition: Let \(n \in \mathbb{N} \). Let \(v_n^K : \mathcal{K}_n \rightarrow [0, \infty] \) be the (by Theorem (msrExt)) unique finitely additive function such that \(v_n^K|\mathcal{B}_n = v_n^\mathcal{B} \). Let \(\mathcal{D}_n \) denote the collection of all bounded subsets of \(\mathbb{R}^n \). Define \(\underline{v}_n, \overline{v}_n : \mathcal{D}_n \to [0, \infty] \) by
\[
\underline{v}_n(S) = \sup\{v_n^K(K) \mid K \in \mathcal{K}_n, K \subseteq S\}, \quad \overline{v}_n(S) = \inf\{v_n^K(L) \mid L \in \mathcal{K}_n, L \supseteq S\}.
\]
The functions \(\underline{v}_n \) and \(\overline{v}_n \) are sometimes called inner volume and outer volume.

Fact (innerOutr): Let \(n \in \mathbb{N} \). Then all of the following are true:

(a) For all \(S \in \mathcal{D}_n \), \(\underline{v}_n(S) \leq \overline{v}_n(S) < \infty \).

(b) For all \(S, T \in \mathcal{D}_n \), \((S \subseteq T) \Rightarrow ([\underline{v}_n(S) \leq \underline{v}_n(T)] \& [\overline{v}_n(S) \leq \overline{v}_n(T)]) \).

6
(c) For all \(K \in \mathcal{D}_n \cap \mathcal{K}_n \), \(\nu_n(K) = \overline{\nu}_n(K) = v_n^K(K) \).
(d) For all \(S, T \in \mathcal{D}_n \), \(\overline{\nu}_n(S \cup T) \leq (\overline{\nu}_n(S)) + (\overline{\nu}_n(T)) \).
(e) For all \(S, T \in \mathcal{D}_n \), \((S \cap T = \emptyset) \Rightarrow (\overline{\nu}_n(S \cup T) \geq (\overline{\nu}_n(S)) + (\overline{\nu}_n(T))) \).

Definition: Let \(n \in \mathbb{N} \). For all \(S \subseteq \mathbb{R}^n \), \(S \) is **contented** means:
both \([S \text{ is bounded}] \) and \([\nu_n(S) = \overline{\nu}_n(S)] \).

Let \(\mathcal{C}_n \) denote the set of all contented subsets of \(\mathbb{R}^n \). We define \(\nu_n : \mathcal{C}_n \to [0, \infty] \) by \(\nu_n(S) = \overline{\nu}_n(S) = \overline{\nu}_n(S) \).

Remark: For all \(n \in \mathbb{N} \), for all \(K \in \mathcal{D}_n \cap \mathcal{K}_n \), we have: both \(K \in \mathcal{C}_n \) and \(\nu_n(K) = v_n^K(K) \).

Note: The last remark follows from (c) of Fact (innerOutr). While kids are often not content, this remark asserts that bounded kidsets are always contented.

Note: For all \(n \in \mathbb{N} \), \(\mathbb{R}^n \) is unbounded, so \(\mathbb{R}^n \not\in \mathcal{C}_n \), and thus \(\mathcal{C}_n \) is **NOT** an algebra on \(\mathbb{R}^n \). On the other hand, for all \(C, D \in \mathcal{C}_n \), as we will soon see, we have: \(C \cap D, C \cup D, C \setminus D \in \mathcal{C}_n \). Perhaps a collection of sets with these three closure properties could be referred to as a **topless algebra**, if that’s not too risqué . . .

Lemma (inOutApprox): Let \(n \in \mathbb{N} \) and let \(S \in \mathcal{D}_n \). Then: \(S \) is contented \(\iff \) for all \(\varepsilon > 0 \), there exist \(K, L \in \mathcal{K}_n \) such that \(K \subseteq S \subseteq L \) and \(v_n^K(L \setminus K) \leq \varepsilon \).

This follows from Lemma (inOutApprox2) from the handout on integration, but give here a self-contained proof.

Proof: *Proof of \(\Rightarrow \):* Assume \(S \in \mathcal{C}_n \). Given \(\varepsilon > 0 \). We wish to prove:
\[\exists K, L \in \mathcal{K}_n \text{ s.t. } K \subseteq S \subseteq L \text{ and } v_n^K(L \setminus K) \leq \varepsilon. \]

Let \(\alpha := \nu_n(S) \). Since \(\alpha = \overline{\nu}_n(S) = \sup\{v_n^K(K) \mid K \in \mathcal{K}_n, K \subseteq S \} \), choose \(K \in \mathcal{K}_n \) such that \(K \subseteq S \) and \(v_n^K(K) \geq \alpha - (\varepsilon/2) \). Since \(\alpha = \overline{\nu}_n(S) = \inf\{v_n^K(L) \mid L \in \mathcal{K}_n, L \supseteq S \} \), choose \(L \in \mathcal{K}_n \) such that \(L \supseteq S \) and \(v_n^K(L) \leq \alpha + (\varepsilon/2) \). Then \(K \subseteq S \subseteq L \), and it remains to prove that \(v_n^K(L \setminus K) \leq \varepsilon \).

We have \([v_n^K(L \setminus K)] + [v_n^K(K)] = v_n^K(L) \), so \([v_n^K(L \setminus K)] + [\alpha - (\varepsilon/2)] \leq \alpha + (\varepsilon/2) \), so \(v_n^K(L \setminus K) \leq \varepsilon. \) _End of proof of \(\Rightarrow \)._

Proof of \(\Leftarrow \): Assume \((\ast) \). We wish to prove that \(S \in \mathcal{C}_n \). By assumption, \(S \) is bounded. We wish to show that \(\nu_n(S) = \overline{\nu}_n(S) \). Let \(\beta := [\overline{\nu}_n(S)] - [\nu_n(S)] \) Then \(\beta \geq 0 \) and we wish to show that \(\beta \leq 0 \). Given \(\varepsilon > 0 \). We wish to show that \(\beta \leq \varepsilon \).

By \((\ast) \), choose \(K, L \in \mathcal{K}_n \) such that \(K \subseteq S \subseteq L \) and such that \(v_n^K(L \setminus K) \leq \varepsilon \). Since \(S \in \mathcal{D}_n \), i.e., \(S \) is bounded, choose a bounded box \(B \subseteq \mathbb{R}^n \) such that \(S \subseteq B \). Let \(L_0 := L \cap B \). Then \(L_0 \) is bounded, \(K \subseteq S \subseteq L_0 \) and \(v_n^K(L_0 \setminus K) \leq v_n^K(L \setminus K) \leq \varepsilon \). As \([v_n^K(K)] + [v_n^K(L_0 \setminus K)] = v_n^K(L_0) \), we get \([v_n^K(L_0)] - [v_n^K(K)] = v_n^K(L_0 \setminus K) \). Also, we have both \(\nu_n(K) = v_n^K(K) \) and \(\overline{\nu}_n(L_0) = v_n^K(L_0) \). Then \([\overline{\nu}_n(L_0)] - [\nu_n(K)] = v_n^K(L_0 \setminus K) \).
Because \(K \subseteq S \subseteq L_0 \), we conclude that \(\nu_n(K) \leq \nu_n(S) \) and that \(\overline{\nu}_n(S) \leq \overline{\nu}_n(L_0) \). Then,
\[\beta = [\overline{\nu}_n(S)] - [\nu_n(S)] \leq [\overline{\nu}_n(L_0)] - [\nu_n(K)] = v_n^K(L_0 \setminus K) \leq \varepsilon, \]
as desired. _End of proof of \(\Leftarrow \). QED

Lemma (ctDiff): Let \(n \in \mathbb{N} \). Let \(C, D \in \mathcal{C}_n \). Then \(C \setminus D \in \mathcal{C}_n \).
Proof: We have $C \setminus D \subseteq C \subseteq C_n \subseteq D_n$, so $C \setminus D \in D_n$. Given $\varepsilon > 0$. By Lemma (inOutApprox), we wish to show

$$\exists K, L \in K_n \quad \text{s.t.} \quad K \subseteq C \setminus D \subseteq L \quad \text{and} \quad v_n^K(L \setminus K) \leq \varepsilon.$$

By Lemma (inOutApprox), choose $C_*, C^*, D_*, D^* \in K_n$ such that

$$C_* \subseteq C \subseteq C^*, \quad D_* \subseteq D \subseteq D^*, \quad v_n^K(C^* \setminus C_*) \leq \varepsilon/2, \quad v_n^K(D^* \setminus D_*) \leq \varepsilon/2.$$

We define $K := C_* \setminus D^*$ and $L := C^* \setminus D_*$. Then we have $K \subseteq C \setminus D \subseteq L$ and it remains to prove that $v_n^K(L \setminus K) \leq \varepsilon$.

We have $L \setminus K = (C^* \setminus D_*) \setminus (C_* \setminus D^*) \subseteq (C^* \setminus C_*) \cup (D^* \setminus D_*)$. Then

$$v_n^K(L \setminus K) \leq [v_n^K(C^* \setminus C_*)] + [v_n^K(D^* \setminus D_*)] \leq [\varepsilon/2] + [\varepsilon/2] = \varepsilon,$$

as desired. QED

Lemma (ctCapCup): Let $n \in \mathbb{N}$. Let $C, D \in C_n$. Then $C \cap D, C \cup D \in C_n$.

Proof: We have $C, D \in C_n$, so C and D are bounded, so $C \cup D$ is bounded. Choose a bounded $B \in B_n$ such that $C \cup D \subseteq B$. We have $B \in B_n \subseteq K_n$. Then B is a bounded kidset, so $B \in C_n$. Let $C' := B \setminus C$ and let $D' := B \setminus D$. By Lemma (ctDiff), we conclude both that $C' \in C_n$ and that $D' \in C_n$. We have $C \cap D = C \setminus D'$ so, by Lemma (ctDiff), we see that $C \cap D \in C_n$. It remains to show that $C \cup D \in C_n$.

We have $C' \cap D' = C' \setminus D$, so, by Lemma (ctDiff), we see that $C' \cap D' \in C_n$. We have $C \cup D = B \setminus (C' \cap D')$, so, by Lemma (ctDiff), we see that $C \cup D \in C_n$, as desired. QED

Lemma (volFA): Let $n \in \mathbb{N}$. Then $v_n : C_n \to [0, \infty]$ is finitely additive.

Proof: Given $F \in FD_{C_n}(C_n)$. We wish to prove that $v_n(\cup F) = \sum_{F \in \mathcal{F}} [v_n(F)]$.

As $F \subseteq C_n$ and as F is finite and pairwise-disjoint, by Lemma (ctCapCup), we conclude that $\cup F \in C_n$. Then $v_n(\cup F) = \nu_n(\cup F) = \nu_n(\cup F)$. Also, $F \subseteq C_n$, and so, for all $F \in \mathcal{F}$, we have $F \in C_n$, and, therefore, we have $v_n(F) = \nu_n(F) = \nu_n(F)$.

By (d) and (e) of Fact (innerOutr), we have

$$\nu_n(\cup F) \geq \sum_{F \in \mathcal{F}} [v_n(F)] \quad \text{and} \quad \nu_n(\cup F) \leq \sum_{F \in \mathcal{F}} [\nu_n(F)].$$

Then $v_n(\cup F) \geq \sum_{F \in \mathcal{F}} [v_n(F)]$ and $v_n(\cup F) \leq \sum_{F \in \mathcal{F}} [v_n(F)]$, so $v_n(\cup F) = \sum_{F \in \mathcal{F}} [v_n(F)]$. QED

Definition: Let $n \in \mathbb{N}$ and let $Z \subseteq \mathbb{R}^n$. Then Z is negligible means:

- Z is bounded
- $\nu_n(Z) = 0$.

Lemma (ignoreNgbl): Let $n \in \mathbb{N}$ and $S \in D_n$ and let $Z \subseteq \mathbb{R}^n$. Assume that Z is negligible. Then $\nu_n(S \setminus Z) = \nu_n(S) = \nu_n(S \cup Z)$.

Proof: We have $S \setminus Z \subseteq S \subseteq S \cup Z$, so $\nu_n(S \setminus Z) \leq \nu_n(S) \leq \nu_n(S)$. Also, because $S \cup Z = (S \setminus Z) \cup Z$ and $(S \setminus Z) \cap Z = \emptyset$, we get $\nu_n(S \cup Z) \leq \nu_n(S \setminus Z) + [\nu_n(Z)]$. So, because $\nu_n(Z) = 0$, we conclude that $\nu_n(S \cup Z) \leq \nu_n(S \setminus Z)$.
Then \(\overline{v_n(S \setminus Z)} \leq \overline{v_n(S)} \leq \overline{v_n(S \cup Z)} \leq \overline{v_n(S \setminus Z)} \), and the result follows. QED

From Lemma (ignoreNgb), we see, for any \(n \in \mathbb{N} \), for any \(S \in \mathcal{C}_n \), for any \(Z \subseteq \mathbb{R}^n \), that if \(Z \) is negligible, then \(S \setminus Z \in \mathcal{C}_n \) and \(S \cup Z \in \mathcal{C}_n \) and \(v_n(S \setminus Z) = v_n(S) = v_n(S \cup Z) \).

Definition: Let \(n \in \mathbb{N} \) and let \(S \subseteq \mathbb{R}^n \). Then we define:

\[
\mathcal{S} := \bigcap\{A \subseteq \mathbb{R}^n \mid \text{A is closed, } A \supseteq S\}, \quad S^\circ := \bigcup\{U \subseteq \mathbb{R}^n \mid \text{U is open, } U \subseteq S\},
\]

and we define \(\partial S := [\mathcal{S}] \setminus [S^\circ] \). These three sets are called, respectively, the closure of \(S \), the interior of \(S \) and the boundary of \(S \).

Lemma (cvxConn): Let \(n \in \mathbb{N} \) and let \(A, F \subseteq \mathbb{R}^n \). Assume that \(F \) is convex, that \(F \cap A \neq \emptyset \) and that \(F \setminus A \neq \emptyset \). Then \(F \cap (\partial A) \neq \emptyset \).

Proof: Choose \(x \in F \cap A \) and \(y \in F \setminus A \). Define \(\phi : \mathbb{R} \to \mathbb{R}^n \) by \(\phi(t) = (1 - t)x + ty \). Let \(I := [0, 1] \). As \(F \) is convex, we have \(\phi(I) \subseteq F \). Let \(S := \phi^{-1}(A) \). Because \(\phi(0) = x \in A \), we see that 0 \(\in S \). Because \(\phi(1) = y \notin A \), we see that 1 \(\notin S \). Let \(t_0 := \sup(I \cap S) \). Because \(I \) is closed in \(\mathbb{R} \), we have \(I = [0, 1] \). Then \(t_0 \in I \cap S = I \cap \mathcal{S} \). Let \(z := \phi(t_0) \). Then \(z \in \phi(I) \subseteq F \), so it suffices to show that \(z \in \partial A \), i.e., both that \(z \in \overline{A} \) and that \(z \notin \mathring{A} \).

We have \(S = \phi^{-1}(A) \subseteq \phi^{-1}(\mathring{A}) \). Because \(\phi \) is continuous and \(\mathring{A} \) is closed in \(\mathbb{R}^n \), we conclude that \(\phi^{-1}(\mathring{A}) \) is closed in \(\mathbb{R} \). Then \(\mathcal{S} \subseteq \phi^{-1}(\mathring{A}) \). Then \(t_0 \in \mathcal{S} \subseteq \phi^{-1}(\mathring{A}) \). Then \(z = \phi(t_0) \in \mathring{A} \). It remains to show \(z \notin A^0 \). Assume \(z \in A^0 \). We aim for a contradiction.

We have \(\phi(t_0) = z \in A^0 \), so \(t_0 \in \phi^{-1}(A^0) \). Then \(t_0 \in \phi^{-1}(A^0) = S \). So, since 1 \(\notin S \), we see that \(t_0 \neq 1 \). So, since \(t_0 \in [0, 1] \), we see that \(t_0 < 1 \). Because \(\phi \) is continuous and \(A^0 \) is open in \(\mathbb{R}^n \), we conclude that \(\phi^{-1}(A^0) \) is open in \(\mathbb{R} \). So, since \(t_0 \in \phi^{-1}(A^0) \), choose \(\delta > 0 \) such that \((t_0 - \delta, t_0 + \delta) \subseteq \phi^{-1}(A^0) \). Since \(t_0 < 1 \), choose \(t_1 \in (t_0, t_0 + \delta) \) such that \(t_1 \leq 1 \). Then \(0 < t_0 < t_1 \leq 1 \). Then \(t_1 \in [0, 1] = I \). Also,

\[
t_1 \in (t_0, t_0 + \delta) \subseteq (t_0 - \delta, t_0 + \delta) \subseteq \phi^{-1}(A^0) \subseteq \phi^{-1}(A) = S.
\]

Then \(t_1 \in I \cap S \), so \(t_1 \leq \sup(I \cap S) = t_0 \). Then \(t_1 < t_0 \), contradiction. QED

Lemma (kidCap): Let \(n \in \mathbb{N} \), let \(A \subseteq \mathbb{R}^n \) and let \(K \in \mathcal{K}_n \). Assume that \(K \cap (\partial A) = \emptyset \). Then \(K \cap A = \emptyset \).

Proof: Choose a finite pair-wise disjoint \(\mathcal{F} \subseteq \mathcal{B}_n \) such that \(K = \cup \mathcal{F} \). For all \(F \in \mathcal{F} \), we know both that \(F \) is convex and that \(F \cap (\partial A) = \emptyset \). So, by Lemma (cvxConn), we see, for all \(F \in \mathcal{F} \), that either \(F \subseteq A \) or \(F \cap A = \emptyset \). Let \(\mathcal{F}_0 := \{F \in \mathcal{F} \mid F \subseteq A\} \). Let \(K_0 := \bigcup_{F \in \mathcal{F}_0} F \). Then \(K_0 \in \mathcal{K}_n \), and we will prove that \(K \cap A = K_0 \).

For all \(F \in \mathcal{F}_0 \), we have \(F \cap A = F \). For all \(F \in \mathcal{F} \setminus \mathcal{F}_0 \), we have \(F \cap A = \emptyset \). Then \(\bigcup_{F \in \mathcal{F}} (F \cap A) = \bigcup_{F \in \mathcal{F}_0} F \). Then \(K \cap A = \bigcup_{F \in \mathcal{F}} (F \cap A) = \bigcup_{F \in \mathcal{F}_0} F = K_0 \), as desired. QED

Theorem (charAtd): Let \(n \in \mathbb{N} \) and let \(S \subseteq \mathbb{R}^n \) be bounded. Then:

\[
S \text{ is contented } \iff \partial S \text{ is negligible.}
\]
Proof: Proof of \Rightarrow: Assume that S is contented. We wish to show that ∂S is negligible. Since S is bounded, ∂S is bounded. It remains to show that $\mathcal{v}_n(\partial S) = 0$. Given $\varepsilon > 0$, we wish to show that $\mathcal{v}_n(\partial S) \leq \varepsilon$.

By Lemma (inOutApprox), choose $K, L \in K_n$ such that $K \subseteq S \subseteq L$ and such that $v_n^K(L \setminus K) \leq \varepsilon$. Choose a bounded $B \in B_n$ such that $S \subseteq B$. Let $L_1 := L \cap B$. Then L_1 is bounded and $K \subseteq S \subseteq L_1$ and $v_n^K(L_1 \setminus K) \leq \varepsilon$. Since $L_1 \setminus K$ is a bounded kidset, we know that $L_1 \setminus K$ is contented and that $v_n(L_1 \setminus K) = v_n^K(L_1 \setminus K)$. Since L_1 is a bounded kidset, L_1 is contented, and so $v_n(\partial L_1) = 0$. Similarly, $v_n(\partial K) = 0$. Then

$$v_n(\overline{L_1}) = v_n(L_1 \cup (\partial L_1)) = v_n(L_1) \quad \text{and} \quad v_n(K^\circ) = v_n(K \setminus (\partial K)) = v_n(K).$$

Then $[v_n(\overline{L_1} \setminus K^\circ)] + [v_n(K^\circ)] = v_n(\overline{L_1}) = v_n(L_1) = [v_n(L_1 \setminus K)] + [v_n(K)]$. So, since $v_n(K^\circ) = v_n(K)$, we get $v_n(\overline{L_1} \setminus K^\circ) = v_n(L_1 \setminus K)$.

We have $K^\circ \subseteq S^\circ \subseteq S \subseteq \overline{L_1}$, and it follows that $\partial S = \overline{S} \setminus S^\circ \subseteq \overline{L_1} \setminus K^\circ$. Then $v_n(\partial S) \leq v_n(\overline{L_1} \setminus K^\circ) = v_n(L_1 \setminus K) = v_n^K(L_1 \setminus K) \leq \varepsilon$, as desired. End of proof of \Rightarrow.

Proof of \Leftarrow: Assume that ∂S is negligible. We wish to show that S is contented. We know that S is bounded. Given $\varepsilon > 0$. By Lemma (inOutApprox), we wish to show that there exist $K, L \in K_n$ such that $K \subseteq S \subseteq L$ and such that $v_n^K(L \setminus K) \leq \varepsilon$.

As $\mathcal{v}_n(\partial S) = 0 < \varepsilon$, choose $Y \in K_n$ such that $\partial S \subseteq Y$ and $v_n^Y(Y) \leq \varepsilon$. Let $K := S \setminus Y$ and $L := K \cup Y$. We wish to prove: $K, L \in K_n$ and $K \subseteq S \subseteq L$ and $v_n^K(L \setminus K) \leq \varepsilon$.

Because $\mathbb{R}^n \in B_n \subseteq K_n$ and $Y \in K_n$, we see that $\mathbb{R}^n \setminus Y \in K_n$. Also, since $\partial S \subseteq Y$, it follows that $(\mathbb{R}^n \setminus Y) \cap (\partial S) = \emptyset$. Then, by Lemma (kidCap), we get $(\mathbb{R}^n \setminus Y) \cap S \in K_n$. Then $K = S \setminus Y = (\mathbb{R}^n \setminus Y) \cap S \in K_n$. Since $K, Y \in K_n$, we get $L = K \cup Y \in K_n$. We have

$$K = S \setminus Y \subseteq S \subseteq (S \setminus Y) \cup Y = K \cup Y = L,$$

so $K \subseteq S \subseteq L$. It remains to prove that $v_n^K(L \setminus K) \leq \varepsilon$.

As $L = K \cup Y$, we get $L \setminus K \subseteq Y$, so $v_n^K(L \setminus K) \leq v_n^Y(Y) \leq \varepsilon$. End of proof of \Leftarrow. QED

Remark: Let $n \in \mathbb{N}$ and let $S \subseteq \mathbb{R}^n$. Then:

$$\partial(S^\circ) \subseteq \partial S \quad \text{and} \quad \partial(\overline{S}) \subseteq \partial S \quad \text{and} \quad S \setminus (\partial S) = S^\circ \quad \text{and} \quad S \cup (\partial S) = \overline{S}.$$

Proof: Because $S^\circ \subseteq S$, we get $\overline{S^\circ} \subseteq \overline{S}$. Also, $(S^\circ)^\circ = S^\circ$. Then

$$\partial(S^\circ) = [\overline{S^\circ}] \setminus [(S^\circ)^\circ] \subseteq [\overline{S}] \setminus [S^\circ] = \partial S.$$}

We have $\overline{S} = \overline{S}$. Also, because $\overline{S} \supseteq S$, we get $(\overline{S})^\circ \subseteq S^\circ$. Then

$$\partial(\overline{S}) = [\overline{S}] \setminus [(\overline{S})^\circ] \subseteq [\overline{S}] \setminus [S^\circ] = \partial S.$$}

Since $S \subseteq \overline{S}$, we get $S \setminus ([\overline{S}] \setminus [S^\circ]) = S^\circ$. That is, $S \setminus (\partial S) = S^\circ$.

Since $\overline{S} \supseteq S^\circ$, we get $S \cup ([\overline{S}] \setminus [S^\circ]) = \overline{S}$. That is, $S \cup (\partial S) = \overline{S}$. QED

Theorem (volBdClInt): Let $n \in \mathbb{N}$ and let $S \subseteq \mathbb{R}^n$ be contented. Then ∂S and S° and \overline{S} are all three contented. Moreover, $v_n(\partial S) = 0$ and $v_n(S^\circ) = v_n(S) = v_n(\overline{S})$.

Proof: This follows from the preceding remark, together with Theorem (charCtd). QED