Covers Chapter 2 Sample Quiz Number 2, Math 1251, Scot Adams, Fall 1998 No calculators. 50 minutes. Every problem is worth one point. %Answers: EAFH DGTFH EDAJ ETEFDG ABFCDF AAFFF %***************** 1. Let f(x)=(2x^2-7x+8)^4. Then f'(1) is equal to (A) 12 (B) 4(2-7+8)^3 (C) (2-7+8)^3 (D) (2-7+8)^5 (E) 4(2-7+8)^3(4-7) (F) 5(2-7+8)^4(4-7) (G) 4(4-7)^3 (H) 5(4-7)^4 (I) 3(4-7)^2 (J) 144 (K) none of these %section 2.5 The chain rule %***************** 2. Let f(x)={x^4-3 \over 3x^2+1}. Then f'(3) is equal to (A) (3\cdot3^2+1)(4\cdot3^3)-(3^4-3)(6\cdot3) \over (3\cdot3^2+1)^2 (B) (3^4-3)(6\cdot3) \over (3\cdot3^2+1)^2-(3\cdot3^2+1)(4\cdot3^3) (C) 3\cdot3^2+1 \over 3^4-3 (D) 3^4-3 \over 3\cdot3^2+1} (E) 3 (F) \left[3^4-3 \over 3\cdot3^2+1\right] \left[(3\cdot3^2+1)(4\cdot3^3)-(3^4-3)(6\cdot3) \over (3\cdot3^2+1)^2\right] (G) none of these %section 2.2 Differentiation formulas %***************** 3. (d/dx)[\sin(2x)] is equal to (A) \cos(2x) (B) \cos(2) (C) [\sin(2x)][2x] (D) [\cos(2x)][2x] (E) [\sin(2x)][2] (F) [\cos(2x)][2] (G) [\sin(2)][2x] (H) [\cos(2)][2x] (I) [\sin(2)][2] (J) [\cos(2)][2] (K) none of these %section 2.5 The chain rule %***************** 4. {d\over dx}(\tan^48x) is equal to (A) \sec^2(8x) (B) (\sec^2)^4(8x) (C) \tan^4(8) (D) 4[\tan^38x] (E) 4[\tan^3x][8] (F) 4[\tan^38x][8] (G) 4[\tan^38x][\sec^2x][8] (H) 4[\tan^38x][\sec^28x][8] (I) 4[\tan^38x][\sec^28x][-8] (J) none of these %section 2.5 The chain rule %***************** 5. The equation x^2y+xy^2-y=5 defines y implicitly as a function of x. Then dy/dx is equal to (A) x^2y+xy^2-y (B) 2xy+x^2y+y^2+2xyy'-y' (C) 2xy+y^2 \over x^2+2xy-1 (D) -2xy+y^2 \over x^2+2xy-1 (E) -5{2xy+y^2 \over x^2+2xy-1} (F) -2x^2y+y^3 \over x^2+2x^2y-1 (G) 5 (H) none of these %section 2.6 Implicit differentiation %***************** 6. If we estimate \sqrt{64.6} by differentials, we get (A) 8 (B) 8 - {0.6 \over 2\sqrt{8}} (C) 8+\sqrt{64} (D) 8 - {\sqrt{64} \over 64.6\root3\of{64}} (E) 64 - {0.6 \over 2\sqrt{8}} (F) 64 + {0.6 \over 2\sqrt{8}} (G) 8 + {0.6 \over 16} %section 2.9 Differentials; linear and quadratic approximations %***************** 7. If f(t)=\cos t, then f''(t)=-f(t). (T) True (F) False %section 2.7 Higher derivatives %***************** 8. (Note: The area enclosed in a circle of radius r is \pi r^2.) A circle is expanding. The area enclosed in the circle is increasing at the rate of 10 square inches per second. When the radius is 8 inches, the radius of the circle is increasing at what rate? Express your answer in inches per second. (A) -4\pi \over \pi^2\sec^2(3\pi/4) (B) -\pi^2\sec^2(3\pi/4) (C) \pi(4^2) (D) \pi(8^2) (E) 16\pi (F) 10 \over 16\pi (G) 5 \over 16\pi (H) none of these %section 2.8 Related rates %***************** 9. Assume that f(1)=3 and g(3)=5, so that (g\circ f)(1)=5. Assume that f'(1)=3,000 and g'(3)=2,000. Then (g\circ f)'(1) is (A) 1 (B) 3 (C) 5 (D) 6 (E) 2,000 (F) 3,000 (G) 6,000 (H) 6,000,000 (I) none of these %section 2.5 The chain rule %***************** 10. Let f(x) be defined by f(x)=\cases{ x^2, &if x<0;\cr 0, &if 0\le x\le1;\cr x^3, &if x>1.\cr} Then f is differentiable (A) everywhere; (B) nowhere; (C) except at x=-1; (D) except at x=0; (E) except at x=1; (F) except at x=0 and x=1; (G) except at x=-1 and x=1; (H) except at x=-1, x=0 and x=1; (I) none of these %section 2.1 Derivatives %***************** 11. Let f(x) = {2x+1 \over 3x+4}. Then f'(x) is equal to (A) (3x+4)(2)-(2x+1)(3) \over 3x+4 (B) (3)(2x)-(2x+1)(3x+4) \over (3x+4)^2 (C) -2 \over 3 (D) (3x+4)(2)-(2x+1)(3) \over (3x+4)^2 (E) 2 \over 3 (F) -(3x+4)(2)-(2x+1)(3) \over 3x+4 (G) -(3)(2x)-(2x+1)(3x+4) \over (3x+4)^2 (H) -(2x+1)(3)-(3x+4)(2) \over (3x+4)^2 (I) -(3x+4)(2)-(2x+1)(3) \over (3x+4)^2 (J) (2x+1)(3)-(3x+4)(2) \over (3x+4)^2 (K) none of these %section 2.2 Differentiation formulas %***************** 12. The equation of the tangent line to y=x^2 at the point (2,4) is (A) y-4=4(x-2) (B) y+4=4(x+2) (C) y-4=2x(x-2) (D) y+4=2x(x+2) (E) y-2=4(x-4) (F) y+2=4(x+4) (G) y-2=2x(x-4) (H) y+2=2x(x+4) (I) y=x (J) none of these %section 1.7 Tangents, velocities and other rates of change %***************** 13. Find the derivative of f(x)=\sqrt{x^2+2x+3} (A) \sqrt{2x+2} (B) x/\sqrt{x^2+2x+3} (C) (1/2)(x^2+2x+3)^{-1/2} (D) \sqrt{x} (E) (x^2+2x+3)^{-1/2}(2x+2) (F) \sqrt{x^2+2x+3} (G) \sqrt{x^2+2x+3}-\sqrt{x} (H) 2x+2 (I) 1/(2\sqrt{x}) (J) none of these %section 2.5 The chain rule %***************** 14. Find the derivative of f(x) = {\sin x \over x} (A) \cos x \over 1 (B) (\sin x)(x)-(x)(\sin x) \over x^2 (C) (\sin x)(1)-(x)(\cos x) \over x^2 (D) (x)(\sin x)-(\sin x)(x) \over x^2 (E) (x)(\cos x)-(\sin x)(1) \over x^2 (F) (x)(\sin x)-(\sin x)(x) \over \sin^2x (G) (x)(\cos x)-(\sin x)(1) \over \sin^2x (H) none of these %section 2.5 The chain rule %***************** 15. Two different functions can have the same derivative. (T) True (F) False %section 2.2 Differentiation formulas %***************** 16. The equation x^2+y^2=10 defines y implicitly as a function of x. Then dy/dx is equal to (A) 2x+2y (B) -2x-2y (C) 10-x^2 (D) -10+x^2 (E) -x/y (F) x/y (G) [2x]/[2y-1] (H) -[2x]/[2y-1] (I) none of these %section 2.6 Implicit differentiation %***************** 17. Let f be a differentiable function. Find a formula for {d\over dx}\sin(f(x)). Your answer should be in terms of f(x) and f'(x). (A) 2f(x) (B) (f'(x))^2 (C) 2x (D) 2f(x)f'(x) (E) \cos(f(x)) (F) [\cos(f(x))][f'(x)] (G) [\cos(f(x)f'(x))][f''(x)] (H) \cos(f'(x)) (I) none of these %section 2.5 The chain rule %***************** 18. Compute \lim_{t\to(\pi/4)^-}\tan(t). (A) -\infty (B) \infty (C) 0 (D) 1 (E) -1 (F) \sqrt{2}/2 (G) -\sqrt{2}/2 (H) \sqrt{3}/2 (I) -\sqrt{3}/2 (J) none of these %section 2.5 The chain rule %***************** 19. Let f(x)=x^3-9. Starting with the approximate root x_1:=2, use Newton's method to find the second approximation x_2. (A) 2 (B) 2+(4/5) (C) 2-(4/5) (D) 2+(4/5)^2 (E) 2-(4/5)^2 (F) 2+(-1/12) (G) 2-(-1/12) (H) 2+(-1/12)^2 (I) 2-(-1/12)^2 (J) none of these %section 2.10 Newton's method %***************** In problems 20 through 24, use the following information: Two particles are traveling in the plane. The first one travels along the x-axis, and its position at time t is given by (2t^2,0). The second one travels along the y-axis, and its position at time t is given by (0,4t^3). 20. Find the location of the first particle at time t=1. (A) (2,0) (B) (0,1) (C) (1,0) (D) (0,2) (E) (4,0) (F) (0,-2) (G) (-2,0) (H) (0,-4) %***************** 21. Find the location of the second particle at time t=1. (A) (8,0) (B) (0,4) (C) (4,0) (D) (0,8) (E) (2,0) (F) (0,1) (G) (1,0) (H) (0,2) %***************** 22. Find the distance from the first particle to the second at time t=1. (A) 2 (B) \sqrt{3} (C) \sqrt{t^2+t^3} (D) \sqrt{2} (E) \sqrt{2^2+3^2} (F) \sqrt{2^2+4^2} (G) \root3\of{2^2+4^2} (H) \sqrt{2t^2+4t^3} (I) none of these %***************** 23. Find the distance from the first particle to the second at an arbitrary time t. (A) \sqrt{2t^2+4t^3} (B) \sqrt{2t^4+4t^6} (C) \sqrt{4t^4+16t^6} (D) 4t^4+16t^6 (E) t^2+t^3 (F) \sqrt{t^4+t^6} (G) \sqrt{t^2+t^3} (H) t^2-t^3 %***************** 24. Find how fast the distance (between the two particles) is increasing at an arbitrary time t. (A) 1 \over 2\sqrt{4t^4+16t^6} (B) 4t^4+16t^6 \over \sqrt{4t^4+16t^6} (C) 4(4t^3)+16(6t^5) \over \sqrt{4t^4+16t^6} (D) 4(4t^3)+16(6t^5) \over 2\sqrt{4t^4+16t^6} (E) 2t^3+3t^5 \over \sqrt{t^4+t^6} (F) (1/2)(t^4+t^6)^{-1/2} (G) \sqrt{4t^3+6t^5} (H) 2t+3t^2 %section 2.5 The chain rule %***************** 25. Let f(x)=e^{-2x}. Then f'''(x) is equal to (A) e^{-2x} (B) -2e^{-2x} (C) -2e^{27x} (D) 27e^{-2x} (E) 4e^{-2x} (F) -8e^{-2x} (G) 16e^{27x} (H) -27e^{-2x} (I) -27e^{-27x} (J) e^{-8x} %section 2.7 Higher derivatives %***************** 26. Compute \lim_{h\to0} { \sin(\pi+h)-\sin\pi \over h}. (A) -1 (B) -\sqrt{3}/2 (C) -\sqrt{2}/2 (D) -1/2 (E) 0 (F) 1/2 (G) \sqrt{2}/2 (H) \sqrt{3}/2 (I) 1 (J) none of these %section 2.1 Derivatives %***************** 27. [d/dx]^{100}[\sin x] is equal to (A) \sin x (B) -\sin x (C) \cos x (D) -\cos x (E) \tan x (F) -\tan x (G) \sec^2x (H) -\sec^2x %section 2.7 Higher derivatives %***************** 28. Find the 1-jet of f(x)=x^2 at 4. (A) x^2 (B) 2x (C) 16 (D) 8 (E) 8 and then 16 (F) 16 and then 8 (G) x^2 and then 2x (H) none of these %section 2.9 Differentials; Linear and Quadratic Approximations %***************** 29. Find the solution to the differential equation f''=-f satisfying f(0)=1 and f'(0)=3. (A) f(x)=e^x (B) f(x)=e^{-x} (C) f(x)=e^x+3e^{-x} (D) f(x)=\sin x (E) f(x)=\cos x (F) f(x)=\cos x+3\sin x (G) f(x)=\sin x+3\cos x (H) f(x)=e^x+3e^{-1}+\sin x+3\cos x (I) none of these %section Spring motion %***************** 30. Find [d/dx][\ln(\cos15)] (A) 1/\cos15 (B) \ln(-\sin15) (C) \ln(\cos15) (D) 1/(-\sin15) (E) [1/(\cos15)][-\sin15] (F) none of these %section 2.2 Differentiation formulas %***************** END OF TEST \end