Covers Chapter 3 Sample Quiz Number 3, Math 1251, Scot Adams, Fall 1998 No calculators. 50 minutes. Every problem is worth one point. %Answers: CHCEEF BFTDAEF CDEET AFFFB FCGYFAN %***************** 1. {d\over dx}((\tan^{-1}(2x))^2) is equal to (A) 2\tan^{-1}(2x) \over (1+4x^2)^2 (B) 4\tan^{-1}(2x) \over (1+4x^2)^2 (C) 4\tan^{-1}(2x) \over 1+4x^2 (D) 2\tan^{-1}(2x) \over 1+x^2 (E) 4\tan^{-1}(2x)\hfil %section 3.6 Inverse trigonometric functions %***************** 2. If f(x) is a one-to-one function such that f(5)=2 and f'(5)=6, then (f^{-1})'(2) is equal to (A) -7 (B) 7 (C) -1/7 (D) 1/7 (E) 5 (F) 6 (G) 2 (H) 1/6 (I) 1/2 %section 3.6 Inverse trigonometric functions %***************** 3. A radioactive substance decays at a rate proportional to the amount of the substance. If there are 90 grams of the substance initially, and 35 grams remain after 5 years, how much is left after 7 years? Express your answer in grams. (A) 35\sqrt{6}/90 (B) 2.5 (C) 90(35/90)^{7/5} (D) (35/7)e^{-90/5} (E) 90e^{-7/5} (F) none of these %section 3.5 Exponential growth and decay %***************** 4. \lim_{x\to0}{3x-\sin3x \over x^3} is equal to (A) 4 (B) 9 (C) -4 (D) 9/6 (E) 9/2 (F) 2 (G) -2 (H) 0 (I) none of these %section 3.8 Indeterminate forms and l'Hospital's Rule %***************** 5. \lim_{x\to0}{[\cos2x][\ln(x+1)] \over \sin3x} is equal to (A) 0/0 (B) 1/0 (C) 0 (D) 1 (E) 1/3 (F) 2/3 (G) \infty (H) none of these %section 3.8 Indeterminate forms and l'Hospital's Rule %***************** 6. The function f(x)=\sin x is one-to-one. (T) True (F) False %section 3.3 Logarithmic functions %***************** 7. {d\over dx}[(x+e^x)^x] is equal to (A) x(x+e^x)^{x-1}(1+e^x) (B) [(x+e^x)^x][{x(1+e^x) \over x+e^x}+\ln(x+e^x)] (C) x(x+e^x)^{x-1} (D) (1+e^x)^x (E) none of these %section 3.1 Exponential functions and their derivatives %***************** 8. The derivative (with respect to x) of {\sec x \over \ln x} is (A) \sec^2x \over 1/x (B) (\ln x)(\sec^2x)-(\sec x)(1/x) \over (\ln x)^2 (C) (\sec x)(1/x)-(\ln x)(\sec^2x) \over (\ln x)^2 (D) (\ln x)(\sec x)-(\sec x)(1/x) \over (\ln x)^2 (E) \sec x\tan x \over 1/x (F) (\ln x)(\sec x\tan x)-(\sec x)(1/x) \over (\ln x)^2 (G) (\sec x)(1/x)-(\ln x)(\sec x\tan x) \over (\ln x)^2 (H) (\ln x)(\sec x)-(\sec x)(1/x) \over (\ln x)^2 %section 3.4 Derivatives of logarithmic functions %***************** 9. A function is one-to-one if and only if it has an inverse function. (T) True (F) False %section 3.2 Inverse functions %***************** 10. Sin^{-1}(\sin(1+4\pi)) is equal to (A) 1+4\pi (B) -1 (C) 0 (D) 1 (E) -6\pi (F) none of these %section 3.6 Inverse trigonometric functions %***************** 11. Cos^{-1}(\cos(3\pi)) is equal to (A) \pi (B) 3\pi/2 (C) \pi/2 (D) 1 (E) -6\pi %section 3.6 Inverse trigonometric functions %***************** 12. {d\over dx}e^{x^3+x+1}} is equal to (A) e^{x^3+x+1} (B) 1 \over x^2+x+1} (C) (4x^3+2x+1)e^{x^3+x+1}} (D) e^{3x^2+1} (E) none of these %section 3.1 Exponential functions and their derivatives %***************** 13. For every real number x, e^{\ln x}=x. (T) True (F) False %section 3.3 Logarithmic functions %***************** 14. Using logarithmic differentiation, compute dy/dx, where y={e^x(x-2)^{3/4}\sqrt{x^3+1} \over (3x+1)^5(x-1)}. (A) [{e^x(x-2)^{3/4}\sqrt{x^3+1} \over (3x+1)^5(x-1)}] [1+(3/4){1 \over x-2}+(1/2){3x^2 \over x^3+1} +5{3 \over 3x+1}+{1 \over x-1}] (B) [{e^x(x-2)^{3/4}\sqrt{x^3+1} \over (3x+1)^5(x-1)}] [e^x+(x-2)^{3/4}+\sqrt{x^3+1}-(3x+1)^5-(x-1)] (C) [{e^x(x-2)^{3/4}\sqrt{x^3+1} \over (3x+1)^5(x-1)}] [1+(3/4){1 \over x-2}+(1/2){3x^2 \over x^3+1} -5{3 \over 3x+1}-{1 \over x-1}] (D) [{e^x(x-2)^{3/4}\sqrt{x^3+1} \over (3x+1)^5(x-1)}] %section 3.4 Derivatives of logarithmic functions (Logarithmic differentiation) %***************** 15. Compute {d\over dx}\arctan(x^2)}. (A) 2x \over \sqrt{1-x^2} (B) 2x \over \sqrt{1-x^4} (C) 2x \over 1+x^2 (D) 2x \over 1+x^4 (E) 1 \over \sqrt{1-x^4} (F) \arcsin(2x) %section 3.6 Inverse trigonometric functions %***************** 16. \lim_{x\to-\infty}x+e^x} is equal to (A) 0 (B) 1 (C) -1 (D) \infty (E) -\infty %section 3.8 Indeterminate forms and l'Hospital's Rule %***************** 17. The range of \arccos is (A) (-\infty,\infty) (B) (-\pi/2,\pi/2) (C) [-\pi/2,\pi/2] (D) (0,\pi)} (E) [0,\pi] (F) (-1,1) (G) [-1,1]} (H) (0,\infty) (I) [0,\infty) (J) none of these %section 3.6 Inverse trigonometric functions %***************** 18. The function f(x)=-2x+3 is one-to-one (T) True (F) False %section 3.2 Inverse functions %***************** Note: \root3\of{...} means the cube root of ... 19. {d\over dx} \ln\root3\of{x-1 \over x+1} is equal to (A) (1/3) [{1 \over x-1} - {1 \over x+1}] (B) \root3\of{x+1 \over x-1} (C) \root3\of{x-1 \over x+1} (D) x+1 \over x-1 (E) x-1 \over x+1 (F) (4/3)[{1 \over x-1}-{1 \over x+1}] (G) \ln({x-1 \over x+1}) %section 3.4 Derivatives of logarithmic functions %***************** 20. {d\over dx}\cos(e^x) is equal to (A) \sin(e^x) (B) e^{\sin x} (C) e\sin(e^x) (D) -2\sin(e^x) (E) e^x\sin(e^x) (F) -e^x\sin(e^x) (G) 2\sin(e^x)\cos(e^x) (H) -2\sin(e^x)\cos(e^x) (I) none of these %section 3.1 Exponential functions and their derivatives %***************** 21. Compute \lim_{x\to\infty}(1+x^{-3})^{x^2}. (A) 0 (B) \infty (C) e (D) e^{2/3} (E) e^{3/2} (F) 1 (G) 2 (H) none of the above %section 3.8 Indeterminate forms and l'Hospital's rule %***************** 22. [d/dx][(\cos x)^{\sin x}] is equal to (A) (\cos x)(\ln(\sin x)) (B) [(\cos x)^{\sin x}] [{\cos^2x \over \sin x}+(\sin x)(\ln(\sin x))] (C) [(\cos x)^{\sin x}] [{\cos^2x \over \sin x}-(\sin x)(\ln(\sin x))] (D) (\cos x)^{-\sin x} (E) (\sin x)(\ln(\cos x)) (F) none of these %section 3.4 Derivatives of logarithmic functions (Logarithmic differentiation) %***************** 23. [d/dx][\sin^{-1}(x^2+2x+1)] is equal to (A) \sin^{-1}(2x+2) (B) 2x+2 \over \sqrt{1-(x^2+2x+1)^2} (C) -2x-2 \over \sqrt{1-(x^2+2x+1)^2} (D) 2x+2 \over 1+(x^2+2x+1)^2 %section 3.6 Inverse trigonometric functions %***************** 24. The function f(x)=x^2 has an inverse (T) True (F) False %section 3.2 Inverse functions %***************** 25. Let f(x)=3x and let g be the inverse of f. Then g(x) is equal to (A) -3x (B) 3x (C) x/3 (D) -x/3 (E) (x-3)/3 (F) none of these %section 3.2 Inverse functions %***************** 26. Suppose that f(1)=10, that f'(1)=5 and that f is one-to-one. Let g=f^{-1}. Answer the following three questions: Q1: Does this give enough information to compute g'(1)? Q2: Does this give enough information to compute g'(5)? Q3: Does this give enough information to compute g'(10)? (A) YYY (B) YYN (C) YNY (D) YNN (E) NYY (F) NYN (G) NNY (H) NNN %section 3.2 Inverse functions %***************** 27. Suppose that f is a one-to-one function such that the domain of f is (-\infty,\infty), such that the range of f is (-\infty,\infty) and such that f'(x)>0, for all x\in(-\infty,\infty). Let g=f^{-1}. Does it necessarily follow that g'(x)>0, for all x\in(-\infty,\infty). (Y) Yes (N) No %section 3.2 Inverse functions %***************** 28. Compute [d/dx][\log_5(x)] (A) \log_5(x) (B) 1 \over x (C) 1 \over x\log_5(x) (D) 5^x (E) 5^x\ln 5 (F) none of these %section 3.4 Derivatives of logarithmic functions %***************** 29. Compute \lim_{x\to\infty} 5x^7+\log_3(x)+\sin(e^x) \over 8x^7+3x^4+4x^3+7-\cos(e^{x^2}) (A) 5/8 (B) -6 (C) \infty (D) -\infty (E) 0 (F) does not exist (G) none of these %section 3.8 Indeterminate forms and l'Hospital's rule %***************** 30. Suppose f and g are functions, and suppose that \lim_{x\to1}f(x)=1} and \lim_{x\to1}g(x)=0. Does it follow that \lim_{x\to1} {f(x) \over g(x)} = \infty? (Y) Yes (N) No %section 3.8 Indeterminate forms and l'Hospital's rule %*****************