Construction of Lefschetz fibrations via Luttinger surgery

Anar Akhmedov

University of Minnesota, Twin Cities

August 2, 2013
1. **Symplectic 4-manifolds and Lefschetz fibrations**
 - Symplectic 4-manifolds
 - Lefschetz fibrations
 - Family of Lefschetz fibrations by Y. Matsumoto, M. Korkmaz and Y. Gurtas

2. **Surgery on symplectic 4-manifolds**
 - Luttinger Surgery
 - Symplectic Connected Sum

3. **Construction of Symplectic 4-Manifolds**
 - Luttinger surgeries on product 4-manifolds $\Sigma_n \times \Sigma_2$ and $\Sigma_n \times \mathbb{T}^2$
 - Construction of Lefschetz fibration via Luttinger Surgery
 - Exotic Stein fillings
Symplectic manifolds
Symplectic manifolds

Definition

A (compact) symplectic $2n$-manifold (X, ω) is a smooth $2n$-manifold with a symplectic form $\omega \in \Omega^2(X)$ (i.e., ω is closed ($d\omega = 0$) and non-degenerate ($\omega^n = \omega \wedge \cdots \wedge \omega > 0$ everywhere)) 2-form.
Symplectic manifolds

Definition

A (compact) symplectic 2n-manifold \((X, \omega)\) is a smooth 2n-manifold with a symplectic form \(\omega \in \Omega^2(X)\) (i.e., \(\omega\) is closed \((d\omega = 0)\) and non-degenerate \((\omega^n = \omega \wedge \cdots \wedge \omega > 0\) everywhere) 2-form. A diffeomorphism \(f : (X_1, \omega_1) \to (X_2, \omega_2)\) is a symplectomorphism if \(\omega_1 = f^*(\omega_2)\).
Symplectic manifolds

Definition
A (compact) symplectic $2n$-manifold (X, ω) is a smooth $2n$-manifold with a symplectic form $\omega \in \Omega^2(X)$ (i.e., ω is closed ($d\omega = 0$) and non-degenerate ($\omega^n = \omega \wedge \cdots \wedge \omega > 0$ everywhere)) 2-form. A diffeomorphism $f : (X_1, \omega_1) \to (X_2, \omega_2)$ is a symplectomorphism if $\omega_1 = f^*(\omega_2)$.

Examples
Definition

A (compact) symplectic $2n$-manifold (X, ω) is a smooth $2n$-manifold with a symplectic form $\omega \in \Omega^2(X)$ (i.e., ω is closed ($d\omega = 0$) and non-degenerate ($\omega^n = \omega \wedge \cdots \wedge \omega > 0$ everywhere)) 2-form. A diffeomorphism $f : (X_1, \omega_1) \to (X_2, \omega_2)$ is a **symplectomorphism** if $\omega_1 = f^*(\omega_2)$.

Examples

- $X = \mathbb{R}^{2n}$ with linear coordinates $x_1, \cdots, x_n, y_1, \cdots, y_n$ and with the 2-form $\omega_0 = \sum_{i=1}^{n} dx_i \wedge dy_i$.

Symplectic manifolds

Definition

A (compact) symplectic $2n$-manifold (X, ω) is a smooth $2n$-manifold with a symplectic form $\omega \in \Omega^2(X)$ (i.e., ω is closed ($d\omega = 0$) and non-degenerate ($\omega^n = \omega \wedge \cdots \wedge \omega > 0$ everywhere)) 2-form. A diffeomorphism $f : (X_1, \omega_1) \rightarrow (X_2, \omega_2)$ is a symplectomorphism if $\omega_1 = f^*(\omega_2)$.

Examples

- $X = \mathbb{R}^{2n}$ with linear coordinates $x_1, \cdots, x_n, y_1, \cdots, y_n$ and with the 2-form $\omega_0 = \sum_{i=1}^{n} dx_i \wedge dy_i$.
- If (X_1, ω_1) and (X_2, ω_2) are symplectic manifolds, then $\pi_1^*\omega_1 + \pi_2^*\omega_2$ gives a symplectic structure on $X_1 \times X_2$.
Symplectic manifolds

Definition
A (compact) symplectic $2n$-manifold (X, ω) is a smooth $2n$-manifold with a symplectic form $\omega \in \Omega^2(X)$ (i.e., ω is closed ($d\omega = 0$) and non-degenerate ($\omega^n = \omega \wedge \cdots \wedge \omega > 0$ everywhere)) 2-form. A diffeomorphism $f : (X_1, \omega_1) \rightarrow (X_2, \omega_2)$ is a symplectomorphism if $\omega_1 = f^*(\omega_2)$.

Examples

- $X = \mathbb{R}^{2n}$ with linear coordinates $x_1, \cdots, x_n, y_1, \cdots, y_n$ and with the 2-form $\omega_0 = \sum_{i=1}^{n} dx_i \wedge dy_i$.
- If (X_1, ω_1) and (X_2, ω_2) are symplectic manifolds, then $\pi_1^*\omega_1 + \pi_2^*\omega_2$ gives a symplectic structure on $X_1 \times X_2$. $\Sigma_n \times \Sigma_m$ are symplectic 4-manifolds.
Symplectic manifolds

Definition

A (compact) symplectic $2n$-manifold (X, ω) is a smooth $2n$-manifold with a symplectic form $\omega \in \Omega^2(X)$ (i.e., ω is closed ($d\omega = 0$) and non-degenerate ($\omega^n = \omega \wedge \cdots \wedge \omega > 0$ everywhere)) 2-form. A diffeomorphism $f : (X_1, \omega_1) \to (X_2, \omega_2)$ is a *symplectomorphism* if $\omega_1 = f^*(\omega_2)$.

Examples

- $X = \mathbb{R}^{2n}$ with linear coordinates $x_1, \cdots, x_n, y_1, \cdots, y_n$ and with the 2-form $\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i$.
- If (X_1, ω_1) and (X_2, ω_2) are symplectic manifolds, then $\pi_1^*\omega_1 + \pi_2^*\omega_2$ gives a symplectic structure on $X_1 \times X_2$. $\Sigma_n \times \Sigma_m$ are symplectic 4-manifolds.
- Every Kähler manifold is also a symplectic manifold.
Symplectic manifolds

Definition

A (compact) symplectic $2n$-manifold (X, ω) is a smooth $2n$-manifold with a symplectic form $\omega \in \Omega^2(X)$ (i.e., ω is closed ($d\omega = 0$) and non-degenerate ($\omega^n = \omega \wedge \cdots \wedge \omega > 0$ everywhere)) 2-form. A diffeomorphism $f : (X_1, \omega_1) \to (X_2, \omega_2)$ is a symplectomorphism if $\omega_1 = f^*(\omega_2)$.

Examples

- $X = \mathbb{R}^{2n}$ with linear coordinates $x_1, \cdots, x_n, y_1, \cdots, y_n$ and with the 2-form $\omega_0 = \sum_{i=1}^{n} dx_i \wedge dy_i$.
- If (X_1, ω_1) and (X_2, ω_2) are symplectic manifolds, then $\pi_1^*\omega_1 + \pi_2^*\omega_2$ gives a symplectic structure on $X_1 \times X_2$. $\Sigma_n \times \Sigma_m$ are symplectic 4-manifolds.
- Every Kähler manifold is also a symplectic manifold.
- A closed complex surface S is Kähler iff the first Betti number $b_1(S)$ is even.
Kodaira-Thurston manifold
Kodaira-Thurston manifold

Example
Example

Consider \mathbb{R}^4 with the 2-form $\omega_0 = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$.
Example

Consider \mathbb{R}^4 with the 2-form $\omega_0 = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$.

Let Γ be the discrete group generated by the following symplectomorphisms:
Kodaira-Thurston manifold

Example

Consider \mathbb{R}^4 with the 2-form $\omega_0 = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$.

Let Γ be the discrete group generated by the following symplectomorphisms:

- $\gamma_1 : (x_1, x_2, y_1, y_2) \rightarrow (x_1, x_2 + 1, y_1, y_2)$
- $\gamma_2 : (x_1, x_2, y_1, y_2) \rightarrow (x_1, x_2, y_1, y_2 + 1)$
- $\gamma_3 : (x_1, x_2, y_1, y_2) \rightarrow (x_1 + 1, x_2, y_1, y_2)$
- $\gamma_4 : (x_1, x_2, y_1, y_2) \rightarrow (x_1, x_2 + y_2, y_1 + 1, y_2)$
Consider \mathbb{R}^4 with the 2-form $\omega_0 = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$.

Let Γ be the discrete group generated by the following symplectomorphisms:

- $\gamma_1 : (x_1, x_2, y_1, y_2) \rightarrow (x_1, x_2 + 1, y_1, y_2)$
- $\gamma_2 : (x_1, x_2, y_1, y_2) \rightarrow (x_1, x_2, y_1, y_2 + 1)$
- $\gamma_3 : (x_1, x_2, y_1, y_2) \rightarrow (x_1 + 1, x_2, y_1, y_2)$
- $\gamma_4 : (x_1, x_2, y_1, y_2) \rightarrow (x_1, x_2 + y_2, y_1 + 1, y_2)$

$M = \mathbb{R}^4/\Gamma$ admits both symplectic structure and complex structures, but non-Kähler.
Example
Kodaira-Thurston manifold continued

Example

Let $\phi = D_b$ denote the right-handed Dehn twist on $\mathbb{T}^2 = a \times b$ along the curve b.
Kodaira-Thurston manifold continued

Example

Let $\phi = D_b$ denote the right-handed Dehn twist on $\mathbb{T}^2 = a \times b$ along the curve b.

\[
\begin{align*}
\phi_*(a) &= a + b \\
\phi_*(b) &= b
\end{align*}
\]
Kodaira-Thurston manifold continued

Example

Let $\phi = D_b$ denote the right-handed Dehn twist on $\mathbb{T}^2 = a \times b$ along the curve b.

$$\phi_*(a) = a + b$$
$$\phi_*(b) = b$$

Let Z_ϕ denote the mapping torus of ϕ.
Kodaira-Thurston manifold continued

Example

Let $\phi = D_b$ denote the right-handed Dehn twist on $\mathbb{T}^2 = a \times b$ along the curve b.

$$\phi_*(a) = a + b$$
$$\phi_*(b) = b$$

Let Z_ϕ denote the mapping torus of ϕ. $W = Z_\phi \times S^1$ admits \mathbb{T}^2 bundle structure over \mathbb{T}^2.
Example

Let $\phi = D_b$ denote the right-handed Dehn twist on $\mathbb{T}^2 = a \times b$ along the curve b.

$$\phi_*(a) = a + b$$
$$\phi_*(b) = b$$

Let Z_ϕ denote the mapping torus of ϕ. $W = Z_\phi \times S^1$ admits \mathbb{T}^2 bundle structure over \mathbb{T}^2. Presentation for the fundamental group of W:

$$\pi_1(W) = \langle g_1, g_2, g_3, x; \mid [g_1, g_2] = 1, [g_2, g_3] = 1, [g_1, g_3] = g_2, [x, g_i] = 1 \rangle.$$
Symplectic 4-manifolds via surface bundles over surfaces
Symplectic 4-manifolds via surface bundles over surfaces

Theorem (W. Thurston (1976))

Assume that Σ_g, Σ_h are closed, oriented, 2-dimensional surfaces. If $f : X \rightarrow \Sigma_h$ is a bundle with fiber Σ_g and the homology class of the fiber is nonzero in $H_2(X; \mathbb{R})$, then X admits a symplectic structure.
Theorem (W. Thurston (1976))

Assume that Σ_g, Σ_h are closed, oriented, 2-dimensional surfaces. If $f : X \to \Sigma_h$ is a bundle with fiber Σ_g and the homology class of the fiber is nonzero in $H_2(X; \mathbb{R})$, then X admits a symplectic structure.
Symplectic 4-manifolds via surface bundles over surfaces

Theorem (W. Thurston (1976))

Assume that Σ_g, Σ_h are closed, oriented, 2-dimensional surfaces. If $f : X \to \Sigma_h$ is a bundle with fiber Σ_g and the homology class of the fiber is nonzero in $H_2(X; \mathbb{R})$, then X admits a symplectic structure.

Theorem (J. Bryan - R. Donagi)

For any integers $n \geq 2$, there exist smooth algebraic surface X_n that have signature $\sigma(X_n) = 8/3n(n - 1)(n + 1)$ and admit two smooth fibrations $X_n \to B$ and $X_n \to B'$ such that the base and fiber genus are $(3, 3n^3 - n^2 + 1)$ and $(2n^2 + 1, 3n)$ respectively.
Lefschetz fibrations

Definition

Let X be a compact, connected, oriented, smooth 4-manifold. A *Lefschetz fibration* on X is a smooth map $f : X \rightarrow \Sigma_h$, where Σ_h is a compact, oriented, smooth 2-manifold of genus h, such that f is surjective and each critical point of f has an orientation preserving chart on which $f : \mathbb{C}^2 \rightarrow \mathbb{C}$ is given by $f(z_1, z_2) = z_1^2 + z_2^2$.
Construction of Lefschetz fibrations via Luttinger surgery

Figure: Lefschetz fibration on X over S^2
The genus of the regular fiber of f is defined to be the \textit{genus of the Lefschetz fibration}.
The genus of the regular fiber of f is defined to be the genus of the Lefschetz fibration. Let p_1, \ldots, p_s denote the critical points of Lefschetz fibration $f : X \to \Sigma_h$.

$$e(X) = e(\Sigma_h)e(\Sigma_g) + s$$

$\sigma(X)$ well understood for fibrations over \mathbb{S}^2

(Y. Matsumoto, H. Endo, B. Ozbagci, I. Smith, ...)
Monodromy of Lefschetz fibration

A singular fiber of the genus g Lefschetz fibration can be described by its monodromy, i.e., an element of the mapping class group \mathcal{M}_g. This element is a right-handed (or a positive) Dehn twist along a simple closed curve on Σ_g, called the *vanishing cycle*.
For a genus g Lefschetz fibration over S^2, the product of right handed Dehn twists t_{α_i} along the vanishing cycles α_i, for $i = 1, \cdots, s$, determines the \textit{global monodromy} of the Lefschetz fibration, the relation $t_{\alpha_1} \cdot t_{\alpha_2} \cdots \cdot t_{\alpha_s} = 1$ in M_g. Conversely, such a relation in M_g determines a genus g Lefschetz fibration over S^2 with the vanishing cycles $\alpha_1, \cdots, \alpha_s$.

\textbf{Figure:} Lefschetz fibration on X over S^2
Example (Genus one Lefschetz fibrations)

M_1 be the mapping class group of the torus $\mathbb{T}^2 = a \times b$.
Example (Genus one Lefschetz fibrations)

M_1 be the mapping class group of the torus $\mathbb{T}^2 = a \times b$. $M_1 = \text{SL}(2, \mathbb{Z})$ is generated by

$$t_a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$t_b = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Subject to the relations

$$t_a t_b t_a = t_b t_a t_b$$

$$(t_a t_b)^6 = 1$$
Example (Genus one Lefschetz fibrations)

M_1 be the mapping class group of the torus $\mathbb{T}^2 = a \times b$. $M_1 = SL(2, \mathbb{Z})$ is generated by

$$t_a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$t_b = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Subject to the relations

$$t_at_bt_a = t_bt_at_b$$

$$(t_at_b)^6 = 1$$

$$(t_at_b)^{6n} = 1$$ in M_1.
Example (Genus one Lefschetz fibrations)

M_1 be the mapping class group of the torus $\mathbb{T}^2 = a \times b$. $M_1 = SL(2, \mathbb{Z})$ is generated by

$$t_a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$t_b = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Subject to the relations

$$t_a t_b t_a = t_b t_a t_b$$

$$(t_a t_b)^6 = 1$$

$(t_a t_b)^{6n} = 1$ in M_1. The total space of this fibration is the elliptic surface $E(n)$. $E(1) = \mathbb{CP}^2 \# 9 \overline{\mathbb{CP}}^2$, the complex projective plane blown up at 9 points, and $E(2)$ is $K3$ surface. $E(n)$ also admits a genus $n - 1$ Lefschetz fibration over S^2.
Example (Hyperelliptic Lefschetz fibrations)

Let $\alpha_1, \alpha_2, \ldots, \alpha_{2g}, \alpha_{2g+1}$ denote the collection of simple closed curves given in Figure, and c_i denote the right handed Dehn twists t_{α_i} along the curve α_i.

![Vanishing cycles of the genus g Lefschetz fibration given by hyperelliptic involution](image)

The following relations hold in the mapping class group M_g:

\begin{align*}
\Gamma_1(g) &= (c_1 c_2 \cdots c_{2g-1} c_{2g} c_{2g+1}^2 c_{2g} c_{2g-1} \cdots c_2 c_1)^2 = 1. \\
\Gamma_2(g) &= (c_1 c_2 \cdots c_{2g-1} c_{2g} c_{2g+1})^{2g+2} = 1. \\
\Gamma_3(g) &= (c_1 c_2 \cdots c_{2g-1} c_{2g})^{2(2g+1)} = 1.
\end{align*}
The monodromy relation $\Gamma_1(g) = 1$, the corresponding genus g Lefschetz fibrations over S^2 has total space $X(g, 1) = \mathbb{CP}^2 \# (4g + 5)\overline{\mathbb{CP}^2}$, the complex projective plane blown up at $4g + 5$ points.

It is known that for $g \geq 2$, the above fibration on $X(g, 1)$ admits $4g + 4$ disjoint (-1)-sphere sections (proof of this fact using a mapping class group argument is due to S. Tanaka).

The fiber class is of the form $(g + 2)h - ge_1 - e_2 - \cdots - e_{4g+5}$, where e_i denotes the homology class of the exceptional sphere of the i-th blow up and h denotes the pullback of the hyperplane class of \mathbb{CP}^2. The exceptional spheres represented by the homology classes $e_2, e_3, \ldots, e_{4g+5}$ are sections of the Lefschetz fibration $X(g, 1) \to S^2$.
Theorem (S. Donaldson)

For any symplectic 4-manifold X, there exists a non-negative integer n such that the n-fold blowup $X \# n\overline{\mathbb{CP}^2}$ of X admits a Lefschetz fibration $f : X \# n\overline{\mathbb{CP}^2} \to \mathbb{S}^2$.

Theorem (R. Gompf)

Assume that the closed 4-manifold X admits a genus g Lefschetz fibration $f : X \to \Sigma_h$, and let $[F]$ denote the homology class of the fiber. Then X admits a symplectic structure with symplectic fibers iff $[F] \neq 0$ in $H_2(X; \mathbb{R})$. If e_1, \ldots, e_n is a finite set of sections of the Lefschetz fibration, the symplectic form ω can be chosen in such a way that all these sections are symplectic.

For any finitely presented group G, there exist a Lefschetz fibration $X(G)$ over \mathbb{S}^2 with $\pi_1(X(G)) = G$.

$b_2^+(X(G))$ is very large, and depends from the presentation of G.
Main Theorems

Theorem (A. Akhmedov - B. Ozbagci, 2012)

For any finitely presented group G, there exist a closed symplectic 4-manifold $X_n(G)$ with $\pi_1(X(G)) = G$, which admits a genus $2g + n - 1$ Lefschetz fibration over \mathbb{S}^2 that has at least $4n + 4$ pairwise disjoint sphere sections of self intersection -2. Moreover, $X_n(G)$ contains a homologically essential embedded torus of square zero disjoint from these sections which intersects each fiber of the Lefschetz fibrations twice.

Theorem (A. Akhmedov - B. Ozbagci, 2012)

There exist an infinite family of non-holomorphic Lefschetz fibrations $X_n(G, K_i)$ over \mathbb{S}^2 with $\pi_1(X_n(G, K_i)) = G$ that can be obtained from $X_n(G)$ via knot surgery along K_i, where K_i are an infinite family of genus $g \geq 2$ fibered knots with distinct Alexander polynomials.
Lefschetz fibrations by Y. Matsumoto and M. Korkmaz

Let assume $g = 2k$.

The 4-manifold $Y(1, k) = \Sigma_k \times S^2 \# 4\overline{\mathbb{C}\mathbb{P}}^2$ is the total space of the genus g Lefschetz fibration over S^2 with $2g + 4$ singular fibers. This was shown by Yukio Matsumoto for $k = 1$, and in the case $k \geq 2$ by Mustafa Korkmaz, by factorizing the *vertical* involution θ of the genus $2k$ surface.

Figure: The involution θ of the genus $2k$ surface
Theorem (Y. Matsumoto, M. Korkmaz)

Let θ denote the vertical involution of the genus g surface with 2 fixed points. In the mapping class group M_g, the following relations between right handed Dehn twists hold:

\begin{align*}
 & a) \ (t_{B_0} t_{B_1} t_{B_2} \cdots t_{B_g} t_c)^2 = \theta^2 = 1 \text{ if } g \text{ is even}, \\
 & b) \ (t_{B_0} t_{B_1} t_{B_2} \cdots t_{B_g} (t_a)^2 (t_b)^2)^2 = \theta^2 = 1 \text{ if } g \text{ is odd}.
\end{align*}

B_k, a, b, c are the simple closed curves defined as in Figure.

Figure: The vanishing cycles
Yusuf Gurtas generalized the constructions of Matsumoto and Korkmaz even further. He presented the positive Dehn twist expression for a new set of involutions in the mapping class group M_{2k+n-1} of a compact, closed, oriented 2-dimensional surface Σ_{2k+n-1}. The total space of these genus $g = 2k + n - 1$ Lefschetz fibration over S^2 is $Y(n, k) = \Sigma_k \times S^2 \# 4n\mathbb{C}P^2$.
Figure: The involution θ of the surface Σ_{2k+n-1}
A generic horizontal fiber is the double cover of S^2, branched over two points. Thus, we have a sphere fibration on $Y(n,k) = \Sigma_k \times S^2 \#4n\overline{CP^2}$. A generic fiber of the vertical fibration is the double cover of Σ_k, branched over $2n$ points. Thus, a generic fiber of the vertical fibration has genus $n + 2k - 1$.

Figure: The branch locus for $\Sigma_k \times S^2 \#4n\overline{CP^2}$
Theorem (Y. Gurtas)

The positive Dehn twist expression for the involution θ is given by

$$\theta = e_{2i+2} \cdots e_{2n-2} e_{2n-1} e_{2i} \cdots e_1 B_0 e_{2n-1} \cdots e_{2i+2} e_1 \cdots e_{2i} B_1 B_2 \cdots B_{4k-1} B_{4k} e_{2i+1}. $$
Figure: The involution θ of the surface Σ_{2k+n-1}
Construction Tools
Construction Tools

Definition

Let X be a symplectic 4-manifold with a symplectic form ω, and the torus Λ be a Lagrangian submanifold of X with self-intersection 0. Given a simple loop λ on Λ, let λ' be a simple loop on $\partial (\nu \Lambda)$ that is parallel to λ under the Lagrangian framing. For any integer m, the $(\Lambda, \lambda, 1/m)$ Luttinger surgery on X will be $X_{\Lambda, \lambda}(1/m) = (X - \nu(\Lambda)) \cup_{\phi} (S^1 \times S^1 \times D^2)$, the $1/m$ surgery on Λ with respect to λ under the Lagrangian framing. Here $\phi : S^1 \times S^1 \times \partial D^2 \to \partial (X - \nu(\Lambda))$ denotes a gluing map satisfying $\phi([\partial D^2]) = m[\lambda'] + [\mu_\Lambda]$ in $H_1(\partial (X - \nu(\Lambda)))$, where μ_Λ is a meridian of Λ.

$X_{\Lambda, \lambda}(1/m)$ possesses a symplectic form that restricts to the original symplectic form ω on $X \setminus \nu \Lambda$.

Luttinger’s surgery has been very effective tool recently for constructing exotic smooth structures.
Example
Example

Let $\mathbb{T}^4 = a \times b \times c \times d \cong (c \times d) \times (a \times b)$. Let K_n be an n-twist knot.
Example

Let $\mathbb{T}^4 = a \times b \times c \times d \cong (c \times d) \times (a \times b)$. Let K_n be an n-twist knot. Let M_{K_n} denote the result of performing 0 Dehn surgery on S^3 along K_n. $S^1 \times M_{K_n}$ is obtained from $\mathbb{T}^4 = (c \times d) \times (a \times b) = c \times (d \times a \times b) = S^1 \times \mathbb{T}^3$ by first performing a Luttinger surgery $(c \times \tilde{a}, \tilde{a}, -1)$ followed by a surgery $(c \times \tilde{b}, \tilde{b}, -n)$. The tori $c \times \tilde{a}$ and $c \times \tilde{b}$ are Lagrangian and the second tilde circle factors in \mathbb{T}^3 are as pictured. Use the Lagrangian framing to trivialize their tubular neighborhoods. When $n = 1$ the second surgery is also a Luttinger surgery.

Figure: The 3-torus $d \times a \times b$
Symplectic Connected Sum

Definition
Let X_1 and X_2 are symplectic 4-manifolds, and $F_i \subset X_i$ are 2-dimensional, smooth, closed, connected symplectic submanifolds in them. Suppose that $[F_1]^2 + [F_2]^2 = 0$ and the genera of F_1 and F_2 are equal. Take an orientation-preserving diffeomorphism $\psi : F_1 \rightarrow F_2$ and lift it to an orientation-reversing diffeomorphism $\Psi : \partial \nu F_1 \rightarrow \partial \nu F_2$ between the boundaries of the tubular neighborhoods of νF_i. Using Ψ, we glue $X_1 \setminus \nu F_1$ and $X_2 \setminus \nu F_2$ along the boundary. The 4-manifold $X_1 \#_\psi X_2$ is called the (symplectic) connected sum of X_1 and X_2 along F_1 and F_2, determined by Ψ.

\[
e(X_1 \#_\psi X_2) = e(X_1) + e(X_2) + 4(g - 1), \\
\sigma(X_1 \#_\psi X_2) = \sigma(X_1) + \sigma(X_2),
\]
Lemma

Let \(f : X \to \mathbb{S}^2 \) be a genus \(g \) Lefschetz fibration with global monodromy given by the relation \(t_{\alpha_1} \cdot t_{\alpha_2} \cdot \cdots \cdot t_{\alpha_s} = 1 \). Let \(X \#_{\psi} X \) denote the fiber sum of \(X \) with itself by a self-diffeomorphism \(\psi \) of the generic fiber \(\Sigma \). Then \(X \#_{\psi} X \) has the vanishing cycles \(\alpha_1, \alpha_2, \cdots, \alpha_s, \psi(\alpha_1), \psi(\alpha_2), \cdots, \psi(\alpha_s) \).
Luttinger surgeries on product manifolds $\Sigma_n \times \Sigma_2$ and $\Sigma_n \times \mathbb{T}^2$

Fix integers $n \geq 2$, $p_i \geq 0$ and $q_i \geq 0$, where $1 \leq i \leq n$. Let $Y_n(1/p_1, 1/q_1, \cdots, 1/p_n, 1/q_n)$ denote symplectic 4-manifold obtained by performing the following $2n + 4$ Luttinger surgeries on $\Sigma_n \times \Sigma_2$. These $2n + 4$ surgeries comprise of the following 8 surgeries

$$(a'_1 \times c'_1, a'_1, -1), \quad (b'_1 \times c''_1, b'_1, -1),$$
$$(a'_2 \times c'_2, a'_2, -1), \quad (b'_2 \times c''_2, b'_2, -1),$$
$$(a'_2 \times c'_1, c'_1, +1/p_1), \quad (a''_2 \times d'_1, d'_1, +1/q_1),$$
$$(a'_1 \times c'_2, c'_2, +1/p_2), \quad (a'_1 \times d'_2, d'_2, +1/q_2),$$

together with the following $2(n - 2)$ additional Luttinger surgeries

$$(b'_1 \times c'_3, c'_3, -1/p_3), \quad (b'_2 \times d'_3, d'_3, -1/q_3),$$
$$\cdots, \quad \cdots,$$
$$(b'_1 \times c'_n, c'_n, -1/p_n), \quad (b'_2 \times d'_n, d'_n, -1/q_n).$$
Here, a_i, b_i ($i = 1, 2$) and c_j, d_j ($j = 1, \ldots, n$) are the standard loops that generate $\pi_1(\Sigma_2)$ and $\pi_1(\Sigma_n)$.

Figure: Lagrangian tori $a_i' \times c_j'$ and $a_i'' \times d_j'$
The Euler characteristic of $Y_n(1/p_1, 1/q_1, \cdots, 1/p_n, 1/q_n)$ is $4n - 4$ and its signature is 0. The fundamental group $\pi_1(Y_n(1/p_1, 1/q_1, \cdots, 1/p_n, 1/q_n))$ is generated by a_i, b_i, c_j, d_j ($i = 1, 2$ and $j = 1, \ldots, n$) and the following relations hold in $\pi_1(Y_n(1/p_1, 1/q_1, \cdots, 1/p_n, 1/q_n))$:

\[
\begin{align*}
[b_1^{-1}, d_1^{-1}] &= a_1, \\
[a_1^{-1}, d_1] &= b_1, \\
[b_2^{-1}, d_2^{-1}] &= a_2, \\
[a_2^{-1}, d_2] &= b_2, \\
[d_1^{-1}, b_2^{-1}] &= c_1^{p_1}, \\
[c_1^{-1}, b_2] &= d_1^{q_1}, \\
[d_2^{-1}, b_1^{-1}] &= c_2^{p_2}, \\
[c_2^{-1}, b_1] &= d_2^{q_2}, \\
[a_1, c_1] &= 1, \\
[a_1, c_2] &= 1, \\
[a_1, d_2] &= 1, \\
[b_1, c_1] &= 1, \\
[a_2, c_1] &= 1, \\
[a_2, c_2] &= 1, \\
[a_2, d_1] &= 1, \\
[b_2, c_2] &= 1, \\
[a_1, b_1][a_2, b_2] &= 1, \\
\prod_{j=1}^{n} [c_j, d_j] &= 1, \\
[a_1^{-1}, d_3^{-1}] &= c_3^{p_3}, \\
[a_2^{-1}, c_3^{-1}] &= d_3^{q_3}, \\
[a_1^{-1}, d_n^{-1}] &= c_n^{p_n}, \\
[a_2^{-1}, c_n^{-1}] &= d_n^{q_n}, \\
[b_1, c_3] &= 1, \\
[b_2, d_3] &= 1, \\
[b_1, c_n] &= 1, \\
[b_2, d_n] &= 1.
\end{align*}
\]
The surfaces $\Sigma_2 \times \{\text{pt}\}$ and $\{\text{pt}\} \times \Sigma_n$ in $\Sigma_2 \times \Sigma_n$ descend to surfaces in $Y_n(1/p_1, 1/q_1, \cdots, 1/p_n, 1/q_n)$. They are symplectic submanifolds in $Y_n(1/p_1, 1/q_1, \cdots, 1/p_n, 1/q_n)$. Denote their images by Σ_2 and Σ_n. Note that $[\Sigma_2]^2 = [\Sigma_n]^2 = 0$ and $[\Sigma_2] \cdot [\Sigma_n] = 1$.
Let \(\{p_i, q_i \geq 0 : 1 \leq i \leq g \} \) be a set of nonnegative integers and let \(\overline{p} = (p_1, \ldots, p_g) \) and \(\overline{q} = (q_1, \ldots, q_g) \).
Let \(\{p_i, q_i \geq 0 : 1 \leq i \leq g\} \) be a set of nonnegative integers and let \(\overline{p} = (p_1, \ldots, p_g) \) and \(\overline{q} = (q_1, \ldots, q_g) \). Denote by \(M_g(\overline{p}, \overline{q}) \) the symplectic 4-manifold obtained by performing the following \(2g \) Luttinger surgeries on the symplectic 4-manifold \(\Sigma_g \times \mathbb{T}^2 \):

\[
\begin{align*}
(a'_1 \times c', a'_1, -1/p_1), & \quad (b'_1 \times c'', b'_1, -1/q_1), \\
(a'_2 \times c', a'_2, -1/p_2), & \quad (b'_2 \times c'', b'_2, -1/q_2), \\
\quad \vdots \quad \vdots \\
(a'_{g-1} \times c', a'_{g-1}, -1/p_{g-1}), & \quad (b'_{g-1} \times c'', b'_{g-1}, -1/q_{g-1}), \\
(a'_g \times c', a'_g, -1/p_g), & \quad (b'_g \times c'', b'_g, -1/q_g).
\end{align*}
\]

Here, \(a_i, b_i \) \((i = 1, 2, \ldots, g) \) and \(c, d \) denote the standard generators of \(\pi_1(\Sigma_g) \) and \(\pi_1(\mathbb{T}^2) \), respectively.
The fundamental group of $M_g(\overline{p}, \overline{q})$ is generated by a_i, b_i ($i = 1, 2, 3 \cdots, g$) and c, d, and the following relations hold in $M_g(\overline{p}, \overline{q})$:

$$[b_1^{-1}, d^{-1}] = a_1^{p_1}, \quad [a_1^{-1}, d] = b_1^{q_1}, \quad [b_2^{-1}, d^{-1}] = a_2^{p_2}, \quad [a_2^{-1}, d] = b_2^{q_2}, \quad (4)$$

$$\cdots, \cdots, \cdots,$$

$$[b_g^{-1}, d^{-1}] = a_g^{p_g}, \quad [a_g^{-1}, d] = b_g^{q_g}, \quad [a_1, c] = 1, \quad [b_1, c] = 1, \quad [a_2, c] = 1, \quad [b_2, c] = 1,$$

$$[a_3, c] = 1, \quad [b_3, c] = 1,$$

$$[a_g, c] = 1, \quad [b_g, c] = 1,$$

$$[a_1, b_1][a_2, b_2] \cdots [a_g, b_g] = 1, \quad [c, d] = 1.$$

Let $\Sigma_g \subset M_g(\overline{p}, \overline{q})$ and T be a genus g and genus 1 surfaces that descend from the surfaces $\Sigma_g \times \{\text{pt}\}$ and $\{\text{pt}\} \times \mathbb{T}^2$ in $\Sigma_g \times \mathbb{T}^2$.
- $M_g(\overline{p}, \overline{q})$ is a locally trivial genus g bundle over \mathbb{T}^2 where T is a section. The $(a'_i \times c', a'_i, -p_i)$ or $(b'_i \times c'', b'_i, -q_i)$ Luttinger surgery in the trivial bundle $\Sigma_g \times \mathbb{T}^2$ preserves the fibration structure over \mathbb{T}^2 introducing a monodromy of the fiber Σ_g along the curve c in the base. Depending on the type of the surgery the monodromy is either $(t_{a_i})^{p_i}$ or $(t_{b_i})^{q_i}$, where t denotes a Dehn twist.

- $E(n)$ can be obtained as a desingularization of the branched double cover of $\mathbb{S}^2 \times \mathbb{S}^2$ with the branching set being 4 copies of $\{pt\} \times \mathbb{S}^2$ and $2n$ copies of $\mathbb{S}^2 \times \{pt\}$.
$M_g(\overline{p}, \overline{q})$ is a locally trivial genus g bundle over \mathbb{T}^2 where T is a section. The $(a'_i \times c', a'_i, -p_i)$ or $(b'_i \times c'', b'_i, -q_i)$ Luttinger surgery in the trivial bundle $\Sigma_g \times \mathbb{T}^2$ preserves the fibration structure over \mathbb{T}^2 introducing a monodromy of the fiber Σ_g along the curve c in the base. Depending on the type of the surgery the monodromy is either $(t_{a_i})^{p_i}$ or $(t_{b_i})^{q_i}$, where t denotes a Dehn twist.

$E(n)$ can be obtained as a desingularization of the branched double cover of $S^2 \times S^2$ with the branching set being 4 copies of $\{pt\} \times S^2$ and $2n$ copies of $S^2 \times \{pt\}$. $E(n)$ admits a genus $n - 1$ fibration over S^2 and an elliptic fibration over S^2. A regular fiber of the elliptic fibration on $E(n)$ intersects every genus $n - 1$ fiber of the other Lefschetz fibration twice.
Construction of Lefschetz fibrations over \mathbb{S}^2

- Let $X_{g,n}(\overline{p}, \overline{q})$ denote the symplectic sum of $M_g(\overline{p}, \overline{q})$ along the torus $T = c \times d$ with the elliptic surface $E(n)$ along a regular elliptic fiber.

- The symplectic 4-manifold $X_{g,n}(\overline{p}, \overline{q})$ admits a genus $2g + n - 1$ Lefschetz fibration over \mathbb{S}^2 with at least $4n + 4$ pairwise disjoint sphere sections of self intersection -2. Moreover, $X_{g,n}(\overline{p}, \overline{q})$ contains a homologically essential embedded torus of square zero disjoint from these sections which intersects each fiber of the Lefschetz fibration twice.

- The symplectic 4-manifold $X_{g,n}(\overline{p}, \overline{q})$ can also be constructed as the twisted fiber sum of two copies of a genus $2g + n - 1$ Lefschetz fibration on $\Sigma_g \times \mathbb{S}^2 \# 4n\overline{\mathbb{C}\mathbb{P}^2}$. This follows from the fact that the symplectic sum of $E(n)$ along a regular elliptic fiber with $\Sigma_g \times \mathbb{T}^2$ along a natural square zero torus is diffeomorphic to the untwisted fiber sum of two copies of the genus $2g + n - 1$ fibration on $\Sigma_g \times \mathbb{S}^2 \# 4n\overline{\mathbb{C}\mathbb{P}^2}$. The gluing ϕ diffeomorphism can be described explicitly using the curves along which we perform our Luttinger surgeries.
The fundamental group of the symplectic 4-manifold $X_{g,n}(\overline{p}, \overline{q})$ is generated by the set \{\(a_i, b_i : 1 \leq i \leq g\)\} subject to the relations:
\[a_i^{p_i} = 1, \ b_i^{q_i} = 1, \text{ for all } 1 \leq i \leq g, \text{ and }\]
\[
\prod_{j=1}^{g}[a_j, b_j] = 1.
\]
By setting $p_i = 1$ and $q_i = 0$, for all $1 \leq i \leq g$, we see that the fundamental group of $X_{g,n}((1,1,\ldots,1),(0,0,\ldots,0))$ is a free group of rank g. The gluing diffeomorphism: $\phi = t_{a_1} \cdots t_{a_g}$.

By setting $p_i = 1$ and $q_i = 1$, for all $1 \leq i \leq g$, we see that the fundamental group of $X_{g,n}((1,1,\ldots,1),(1,1,\ldots,1))$ is a trivial. The gluing diffeomorphism: $\phi = t_{a_1} t_{b_1} \cdots t_{a_g} t_{b_g}$.

If we set $p_i = 1$ and $q_i = 0$, for all $1 \leq i \leq k$ and $p_i = 1$ and $q_i = 1$, for all $k + 1 \leq i \leq g$, the fundamental group of $X_{g,n}((1,1,\ldots,1),(1,1,\ldots,0))$ is a free group of rank k. The gluing diffeomorphism: $\phi = t_{a_1} \cdots t_{a_k} t_{a_{k+1}} t_{b_{k+1}} \cdots t_{a_g} t_{b_g}$.
Stein fillings from Lefschetz fibrations

Definition

A complex surface V is Stein if it admits a proper holomorphic embedding $f : V \to \mathbb{C}^n$ for some n. For a generic point $p \in \mathbb{C}^n$, consider the map $\phi : V \to \mathbb{R}$ defined by $\phi(z) = ||z - p||^2$. For a regular value $a \in \mathbb{R}$, the level set $M = \phi^{-1}(a)$ is a smooth 3-manifold with a distinguished 2-plane field $\xi = TM \cap iTM \subset TV$. ξ defines a contact structure on M, and $S = \phi^{-1}([0, a])$ is called a Stein filling of (M, ξ).

Theorem (S. Akbulut - B. Ozbagci)

Let $f : X \to S^2$ be a Lefschetz fibration with a section σ and let Σ denote a regular fiber of this fibration. Then $S = X \setminus \text{int}(\nu(\sigma \cup \Sigma))$ is a Stein filling of its boundary equipped with the induced (tight) contact structure, where $\nu(\sigma \cup \Sigma)$ denotes a regular neighborhood of $\sigma \cup \Sigma$ in X.
Finiteness Results on Stein Fillings

- The tight contact structure on S^3 has a unique Stein filling (Y. Eliashberg, 1989).
- All tight contact structures on lens spaces $\mathbb{L}(p, q)$ have a finite number of Stein fillings (D. McDuff, P. Lisca, 1992).
- Finiteness results also have been verified for simple elliptic singularities (H. Ohta and Y. Ono, 2002).
- Finiteness results on symplectic fillings of Seifert fibered spaces over S^2 (L. Starkston, 2013).
Infiniteness Results on Stein Fillings

- B. Ozbagci and A. Stipsicz, and independently I. Smith showed that certain contact structures have an infinite number of Stein fillings (2003). Their examples have non-trivial fundamental groups.
- Infinitely many simply-connected exotic Stein fillings (Akhmedov - Etnyre - Mark - Smith, 2007).
- Exotic Stein fillings with $\pi_1 = \mathbb{Z} \oplus \mathbb{Z}_n$ (Akhmedov - Ozbagci, 2012).
Theorem (A. Akhmedov - B. Ozbagci, 2012)

For any finitely presented group G, there exist an infinite family of exotic Stein 4-manifolds $S_n(G, K_i)$ with $\pi_1(S_n(G, K_i)) = G$, where K_i are inf. family of genus $g \geq 2$ fibered knots with distinct Alexander polynomials.
THANK YOU!