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0. 4-manifold handlebodies

A smooth manifold Mm is said to be obtained from the smooth
manifold Nm by attaching a k-handle and denoted by M = N ⌣ϕ hk,
if there is an imbedding ϕ : Sk−1 × Bm−k →֒ ∂N , such that M is
obtained from the disjoint union Bk × Bm−k and N by identifying
x ∈ Sk−1 × Bm−k with ϕ(x) ∈ ∂N . Here ϕ(Sk−1 × 0) is called the
attaching sphere, and 0×Sm−k−1 is called the belt sphere of this handle.

Mm = [Bk ×Bm−k ⊔N ]/x ∼ ϕ(x)

Any Morse function f : M → R gives a handle decomposition of
M = ∪mk=0Mk, with φ = M−1 ⊂ M0 ⊂ .. ⊂ Mm = M , and Mk

is obtained from Mk−1 by attaching k-handles [M] . This is called a
handlebody structure of M . In particular, when M4 is connected and
4-dimensional, then it can be obtained from B4 (zero handle) by at-
taching 1-, 2- , and 3-handles and capping with the top B4 (4-handle).
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Figure 1. Handlebody of a 4-manifold
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In [S] Smale, and independently in [W] Wallace, defined and studied
handlebody structures on smooth manifolds. Smale went further by
turning the operations on handlebody structures into a great technical
machine to solve difficult problems about smooth manifolds, such as the
smooth h-cobordism theorem which implied the proof of the topological
Poincare conjecture in dimensions ≥ 5. The two basic techniques which
he utilized were the handle sliding and handle canceling operations [H].

If the manifold M4 is 4-dimensional and connected, by using its
handlebody we can basically see the whole manifold as follows: As
shown in Figure 1 we place ourselves on the boundary S3 of its 0-
handle B4 and watch the feet (the attaching regions) of the 1- and 2-
handles. The feet of the 1-handles will look like the pair of balls of same
color, and the feet of 2-handles will look like imbedded framed circles
(framed knots) which might go over the 1-handles. This is because the
2-handles are attached after the 1-handles.

Fortunately we don’t need to visualize the attaching regions of the
3-handles, because an amazing theorem of Laudenbach and Poenaru
[LP], which says that any connected smooth 4-manifold is determined
by its 1- and 2-handles (i.e. 3-handles are attached uniquely!)

The feet of a 1-handles in S3 will appear as pair of balls B3, where
on the boundary they are identified by the map (x, y, z) 7→ (x,−y, z)
(with respect to the standard coordinate axis placed at their origins)

x
y

z

x

-y

z

Figure 2

Any 2-handle which doesn’t go over the 1-handles is attached by an
imbedding ϕ : S1 × B2 → R3 ⊂ S3. This imbedding is determined
by the knot K = ϕ(S1 × (0, 0)) together with an orthonormal framing
e = {u, v} of its normal bundle in R3. This framing e determines ϕ by

ϕ(x, λ, ν) = (x, λu+ νv)

Also note that by orientingK and using the right hand rule, one normal
vector field u determines the other v. Hence any normal vector field of
K determines a framing, which can be parametrized by π1(SO2) = Z.
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We make the convention that the normal vector field induced from
any Seifert surface of K to be the zero framing u0. Once this is done,
it is clear that the framing k ∈ Z corresponds to the vector field uk
which deviates from u0 by k-full twist. Put another way, uk is the
vector field when we push K along it, we get a copy of K which has
linking number k with K. So we denote the framing by an integer.
The following exercise gives a useful tool of deciding the k-framing.

Exercise 1. Orient a diagram of the knot K, and let C(K) be the set
of its crossing points, define writhe w(K) of a knot K to be the integer

w(K) =
∑

p∈C(K)

ǫ(p)

where ǫ(p) is +1 or −1 according to right or left handed crossing at p.
Show that the “blackboard framing” of a knot equals to its writhe

K

u0

Figure 3. w(K) = 3 and u0 is the zero framing

When attaching framed circles of 2-handles go over 1-handles their
framing can not be a well defined integer. For example, by the isotopy
of Figure 4 the framing can be changed by adding or subtracting 2.

Figure 4

One way to prevent this framing changing isotopy is to fix an arc, as
shown in Figure 2, connecting the attaching balls of the 1-handle, and
make the rule that no isotopy of framed knots may cross this arc. Only
after this unnatural rule we can talk about well defined framed circles.
Most of the work of [AK1] is based on this convention, used carefully.
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0.1. Carving (Invariant notation of 1-handle). Carving is based
on the following simple observation: If the attaching sphere ϕ(Sk−1×0)
of the k-handle of M = N ⌣ϕ hk, bounds a disk in ∂N , then M
can be obtained from N by excising (drilling) out an open tubular
neighborhood of a properly imbedded disk Dm−k−1 ⊂ M . In particular
if M4 is connected, attaching a 1-handle to M4 is equivalent to carving
out a properly imbedded 2-disk D2 ⊂ B4 from the 0-handle B4 ⊂ M .

To distinguish the boundary of the carved disk ∂D ⊂ S3 from the
attaching cirlces of the 2-handles, we will denote it by a circle with dot.
Any path going through this dotted circle is going over the associated
1-handle. This simple observation has nice consequences (e.g. [A1]).

B

1

3

B

1B

B2

          attach 1-handle

  cancel   drill

  M + (1-handle)

M

M - D=

Figure 5. Attaching 1-handle is the same as drilling 2-disk

So the observer in Figure 1 standing on the boundary of B4 will see
the 4-manifold as in Figure 6. As discussed before, the framing of the
attaching circle of each 2-handle is specified by an integer, so the knots
come with integers (in this example we assigned the framings 2 and 3).

2 3

Figure 6

This notation of 1-handle has the advantage of not creating ambi-
guity on the framings of framed knots going through them, as pointed
out in Figure 4. This notation can help to construct hard to see diffeo-
morphisms between the boundaries of 4-manifolds (Section 1.5).
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Exercise 2. Show that S1×B3 and B2×S2 are related to each other by
surgeries of their core spheres, correponding to zero and dot exchanges:

0

surgery to

S
2 S

1
= =B

2 B
3

x x

S
2

surgery to S
1

Figure 7

Exercise 3. Show that the manifold W in Figure 8 is a contractible
manifold, and by sugeries in its interior (corresponding to zero and dot
exchanges on the symmetric link) gives an involution on its boundary
f : ∂W → ∂W , where the loops a, b are mapped to each other by f .

0

W

f

W W

=

a
b

0

a
b

0
a

b

Figure 8

0.2. Sliding handles. Here we will denote an r-framed knot K by
Kr (which will also denote the corresponding 4-manifold). Since any
smooth 4-manifold M4 is determined by its 0, 1-and 2-handles, M can
be denoted by a link of framed knots Kr1

1 , Kr2
2 , .. (2-handles) along with

“circle with dots” C1, C2, .. (1-handles). Notice here we have the option
of denoting the 1-handles either by dotted circles, or pair of balls (each
notation has its advantages). Also for convenience, orient this link Λ.

Λ = {Kr1
1 , .., Krk

k , C1, .., Cs}

We notate this by M = MΛ. For example, Figure 6 is the 4-manifold
MΛ with Λ = {K2

1 , K
3
2 , C}, where K1 is the trefoil knot, and K2 is the

circle linking K1 , and C is the 1-handle as shown in the picture.
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As explained in [S], [H] we can change a given handlebody of M to
another handlebody of M , by sliding any k-handle over other r-handles
with r ≤ k (Figure 9). In particular in a 4-manifold we can (a) slide a
1-handle over another 1-handle, or (b) slide a 2-handle over a 1-handle
or (c) slide a 2-handle over another 2- handle. This process preserves
the framing of the attaching circles of 2-handles in a well defined way.

Figure 9

Exercise 4. Let µij be the linking number of Ki and Cj, and λij be the
linking number of Ki and Kj. Also for each i let K ′

i denote a parallel
copy of Ki (Ki pushed off by the framing ri), and C ′

i be a parallel
copy of the circle Ci. Show that the handle slides (a), (b), (c) above
corresponds to changing one of the elements of Λ as below (j 6= s):

(a) Ci 7→ Ci+C ′
j := The circle obtained, by connected summing Ci

to C ′
j along an arch which does not go through any of the C’s.

(b) Kri
i 7→ Ki + C ′

j := K̄ r̄i
i The framed knot obtained, by connected

summing Ki to C ′
s along an arc, with framing r̄i = ri + 2µij

(c) Kri
i 7→ Ki +K ′

s := K̄ r̄i
i The framed knot obtianed, by connected

summing Ki to K ′
j along an arc, with framing r̄i = ri+rj+2λij

(a)

2 3
0

2 1

(b) (c)

1

-1
0

Figure 10. Examples of handle slides (a), (b), (c)
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0.3. Canceling handles. We can cancel a k-handle hk with a (k+1)-
handle hk+1 provided the attaching sphere of hk+1 meets the belt sphere
of hk transversally at a single point (as explained in [S] and [H])

N ⌣ϕ hk ⌣ψ hk+1 ≈ N

For example, in Figure 5 a canceling 1 and 2-handle pairs was drawn.
Any 1-handle, and a 2-handle whose attaching circle (framed knot) goes
through the 1-handle geometrically once, forms is a canceling pair. If no
other framed knot goes through the 1-handle of a canceling pair, simply
erasing the pair from the picture corresponds to canceling operation.
Three pictures of Figure 11 are equivalent descriptions of a canceling
handle pair, if you want to cancel it just erase it from the picture.

= =
-2

-2 -2

Figure 11

It follows from the handle sliding description that, if there are other
framed knots going through the 1-handle of a canceling handle pair,
those framed knots must be slid over over the 2-handle of the canceling
pair, before the canceling operation (erasing the pair from the picture)

=
-2

...... ... ...
slide cancel

Figure 12

Since 3-handles are attached uniquely, introducing a canceling 2- and
3-handle pair is much simpler operation. We just draw its 2-handle as
0-framed unknot, which is S2×B2, and declare that there is a canceling
3-handle on top of it. In the picture of 4-manifold no other handles
should go through this 0-framed unknot.
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0.4. Carving ribbons. In some cases carving operation allows us to
slide a 1-handles over a 2-handles, which is in general prohibited (the
attaching circle of the 2-handle might go through the 1-handle). But
as in the configuration of Figure 13, we can imagine the carved disk
(painted yellow inside) as a trough (or a groove) just below the surface,
then sliding it over the 2-handle by indicated isotopy makes sense.

k

kk
slide

Figure 13

Exercise 5. Justify the isotopy of Figure 13, by first breaking the 1-
handle into a 1-handle and a canceling 1/2-handle pair, as in the first
picture of Figure 14, then by sliding the new 2-handle over the 2-handle
of Figure 13, then at the end by canceling back the 1/2-handle pair.

0

0

...

...

...

...

...

...

...

...0 0

cancel

cancel

Figure 14

This move can turn a 1-handle, which is a carved disk bounding
an unknot (in a nonstandard handlebody of B4) into a carved ribbon
bounding a ribbon knot (in the standard handlebody of B4), as in the
example of Figure 15.

We can also consider this operation in the reverse, namely given a
ribbon knot, how can we describe complement of the slice disk which
ribbon knot bounds in B4?. In short, what is the ribbon complement
obtained by carving this ribbon disk from B4? Clearly by ribbon moves
(i.e. cutting and regluing along bands) we can turn the ribbon knot
into disjoint union of unknotted circles, which we can use to carve B4

along the disks they bound, getting some number of connected sum
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#k(S
1 × B3). Now we can do the reverse of the ribbon moves, which

describes a cobordism from the boundary #k(S
1×S2) of the carved B4

to the ribbon complement in S3. During this cobordism every time two
circles coalesce the complement gains a 2-handle as shown in Figure 16.

cancel

slide

0 0

0

-1

isotopy

Figure 15

0... ...

... ...

reverse
 ribbon
 move

... ...

 ribbon knot  carved disjoint circles

carved ribbon knot

 ribbon
  move

Figure 16
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For example, applying this process to the ribbon knot of Figure 17
gives the handlebody at the top right picture of Figure 17 (this knot
appears in [A2] playing important role in exotic smooth structures of
4-manifolds as we will see later). Note that this process turns carving
a ribbon from the standard handlebody picture of B4 into carving the
trivial disks from an non standard handlebody picture of B4.

0

0

  ribbon move
    along the
   dotted line

reverse
 ribbon
 move

=

Figure 17

Exercise 6. Show that applying ribbon move to the ribbon knot of
Figure 18 gives the handlebody with two 1-handles and one 2-handle.

0

ribbon
 move

Figure 18
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0.5. Non-orientable handles. If we attach a 1-Handle B1 × B3 to
B4 along a pair of balls {B3

−, B
3
+|} with the same orientation of ∂B4

we get a orientation reversing 1-handle, which is the nonoriented B3-
bundle over S1. So to an observer, located at the boundary of B4,
this will be seen as a pair of balls with their interiors identified by the
map (x, y, z) 7→ (x,−y,−z). To denote this in pictures, we use the
notation adapted in [A3], by drawing a pair of balls with little arcs
passing through their centers, which means that the usual oriented 1-
handle identification is augmented by reflection across the plane which
is orthogonal to these arcs (Figure 19).

x
y

z

x

-y

-z

=

Figure 19

When drawing the frame knots going through these handles, one
should not forget which points of the spheres ∂B3

− and ∂B3
+ are iden-

tified. Also framings of the framed knots going through these handles
are not well defined, not just because of the isotopies of Figure 4, but
also going through an orientation reversing handle the framing changes
sign. For that reason when these handles are present, we will conserva-
tively mark the framings by circled integers (with the knowledge that
pushing them through the handle that integer changes its sign). For
the same reason, any small knot tied to a strand going through this
handle will appear as its mirror image when its is pushed though this
handle, as indicated in Figure 20.

m

-m
=

Figure 20

To simplify the picture, as in Figure 21 we could place one foot of
this 1- handle at the point of infinity ∞ (continue traveling west to ∞
you will appear to be coming back from the east orientation reversed).
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p

=

q

p q

Figure 21. M(p,q)

Exercise 7. Show that the diffeomorphism type of the manifold M(p, q)
in Figure 21 depends only on parity of p+q, it is D2×RP2 if the parity

is even, or else it is D2
∼
× RP2 (a the twisted D2-bundle over RP2).

Also prove that there is the identification ∂(D2
∼
× RP

2) ≈ ∂(D3
∼
× S1),

where D3
∼
× S1 is the orientation reversing D3 bundle over S1.

Now if D2
∼
× RP2 ⊂ M4 we define Blowing down RP2 operation as:

M 7→ (M −D2
∼
× RP

2) ⌣∂ (D
3

∼
× S1)

Figure 22 shows this operation in a handlebody. By this in [A3], an

exotic copy of (S3
∼
× S1)# S2 × S2 was constructed (Figure 23).

1
-1

-1
...

...

.........

other
framed
knots

Figure 22. Blowing down RP2 operation

1

Standard
Exotic

0
0

Figure 23. Standard and exotic (S3
∼
× S1)# S2 × S2
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1. Building low dimensional manifolds

Just as we visualized 4-manifolds by placing ourselves on the bound-
ary of its 0-handle (Figure 1) and observing the feet of 1 and 2-handles,
we can visualize 2 and 3 -manifolds in a similar way by placing ourselves
on the boundary of their 0 handles. By this way we get analogous han-
dlebody pictures as in Figures 24 and 25, except in this case we don’t
need to specify the framings of the attaching circles of the 2-handles.
The 3-manifold handlebody pictures obtained this way are called Hee-
gard diagrams. Clearly we can thicken these handlebodie pictures by
crossing them with balls to get higher dimensional handlebodies as in-
dicated in these figures. For example, the middle picture of Figure 24
is a Heegrd diagram of T 2 × I and the last picture is T 2 ×B2, and the
Figure 25 is a Heegard diagram of S3, and a handlebody of S3 × B1.

T
2

T
2

x B
2

I T
2

x

0

Figure 24

=

0

0

Y x I
3

Y
3

Y
3

Figure 25

After this process, by changing the 1-handle notations to the circle
with dot notation, in Figure 26 we get handlebody pictures of T 2×B2

and Fg × B2 where Fg denots the surface of genus g.
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B
2

T
2
x

...0

0

Fg B
2x

g

Figure 26

Exercise 8. By using this method verify Exercise 7, and also show that
the pictures in Figure 27 are twisted D2 bundles over S2, RP2, and Fg
(more specifically Euler class k bundles).

...
k

g
k

k

Figure 27

1.0.1. Plumbing. For i = 1, 2 let Di →֒ Ei → Si be two Euler class
ki disk bundles over the 2-spheres Si, and let Bi ⊂ Ei be the disks

giving the trivializations Ei|Bi

≈
→ Bi ×Di. Plumbing E1 and E2 is the

process of gluing them together by identifying D1 × B1 with B2 ×D2

(by switching base and fiber directions). Hence, if we locate ourselves
on the boundary of D1 × B1 = B4 we will see two 2-handles attached
to B4 along the link of Hopf circles {∂D1, ∂B1} with framings k1, k2.

k
2k

1

Figure 28
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This is symbolically denoted by a graph with one edge and two ver-
tices weighted k1 and k2. By iterating this process we can similarly con-
struct 4-manifolds corresponding to any graph whose verticies weighted
with integers. Also in this construction Si’s don’t have to be spheres,
they can be any surfaces (orientable or not), but in this case when we
abbreviate these plumbings by graphs, to each of its vertex we need to
specify specific surface along side an integer weight. Reader can check
that the manifolds corresponds to the graphs given in Figure 29.

2 3
= 2 3

RP T

F

 2
#

 2  2

 2
-2

5 3

4

=

5

3

4

-2RP

Figure 29

The following plumbed manifolds have special names: E8 and E10.

-2 -2 -2 -2 -2 -2 -2

-2

=
-2

-2 -2 -2 -2 -2 -2

-2 -2 -2 -2 -2 -2 -2

-2

=

-2

-2 -2 -2 -2 -2 -2 -2
-2 -2

-2-2

-2

E
8

E
10

=

=

Figure 30

An alternative way to denote a plumbing diagram of 2-spheres is
to draw the dual plumbing graph, where the vertices are replace by
intersecting arc segments, intersecting according to the graph
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-2 -3 -2 -2

-2

=
-2

-2
-3

-2

-2

Figure 31

1.0.2. Self plumbing. By a similar method above, we can plumb a disk
bundle D →֒ E → S to itself. The only difference is, when we locate
ourselves on the boundary of D1 × B1 = B4, we will see a link of
thickened Hopf circles being identified with each other by a cylinder
(S1 × [0, 1]) × D2. This is equivalent to first attaching a 1-handle to
B4 (thickened point ×[0, 1]), followed by attaching a 2-handle to the
connected sum of the two circles over the 1-handle (a tunnel). Figure 32
shows self-plumbings of Euler calls k bundles over S2 and over T 2.

kk
=

self plumb

k
k

self plumb

Figure 32

1.1. Some useful diffeomorphisms. As shown in Figure 33, by in-
troducing a canceling pair of 1 and 2-handles, and sliding new 1-handle
over the existing 1-handle, and then canceling the resulting 1 and 2-
handle pair, we get an interesting diffeomorphism between the first
and last handlebodies of this figure. These diffeomorphisms are used
in [AK2] identifying various 3-manifolds.
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Exercise 9. Let W±(l, k) be the contractible manifolds given in Fig-
ure 34 (where the integer l denotes l-full twist between the stands). By
using the above defined diffeomorphisms show that:

• W (l, k) ≈ W (l + 1, k − 1)
• W−(l, k) ≈ −W+(−l,−k + 3)

1 1

...
...

-1
-1 -1 1

   introduce
   canceling
      pair

   slide    cancel

Figure 33

k
k

l

+
= W(k   l), =

l

-
W(k   l),

Figure 34. W (l, k)

Exercise 10. Verify the diffeomorphisms of Figure 35 by handle slides

-1 11
-1

slide slide

1-1

Figure 35
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Exercise 11. Show that S2 × S2#CP2 and CP2#CP2#CP2 are dif-
femorphic to each other by sliding operations as shown in Figure 36
(this identification of the 4-manifolds is originally due to Hirzebruch).

slide

slide

slide

0 0 -1 0 0

-1

-1
1 0-1-11

=

Figure 36

1.2. Algebraic topology. Algebraic topolology of a 4-manifold M4

can easily be red off from its handles. For example if M = MΛ,
where Λ = {Kr1

1 , .., Krk
k , C1, .., Cs} and no 3-handle present, to com-

pute π1(M), for each circle-with-dot Ci we introduce a generator xi,
then each loop Kj gives a relation rj(x1, .., xk) recording how it goes
through the 1-handles. Also homology groups of M can be computed
from the cell complex given by its 1 and 2-handles. For example, to any
α =

∑

j cjKj with cj ∈ Z we can associate [α] ∈ H1(M) (by thinking

Kj as loops). Then when [α] = 0 and by viewing Kj’s as 2-cells, we can
think of α ∈ H2(M). The intersection form of H2(M) can be computed
from these classes: For example if α =

∑

i ciKi and β =
∑

j c
′
jKj, then

α.β =
∑

i,j cic
′
jL(Ki, Kj), where L(Ki, Kj) is the linking number of Ki

and Kj . So in particular L(Kj , Kj) is given by the framing rj of Kj .
Also changing the orientation of the manifold MΛ corresponds chang-
ing Λ to −Λ = {−K−r1

1 , ..,−K−rk
k , C1, .., Cs}, where −K denotes the

mirror image of the knot K. So in short −Mλ = M−Λ.

Every closed 3-manifold bounds some compact smooth 4-manifold.
In particular every oriented 3-manifold is of the form ∂(MΛ), where Λ =
{Kr1

1 , .., Krk
k , C1, .., Cs}. We can assume M has no 3handles (why?).

If we are interested only in the boundary 3-manifold, we can replace
dotted circles C1, .., Cs with 0-framed unknots (Exercise 2) turning Λ
into collection entirely consisting of framed links. When Λ = {Kr} the
following alternative notations will be used interchangibly:

MΛ = B4(K, r) = Kr
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So ∂(Kr) will be the 3-manifold obtained by surgering S3 along K
with framing r. If K ⊂ Y 3 is any knot, we will denote he 3-manifold
obtained by surgering Y along K with framing r by Y (K, r) or Yr(K).

1.3. Kirby calculus. The operationM 7→ M#±CP2 is called blowing
up operation, and its converse is called blowing down operation. If
C±1 is an unknot with ±1 framing in a framed link Λ, then by the
handle sliding operation of Exercise 10, we get a new framed link Λ′

containing C±1 such that C does not linking any other elements of Λ′.
Write Λ′ = Λ′′ ∪ {C±1}, then clearly MΛ′ = MΛ′′#(±CP2) and hence
∂MΛ′ ≈ ∂MΛ′′ . Sometimes the operations Λ′ ↔ Λ′′ on framed links are
also called blowing up/down operations (of the framed links).

-1 11
-1

Figure 37

A set Λ of framed links encodes handle information on M = MΛ,
which comes from a Morse function f : M → R. Cerf theory studies
how two different Morse function on a manifold are related to each
other [C]. In [K1] by using the Cerf theory Kirby studied the map:

{Framed links} 7→ {3−manifolds}

defined by Λ 7→ ∂(MΛ), and he proved that under this map any two
sets of framed links Λ and Λ′ are mapped to the same 3-manifold if
and only if they are related to each other by handle sliding operation
of Excercise 4 (c), and blowing up or down operation. Manipulating
framed links by these two operations is usually called “Kirby calculus”.

1.4. Examples. Links of hypersurfece singularities provide rich class
of 3-manifolds, they are obtained by intersecting complex hypersurfaces
in C2 with isolated singularities at the origin with a sphere S5

ǫ of small
radius ǫ, centered at the origin, for example the Brieskorn family:

Σ(a, b, c) := {(x, y, z) ∈ C
3 | xa + yb + zc = 0} ∩ S5

ǫ

These can be identified as boundaries of some interesting 4-manifolds:
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(2, 3, 5) (2, 3, 7) (2, 3, 9)

(2, 3, 11) (2, 3, 13)

-1 1 0

0
0

-2
2

(2, 7, 13)

-1

Figure 38

Σ(2, 3, 5) is called the Poincare homology sphere. There is a useful
boundary identification Σ(2, 3, 5) ≈ ∂E8 by the steps of Figure 39

=

-1 -1

blow up

1

3

=

1 3

blow up

2 4

1blow up1

235

=1

5 3 2

blow up

blow
  ups blow

downs
-1 -1 -1

-2

4 2 1

-2
-2 -2

-1

-2

-1
1

1

-1
1

-2

E
8

=-2
-2 -2

-2

-2

-2
-2

-2

Figure 39
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Exercise 12. By imitating the steps of Figure 39 show that Σ(2, 3, 7) ≈
∂E10. Also by justifying the diffeomorphisms in Figure 39 show that
∂E10 ≈ M4, where M4 is a manifold obtained from E8 by attaching
pair of 2-handles, and M has the intersection form of E8 # (S2 × S2).

1 -1
-1

-2
0

0

-2

-1

Figure 40

Exercise 13. By justifying steps of Figure 41 construct a closed simply
connected smooth manifold with signature −16 and the second Betti
number 22 (In the figure M = A + B means M contains each of the
handlebodies A and B, and the handles of A and B has zero algebraic
linking number, in which case we can write M = A + handles = B +
handles, and M is homology equivalent to A # B).

-1

1
E

8

1

+

E
8

+

 1

-2-2
0

0

E
10

E
8

+

0 0

11

+

S
3

Figure 41
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Σ(2, 3, 13) bounds a contractible manifold, which can be seen by the
identification ∂Σ(2, 3, 13) ≈ ∂W+(1, 0) as indicated in Figure 42.

1

0

-2 1-1

  blow
   up

  blow
up/down

-1

0

blow
 up

1

2

0

1
-1

surgery

  blow
  down
  twice

(2, 3, 13)

Figure 42

Exercise 14. By verifying the identifications of Figure 43, show that
Σ(2, 3, 11) bounds a smooth simply connected manifold with signature
−16 and the second Betti number 20.

-1

-1

E
8

-1

+

E
8

+

-1

-2-2
0

0

E
8

E
8

+

0 0

11

+

-1

(2, 3, 11)

Figure 43
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1.5. Constructing diffeomorphisms by carving. Given a diffeo-

morphism f : ∂M
≈
→ ∂N , when does f extend to a diffeomophism

inside F : M → N? Some instances carving can provide a solution.
One necessary condition is that f must extend to a homotopy equiva-
lence inside, so let us assume this is as a hypothesis. Now let us start
M = MΛ, where Λ = {Kr1

1 , .., Krk
k , C1, .., Cs}, and let {γ1, .., γk} be the

dual circles of the 2-handles. i.e. γj = ∂Bj , where Bj is the co-core
of the dual 2-handle of K

rj
j . Then if {f(γ1), .., f(γk)} is a slice link in

N , that is if each f(γj) = ∂Dj where Dj ⊂ N are properly imbedded
disjoint disks. Then we can extend f to a diffeomorphism:

f ′ : M ′ := ∂Mǫ ⌣ ∪jν(Bj) → ∂Nǫ ⌣ ∪jν(Dj) := N ′

where ∂Mǫ and ∂Nǫ are the collar neighborhoods of the boundaries,
and ν(Bj), ν(Dj) are the tubular neighborhoods of the disks Bj , Dj.

carveK
r

Dj

B
j

f

Figure 44

This reduces the extension problem to the problem of extending f ′ to
complements M −M ′ → N −N ′. Notice that M −M ′ = #s(S

1 ×B3)
and N −N ′ is a homotopy equivalent to #s(S

1 ×B3). Since every self
diffeomorphism #s(S

1 × S2) extends to a unique self diffeomorphism
of #s(S

1 ×B3), the only way f ′ doesn’t extend to M −M ′ → N −N ′

is N − N ′ is an exotic copy of #s(S
1 × B3). The case of s = 0 is

particularly interesting, since the only way the last extension problem
M − M ′ → N − N ′ fails is when the 4-dimensional smooth Poincare
conjecture fails (in examples usually this step goes through).

Even in the cases of single 2-handle M = Kr and N = Lr extending
a diffeomorphism f : ∂(Kr) → ∂(Lr) can be difficult task without
carving. Because there are no other handles to slide over to construct
a diffeomorphisms in a conventional way! Cerf theory says that, if they
are diffeomorphic there must be canceling handle pairs but we don’t
know where they are? Carving at least gives us a way to start.
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For example, Figure 45 describes a diffeomorphism [A1].

f : ∂(K1)
≈

−→ ∂(L1)

01

-1 0

-1

1

0

0

1

0

1

blow up
=

blow up

slide
 and
surger

cancel

f

K
1

L
1

=

=

Figure 45

Figure 46 shows the dual circle γ and its image f(γ). By carving along
γ and f(γ) we can extend f to a diffeomorphism. To do this we put
dots on these circles (making 1-handles). Then we only have to see
that the second picture becomes B4. For this we slide the 2-handle
over the 1-handle as indicated in the figure and check that we get B4.

1
1

f
f ( )

Figure 46
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The following is a generalization of the above example from [A4].
We claim that for each r ∈ Z − 0, there are of distinct knot pairs K
and Lr (one is slice the other non-slice knots) such that for al r 6= 0.

Kr ≈ Lrr

Previous example gives a hint how to see this by Cerf theory, that is
introduce and then cancel 1- and 2-handle pairs as shown in Figure 47.

r
r+1

r r
r

r

r

=
=

r-2

0

=

slide

0

cancel

f
K L

Figure 47

Exercise 15. ([O], [T]) Show that in ∂M (and ∂N) (Figure 48) the
loops a and b are isotopic to each other (Hint: slide over the 2-handle).
From this produce distinct knots Kr and Lr with K0

r ≈ K0
s and L4

r ≈ L4
s

for all r 6= s (Hint: consider repeated ±1 surgeries to a and b).

0

0

M = -1N =a

b a

b

Figure 48
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2. Gluing 4 manifolds along their boundaries

Given two connected smooth 4-manifolds with boundary M , N , and
an orientation preserving diffeomorphism f : ∂M → ∂N , we can ask
how can you draw a handlebody of the oriented manifold?

−M ⌣f N

Also we can ask when given two copies of codimension zero subman-
ifolds L ⊔ −L ⊂ ∂M , how can we draw the manifold M(f) obtained
from M by identifying these two copies by a diffemorphism f : L → L?

M(f) = M ⊔ (L× [0, 1])

/

(x, 0) ∼ x ∈ L
(f(x), 1) ∼ x ∈ −L

The following provides some ways of doing this:

2.1. Constructing −M ⌣f N by upside down method:

Let M = MΛ with Λ = {Kr1
1 , .., Krk

k , C1, .., Cs} and N = NΛ′. Let
{γ1, .., γk} be the dual zero-framed circles of the 2-handles K1, .., Kr.
Then −M ⌣f N is given by QΛ′′ where Λ′′ = Λ′ ⌣ {f(γ1), .., f(γr)}.
In particular, if we apply this process to M0 := −M − {3-handles}
and any diffeomorphism f : ∂(M0) → ∂#p(S

1 × B3) (p is the num-
ber of 3-handles), we get the upsidedown handlebody of M . In the
special case of when M has no 3-handles, then clearly the framed link
{f(γ1), .., f(γr)} in ∂B4 gives its upside down handlebody of M .

M
4

B
4

1-handles

2-handles

3-handles

B
4

1-handles

B
4

3-handles

f

2-handles

B
3

S

f ( )

1
x# ( )

=
M

4
=

B
4

p

-

Figure 49
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The manifold −M ⌣id M is called the double of M and denoted by
D(M). For example, from the above description we can can construct
handlebody for D(T 2 ×B2) = T 2 × S2. Also from we can easily check
that the double D(C) of the cusp C is S2 × S2 (see Figure 50)

B
2

T
2
x

0

S
2

T
2
x

0 0

double

0 0
0

double

C = Cusp S
2

S
2
x

Figure 50

Exercise 16. Let f : ∂F → ∂F be the diffeomorphism on the boundary
of the Fishtail described in Figure 51 (obtained by dot and 0 exchange)
Show that D(F ) = S4

0

0

0
0

 F

f

S
4

 F = Fishtail  -F  F =
f

Figure 51

Exercise 17. If f : ∂M → ∂E8 is the diffeomorphism descibed in

Figure 39, show that −M ⌣f E8 = CP2# 9C̄P
2
(Hint Figure 52)

-1

f -2

-2 -2 -2 -2 -2 -2 -2

0

-1
M  = E

8
=

Figure 52
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2.2. Constructing −M ⌣f N and M(f) by cylinder method:

For this we attach a cylinder ∂M × [0, 1] to disjoint union −M ⊔N ,
where one end of the cylinder is attached by the identity the other end
is attached by the map f .

−M ⌣f N = −M ⌣id (∂M × [0, 1]) ⌣f N

f

M N

reference arcs
    (hooks)

fid

-M N

Figure 53. −M ⌣f N

Similary, for M(f) we glue a cylinder to M running from −L to L

M(f) = M ⌣id⊔f (∂L× [0, 1])

fid -L L

M

Figure 54. M(f)

Think of f as a force field hovering over −M ⊔N carrying points of
∂M to ∂N . To observe the affects of f , we lower ropes (from a central
point) with hooks tied at their ends, and the hooks go through the cores
γj of the 1-handles ofM , then we watch where f takes them (Figure 55).
To describes the process of gluing the two boundary components by f ,
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we attach 2-handles to γj # f(γj) by using the ropes as guide, as shown
in Figure 56, which is −M ⌣f N . Put another way, f connects the 0-
handle of M with 0-handle of N by a 1-handle (so this 1-handle cancels
one of the 0-handles), then by going over this 1- handle it identifies the
neighborhoods of γj with f(γj), which amounts to attaching 2-hanles
to γj#f(γj) (i.e. creating tunnels).

f

2-handles
2-handles1-handles 1-handles

Figure 55. The affect of f

-M N

Figure 56. −M ⌣f N

We don’t need to describe how f identifies the 2- and 3-handles of M
with that of N , since by a similar description above, they amount to
adding 3- and 4- handles to −M⊔N . Recall that describing 4-manifold
handlebodies we don’t need to specify 3- and 4-handles, because they
are always attached canonically.

The handlebody of M(f) can be constructed almost the same way,
except we must have an extra 1-handle as shown in Figure 57, be-
cause in this case the identifying cylinder L × [0, 1] is attached to a
single connected manifold M , as opposed between two disjoint mani-
folds −M ⊔N . In the former case, this 1-handle was cancelled by one
of the 0-handles of −M ⊔N .
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M

Figure 57. M(f)

2.3. Codimension zero surgery M 7→ M ′:

Let N ⊂ M is a codimension zero submanifold giving the decompo-
sition M = N ⌣∂ C, and let f : ∂N → ∂N ′ is a diffeomorphism. We
call the process M 7→ M ′ := N ′ ⌣f C codimension zero surgery.

f
N N

fid

  2-handles
   from top
   (hangers)

C C

Figure 58. Codimension zero surgery M 7→ M ′

To visualize this process think of all the handles of C as placed at the
top ofN . Notice that only the 2-handles of C interacts with the handles
of N . So think of N as hanging from the 2-handles of C (Figure 58)
like hangers in a dress closet, where f shuffles the hangers below. So
while the handles of N are hanging from the top, they look differently
according to how f rearranged them below.

More precisely, we apply diffeomoprhism f : ∂N → ∂N ′ keeping
track of where f throws the 2-handles of C in N ′. That is, if N = NΛ

and N ′ = N ′
Λ′ such that M = MΛ with Λ = Λ ⌣ {Kr1

1 , .., K
rp
p }, then

M ′ = M ′
Λ′ where Λ′ = Λ′ ⌣ {f(Kr1

1 ), ..f(K
rp
p )}.

We say M is obtained from M ′ by cutting out N ′ and gluing N via
f : ∂N → ∂N ′. So if M ′ = M ′

Λ′ with Λ′ = Λ′ ⌣ {Lr11 , .., L
rp
p }, then

M = MΛ where Λ = Λ ⌣ {f−1(Lr11 ), ..f−1(L
rp
p )}.
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3. Surface bundles over surfaces

3.1. T4. As in Figure 24 we start with T 2 then thicken it T 2 × [0, 1].
Then by using the recipe of Section 2.2 we first form T 3 by identifying
the front and the back faces of T 2×[0, 1] (Figure 59), then we construct
T 4 by identifying the front and back faces of T 3 × [0, 1] (Figure 60).

=
v

Figure 59. T 3

u

v

Figure 60. T 4

By converting the 1-handle notation to the circle-with-dot notation
(Section 0.1) in Figure 63 we get another handlebody picture of T 4.



32 SELMAN AKBULUT

For the benefit of the reader: While doing this conversion for the
middle 1-handle balls, we first flatten them as in Figure 61 obtaining
Figure 62, then convert them to the circle with dot notation with ease.

Figure 61. T 4

vu

Figure 62. T 4

u v

Figure 63. T 4

Exercise 18. Show that without the 2-handle v Figure 60 describes
T 2
0 × S1, and without the 2-handles u and v Figure 63 is just T 2

0 × T 2
0 ,

where T 2
0 = T 2 −D2 is the punctured T 2.
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3.2. Cacime surface.

Cacime is a particular surface bundle over a surface, which appears
naturally in complex surface theory [CCM]. Understanding this man-
ifold is instructive, and is a good test case for understanding many
of the difficulties one encounters constructing handlebodies of surface
bundles over surfaces. We will first draw this manifold, and from this
drive a recipe for drawing surface bundles over surfaces in general.

Let Fg be the surface of genus g. Let τ2 : F2 → F2 be the hyperelliptic
involution and τ3 : F3 → F3 be the free involution induced by 180o

rotation (Figure 64). The Cacime surface M is the complex surface
obtained by taking the quotient of F2 × F3 by the product involution:

M = (F2 × F3)/τ2 × τ3

2 3

Figure 64. T 4

By projecting to the second factor we can describe M as a F2-bundle
over F2 = F3/τ3. Let A denote the twice punctured 2-torus A =
T 2 − D2

− ⊔ D2
+. Then clearly M is obtained by identifying the two

boundary components of F2×A by the involution induced by τ2 (notice
that A is a fundamental domain of the action τ3).

2
2

2 2

2

2 2
T

2
= =

A

Figure 65. T 4

By deforming A as in Figure 65, we see that M = E ♮ E ′ is the fiber
summing of two F2 bundles over T 2, where E is the trivial bundle and

E ′ = Σ2 × S1 × [0, 1]/(x, y, 0) ∼ (τ2(x), y, 1)
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Now by using the techniques developed in Chapter 2 we will con-
struct the following manifolds, diffeomorphisms and the gluing:

(a) E0 := E − F2 ×D2 = F2 × T 2
0

(b) f1 : ∂E0
≈

−→ F2 × S1

(c) E ′
0 = E ′ − F2 ×D2

(d) f2 : ∂E
′
0

≈
−→ F2 × S1

(e) M = −E0 ⌣f−1

2
◦f1

E ′
0

(a): Very simlar to construction of T 4 in Figures 59 through 63, in
Figures 66 through 67 we construct F × T 2

=

Figure 66. F2 × S1

cc

=

Figure 67. F2 × T 2

Exercise 19. Show that removing the 2-handle c from the Figure 67
gives a handlebody picture for E0 = F2 × T 2

0
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(b): We claim that there is a diffeomorphism f1 : ∂E0
≈

−→ F2 × S1

which takes the ropes (with hooks) of Figure 67 to the corresponding
ropes as indicated in Figure 68.

c

c

0

f1~~

Figure 68. Diffeomorphism ∂E0 ≈ Σ2 × S1 made concrete

Exercise 20. Show that this diffeomoprphism f1 can be obtained by
the handle slides on the boundary as indicated in Figure 69 (Hint just
perform the indicated handle slides while keeping track of the ropes)
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c

Figure 69. Describing f1

(c): E ′
0 = E ′ − F2 ×D2 is a twisted version of E0, we proceed as in

Figure 66 except that we identify the front and back faces of F2× [0, 1]
by τ : F2 → F2 and get Figure 71 (a twisted version of Figure 66).

=2
2

Figure 70. The action of τ : F2 → F2

=

Figure 71. F2 ×τ S
1
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To construct E ′ we simply cross the twisted F2 bundle over the circle
F2×τ S

1 with S1. This gives Figure 72 (drawn in two different 1-handle
notations), which is analogous version of Figure 67.

Exercise 21. Show that without the 2-handle c Figure 72 describes
E ′

0 = E ′ − F2 ×D2

= -1

c
c

Figure 72

(d): Similar to (b) there is a diffeomorphism f2 : ∂E ′
0

≈
−→ F2 × S1

obtained by the handle slides described in Figure 73. As before, to
describe this diffeomorphism geometrically in pictures we lower ropes
(with hooks) and trace out what f does to these ropes during the
diffeomorphism of Figure 73. This gives Figure 74.

-1

Figure 73. Describing f2
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c

-1

c

0

f2~~

Figure 74. Diffeomorphism ∂E ′
0 ≈ Σ2 × S1 made concrete

(e): Finally by applying the recipe of Section 2.2 we construct the
manifold M = −E0 ⌣f−1

2
◦f1

E ′
0, which is Figure 75. Notice that the

ropes in ∂E0 at top picture of Figure 68 are mapped to the ropes at
the top picture of Figure 74 by f−1

2 ◦ f1.

3.3. General surface bundles over surfaces. Now it is clear how to
proceed drawing a handlebody picture of a general Fg bundle over Fp
M = Fg×̃Fp: We first decompose M as a fiber sum of Fg bundles over
T 2, with monodromies τj : Fg → Fg (j = 1, .., p), as shown in Figure 75.
By removing Fg ×D2 from each, we write M =⌣∂ Ej where each Ej

is a Fg bundle over T 2
0 , then we perform gluing operations along the

boundaries described in Chapter 2.
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-1

Figure 75. Cacime surface

g

2

=

1

2
p

...

F
g ...

1

F F
g

Figure 76
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3.4. 3-manifold bundles over the circle.

Section 2.2 gave a recipe for drawing the handlebody picture of a
3-manifold Y 3 bundle over the circle with a monodromy f : Y 3 → Y 3:

M4 = M(f) = M × [0, 1]/(x, 0) ∼ (f(x), 1)

To put this technique in practice we will apply it to a very interesting
example Q4 of [CS]. Q4 is an exotic RP

4. Recall that RP4 = N ⌣∂ C
is the union of codimension zero submanifolds N and C, glued along
their common boundaries, where N is a twisted B2- bundle over RP2

(Figure 21) and C is the nonorientable B3- bundle over RP1. Similarly
Q4 = N ⌣∂ CA is the union of codimension zero submanifolds N and
CA, glued along their common boundaries, where CA is a manifold
homology equivalent to C, which is obtained as the mapping torus of
the diffeomorphism fA : T 3

0 → T 3
0 induced by the integral matrix A:

A =

(

0 1 0
0 0 1
−1 1 0

)

The exotic manifold of Figure 23 [A3] was derived from Q4. The
double covering space of Q is the homotopy sphere Σ = D2×S2 ⌣ CB,
where B = A2 and f = fB. It turns out Σ is the first member Σ0 of a
similarly defined infinite family of homotopy spheres Σm, which turned
out to be diffeomorphic to the standard 4-sphere ([AK1], [G1], [A5])

B =

(

0 0 1
−1 1 0
0 −1 1

)

Let us draw a handlebody picture of Σ (following [AK1]). Notice
that CB = M(f), where M = T 3 × [0, 1] and f = fB. By applying
the technique of Section 2.2 we draw M(f). For this we start with a
Heegard picture of T 3 as drawn 1- and 2-handles on S2 (Figure 59).

Figure 77
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We then study fB : T 3 → T 3 by first checking what it does the
coordinate axis (these corresponds to the “ropes” of Section 2.2). Then
Figure 79 gives M(f). For the sake of simplicity we put one of the
attaching balls of the 1-handle (the companion of the center ball) at ∞

f
B

Figure 78

... ...

...
...

...

...

Figure 79

Exercise 22. Convert the 1-handles of Figure 79 to the circle-with dots
notation. Locate the framed circle corresponding the 2-handle of D2 ×
S2, and decide the parity of its framing (in [AK1] this was mistakenly
assumed to be even but it turned out to be odd).
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4. 3-manifolds

4.1. Dehn surgery. Dehn surgery of a 3-manifold Y 3 is an operation
of taking out an imbedded copy of S1 × B2 from Y 3 and regluing it
back (by some diffeomorphism of its boundary). Let K ⊂ Y 3 be a null
homologous knot (null homologous imbedding of S1), and N(K) be
its tubular neighborhood. Let µ and λ be the meridian and longtitute
of ∂N(K). In particular λ is the parallel copy of K which is null
homologous in Y −K. Let p, q be coprime integers. Fix a trivialization:

φ : B2 × S1 ≈
→ N(K)

such that φ(1, 0) = µ and φ(0, 1) = λ, where (1, 0) and (0, 1) are the
two generators of S1 × S1. For the sake of simplicity we will view φ
as an identification maps, and parametrize the curves on ∂N(K) by
(p, q) ↔ pµ+ qλ. Then r = p/q surgery to Y 3 is the manifold.

Y (K, r) = [ Y −N(K) ] ⌣φr (B
2 × S1)

where φr : ∂B2 × S1 → ∂N(K) is the unique diffeomorphism with
φr(1, 0) = (p, q). With above identification we can express (cf. [Ro])

φr =

(

p r
q s

)

where ps−qr = 1. In particular Y (K,∞) = Y . For the sake of brevity,
when there is no danger of confusion we will abbreviateKp/q = Y (K, r),
even though when p/q is an integer we previously used this notation
for denoting the 4-manifold obtained B4 by attaching 2-handle to K.

Exercise 23. Let K ⊂ S3 any any knot. By using the identities
(

n −1
1 0

)(

p r

q s

)

=

(

np− q nr − s

p r

)

justify the 3-manifold diffeomorphism ∼= of Figure 80 (Hint: By using
Figure 81 reduce this to the case of when {K,µ} is the Hopf link)

p/q

n - q/pn

K K

~=

Figure 80
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p/q

n

K

p/q n
0

0

K

~=

Figure 81

Exercise 24. By iterating the diffeomporphism of Exercise 23 justify
the 3-manifold diffeomorphism of Figure 82, where p/q = [a1, a2, .., ak].
is the continued fraction expension (when ai ≥ 2 expression is unique).

p/q = a1 −
1

a2 −
1

. . . −
1

ak
(

p r

q s

)

=

(

a1 −1
1 0

)(

a2 −1
1 0

)

..

(

ak −1
1 0

)

p/q

K

...

K

1

3 k

a
a a a2 ak-1

...

K

1

3

a
a a a

2 k-1 ~=
...

~= ka
1

Figure 82

4.2. Constructing Heegard pictures from framed links.

Given a 4-manfold M4 = MΛ, with Λ = {Kr1
1 , .., Krk

k }, how can
we construct the Heegard picture of its boundary Y 3

Λ := ∂MΛ? If the
complement C(Λ) := S3−∪jN(Kj) of the tubular neighborhood of the
framed link Λ is a handlebody (i.e. B3 with 1-handles), then clearly
(C(Λ), K1, .., Kk) gives a Heegard decomposition of Y (Λ). To use this
fact, we first remove solid pipes (i.e. properly imbedded thickened arcs)
from C(Λ) to turn it to a handlebody C ′(Λ) = C(Λ)−∪N(Ij). To undo
the damage we did by removing pipes Ij , we attach 2-handles γj to the
meridian of Ij’s. Then the end result is a Heegard decomposition, given
by the 3-dimensional solid handlebody C ′(Λ) along with simple disjoint
simple closed curves {K1, .., Kk, γ1, ..γs} lying on its boundary.
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isotopy

N ( K j )

j... ......

...
...

... ...
... j...

...

Figure 83. Adding solid pipes to the complement

Alternatively this can be described by the surface F = ∂C ′(Λ) with
two sets of disjoint simple closed curves α and β, each describing a solid
handlebody. Here β = {K1, .., Kk, γ1, ..γs}, and α = {α1, .., αr} are the
obvious collection of curves in F compressing in C ′(Λ). Applying this
process to Λ = {K2}, where K is the trefoil knot, we get Figure 84.

i

j

2 K

Figure 84. Constructing a Heegard picture of ∂(K2)

Exercise 25. By considering moving pictures (and the above process),
identify the complement of a properly imbedded 2-disk in B4, with a
single transverse self intersection, with the Fishtail (Hint: Figure 85).
Compare this with the “self plumbing” operation of Figure 32.

0 0 0
0

=

B4

C C

Figure 85
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4.3. Gluing knot complements.

Let K,L ⊂ S3 two given knots, and let φ : ∂N(K)
≈
→ ∂N(L) be a

diffeomorphism, between the boundaries of the tubular neighborhoods
of these knots. We want to construct a 4-manifold Mϕ(K,L) with

∂Mϕ(K,L) ≈ (S3 −N(K)) ⌣φ (S
3 −N(L))

Clearly, when K and L are the unknot U and the map φ : T 2 → T 2 is

φ =

(

p r

q s

)

then ∂Mϕ(U, U) = L(p, q) (Lens space). Therefore we can take the
plumbing Mϕ(U, U) = Cp,q described in Figure 86 (e.g. [Ro])

...1a 2a ak
a 3

Figure 86

where p/q = [a1, a2, ..ak]. Write C = S3 − N(U) ≈ S1 × B2 so that
L(p, q) = C ⌣φ C. Next we will extend this process to any knots.

Let γ and γ′ be the dual circles of K and L in S3, respectively. Let
N(γ) denote the tubular neighborhood of γ in ∂(K0). Notice that
∂(K0) − N(γ) ≈ S3 − N(K). We need to identify their boundaries
with a cylinder (S1×S1)× [0, 1], which is the boundary of the manifod
obtained from the disjoint union K0 ⊔ Cp,q ⊔ L0, by identifying N(γ)
with one copy of C, and identifying the other copy of C with N(γ′).

Mϕ(K,L) = K0 ⌣ U ⌣ Cp.q ⌣ U ′ ⌣ L0

K
0

Cp q

 CC

L
0

U U

Figure 87
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Exercise 26. Show that Figure 88 gives a handlebody for Mφ(K,L)

...

K

1 ka a a2

L

0
00

0

Figure 88

Exercise 27. Show that Figure 89 gives ∂Mφ(K,L) when φ =

(

p −1
1 0

)

.

K L

p

#

Figure 89

Exercise 28. By modifying above construction verify that Figure 90
describes ∂Mφ(K,L) for some φ, where K is the trefoil knot, and L is
the figure eight knot.

1

Figure 90
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5. Operations

5.1. Gluck twisting.

It is known that any diffeomorphism S2 × S1 ≈
→ S2 × S1 is either

isotopic to the identity, or isotopic to the map ϕ : S2 × S1 → S2 × S1

ϕ(x, θ) = (αθ(x), θ)

where S1 ∋ θ 7→ αθ ∈ SO(3) is the nontrivial element of π1SO(3) = Z2.
Let M be a smooth 4-manifold, and S ⊂ X be a copy of S2 imbedded
with the trivial norml bundle S2 × B2 ⊂ X . We call the operation

X 7→ XS := (X − S2 × B2) ⌣ϕ (S2 × B2)

Gluck twisting. Best way to understand how a Gluck twisting operation
alters the handles of M is draw a handlebody of M as handles attached
to the top of this S2 × B2 (an unknot with 0-framing). Then clearly
the Gluck twisting corresponds to the following operation

1
0 0

S
... ...

   other
2-handels

Figure 91

Exercise 29. Show that the Gluck twisting operation is equivalent to
either one the following operations:

• The operation described in Figure 92 (where n,m are arbitrary).
• The “zero” and “dot” exchange operation of Figure 93.

0

S

   other
2-handels

    n
strands

0

n m

1 -1

    m
strands

Figure 92
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1
0 0

...
...

1

   other
2-handels

S

Figure 93

When X is simply connected and S ⊂ X is null homologous, it is
clear that the operationX 7→ XS does not change the homology groups
and the intersection form of X , and also keeps X simply connected,
hence XS is h-cobordant to X and therefore it is homemorphic to X
by [F]. It turns out that if the intersection form of X is odd than this
operation does not change the smooth structure of X . The following
is a special case of a more general theorem of [AY1]

Theorem 1. ([AY1]) If S is null homologous, and the intersection
form of X is odd then XS ≈ X

In dimensions ≥ 5 1-handles of simply connected manifolds can be
eliminated (this is the first step of the proof of the h-cobordism theo-
rem). In dimension 4 it is not clear if this can be done (at least when the
manifold has boundary, it can not be done by Example 7.5 of [AY2]).
Nevertheless in dimension 4 there are some useful weaker analogues of
this. The following is from [GS] (9.2.17) (which is a somewhat simpler
version of [Ma]). Here we use the notation X(i) for the sub-handlebody
of X consisting of handles of index ≤ i.

Proposition 2. Let X be a 1-connected smooth 4-manifold given as a
handlebody X(2) = MΛ where Λ = {Kr1

1 , .., Krk
k , C1, .., Cp}. Then for

each 1-handle, by introducing a canceling pairs of 2 and 3-handles, we
can obtain a new enlarged handlebody for X with X(2) = MΛ′ where
Λ′ = {Kr1

1 , .., Krk
k , Ls11 , .., L

sp
p , C1, .., Cp}, such that each attaching circle

of the 2-handle Lj is homotopic in X(1) to the core of the 1-handle Cj.

Proof. Let γ be the linking circle of a 1-handle C (the core of C). If
it bounded a disks in ∂X(2), by attaching a canceling pair of 2- and
3-handles (along γ) we could create canceling 2-handle γ for C. But we
don’t know this. To prove the proposition we only have to create a 2-
handle in X whose attaching circle L is homotopic to γ in X(1). Since
X is simply connected we can find an immersed cylinder H in X(2)
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connecting γ to an unknotted trivial circle c ⊂ ∂X(2). By the general
position H misses the cores of the 1-handles of X , but might meet
2-handles of X along points. By piping these points to γ as shown in
Figure 94, we obtain a circle γ′ ⊂ ∂X(2), which is homotopic to c in in
the complements of the cores of 1- and 2-handles (and also homotopic
to γ inX(1)). Hence this homotopy H can be pushed to ∂X(2), where H
can be viewed as moving pictures starting at γ′ occasionally self crossing
and ending at c. Therefore by replacing γ′ by connected summing with
the small dual circles of itself (when passing through self crossing) we
obtain L which is isotopic to c, and still homotopic to γ in X(1). So
after attaching a canceling 2/3-handle pair to c, we see that L bounds
an imbedded disk, which we can viewed as the attaching frame circle
of a 2-handle. By repeating this process all the 1-handles we produce
the required frame link {Ls11 , .., L

sp
p } �

X

X

(1)

(2)

c

H 2-handle
   of X

Figure 94

Remark 1. When dim(X) ≥ 5 we can get a stronger conclusion with
less work. In the beginning of the proof, we can make the cylinder H
miss all the 2-handles by general position, and imbed into ∂X2, which
we can use to construct the 2-handle canceling the 1-handle.

proof of Theorem 1: Choose α ∈ H2(X) with α.α = odd, and α.S = 0.
By using the notation of Section 1.2 and by the above proposition, we
can represent α by a framed link K =

∑k
j=1 cjKj with odd framing p.

By assumption and Proposition 2, K is null homotopic inX(1), and it
links the unknotted zero framed circle representing S algebraically zero
times. As indicated in Figure 95 the Gluck twisting operation corre-
sponds by the zero and dot exchanges between the zero framed 2-handle
S and the dotted circle T . By sliding the middle 1-framed handle over
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K we can make its framing even, and then by sliding it over T we can
make its framing zero, and finally by using the “null-homotopy” as-
sumption we can further slide it over T to make it unknotted as shown
in the third picture of Figure 95. Now it is clear that the zero and dot
exchange between S and T does not change the diffeomorphism type
i.e. XS ≈ X . �

0

0

...

...

1

S

K odd

0

...
S

even

..

0

p

S T

T

0

...

0

S T Gluck

=

=

Figure 95

5.2. Logarithmic transform.

Given a smooth 4-manifold X4 and an imbedding T 2 × B2 ⊂ X4,
the operation of removing this T 2 × B2 and then gluing it back by
a nontrivial diffeomorphism of its boundary ϕ : T 3 → T 3 is called
T 2-surgery operation. It is known that any smooth 4-manifold can be
obtained from S2 × S2 or CP2 be a sequence of these operations. [I].

A special version of this operation is called p-log transform, where
φp : T

2 × S1 → T 2 × S1 is the self-diffeomorphism given by (p ∈ Z)

φp =

(

1 0 0
0 0 1
0 −1 p

)

This operation is also called logarithmic transform of order p, because
the degree of the composition of the maps below has order p.

S1 inc
−→ T 2 × S1 φp

−→ T 2 × S1 proj
−→ S1
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By using Section 2.3 we can draw a handlebody picture of this opera-
tion (compare to [AY2], [GS]). The recipe says that given T 2×D2 ⊂ X ,
write X = T 2 × D2 ⌣ (other handles), then carry the other handles
by the inverse diffeomorphism ϕp := φ−1

p to top of T 2 ×D2.

ϕp =

(

1 0 0
0 p −1
0 1 0

)

Figure 96 describes this handlebody operation with pictures. This
figure gives a picture recipe of how to modify a 4-manifold handlebody,
containing a framed torus T 2 × D2, to get the handlebody of the p-
log transformed 4-manifold along this torus (for example Figure 96
describes how the linking loop B is changed by this operation). ±1
-log transform is usually called a “Luttinger surgery”.

0

0

-p

-p

cancel

p

p

slide

a loop

p

p
B

( )B p

0

0
0

cancel

Figure 96. p log-transform operation
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5.3. Knot surgery.

Let X be a smooth 4-manifold, and T 2 × B2 ⊂ X be an imbedded
torus with trivial normal bundle, and K ⊂ S3 be a knot, N(K) be its
tubular neighborhood. The Fintushel-Stern knot surgery operation is
the operation of replacing T 2×B2 with (S3−N(K))×S1, so that the
meridian p× ∂B2 of the torus coincides with the longitude of K [FS1].

X ; XK = (X − T 2 ×D2) ∪ (S3 −N(K))× S1

A handlebody picture of this operation was constructed in [A6].
Since 4-manifolds are determined by their 1- and 2- handles, to see
(S3 − N(K)) × S1, which is obtained by identifying the two ends of
(S3−N(K))×[0, 1], it suffices to draw (B3−N(K0))×[0, 1] with its ends
identified, where K0 ⊂ B3 is a properly imbedded arc with the knot
K tied on it (the rest is a 3-handle). The second picture of Figure 97
describes (B3 − N(K0))× [0, 1], identifying its ends (up to 3-handles)
corresponds attaching a new 1-handle, and 2-handles, where the new
2-handles are attached along the 1-handles of the two boundary com-
ponents of (B3 −N(K0))× [0, 1] as shown in Figure 97 (they identifiy
the core circles of the knot complements, as described in Section 2.2).

    S x B
 (3-handle)

(S - K) x I

1 3

3

(S - K) x S
1

Identify top
 and bottom

3

0

0

-
=

K # -K

K

Figure 97. (S3 −K)× S1, where K is the trefoil knot
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Summarizing, Figure 98 gives a recipe of how to modify a 4-manifold
handlebody, containing a framed torus T 2×B2, to get the handlebody
of the knot surgery transfored 4-manifold along this torus by using a
knotK (in the FigureK is taken to be trefoil knot). Figure 98 describes
how the linking loops a, b, c changes by this operation. For example in
this figure, if we attach −1 framed 2-handle to either (both) of the
loops a, c we get Fishtail (Cusp) on the left, and the knot surgered
Fishtail (Cusp) on the right (recall Figures 50 and 51).

0 b

0

0

3

b
a c

a

c

T  x  D
2 2

Figure 98. The operation T 2 × B2 7→ (T 2 × B2)K

Figure 99 describes the slow evolution of the two pictures of Fig-
ure 98, from left to right (i.e. description of the boundary diffeomor-
phism). In Figure 99, first we introduce a canceling 2/3 handle pair,
and replace dot with zero in the middle 1-handle, then do the indicated
handle slides then put the dot on the resulting ribbon handle.

B
2

T
2
x

0
0 0 0 0

Figure 99

As an example, let us take the elliptic surface E(1) (see Chapter 6)
and apply a knot surgery operation to the cusp inside. The first picture
of Figure 100 is an handlebody of E(1) from [A7], the second is E(1)K
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0

3

1-

00

1-

1-

1-
1-

1-

2-2-2-2-2-

2-
2-

2-

2-2-2-2-2- 2-2-

Figure 100

Let [T ] ∈ H2(X ;Z) be the homology class of the imbedded torus
T 2 ⊂ X discussed above, and let t = exp(2[T ]), and ∆K(t) be the
(symmetric) Alexander polynomial of the knot K ⊂ S3. Then the
Seiberg-Witten invariant (Chaper 13) SWXK

of XK is given by:

Theorem 3. ([FS1]) SWXK
= SWX .∆K(t)

5.4. Rational blowdowns.

Let C ⊂ X4 be a negative definite plumbing in a smooth 4-manifold,
such that ∂C ≈ ∂B for some rational ball B. The operation

X 7→ X∗ := (X − C) ⌣ B

is called a rational blowing down operation. When ∂C is a Lens space
this operation was introduced in [FS2] as a tool in gauge theory. An
important special case is when Cp,q is the 4-manifold given by the
plumbing Figure 101, where each bi ≥ 2, and p2/pq−1 = [bk, bk−1, .., b1].

...
-bk

-bk-1 -b1

Figure 101. Cp,q

The boundary is the Lens space: ∂Cp,q = L(p2, pq − 1), which bounds
a rational ball by [CH] (see also [P]). In [LM] it was shown that in fact
L(p2, pq − 1) bounds the rational ball Bp,q shown in Figure 102.
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...
p

pq-1

q half
 twist

Figure 102. Bp,q

Exercise 30. Prove that there is a diffeomporphism ∂Cp,q ≈ ∂Bp,q,
and describe the diffeomorphism.

In the special case of q = 1 the manifold Cp,1 is the pluming of
p − 1 spheres with Euler numbers −p − 2,−2,−2, ..,−2. Figure 103
demonstrates a concrete diffeomorphism ∂Bp,1 ≈ ∂Cp, which allows us
to perform the blowing down operation concretely on handlebodies.

...

0

...

...
...

  blow up
  p-1 times,
then dot/zero
  exchange

 p-1

 p
 p

 -2p

 -p

 -p-1

-2

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-2-2-2-p-2

p-2

    slide
    slide

    cancel

Figure 103. Describing a diffeomoprphism ∂Bp ≈ ∂Cp
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