Group Actions on Four-manifolds

Weimin Chen

Department of Mathematics and Statistics
University of Massachusetts
Amherst, MA 01003, USA

July 31, 2013
The central theme: The problem of group actions is about studying automorphism groups of geometric structures from a topological point of view.

The basic question: Let X be a manifold and ξ be a given geometric structure. Denote by $\text{Aut}(X, \xi)$ the corresponding group of automorphisms. Then, for any finite group $G \subset \text{Homeo}(X)$ (or $G \subset \text{Diffeo}(X)$), is G conjugate to a subgroup of $\text{Aut}(X, \xi)$?

Weaker version: How much does a finite subgroup of $\text{Homeo}(X)$ or $\text{Diffeo}(X)$ resemble a finite subgroup of $\text{Aut}(X, \xi)$?
The central theme: The problem of group actions is about studying automorphism groups of geometric structures from a topological point of view.

The basic question: Let \(X \) be a manifold and \(\xi \) be a given geometric structure. Denote by \(Aut(X, \xi) \) the corresponding group of automorphisms. Then, for any finite group \(G \subset Homeo(X) \) (or \(G \subset Diffeo(X) \)), is \(G \) conjugate to a subgroup of \(Aut(X, \xi) \)?

Weaker version: How much does a finite subgroup of \(Homeo(X) \) or \(Diffeo(X) \) resemble a finite subgroup of \(Aut(X, \xi) \)?
The central theme: The problem of group actions is about studying automorphism groups of geometric structures from a topological point of view.

The basic question: Let X be a manifold and ξ be a given geometric structure. Denote by $Aut(X, \xi)$ the corresponding group of automorphisms. Then, for any finite group $G \subset \text{Homeo}(X)$ (or $G \subset \text{Diffeo}(X)$), is G conjugate to a subgroup of $Aut(X, \xi)$?

Weaker version: How much does a finite subgroup of $\text{Homeo}(X)$ or $\text{Diffeo}(X)$ resemble a finite subgroup of $Aut(X, \xi)$?
Lecture 1: Introduction

The basic example: Let $X = S^n \subset R^{n+1}$, and ξ be the linear structure or the structure of constant sectional curvature metric. Then $Aut(X, \xi) = O(n+1)$. In this case, the basic question asks: if a finite group G acts continuously or smoothly on S^n (i.e., $G \subset Homeo(X)$ or $G \subset Diffeo(X)$), is the G-action equivalent to a linear action (i.e., is G conjugate to a subgroup of $Aut(X, \xi)$)?

The weaker version asks: if a finite group G acts on S^n continuously or smoothly, how much does the G-action resemble a linear action on S^n? In particular, is G necessarily isomorphic to a subgroup of $O(n+1)$? The same fixed-point set structure?

Remarks: One often considers the special case of orientation-preserving actions, and $Aut(X, \xi) = SO(n+1)$ in this case.
The basic example: Let $X = S^n \subset R^{n+1}$, and ξ be the linear structure or the structure of constant sectional curvature metric. Then $\text{Aut}(X, \xi) = O(n+1)$. In this case, the basic question asks: if a finite group G acts continuously or smoothly on S^n (i.e., $G \subset \text{Homeo}(X)$ or $G \subset \text{Diffeo}(X)$), is the G-action equivalent to a linear action (i.e., is G conjugate to a subgroup of $\text{Aut}(X, \xi)$)?

The weaker version asks: if a finite group G acts on S^n continuously or smoothly, how much does the G-action resemble a linear action on S^n? In particular, is G necessarily isomorphic to a subgroup of $O(n+1)$? The same fixed-point set structure?

Remarks: One often considers the special case of orientation-preserving actions, and $\text{Aut}(X, \xi) = SO(n+1)$ in this case.
Review of results in low-dimensions \((n = 2, 3, 4)\):

1. \(n = 2\): Theorem (Brouwer 1919, Kerekjarto 1921, Eilenberg 1934): Every finite group action by orientation-preserving homeomorphisms on \(S^2\) is equivalent to a linear action.

2. \(n = 3\): (1) Bing’s examples and local linearity condition. Theorem (Bing 1952, 1964): There exist finite group actions on \(S^3\) with “wildly" embedded fixed-point sets (Alexander horned sphere or an untamed knot).

Remarks: Such actions can not be equivalent to a linear action.

Definition: An action is **locally linear** if it is locally equivalent to a linear action.

Remarks: The fixed-point set of a locally linear action is a flatly embedded submanifold. It’s known that **local linearity=smooth in dim 3** (Kwasik-Lee).
Review of results in low-dimensions ($n = 2, 3, 4$):

1. $n = 2$: Theorem (Brouwer 1919, Kerekjarto 1921, Eilenberg 1934): Every finite group action by orientation-preserving homeomorphisms on S^2 is equivalent to a linear action.

2. $n = 3$: (1) Bing’s examples and local linearity condition. Theorem (Bing 1952, 1964): There exist finite group actions on S^3 with “wildly" embedded fixed-point sets (Alexander horned sphere or an untamed knot).

Remarks: Such actions can not be equivalent to a linear action.

Definition: An action is locally linear if it is locally equivalent to a linear action.

Remarks: The fixed-point set of a locally linear action is a flatly embedded submanifold. It’s known that local linearity=smooth in dim 3 (Kwasik-Lee).
Lecture 1: Introduction

Review of results in low-dimensions ($n = 2, 3, 4$):

1. $n = 2$: Theorem (Brouwer 1919, Kerekjarto 1921, Eilenberg 1934): Every finite group action by orientation-preserving homeomorphisms on S^2 is equivalent to a linear action.

2. $n = 3$: (1) Bing’s examples and local linearity condition. Theorem (Bing 1952, 1964): There exist finite group actions on S^3 with “wildly" embedded fixed-point sets (Alexander horned sphere or an untamed knot).

Remarks: Such actions can not be equivalent to a linear action.

Definition: An action is locally linear if it is locally equivalent to a linear action.

Remarks: The fixed-point set of a locally linear action is a flatly embedded submanifold. It’s known that local linearity=smooth in dim 3 (Kwasik-Lee).
2. $n = 3$ (cont.) (2) Smith theory and Smith Conjecture.

Theorem (P.A. Smith 1940): The fixed-point set of an orientation-preserving cyclic action of prime order on a homology S^n is a homology S^r, where $n - r$ is even and $-1 \leq r < n$, with $r = -1$ meaning the fixed-point set is empty.

Remarks: The fixed-point set of an orientation-preserving cyclic action of prime order on S^3, when nonempty, is a knot in S^3.

Smith Conjecture: The fixed-point set of an orientation-preserving cyclic action of prime order on S^3 must be an unknot if it’s nonempty.

Remarks: The Smith Conjecture was resolved through combined work of Meeks-Yau, Thurston, Bass, and others, in early 1980.
2. $n = 3$ (cont.) (2) Smith theory and Smith Conjecture.

Theorem (P.A. Smith 1940): The fixed-point set of an orientation-preserving cyclic action of prime order on a homology S^n is a homology S^r, where $n - r$ is even and $-1 \leq r < n$, with $r = -1$ meaning the fixed-point set is empty.

Remarks: The fixed-point set of an orientation-preserving cyclic action of prime order on S^3, when nonempty, is a knot in S^3.

Smith Conjecture: The fixed-point set of an orientation-preserving cyclic action of prime order on S^3 must be an unknot if it’s nonempty.

Remarks: The Smith Conjecture was resolved through combined work of Meeks-Yau, Thurston, Bass, and others, in early 1980.
2. \(n = 3 \) (cont.) (3) Free actions on \(S^3 \): the list of possible finite groups which can act freely on \(S^3 \) (J. Milnor 1957, R. Lee 1973).

Finite subgroups of \(SO(4) \): there is a 2 to 1 covering homomorphism

\[
\rho : SO(4) \to SO(3) \times SO(3).
\]

Finite subgroups of \(SO(3) \):
- a cyclic group \(C_n \) of order \(n \);
- a dihedral group \(D_{2n} \) of order \(2n \)
- the tetrahedral group \(T \cong A_4 \) of order 12;
- the octahedral group \(O \cong S_4 \) of order 24;
- the icosahedral group \(I \cong A_5 \) of order 60.
2. $n = 3$ (cont.) (3) Free actions on S^3: the list of possible finite groups which can act freely on S^3 (J. Milnor 1957, R. Lee 1973).

Finite subgroups of $SO(4)$: there is a 2 to 1 covering homomorphism

$$\rho : SO(4) \rightarrow SO(3) \times SO(3).$$

Finite subgroups of $SO(3)$:

- a cyclic group C_n of order n;
- a dihedral group D_{2n} of order $2n$;
- the tetrahedral group $T \cong A_4$ of order 12;
- the octahedral group $O \cong S_4$ of order 24;
- the icosahedral group $I \cong A_5$ of order 60.
2. $n = 3$ (3) Free actions on S^3 (cont.)

Fact: if a finite subgroup of $SO(4)$ acts on S^3 freely, then it must be a subgroup of $U(2)$. (Such a list was obtained by Brieskorn, in classification of certain complex surface singularities.)

Milnor’s list of exotic groups $Q(8, a, b, c)$: Let a, b, c be odd, pairwise co-prime integers. There is a split extension

$$1 \rightarrow Z_a \times Z_b \times Z_c \rightarrow Q(8, a, b, c) \rightarrow Q(8) \rightarrow 1,$$

where $Q(8) = \{ x, y | x^4 = 1, y^2 = x^2, xyxy^{-1} = x^{-1} \}$, and if $Z_a = \langle u \rangle$, $Z_b = \langle v \rangle$, $Z_c = \langle w \rangle$, then

$$xux^{-1} = u^{-1}, xvx^{-1} = v, xwx^{-1} = w^{-1},$$

$$yuy^{-1} = u, yyv^{-1} = v^{-1}, ywy^{-1} = w^{-1}.$$

Fact: $Q(8, a, b, c)$ is not a subgroup of $O(n)$ for $n \leq 7$.
2. \(n = 3 \) (3) Free actions on \(S^3 \) (cont.)
Fact: if a finite subgroup of \(SO(4) \) acts on \(S^3 \) freely, then it must be a subgroup of \(U(2) \). (Such a list was obtained by Brieskorn, in classification of certain complex surface singularities.)

Milnor’s list of exotic groups \(Q(8, a, b, c) \): Let \(a, b, c \) be odd, pairwise co-prime integers. There is a split extension

\[
1 \rightarrow \mathbb{Z}_a \times \mathbb{Z}_b \times \mathbb{Z}_c \rightarrow Q(8, a, b, c) \rightarrow Q(8) \rightarrow 1,
\]

where \(Q(8) = \{x, y| x^4 = 1, y^2 = x^2, yxy^{-1} = x^{-1}\} \), and if \(\mathbb{Z}_a = \langle u \rangle, \mathbb{Z}_b = \langle v \rangle, \mathbb{Z}_c = \langle w \rangle \), then

\[
xux^{-1} = u^{-1}, xvx^{-1} = v, xwx^{-1} = w^{-1},
\]

\[
yuy^{-1} = u, yvy^{-1} = v^{-1}, ywy^{-1} = w^{-1}.
\]

Fact: \(Q(8, a, b, c) \) is not a subgroup of \(O(n) \) for \(n \leq 7 \).
2. $n = 3$ (cont.) (4) Ricci flow and geometrization.

Theorem: Every finite group action on S^3 by orientation-preserving diffeomorphisms is equivalent to a linear action.

Corollary: $Q(8, a, b, c)$ can not act freely on S^3.

Problem: (i) Find an alternative proof (gauge theoretic?) of the fact that $Q(8, a, b, c)$ can not act freely on S^3.

(ii) It’s known that some of the $Q(8, a, b, c)$’s act freely on a homology 3-sphere Σ (existence of Σ coming from surgery theory). What can we say about Σ (particularly, $\pi_1 \Sigma$)?
2. $n = 3$ (cont.) (4) Ricci flow and geometrization.

Theorem: Every finite group action on S^3 by orientation-preserving diffeomorphisms is equivalent to a linear action.

Corollary: $Q(8, a, b, c)$ cannot act freely on S^3.

Problem: (i) Find an alternative proof (gauge theoretic?) of the fact that $Q(8, a, b, c)$ cannot act freely on S^3.

(ii) It’s known that some of the $Q(8, a, b, c)$’s act freely on a homology 3-sphere Σ (existence of Σ coming from surgery theory). What can we say about Σ (particularly, $\pi_1 \Sigma$)?

Theorem (Poenaru 1960, Mazur 1961, de Rham 1962) There exist smooth involutions on S^4 whose fixed-point set is a homology 3-sphere $\Sigma \neq S^3$.

Theorem (Giffen 1966) There exist smooth \mathbb{Z}_p-actions, for odd p, on S^4 whose fixed-point set is a knotted 2-sphere.

Theorem (Fintushel-Stern 1981) There exists a free involution on S^4 which is not smoothly equivalent to the antipodal map.

(2) Smooth s-cobordisms of elliptic 3-manifolds.

Conjecture: If a smooth, pseudo-free finite group action on S^4 has an isolated fixed-point, then it must be equivalent to a linear action.

Theorem (Chen 2004, 2006) A symplectic s-cobordism of elliptic 3-manifolds is smoothly a product.

Theorem (Poenaru 1960, Mazur 1961, de Rham 1962) There exist smooth involutions on S^4 whose fixed-point set is a homology 3-sphere $\Sigma \neq S^3$.

Theorem (Giffen 1966) There exist smooth \mathbb{Z}_p-actions, for odd p, on S^4 whose fixed-point set is a knotted 2-sphere.

Theorem (Fintushel-Stern 1981) There exists a free involution on S^4 which is not smoothly equivalent to the antipodal map.

(2) Smooth s-cobordisms of elliptic 3-manifolds.

Conjecture: If a smooth, pseudo-free finite group action on S^4 has an isolated fixed-point, then it must be equivalent to a linear action.

Theorem (Chen 2004, 2006) A symplectic s-cobordism of elliptic 3-manifolds is smoothly a product.
3. \(n = 4 \) (cont.) (3) Fixed-points and local representations.

Theorem (Furuta 1989, DeMichelis 1989) There is no smooth (or locally linear) finite group action on \(S^4 \) with one fixed-point.

Theorem (Hambleton-Lee 92, Braam-Matic 93, DeMichelis 89) If a finite group acts smoothly on \(S^4 \) with two isolated fixed-points, then the representations on the tangent space of the two fixed-points are equivalent.

Remarks: (1) The proofs of Furuta, Hambleton-Lee, and Braam-Matic were gauge theoretic (Yang-Mills) and are for smooth actions. The proofs of DeMichelis were traditional and work for locally linear actions on homology \(S^4 \), after learning of the gauge theoretic attempts.

(2) Both theorems are false in higher dimensions.
3. \(n = 4 \) (cont.) (3) Fixed-points and local representations.

Theorem (Furuta 1989, DeMichelis 1989) There is no smooth (or locally linear) finite group action on \(S^4 \) with one fixed-point.

Theorem (Hambleton-Lee 92, Braam-Matic 93, DeMichelis 89) If a finite group acts smoothly on \(S^4 \) with two isolated fixed-points, then the representations on the tangent space of the two fixed-points are equivalent.

Remarks: (1) The proofs of Furuta, Hambleton-Lee, and Braam-Matic were gauge theoretic (Yang-Mills) and are for smooth actions. The proofs of DeMichelis were traditional and work for locally linear actions on homology \(S^4 \), after learning of the gauge theoretic attempts.

(2) Both theorems are false in higher dimensions.
3. $n = 4$ (cont.) (4) Finite groups which act on S^4.

Theorem A (Chen-Kwasik-Schultz 2013): If a finite group G acts locally linearly and orientation-preservingly on a homology S^4, then G is isomorphic to a subgroup of $SO(5)$.

Note: Mecchia and Zimmermann showed earlier that either G is isomorphic to a subgroup of $SO(5)$, or an index 2 subgroup of G is isomorphic to a subgroup of $SO(4)$.

Theorem B (Chen-Kwasik-Schultz 2013): There are finite groups G acting topologically and orientation-reversingly on S^4, which are NOT isomorphic to a subgroup of $O(5)$.

Problem: If a finite group G acts smoothly and orientation-reversingly on S^4, is G isomorphic to a subgroup of $O(5)$?
3. \(n = 4 \) (cont.) (4) Finite groups which act on \(S^4 \).

Theorem A (Chen-Kwasik-Schultz 2013): If a finite group \(G \) acts locally linearly and orientation-preservingly on a homology \(S^4 \), then \(G \) is isomorphic to a subgroup of \(SO(5) \).

Note: Mecchia and Zimmermann showed earlier that either \(G \) is isomorphic to a subgroup of \(SO(5) \), or an index 2 subgroup of \(G \) is isomorphic to a subgroup of \(SO(4) \).

Theorem B (Chen-Kwasik-Schultz 2013): There are finite groups \(G \) acting topologically and orientation-reversingly on \(S^4 \), which are NOT isomorphic to a subgroup of \(O(5) \).

Problem: If a finite group \(G \) acts smoothly and orientation-reversingly on \(S^4 \), is \(G \) isomorphic to a subgroup of \(O(5) \)?
3. $n = 4$ (cont.) (4) Finite groups which act on S^4.

Theorem A (Chen-Kwasik-Schultz 2013): If a finite group G acts locally linearly and orientation-preservingly on a homology S^4, then G is isomorphic to a subgroup of $SO(5)$.

Note: Mecchia and Zimmermann showed earlier that either G is isomorphic to a subgroup of $SO(5)$, or an index 2 subgroup of G is isomorphic to a subgroup of $SO(4)$.

Theorem B (Chen-Kwasik-Schultz 2013): There are finite groups G acting topologically and orientation-reversingly on S^4, which are NOT isomorphic to a subgroup of $O(5)$.

Problem: If a finite group G acts smoothly and orientation-reversingly on S^4, is G isomorphic to a subgroup of $O(5)$?
Other model spaces in dimension 4: \((X, \xi)\), where \(X\) is a Kahler surface, and \(\xi\) is a complex structure. There are two main classes which have been extensively studied by the algebraic geometers: rational surfaces and K3 surfaces.

(1) \(X = \mathbb{CP}^2\): \(\text{Aut}(X, \xi) = \text{PU}(3)\).

Theorem (Wilczynski 87, Hambleton-Lee 88) If a finite group acts locally linearly and homologically trivially on \(\mathbb{CP}^2\), then it is a subgroup of \(\text{PU}(3)\).

Theorem (Wilczynski 91) A locally linear, pseudo-free action of a finite cyclic group on \(\mathbb{CP}^2\) is equivalently to an action by projective transformations.
Other model spaces in dimension 4: \((X, \xi)\), where \(X\) is a Kahler surface, and \(\xi\) is a complex structure. There are two main classes which have been extensively studied by the algebraic geometers: rational surfaces and K3 surfaces.

(1) \(X = \mathbb{CP}^2\): \(\text{Aut}(X, \xi) = PU(3)\).

Theorem (Wilczynski 87, Hambleton-Lee 88) If a finite group acts locally linearly and homologically trivially on \(\mathbb{CP}^2\), then it is a subgroup of \(PU(3)\).

Theorem (Wilczynski 91) A locally linear, pseudo-free action of a finite cyclic group on \(\mathbb{CP}^2\) is equivalently to an action by projective transformations.
Other model spaces in dimension 4: \((X, \xi)\), where \(X\) is a Kahler surface, and \(\xi\) is a complex structure. There are two main classes which have been extensively studied by the algebraic geometers: rational surfaces and K3 surfaces.

(1) \(X = \mathbb{CP}^2\): \(\text{Aut}(X, \xi) = PU(3)\).

Theorem (Wilczynski 87, Hambleton-Lee 88) If a finite group acts locally linearly and homologically trivially on \(\mathbb{CP}^2\), then it is a subgroup of \(PU(3)\).

Theorem (Wilczynski 91) A locally linear, pseudo-free action of a finite cyclic group on \(\mathbb{CP}^2\) is equivalently to an action by projective transformations.
Other model spaces in dimension 4: \((X, \xi)\), where \(X\) is a Kahler surface, and \(\xi\) is a complex structure. There are two main classes which have been extensively studied by the algebraic geometers: rational surfaces and K3 surfaces.

\[(1) \quad X = \mathbb{CP}^2: \text{Aut}(X, \xi) = PU(3). \]

Theorem (Wilczynski 87, Hambleton-Lee 88) If a finite group acts locally linearly and homologically trivially on \(\mathbb{CP}^2\), then it is a subgroup of \(PU(3)\).

Theorem (Wilczynski 91) A locally linear, pseudo-free action of a finite cyclic group on \(\mathbb{CP}^2\) is equivalently to an action by projective transformations.
(1) $X = CP^2$ (cont.):

Theorem (Hambleton-Lee): There are smooth $Z_p \times Z_p$-actions on CP^2 which are not equivalent to an action by projective transformations.

(Such actions have relatively knotted 2-dim’l singular set; can’t be symplectic.)

Theorem (Chen 2006): A symplectic finite group action of G on CP^2 is smoothly equivalent to an action by projective transformations, if G is cyclic or metacyclic with non-empty fixed-point set, or there is a fixed-point whose induced G-action on the link S^3 is free.
(1) $X = CP^2$ (cont.):

Theorem (Hambleton-Lee): There are smooth $\mathbb{Z}_p \times \mathbb{Z}_p$-actions on CP^2 which are not equivalent to an action by projective transformations.

(Such actions have relatively knotted 2-dim’l singular set; can’t be symplectic.)

Theorem (Chen 2006): A symplectic finite group action of G on CP^2 is smoothly equivalent to an action by projective transformations, if G is cyclic or metacyclic with non-empty fixed-point set, or there is a fixed-point whose induced G-action on the link S^3 is free.
Other model spaces in dimension 4: (2) \(X = \) a rational surface.

Definition: A rational \(G \)-surface is a rational surface with a finite automorphism group \(G \).

Remarks: Minimal rational \(G \)-surfaces played the key role in the modern treatment of the classical problem of classifying finite subgroups of the plane Cremona group, i.e., the group of birational transformations of \(CP^2 \).

Problem: (i) Are there symplectic actions on a rational surface which are not equivalent to a holomorphic action?

(ii) Let \(X \) be a rational surface, \(G \) be a finite group acting on \(X \) pseudo-freely, preserving a symplectic structure. Consider any smooth resolution \(\tilde{X} \rightarrow X/G \) of the quotient orbifold. Is \(\tilde{X} \) diffeomorphic to a rational surface?
Other model spaces in dimension 4: (2) $X = \text{a rational surface}$.

Definition: A rational G-surface is a rational surface with a finite automorphism group G.

Remarks: Minimal rational G-surfaces played the key role in the modern treatment of the classical problem of classifying finite subgroups of the plane Cremona group, i.e., the group of birational transformations of CP^2.

Problem: (i) Are there symplectic actions on a rational surface which are not equivalent to a holomorphic action?

(ii) Let X be a rational surface, G be a finite group acting on X pseudo-freely, preserving a symplectic structure. Consider any smooth resolution $\tilde{X} \to X/G$ of the quotient orbifold. Is \tilde{X} diffeomorphic to a rational surface?
Other model spaces in dimension 4: (2) $X = \text{a rational surface}$.

Definition: A rational G-surface is a rational surface with a finite automorphism group G.

Remarks: Minimal rational G-surfaces played the key role in the modern treatment of the classical problem of classifying finite subgroups of the plane Cremona group, i.e., the group of birational transformations of CP^2.

Problem: (i) Are there symplectic actions on a rational surface which are not equivalent to a holomorphic action?

(ii) Let X be a rational surface, G be a finite group acting on X pseudo-freely, preserving a symplectic structure. Consider any smooth resolution $\tilde{X} \to X/G$ of the quotient orbifold. Is \tilde{X} diffeomorphic to a rational surface?
Other model spaces in dimension 4: (2) $X = \text{a rational surface.}$

Definition: A rational G-surface is a rational surface with a finite automorphism group G.

Remarks: Minimal rational G-surfaces played the key role in the modern treatment of the classical problem of classifying finite subgroups of the plane Cremona group, i.e., the group of birational transformations of CP^2.

Problem: (i) Are there symplectic actions on a rational surface which are not equivalent to a holomorphic action?

(ii) Let X be a rational surface, G be a finite group acting on X pseudo-freely, preserving a symplectic structure. Consider any smooth resolution $\tilde{X} \to X/G$ of the quotient orbifold. Is \tilde{X} diffeomorphic to a rational surface?
Other model spaces in dimension 4: (2) $X = \text{a rational surface}$.

Definition: A rational G-surface is a rational surface with a finite automorphism group G.

Remarks: Minimal rational G-surfaces played the key role in the modern treatment of the classical problem of classifying finite subgroups of the plane Cremona group, i.e., the group of birational transformations of CP^2.

Problem:

(i) Are there symplectic actions on a rational surface which are not equivalent to a holomorphic action?

(ii) Let X be a rational surface, G be a finite group acting on X pseudo-freely, preserving a symplectic structure. Consider any smooth resolution $\tilde{X} \to X/G$ of the quotient orbifold. Is \tilde{X} diffeomorphic to a rational surface?
(2) $X = \text{a rational surface (cont.)}: \text{Consider the minimal rational } G\text{-surface } X, \text{ where } X = F_n \text{ is a Hirzebruch surface with } n > 1 \text{ odd, } G = \mathbb{Z}_p, p \text{ prime.}

Theorem (Chen 2013) Assume the G-action is pseudo-free with the weights of the local representations given by
$(1, m), (-1, m + n), (1, -m), (-1, -m - n)$, where $0 < m < p$. Let ω be any G-invariant symplectic form on X. Then X contains a G-invariant, ω-symplectically embedded (-1)-sphere if and only if it contains a G-invariant, smoothly embedded (-1)-sphere, provided that $p - 7 \leq 2m \leq p + 5$.

(2) $X = a$ rational surface (cont.): Consider the minimal rational G-surface X, where $X = F_n$ is a Hirzebruch surface with $n > 1$ odd, $G = \mathbb{Z}_p$, p prime.

Theorem (Chen 2013) Assume the G-action is pseudo-free with the weights of the local representations given by $(1, m), (-1, m + n), (1, -m), (-1, -m - n)$, where $0 < m < p$. Let ω be any G-invariant symplectic form on X. Then X contains a G-invariant, ω-symplectically embedded (-1)-sphere if and only if it contains a G-invariant, smoothly embedded (-1)-sphere, provided that $p - 7 \leq 2m \leq p + 5$.
Lecture 1: Introduction

(2) $X =$ rational surface (cont.):

Corollary: For $G = \mathbb{Z}_p$ where $p \geq 5$, there exist symplectic rational G-manifolds such that

- the G-actions are homologically trivial;
- the underlying symplectic (resp. smooth) 4-manifolds are not minimal; but
- the symplectic (resp. smooth) G-manifolds are minimal.

Theorem (Chen 2013): For any prime number $p > 1$, there exists a smooth \mathbb{Z}_p-action on $CP^2 \# CP^2$ such that

- there are infinitely many distinct complex structures on $CP^2 \# CP^2$ which are invariant under the \mathbb{Z}_p-action, and
- for any cohomologous symplectic forms ω_1, ω_2 on $CP^2 \# CP^2$ which are invariant under the \mathbb{Z}_p-action, there is an equivariant diffeomorphism f such that $f^* \omega_2 = \omega_1$.
(2) $X = \text{rational surface (cont.)}$:

Corollary: For $G = \mathbb{Z}_p$ where $p \geq 5$, there exist symplectic rational G-manifolds such that

- the G-actions are homologically trivial;
- the underlying symplectic (resp. smooth) 4-manifolds are not minimal; but
- the symplectic (resp. smooth) G-manifolds are minimal.

Theorem (Chen 2013): For any prime number $p > 1$, there exists a smooth \mathbb{Z}_p-action on $CP^2 \# CP^2$ such that

- there are infinitely many distinct complex structures on $CP^2 \# CP^2$ which are invariant under the \mathbb{Z}_p-action, and
- for any cohomologous symplectic forms ω_1, ω_2 on $CP^2 \# CP^2$ which are invariant under the \mathbb{Z}_p-action, there is an equivariant diffeomorphism f such that $f^* \omega_2 = \omega_1$.

Other model spaces in dimension 4: (3) $X = \text{a K3 surface.}$

(A) **Homological Rigidity**: An automorphism of a K3 surface must be trivial if it acts as identity on the homology.

Problem: Are there any nontrivial smooth \mathbb{Z}_p-actions on the K3 surface which are homologically trivial?

Theorem (Ruberman, Matumoto): There are no nontrivial locally linear \mathbb{Z}_2-actions on the K3 surface which are homologically trivial.

Theorem (Chen-Kwasik 2007): There are no nontrivial symplectic \mathbb{Z}_p-actions on the K3 surface which are homologically trivial.
Other model spaces in dimension 4: (3) $X = \text{a K3 surface}$.

(A) **Homological Rigidity**: An automorphism of a K3 surface must be trivial if it acts as identity on the homology.

Problem: Are there any nontrivial smooth \mathbb{Z}_p-actions on the K3 surface which are homologically trivial?

Theorem (Ruberman, Matumoto): There are no nontrivial locally linear \mathbb{Z}_2-actions on the K3 surface which are homologically trivial.

Theorem (Chen-Kwasik 2007): There are no nontrivial symplectic \mathbb{Z}_p-actions on the K3 surface which are homologically trivial.
Other model spaces in dimension 4: (3) $X = \text{a K3 surface.}$

(A) **Homological Rigidity:** An automorphism of a K3 surface must be trivial if it acts as identity on the homology.

Problem: Are there any nontrivial smooth \mathbb{Z}_p-actions on the K3 surface which are homologically trivial?

Theorem (Ruberman, Matumoto): There are no nontrivial locally linear \mathbb{Z}_2-actions on the K3 surface which are homologically trivial.

Theorem (Chen-Kwasik 2007): There are no nontrivial symplectic \mathbb{Z}_p-actions on the K3 surface which are homologically trivial.
Other model spaces in dimension 4: (3) \(X = \text{a K3 surface.} \)

(A) **Homological Rigidity**: An automorphism of a K3 surface must be trivial if it acts as identity on the homology.

Problem: Are there any nontrivial smooth \(\mathbb{Z}_p \)-actions on the K3 surface which are homologically trivial?

Theorem (Ruberman, Matumoto): There are no nontrivial locally linear \(\mathbb{Z}_2 \)-actions on the K3 surface which are homologically trivial.

Theorem (Chen-Kwasik 2007): There are no nontrivial symplectic \(\mathbb{Z}_p \)-actions on the K3 surface which are homologically trivial.
Definition: A finite group is called a K3 group if it can be realized as a symplectic automorphism group of a K3 surface, i.e., an automorphism group which fixes a nonvanishing holomorphic 2-form.

Remarks: K3 groups are studied extensively by Nikulin, Mukai, and others. There are 11 maximal K3 groups:

\[L_2(7), A_6, S_5, M_{20}, F_{384}, A_{4,4}, T_{192}, H_{192}, N_{72}, M_9, T_{48}. \]

Theorem (Chen-Kwasik 2008): There are infinitely many distinct exotic smooth K3 surfaces such that none of the following maximal K3 groups can act smoothly on them

\[M_{20}, F_{384}, A_{4,4}, T_{192}, H_{192}, T_{48}. \]
Lecture 1: Introduction

(3) $X = \text{K3 surface (cont.)}: \text{(B) K3 groups and smooth structures.} $

Definition: A finite group is called a K3 group if it can be realized as a symplectic automorphism group of a K3 surface, i.e., an automorphism group which fixes a nonvanishing holomorphic 2-form.

Remarks: K3 groups are studied extensively by Nikulin, Mukai, and others. There are 11 maximal K3 groups:

$$L_2(7), A_6, S_5, M_{20}, F_{384}, A_{4,4}, T_{192}, H_{192}, N_{72}, M_9, T_{48}.$$

Theorem (Chen-Kwasik 2008): There are infinitely many distinct exotic smooth K3 surfaces such that none of the following maximal K3 groups can act smoothly on them

$$M_{20}, F_{384}, A_{4,4}, T_{192}, H_{192}, T_{48}.$$
(3) $X = \text{K3 surface (cont.): (B) K3 groups and smooth structures.}$

Definition: A finite group is called a K3 group if it can be realized as a symplectic automorphism group of a K3 surface, i.e., an automorphism group which fixes a nonvanishing holomorphic 2-form.

Remarks: K3 groups are studied extensively by Nikulin, Mukai, and others. There are 11 maximal K3 groups:

$$L_2(7), A_6, S_5, M_{20}, F_{384}, A_{4,4}, T_{192}, H_{192}, N_{72}, M_9, T_{48}.$$

Theorem (Chen-Kwasik 2008): There are infinitely many distinct exotic smooth K3 surfaces such that none of the following maximal K3 groups can act smoothly on them

$$M_{20}, F_{384}, A_{4,4}, T_{192}, H_{192}, T_{48}.$$
(B) K3 groups and smooth structures (cont.).

Theorem (Chen-Kwasik 2011): If a symplectic homotopy K3 surface admits a symplectic action of one of the following maximal K3 groups

\[L_2(7), A_6, M_{20}, A_{4,4}, T_{192}, T_{48}, \]

it must have a trivial canonical bundle.

Theorem (Chen-Kwasik 2011): Let \(X \) be a symplectic K3 surface with trivial canonical bundle. If a finite group \(G \) acts on \(X \) symplectically such that \(b_2^+(X/G) = 3 \). Then \(G \) must be isomorphic to a K3 group, with the same fixed-point set structure of a symplectic holomorphic \(G \)-action.
(B) **K3 groups and smooth structures** (cont.).

Theorem (Chen-Kwasik 2011): If a symplectic homotopy K3 surface admits a symplectic action of one of the following maximal K3 groups

\[L_2(7), A_6, M_{20}, A_{4,4}, T_{192}, T_{48}, \]

it must have a trivial canonical bundle.

Theorem (Chen-Kwasik 2011): Let \(X \) be a symplectic K3 surface with trivial canonical bundle. If a finite group \(G \) acts on \(X \) symplectically such that \(b_2^+(X/G) = 3 \). Then \(G \) must be isomorphic to a K3 group, with the same fixed-point set structure of a symplectic holomorphic \(G \)-action.
Other model spaces in dim 4: (4) $X = $ a surface of general type.

Bound of Automorphisms.

Theorem (Hurwitz): Let Σ be a compact Riemann surface of genus $g > 1$. Then

$$|Aut(\Sigma)| \leq 84(g - 1) = 42 \text{deg}K_{\Sigma}.$$

Theorem (G. Xiao, 1994): Let X be a minimal surface of general type. Then

$$|Aut(X)| \leq (42)^2 c_1(K_X)^2.$$

Higher dimensional version of Hurwitz-Xiao’s results were recently obtained by C.D. Hacon, J. McKernan and C. Xu.
Other model spaces in dim 4: (4) $X = \text{a surface of general type.}$

Bound of Automorphisms.

Theorem (Hurwitz): Let Σ be a compact Riemann surface of genus $g > 1$. Then

$$|Aut(\Sigma)| \leq 84(g - 1) = 42\deg K_\Sigma.$$

Theorem (G. Xiao, 1994): Let X be a minimal surface of general type. Then

$$|Aut(X)| \leq (42)^2 c_1(K_X)^2.$$

Higher dimensional version of Hurwitz-Xiao’s results were recently obtained by C.D. Hacon, J. McKernan and C. Xu.
Lecture 1: Introduction

Other model spaces in dim 4: (4) X = a surface of general type.

Bound of Automorphisms.

Theorem (Hurwitz): Let Σ be a compact Riemann surface of genus $g > 1$. Then

$$|Aut(\Sigma)| \leq 84(g - 1) = 42\text{deg}K_\Sigma.$$

Theorem (G. Xiao, 1994): Let X be a minimal surface of general type. Then

$$|Aut(X)| \leq (42)^2c_1(K_X)^2.$$

Higher dimensional version of Hurwitz-Xiao’s results were recently obtained by C.D. Hacon, J. McKernan and C. Xu.
Other model spaces in dim 4: (4) \(X = \) a surface of general type.

Bound of Automorphisms.

Theorem (Hurwitz): Let \(\Sigma \) be a compact Riemann surface of genus \(g > 1 \). Then

\[
|Aut(\Sigma)| \leq 84(g - 1) = 42\text{deg}K_\Sigma.
\]

Theorem (G. Xiao, 1994): Let \(X \) be a minimal surface of general type. Then

\[
|Aut(X)| \leq (42)^2 c_1(K_X)^2.
\]

Higher dimensional version of Hurwitz-Xiao’s results were recently obtained by C.D. Hacon, J. McKernan and C. Xu.
(4) $X = \text{a surface of general type (cont.)}: \text{Symplectic version.}$

Problem: Let (X, ω) be a minimal symplectic 4-manifold with $c_1(K_X) \cdot [\omega] > 0$ and $c_1(K_X)^2 > 0$. Let G be a finite group acting on X preserving ω. Is there a universal constant $c > 0$ such that

$$|G| \leq c \cdot c_1(K_X)^2?$$

Theorem (Chen, 2011): Let (X, ω) be a symplectic 4-manifold with $b_2^+(X) > 1$ and $[\omega] \in H_{dR}^2(X)$ integral, such that X is either non-minimal, or $\chi(X) \neq 0$, or $\text{sign}(X) \neq 0$. Then there exists a universal constant $c > 0$ such that for any symplectic \mathbb{Z}_p-action of prime order on (X, ω), the order p has the following bound:

$$p \leq c \cdot (1 + b_1^2(X) + b_2^2(X)) \cdot (c_1(K_X) \cdot [\omega])^2.$$
Problem: Let \((X, \omega)\) be a minimal symplectic 4-manifold with
\[c_1(K_X) \cdot [\omega] > 0\] and \[c_1(K_X)^2 > 0\]. Let \(G\) be a finite group acting on \(X\) preserving \(\omega\). Is there a universal constant \(c > 0\) such that
\[|G| \leq c \cdot c_1(K_X)^2?\]

Theorem (Chen, 2011): Let \((X, \omega)\) be a symplectic 4-manifold with
\[b_2^+(X) > 1\] and \([\omega] \in H^2_{dR}(X)\) integral, such that \(X\) is either non-minimal, or \(\chi(X) \neq 0\), or \(\text{sign}(X) \neq 0\). Then there exists a universal constant \(c > 0\) such that for any symplectic \(\mathbb{Z}_p\)-action of prime order on \((X, \omega)\), the order \(p\) has the following bound:
\[p \leq c \cdot (1 + b_1^2(X) + b_2^2(X)) \cdot (c_1(K_X) \cdot [\omega])^2.\]
(4) X = a surface of general type (cont.): Symplectic version.

Problem: Let (X, ω) be a minimal symplectic 4-manifold with $c_1(K_X) \cdot [\omega] > 0$ and $c_1(K_X)^2 > 0$. Let G be a finite group acting on X preserving ω. Is there a universal constant $c > 0$ such that

$$|G| \leq c \cdot c_1(K_X)^2?$$

Theorem (Chen, 2011): Let (X, ω) be a symplectic 4-manifold with $b_2^+(X) > 1$ and $[\omega] \in H^2_{dR}(X)$ integral, such that X is either non-minimal, or $\chi(X) \neq 0$, or $\text{sign}(X) \neq 0$. Then there exists a universal constant $c > 0$ such that for any symplectic \mathbb{Z}_p-action of prime order on (X, ω), the order p has the following bound:

$$p \leq c \cdot (1 + b_1^2(X) + b_2^2(X)) \cdot (c_1(K_X) \cdot [\omega])^2.$$
Question: Let X be a smooth, orientable 4-manifold which does not admit any smooth S^1-action. Is there a constant $C > 0$ such that for any smooth Z_p-actions of prime order, the order p satisfies $p \leq C$?

Note: The 3-dimensional version of the above question is affirmative. However, in higher dimensions, there are compact closed manifolds admitting no smooth S^1-actions but admitting smooth Z_p-actions for infinitely many primes. So no such a bound C exists.

Definition: If such a bound C exists, we will call it a Hurwitz-type bound for smooth Z_p-actions on X. Note: it’s known that no such a bound exists for locally linear actions in dimension 4.
(4) $X = \text{a surface of general type (cont.)}: \text{Smooth version.}$

Question: Let X be a smooth, orientable 4-manifold which does not admit any smooth S^1-action. Is there a constant $C > 0$ such that for any smooth \mathbb{Z}_p-actions of prime order, the order p satisfies $p \leq C$?

Note: The 3-dimensional version of the above question is affirmative. However, in higher dimensions, there are compact closed manifolds admitting no smooth S^1-actions but admitting smooth \mathbb{Z}_p-actions for infinitely many primes. So no such a bound C exists.

Definition: If such a bound C exists, we will call it a Hurwitz-type bound for smooth \mathbb{Z}_p-actions on X. **Note:** it’s known that no such a bound exists for locally linear actions in dimension 4.
(4) $X = \text{a surface of general type (cont.)}: \text{Smooth version}.$

Question: Let X be a smooth, orientable 4-manifold which does not admit any smooth S^1-action. Is there a constant $C > 0$ such that for any smooth \mathbb{Z}_p-actions of prime order, the order p satisfies $p \leq C$?

Note: The 3-dimensional version of the above question is affirmative. However, in higher dimensions, there are compact closed manifolds admitting no smooth S^1-actions but admitting smooth \mathbb{Z}_p-actions for infinitely many primes. So no such a bound C exists.

Definition: If such a bound C exists, we will call it a Hurwitz-type bound for smooth \mathbb{Z}_p-actions on X. **Note:** it’s known that no such a bound exists for locally linear actions in dimension 4.
(4) $X = \text{a surface of general type (cont.): Smooth version.}$

Question: Let X be a smooth, orientable 4-manifold which does not admit any smooth S^1-action. Is there a constant $C > 0$ such that for any smooth \mathbb{Z}_p-actions of prime order, the order p satisfies $p \leq C$?

Note: The 3-dimensional version of the above question is affirmative. However, in higher dimensions, there are compact closed manifolds admitting no smooth S^1-actions but admitting smooth \mathbb{Z}_p-actions for infinitely many primes. So no such a bound C exists.

Definition: If such a bound C exists, we will call it a Hurwitz-type bound for smooth \mathbb{Z}_p-actions on X. **Note:** it’s known that no such a bound exists for locally linear actions in dimension 4.
(4) X = a surface of general type (cont.): **Smooth version.**

Theorem (Chen, 2011) Let X be a compact complex surface with $b_2^+ > 0$ which does not admit any smooth S^1-actions. Then for any holomorphic \mathbb{Z}_p-actions of prime order on X, the order p satisfies

$$ p \leq C := c \cdot (1 + b_1(X) + b_2(X) + |\text{Tor}H_2(X)|), $$

where $c > 0$ is a universal constant.

Theorem (Chen, 2011) For any prime number $p > 3$, there is a symplectic 4-manifold X_p with the following properties:

- X_p is homeomorphic to $\mathbb{CP}^2 \# 9(-\mathbb{CP}^2)$;
- X_p supports no smooth S^1-actions;
- X_p admits a symplectic \mathbb{Z}_p-action.

Remarks: From the construction, the multiplicity of $c_1(K_{X_p})$ grows linearly with p.
(4) X = a surface of general type (cont.): **Smooth version**.

Theorem (Chen, 2011) Let X be a compact complex surface with $b_2^+ > 0$ which does not admit any smooth S^1-actions. Then for any holomorphic Z_p-actions of prime order on X, the order p satisfies

$$p \leq C := c \cdot (1 + b_1(X) + b_2(X) + |TorH_2(X)|),$$

where $c > 0$ is a universal constant.

Theorem (Chen, 2011) For any prime number $p > 3$, there is a symplectic 4-manifold X_p with the following properties:

- X_p is homeomorphic to $CP^2 \# 9(-CP^2)$;
- X_p supports no smooth S^1-actions;
- X_p admits a **symplectic** Z_p-action.

Remarks: From the construction, the multiplicity of $c_1(K_{X_p})$ grows linearly with p.
(4) X = a surface of general type (cont.): Smooth version.

Theorem (Chen, 2011) Let X be a compact complex surface with $b_2^+ > 0$ which does not admit any smooth S^1-actions. Then for any holomorphic Z_p-actions of prime order on X, the order p satisfies

$$p \leq C := c \cdot (1 + b_1(X) + b_2(X) + |\text{Tor}H_2(X)|),$$

where $c > 0$ is a universal constant.

Theorem (Chen, 2011) For any prime number $p > 3$, there is a symplectic 4-manifold X_p with the following properties:

- X_p is homeomorphic to $CP^2 \# 9(-CP^2)$;
- X_p supports no smooth S^1-actions;
- X_p admits a symplectic Z_p-action.

Remarks: From the construction, the multiplicity of $c_1(K_{X_p})$ grows linearly with p.
(4) \(X = \) a surface of general type (cont.): **Smooth version.**

Theorem (Chen, 2012) For any integer \(n > 1 \), there is a 4-manifold \(X_n \) with \(b_2^+ > 1 \) and non-zero Seiberg-Witten invariant, such that

- the \(X_n \)'s have the same integral homology, intersection form and Seiberg-Witten invariant;
- each \(X_n \) supports no smooth \(S^1 \)-actions;
- \(X_n \) admits a smooth \(Z_n \)-action.

Note: From the construction, the \(\pi_1 \) of \(X_n \) gets more and more complicated as \(n \to \infty \).

Problem: Let \(X \) be a simply connected smoothable 4-manifold with even intersection form and non-zero signature. Is there a constant \(C > 0 \) depending only on the homeomorphism type of \(X \), such that for any smoothable \(Z_p \)-actions of prime order on \(X \), the order \(p \) satisfies \(p \leq C \)?
(4) X = a surface of general type (cont.): **Smooth version**.

Theorem (Chen, 2012) For any integer $n > 1$, there is a 4-manifold X_n with $b_2^+ > 1$ and non-zero Seiberg-Witten invariant, such that

- the X_n's have the same integral homology, intersection form and Seiberg-Witten invariant;
- each X_n supports no smooth S^1-actions;
- X_n admits a smooth \mathbb{Z}_n-action.

Note: From the construction, the π_1 of X_n gets more and more complicated as $n \to \infty$.

Problem: Let X be a simply connected smoothable 4-manifold with even intersection form and non-zero signature. Is there a constant $C > 0$ depending only on the homeomorphism type of X, such that for any smoothable \mathbb{Z}_p-actions of prime order on X, the order p satisfies $p \leq C$?
(4) \(X \) = a surface of general type (cont.): Smooth version.

Theorem (Chen, 2012) For any integer \(n > 1 \), there is a 4-manifold \(X_n \) with \(b_2^+ > 1 \) and non-zero Seiberg-Witten invariant, such that

- the \(X_n \)'s have the same integral homology, intersection form and Seiberg-Witten invariant;
- each \(X_n \) supports no smooth \(S^1 \)-actions;
- \(X_n \) admits a smooth \(\mathbb{Z}_n \)-action.

Note: From the construction, the \(\pi_1 \) of \(X_n \) gets more and more complicated as \(n \to \infty \).

Problem: Let \(X \) be a simply connected smoothable 4-manifold with even intersection form and non-zero signature. Is there a constant \(C > 0 \) depending only on the homeomorphism type of \(X \), such that for any smoothable \(\mathbb{Z}_p \)-actions of prime order on \(X \), the order \(p \) satisfies \(p \leq C \)?