Show all of your work. No credit will be given for an answer without some work or explanation.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total (100 points)</td>
<td></td>
</tr>
</tbody>
</table>
1. Determine if the three vectors \(\mathbf{u} = < 2, -1, 4 >, \mathbf{v} = < 1, 4, -7 > \) and \(\mathbf{w} = < 0, -1, 2 > \) lie in the same plane or not. (12 points)

Solution:

\[
\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 2 & -1 & 4 \\ 1 & 4 & -7 \\ 0 & -1 & 2 \end{vmatrix} = 2 \begin{vmatrix} 4 & -7 \\ -1 & 2 \end{vmatrix} - 1 \begin{vmatrix} 4 & -7 \\ 0 & 2 \end{vmatrix} + 4 \begin{vmatrix} 4 & -7 \\ 0 & -1 \end{vmatrix} = 2 \cdot 1 + 1 \cdot 2 + 4 \cdot (-1) = 0
\]

, which says that the volume of the parallelepiped determined by \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) is equal 0, and thus these vectors do lie in the same plane.

2. Find the equation of the tangent plane to the surface \(z = \ln(2x + y) \) at point \((-1, 3, 0)\)? (15 points)

Solution: Since \(f(x, y) = \ln(2x + y) \), we have \(f_x(x, y) = \frac{2}{2x+y} \) and \(f_y(x, y) = \frac{1}{2x+y} \).

Now plug in \(x = -1 \) and \(y = 3 \), we obtain \(f_x(-1, 3) = 2 \) \(f_y(-1, 3) = 1 \).

Thus, the equation of the tangent plane is given by \(2(x - (-1)) + (y - 3) = z - 0 \)

Simplifying, we obtain \(2x + y - z = 1 \)

3. Determine the equation of the plane perpendicular to the vector \(\mathbf{n} = < 2, 4, 3 > \) which contains the point \(P = (3, 2, 1) \). What is the distance of the point \(Q = (5, 2, 1) \) from this plane? (15 points)

Solution: Using the normal vector to the plane \(\mathbf{n} = < 2, 4, 3 > \) and the given point \((3, 2, 1) \), we find the equation of the plane: \(2(x - 3) + 4(y - 2) + 3(z - 1) = 0 \)

Use the distance formula, we have

\[
D = \frac{|2 \cdot 5 + 4 \cdot 2 + 3 \cdot 1 - 17|}{\sqrt{2^2 + 4^2 + 3^2}} = \frac{4}{\sqrt{29}}
\]

4. Let \(S \) be the surface consisting of all points in space whose distance to the point \((0, 0, -1) \) is \(\sqrt{2} \) times their distance to \(xy \) plane. Find an equation for \(S \) and sketch the surface \(S \). (15 points)

Solution: Let \(P = (x, y, z) \) be an arbitrary point on surface \(S \). Then the distance from \(P \) to \((0, 0, -1) \) is \(\sqrt{x^2 + y^2 + (z + 1)^2} \) and the distance from \(P \) to \(xy \) plane is \(|z| \).

So \(\sqrt{x^2 + y^2 + (z + 1)^2} = \sqrt{2} |z| \). Which simplifies to \(x^2 + y^2 - (z - 1)^2 = -2 \). Thus, the surface \(S \) is a hyperboloid of two sheets.

5. Find the following limit, if it exists, or show that the limit does not exist. (15 points)

\[
\lim_{(x,y,z) \to (0,0,0)} \frac{xy + yz + xz}{x^2 + y^2 + z^2}
\]

Solution:

First, we will use the path \(y = x = z \). Along this path we have,

\[
\lim_{(x,y,z) \to (0,0,0)} \frac{xy + yz + xz}{x^2 + y^2 + z^2} = \lim_{(x,x,x) \to (0,0,0)} \frac{x^2 + x^2 + x^2}{x^2 + x^2 + x^2} = \lim_{x \to 0} \frac{3x^2}{3x^2} = 1
\]
Now, let’s try the path \(y = z = 0 \). Along this path the limit becomes,

\[
\lim_{(x,y,z)\to(0,0,0)} \frac{xy + yz + xz}{x^2 + y^2 + z^2} = \lim_{(x,0,0)\to(0,0,0)} \frac{0}{x^2} = 0
\]

We have two paths that give different values for the given limit and so the limit doesn’t exist.

6. Verify Clairut’s Theorem for \(f(x, y) = xe^{-x^2y^2} \). (15 points)

\[
f_x = e^{-x^2y^2} - 2x^2y^2e^{-x^2y^2}, \quad f_{xy} = (4y^3x^4 - 6x^2y)e^{-x^2y^2}, \quad f_y = -2x^3ye^{-x^2y^2}, \quad f_{yx} = (4y^3x^4 - 6x^2y)e^{-x^2y^2}.
\]
Thus \(f_{xy} = f_{yx} \).

7. Find the directional derivative of the function \(f(x, y, z) = xe^{\frac{xy}{z}} \) in the direction of vector \(\vec{v} = \langle -1, 2, 2 \rangle \) at the point \(P = (3, 0, 1) \). (13 points)

\[
f_x = \frac{ze^{\frac{xy}{z}}}{z}, \quad f_y = \frac{xe^{\frac{xy}{z}}}{z}, \quad f_z = \frac{-xe^{\frac{xy}{z}}}{z^2}. \text{ First, we find the unit vector in the direction of vector } \vec{v}: \quad \vec{u} = \frac{\vec{v}}{|\vec{v}|} = \langle -\frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle.
\]
\[
D_y f(3, 0, 1) = \nabla f(3, 0, 1) \cdot \vec{u} = \langle 0, 9, 0 \rangle \cdot \langle -\frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle = 6
\]