
1. Find the limit, if it exists. If the limit does not exist, explain why.
 a) \[\lim_{x \to 0} \frac{e^x - \sin(x) - 1}{x^2 - x^3} \]
 b) \[\lim_{x \to 0^+} (e^x - 1)^x \]

2. Determine whether each of the following sequences converges or diverges. If a sequence converges, compute its limit. If a sequence diverges, state whether it diverges to \(+\infty\), \(-\infty\), or neither. Show your reasoning.
 a) \[a_n = \frac{\ln(n)}{\sqrt{n}} \]
 b) \[a_n = (1 + \frac{3}{n})^{5n} \]
 c) \[a_n = (-1)^n \sqrt{n} \]

3. Let \(a_n \) be the sequence defined recursively by \(a_1 = 0 \), \(a_{n+1} = \frac{1}{4}(1 + a_n) \). Determine whether the sequence \(a_n \) converges or diverges. If \(a_n \) converges, compute its limit.

4. If \(p \) is a positive constant, show that the improper integral \(\int_1^\infty \frac{dx}{x^p} \) converges if \(p > 1 \) and diverges if \(p \leq 1 \).

5. Establish the convergence or divergence of the following series by using the comparison test.
 a) \[\sum_{n=1}^{\infty} \frac{1}{5^n - n} \]
 b) \[\sum_{n=2}^{\infty} \frac{1}{(\ln(n))^n} \]

6. Establish the convergence or divergence of the following series by using the integral test.
 a) \[\sum_{n=1}^{\infty} \frac{n^2}{e^{n^3}} \]
 b) \[\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 13} \]

7. Use Pappus’s theorem to find the volume of the torus (doughnut) generated by revolving a circle of radius \(r \) about a line in its plane at a distance \(R \) from its center, where \(R > r \).