7.8 (5pts)

(g) To find the radius of convergence, we check for absolute convergence, i.e. we consider the sum
\[\sum_{n=0}^{\infty} \frac{3^n |x|^n}{2^n} = \sum_{n=0}^{\infty} \left(\frac{3|x|}{2} \right)^n . \]

This is a geometric series, which converges if and only if \(\frac{3|x|}{2} < 1 \), or in other words \(|x| < \frac{2}{3} \). Thus the radius of convergence is \(\frac{2}{3} \). To find the interval of convergence, we now check the endpoints \(-\frac{2}{3} \) and \(\frac{2}{3} \).

At \(x = \frac{2}{3} \),
\[\sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{2^n} \left(\frac{2}{3} \right)^n = \sum_{n=0}^{\infty} (-1)^n , \]
which diverges. At \(x = -\frac{2}{3} \),
\[\sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{2^n} \left(-\frac{2}{3} \right)^n = \sum_{n=0}^{\infty} 1 , \]
which also diverges. Thus the interval of convergence is \((-\frac{2}{3}, \frac{2}{3}) \).

7.9 (1pt)

7.10 (4pts) Let \(M \) be the bound on the sequence \(\{a_n\} \), that is \(|a_n| \leq M \) for all \(n \in \mathbb{N} \). Then \(|a_n x^n| \leq M|x|^n \), so by the comparison test,
\[
\text{if } \sum_{n=0}^{\infty} M|x|^n \text{ converges, then } \sum_{n=0}^{\infty} |a_n x^n| \text{ converges.}
\]

Since the first series is a geometric series with ratio \(|x| \), this happens precisely when \(|x| < 1 \), so the power series
\[\sum_{n=0}^{\infty} a_n x^n \text{ converges absolutely for } |x| < 1 . \]