Correction of quiz 1

Problem 1 the plane \mathcal{P} contains the points $A(-1,0,0)$, $B(0,2,-3)$, and $C(4,-5,0)$, hence it is parallel to the vectors \overrightarrow{AB} and \overrightarrow{AC} (for instance). The vector given by the cross product $\overrightarrow{n} = \overrightarrow{AB} \times \overrightarrow{AC}$ is thus a normal vector of the plane. A simple computation gives $\overrightarrow{n} = -15 < 1,1,1>$, and the vector $\overrightarrow{m} = <1,1,1>$ is a simple normal vector of \mathcal{P}.

If a point $P(x,y,z)$ belongs to \mathcal{P} it has to satisfy

$$\overrightarrow{m}.\overrightarrow{AP} = 0$$

which gives

$$(x + 1) + y + z = 0.$$

Hence a simple equation of the plane is

$$x + y + z + 1 = 0.$$

Problem 2 Let \mathcal{P} be the plane consisting of all points that are equidistant from the points $A(2,5,5)$ and $B(-6,3,1)$. If $P(x,y,z)$ is in \mathcal{P} then we have

$$|\overrightarrow{AP}| = |\overrightarrow{BP}| \iff |\overrightarrow{AP}|^2 = |\overrightarrow{BP}|^2$$

id est

$$(x - 2)^2 + (y - 5)^2 + (z - 5)^2 = (x + 6)^2 + (y - 3)^2 + (z - 1)^2,$$

which gives

$$4x + y + 2z - 2 = 0.$$

Problem 3 A normal vector of the plane \mathcal{P} is $\overrightarrow{n} = <1,1,1>$. A direction vector of the line \mathcal{L} is $\overrightarrow{u} = <2,-1,1>$. The dot product $\overrightarrow{n}.\overrightarrow{u} = 2 \neq 0$. Hence the line and the plane are not parallel, they have to intersect. The distance between the line and the plane is 0.