Math 2263 - Quiz 1
Basics of geometry

Name: Score: 000000

This is a 20 minutes quiz, two-sided. No calculators, computers, cellphones, notes, book allowed. Show all work. No credit will be given for answers without work.

1. Given the vectors \(\mathbf{a} = \langle 1, -3, 4 \rangle \), \(\mathbf{b} = \langle -1, 3, 2 \rangle \) and \(\mathbf{c} = \langle 2, -6, 8 \rangle \),
 (a) (2 points) compute \(\mathbf{a} \cdot \mathbf{b} \);

 Solution: \(\mathbf{a} \cdot \mathbf{b} = 2 \).

 (b) (2 points) compute \(\mathbf{a} \times \mathbf{b} \);

 Solution:

 \[\mathbf{a} \times \mathbf{b} = \det \begin{bmatrix} i & j & k \\ 1 & -3 & 4 \\ -1 & 3 & -2 \end{bmatrix} = \langle -6, -2, 0 \rangle. \]

 (c) (2 points) compute \((\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \).

 Solution: Notice that \(\mathbf{c} = 2\mathbf{a} \), and we recall that the cross product \(\mathbf{a} \times \mathbf{b} \) is orthogonal to \(\mathbf{a} \) and \(\mathbf{b} \). Hence \((\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 0 \).

2. (a) (3 points) Find a nonzero orthogonal vector to the plane \(\mathcal{P} \) through the points \(P(1, 0, 1) \), \(Q(-2, 1, 3) \), and \(R(4, 2, 5) \).

 Solution: The tao vectors \(\overrightarrow{PQ} = \langle -3, 1, 2 \rangle \) and \(\overrightarrow{PR} = \langle 3, 2, 4 \rangle \) are both parallel to the plane \(\mathcal{P} \), and not proportional. Hence an orthogonal vector can be given by \(\mathbf{n} = \frac{1}{9} \overrightarrow{PQ} \times \overrightarrow{PR} = \langle 0, 2, -1 \rangle \).

 (b) (3 points) Find an equation of the plane \(\mathcal{P} \).

 Solution: We have a normal vector to the plane \(\mathbf{n} \) and a point of the plane \(P \). Hence,

 \[\mathcal{P} = \left\{ S(x, y, z) : \overrightarrow{SP} \cdot \mathbf{n} = 0 \right\} \]

 \[= \left\{ (x, y, z) : < x - 1, y, z - 1 > \cdot < 0, 2, -1 >= 0 \right\} \]

 \[= \left\{ (x, y, z) : 2y - z + 1 = 0 \right\}. \]

 Hence, a linear equation of the plane is given by \(2y - z + 1 = 0 \).