Math 2263 - Quiz 2
Planes, Distances, Surfaces

Name: __________________________ Score: __________________________

This is a 20 minutes quiz, one-sided. No calculators, computers, cellphones, notes, book allowed. Show all work. No credit will be given for answers without work.

1. Let P be the plane with equation $x = 1$.
 (a) (2 points) Recall the formula of the distance between P and a point $Q(x_0, y_0, z_0)$, denoted $\text{dist}(Q, P)$.

 Solution: The plane P has equation $x - 1 = 0$. We apply the formula:
 \[
 \text{dist}(Q, P) = \frac{|x_0 - 1|}{\sqrt{1^2}} = |x_0 - 1|.
 \]

 (b) (5 points) We consider the point $A(-1, 0, 0)$. We say that Q is equidistant from P and A if $\text{dist}(Q, P) = |AQ|$. Find an equation of the surface consisting of all points Q equidistant from P and A. Identify the surface.

 Solution: Let S be the surface consisting of all points $Q(x, y, z)$ equidistant from P and A. Then, $|AQ| = \sqrt{(x + 1)^2 + y^2 + z^2}$ and $\text{dist}(Q, P) = |x - 1|$. Hence the coordinates (x, y, z) satisfy
 \[
 |x - 1| = \sqrt{(x + 1)^2 + y^2 + z^2}
 \]
 \[
 (x - 1)^2 = (x + 1)^2 + y^2 + z^2
 \]
 which gives
 \[
 4x + y^2 + z^2 = 0
 \]
 for the equation of S. It is a circular paraboloid, along the negative x–axis.

2. (a) (3 points) Find the point at which the line L whose parametric equations are $x = t - 1, y = 1 + 2t, z = 3 - t$ intersects the plane P given by $3x - y + 2z = 5$.

 Solution: Let $Q(x_0, y_0, z_0)$ be the intersection point, if it exists. As Q belongs to L there exists t_0 such that $x_0 = t_0 - 1, y_0 = 1 + 2t_0, z_0 = 3 - t_0$. As Q belongs to P, t_0 must satisfy the equation
 \[
 3(t_0 - 1) - (1 + 2t_0) + 2(3 - t_0) = 5,
 \]
 which gives $t_0 = -3$. Hence, they intersect at the point $Q(-4, -5, 6)$.

 (b) (1 point) What is the distance between the line and the plane?

 Solution: They intersect, so the distance is 0.