The influence of a line with fast diffusion on Fisher-KPP propagation: integral models

Antoine Pauthier

Institut de Mathématique de Toulouse

PhD supervised by Henri Berestycki (EHESS) and Jean-Michel Roquejoffre (IMT) Supported by ERC ReaDi project

Presentation of the model(s)

ResultsAn intermediate model

- 3 proof of the existence of c,
- Ongoing work

Model under study

<ロ > ∢回 > ∢回 > ∢ 直 > ∢ 直 > へ 回 >

Mathematically

$$\begin{cases} \partial_t u - D \partial_{xx} u = -\overline{\mu} u + \int \nu(y) v(t, x, y) dy & x \in \mathbb{R}, \ t > 0 \\ \partial_t v - d \Delta v = f(v) + \mu(y) u(t, x) - \nu(y) v(t, x, y) & (x, y) \in \mathbb{R}^2, \ t > 0 \end{cases}$$
(1)

Assumptions:

- f(0) = f(1) = 0, f positive and concave on [0, 1] (KPP-type).
- $\nu, \mu \geq 0$, continuous, $\nu(0) > 0$.
- $\exists M > 0, \; \mu(y) \leq Me^{-\frac{|y|}{M}} \; \text{and} \; \nu(y) \leq \frac{M}{(1+y^2)^{1+\frac{1}{M}}}.$

- 4 ロ ト 4 回 ト 4 巨 ト 4 巨 - か Q (C)

Motivation

Model introduced by H. Berestycki, J.-M. Roquejoffre, and L. Rossi.

FIGURE: Road with fast diffusion

Mathematically

$$\begin{cases} \partial_{t}u - D\partial_{xx}u = \nu v(x,0,t) - \mu u & x \in \mathbb{R}, \ t > 0 \\ \partial_{t}v - d\Delta v = v(1-v) & (x,y) \in \mathbb{R} \times \mathbb{R}_{-}^{*}, \ t > 0 \\ -d\partial_{y}v(x,0,t) = \mu u(x,t) - \nu v(x,0,t) & x \in \mathbb{R}, \ t > 0. \end{cases}$$
 (2)

Results for (2)

Theorem

There exists $c_* = c_*(\mu, d, D) > 0$ such that :

- for all $c > c_*$, $\lim_{t \to \infty} \sup_{|x| > ct} (u(x, t), v(x, y, t)) = (0, 0)$;
- for all $c < c_*$, $\lim_{t \to \infty} \inf_{|x| \le ct} (u(x,t), v(x,y,t)) = (\nu/\mu, 1)$.

Moreover:

- if $D \le 2d$, then $c_*(\mu, d, D) = c_{KPP} := 2\sqrt{df'(0)}$;
- if D>2d, then $c_*(\mu,d,D)>c_{KPP}$ and $\lim_{D\to\infty}c_*(\mu,d,D)/\sqrt{D}$ exists and is positive.

Question

Do these results carry over to our model?

- Presentation of the model(s)
- ResultsAn intermediate model
- \bigcirc proof of the existence of c_*
- Ongoing work

Spreading

Theorem

(1) has a unique positive bounded stationary solution $(U_s(y), V_s(y))$ x-invariant.

Theorem

There exists $c_* = c_*(\mu, d, D) > 0$ s.t.:

- for all $c>c_*$, $\lim_{t\to\infty}\sup_{|x|\geq ct}(u(x,t),v(x,y,t))=(0,0)$;
- for all $c < c_*$, $\lim_{t \to \infty} \inf_{|x| \le ct} (u(x,t), v(x,y,t)) = (U_s, V_s)$.

Moreover, c* satisfies :

- if $D \le 2d$, $c_*(\mu, d, D) = c_{KPP} := 2\sqrt{df'(0)}$;
- if D > 2d, $c_*(\mu, d, D) > c_{KPP}$.

Remark

The threshold is still D = 2d.

∢ロ > ∢回 > ∢ 直 > く 直 > り へ 見

Singular limit $\mu, \nu \to \delta_0$

 μ, ν compactly supported. For all $\varepsilon > 0$, consider the exchange rates

$$\nu_{\varepsilon}(\mathbf{y}) = \frac{1}{\varepsilon}\nu(\frac{\mathbf{y}}{\varepsilon}), \ \mu_{\varepsilon}(\mathbf{y}) = \frac{1}{\varepsilon}\mu(\frac{\mathbf{y}}{\varepsilon}).$$

It gives a spreading speed $c_\varepsilon^*=c_\varepsilon^*(d,D,\overline{\mu})$. If c_0^* is the spreading speed for (symmetrized) BRR-model, then

Theorem

 c_{ε}^* converges to c_0^* with ${\varepsilon} \to 0$, locally uniformly in d, D, $\overline{\mu}$.

Antoine Pauthier (IMT)

An intermediate model

- Integral exchange from the field to the road;
- Localized exchange from the road to the field.

$$\begin{cases} \partial_{t}u - D\partial_{xx}u = -\overline{\mu}u + \int \nu(y)v(t,x,y) & x \in \mathbb{R}, \ t > 0 \\ \partial_{t}v - d\Delta v = f(v) - \nu(y)v(t,x,y) & (x,y) \in \mathbb{R} \times \mathbb{R}^{*}, \ t > 0 \\ v(t,x,0^{+}) = v(t,x,0^{-}), & x \in \mathbb{R}, \ t > 0 \\ -d\left\{\partial_{y}v(t,x,0^{+}) - \partial_{y}v(t,x,0^{-})\right\} = \overline{\mu}u(t,x) & x \in \mathbb{R}, \ t > 0. \end{cases}$$
(3)

Similar results

Existence of an asymptotic spreading speed c^* with the same properties.

Antoine Pauthier (IMT) ERC ReaDi meeting March 25th 2014

Presentation of the model(s)

- ResultsAn intermediate model
- \bigcirc proof of the existence of c_*
- Ongoing work

Main tool: construction of plane waves

Reminder : they serve as supersolution $(f(v) \le f'(v)v)$.

Linearized system

$$\begin{cases} \partial_t u - D \partial_{xx} u = -\overline{\mu} u + \int \nu(y) v(t, x, y) dy & x \in \mathbb{R}, \\ \partial_t v - d \Delta v = f'(0) v + \mu(y) u(t, x) - \nu(y) v(t, x, y) & (x, y) \in \mathbb{R}^2, \end{cases}$$
(4)

Exponential solutions of the form:

$$\begin{pmatrix} u(x,t) \\ v(x,y,t) \end{pmatrix} = e^{-\lambda(x-ct)} \begin{pmatrix} 1 \\ \phi(y) \end{pmatrix}, \tag{5}$$

With positive λ , c, $\phi \in H^1(\mathbb{R})$.

Equivalent system in λ, ϕ, c

$$\begin{cases} -D\lambda^2 + \lambda c + \overline{\mu} = \int \nu(y)\phi(y)dy \\ -d\phi''(y) + (\lambda c - d\lambda^2 - f'(0) + \nu(y))\phi(y) = \mu(y). \end{cases}$$

- First equation $\lambda \mapsto \Psi_1(\lambda, c) := -D\lambda^2 + \lambda c + \overline{\mu}$.
- Second equation : at most one $\phi(y; \lambda, c)$. Then set $\Psi_2(\lambda, c) := \int \nu(y)\phi(y)dy$.

Goal

Find λ , c such that the graphs of $\lambda \mapsto \Psi_1(\lambda)$ and $\lambda \mapsto \Psi_2(\lambda)$ intersect.

Antoine Pauthier (IMT)

Graph of Ψ_1

FIGURE: graph of Ψ_1

Study of Ψ_2

System for λ, c, ϕ

$$\begin{cases} -d\phi''(y) + (\lambda c - d\lambda^2 - f'(0) + \nu(y))\phi(y) = \mu(y) \\ \phi \in H^1(\mathbb{R}). \end{cases}$$

Existence and uniqueness for fixed λ , c iff

$$\lambda c - d\lambda^2 - f'(0) > 0$$
, soit $\lambda \in]\lambda_2^-(c), \lambda_2^+(c)[$

with

$$\lambda_2^{\mp}(c)=rac{c\mp\sqrt{c^2-c_{ extit{KPP}}^2}}{2 extit{d}}, \qquad c_{ extit{KPP}}=2\sqrt{ extit{d}f'(0)}.$$

Corollary

Travelling exponential supersolutions cannot exist for speed $c < c_{KPP}$.

Antoine Pauthier (IMT) ERC ReaDi meeting

 λ_2^-

FIGURE: Gobal vision of the graph of Ψ_2

Proposition

- convexity and symmetry.
- vertical asymptote as $\lambda \to \lambda_2^{\pm}$.

When c increases for Ψ_1

FIGURE: Movement of the parabola

When c increases for Ψ_2

FIGURE: Movement of the graph of Ψ_2

Case D < 2d

FIGURE: Cas D < 2d, $c > c_{KPP} = c_*$ not too large

Existence of exponential travelling supersolutions at any speed $c>c_{\it KPP}$ (see Berestycki-Roquejoffre-Rossi)

Antoine Pauthier (IMT) ERC ReaDi meeting March 25th 2014 20 / 32

Case $D > 2d : c < c_*$

FIGURE: Cas D > 2d; $c_{KPP} < c < c_*$, no intersection

No solution

Case D > 2d: $c = c_*$

FIGURE: Case D > 2d; $c = c_*$, contact point

Exactly one solution

Case $D > 2d : c > c_*$

FIGURE: Case D > 2d; $c > c_*$, two intersections

Two intersections, a range of exponential supersolutions (but two solutions of the linearized system)

Spreading result, the limit $D \to \infty$

- Existence of an upper bound c_{*} = c_{*}(d, D) for the spreading speed;
- if $D \le 2d$, $c_* := c_{KPP} = 2\sqrt{df'(0)}$: no effect of the line;
- if D > 2d, $c_* > c_{KPP}$. The line enhances the spreading.
- Subsolutions obtained by a perturbative method.
- From geometrical considerations,

$$\sqrt{4\overline{\mu}^2+f'(0)^2}-2\overline{\mu}\leq \liminf_{D\to\infty}\frac{c_*^2(D)}{D}\leq \limsup_{D\to\infty}\frac{c_*^2(D)}{D}\leq f'(0).$$

The semi-limit model

Linearized system:

$$\begin{cases} \partial_{t}u - D\partial_{xx}u = v(x,0,t) - \overline{\mu}u + \nu(y)v(t,x,y) & x \in \mathbb{R}, \ t > 0 \\ \partial_{t}v - d\Delta v = f'(0)v - \nu(y)v(t,x,y) & (x,y) \in \mathbb{R} \times \mathbb{R}^{*}, \ t > 0 \\ v(t,x,0^{+}) = v(t,x,0^{-}), & x \in \mathbb{R}, \ t > 0 \\ -d\left\{\partial_{y}v(t,x,0^{+}) - \partial_{y}v(t,x,0^{-})\right\} = \overline{\mu}u(t,x) & x \in \mathbb{R}, \ t > 0. \end{cases}$$
(6)

Solutions of (6) of the form:

$$\begin{pmatrix} u(t,x) \\ v(t,x,y) \end{pmatrix} = e^{-\lambda(x-ct)} \begin{pmatrix} 1 \\ \phi(y) \end{pmatrix}$$

System in λ, ϕ

$$\begin{cases} -D\lambda^2 + \lambda c + \overline{\mu} = \int \nu(y)\phi(y)dy \\ -d\phi_1''(y) + (\lambda c - d\lambda^2 - f'(0) + \nu(y))\phi_1(y) = 0 & y \geq 0. \\ -d\phi_2''(y) + (\lambda c - d\lambda^2 - f'(0) + \nu(y))\phi_2(y) = 0 & y \leq 0. \\ \phi_1(0) = \phi_2(0) & \text{i.e. ϕ is continuous.} \\ -\phi_1'(0) + \phi_2'(0) = \frac{\overline{\mu}}{d}. \end{cases}$$

Exactly the same method (up to the well-posedness of Ψ_2).

Antoine Pauthier (IMT)

The singular limit

(Recall : $\mu_{\varepsilon}(y) = \frac{1}{\varepsilon}\mu(\frac{y}{\varepsilon}), \ \nu_{\varepsilon}(y) = \frac{1}{\varepsilon}\nu(\frac{y}{\varepsilon}), \ \phi = \phi(y; \varepsilon, \lambda, c)$) BRR model (2) : c_0^* given by the (first) intersection of algebraic curves in (α, β) plane :

$$\begin{cases} -D\alpha^2 + c\alpha = & \frac{\overline{\mu}}{1+2d\beta} - \overline{\mu} \\ -d\alpha^2 + c\alpha = & f'(0) + d\beta^2. \end{cases}$$

RP model (1) : c_{ε}^* given by the intersection of an algebraic and an implicit curve in $(\lambda, \int \nu_{\varepsilon} \phi)$ plane :

$$\begin{cases} -D\lambda^2 + \lambda c + \overline{\mu} = \int \nu_{\varepsilon}(y)\phi(y)dy \\ -d\phi''(y) + (\lambda c - d\lambda^2 - f'(0) + \nu_{\varepsilon}(y))\phi(y) = \mu_{\varepsilon}(y). \end{cases}$$

Antoine Pauthier (IMT)

FIGURE: BRR model D > 2d; $c < c_*$

Convergence of the curves with $\varepsilon \to 0$

FIGURE: Case D > 2d; left : RP model; right : BRR model

The implicit curve goes to **half** of the circle with $\varepsilon \to 0$, the one corresponding to decreasing exponential in (2).

Antoine Pauthier (IMT)

Presentation of the model(s)

- ResultsAn intermediate model
- \bigcirc proof of the existence of c_*
- Ongoing work

The theorem we are investigating

Convergence of the solutions in the singular limit :

Theorem

• $c < c_0^*, \ \exists T_0, \ \exists \varepsilon_0 \ \text{s.t. for all } \varepsilon < \varepsilon_0, t > T_0,$

$$\inf_{|x|< ct} u(t,x) > \frac{1}{2\overline{\mu}}.$$

 $\bullet \ c>c_0^*, \ \forall \delta>0, \ \exists T_\delta, \ \exists \varepsilon_\delta \ \text{s.t. for all } \varepsilon<\varepsilon_\delta, t>T_\delta,$

$$\sup_{|x|>ct}u(t,x)<\delta.$$

Thank you for your attention!