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M
öbius Transformations Revealed
is a short film that illustrates a

beautiful correspondence between
Möbius transformations and mo-

tions of the sphere. The video
received an Honorable Mention in the 2007
Science and Engineering Visualization Challenge,

cosponsored by the National Science Foundation
and Science magazine. It subsequently received

extensive coverage from both traditional media
outlets and online blogs. Edward Tufte, the

world’s leading expert on the visual display of
information, came across the video and reported

on his blog “Möbius Transformations Revealed
is a wonderful video clarifying a deep topic…
amazing work…” But the film has also attracted

a far less expert audience. As of this writing,
it has been viewed nearly 1.5 million times on

the video-sharing website YouTube and is rated
as the number three top favorite video of all

time in YouTube’s educational category. Over
11,000 viewers have declared it among their

favorites, which makes it one of the YouTube top
favorites of all time. From the more than 4,000
written comments left by YouTube viewers it is

clear that many of them had little mathematical
background, and some were quite young. To

view Möbius Transformations Revealed, visit the
website http://umn.edu/˜arnold/moebius/.

In this article we discuss some of the technical
details behind the video and offer a “behind the
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scenes” look at its production. We begin with a

brief overview of the visualization of functions
of a complex variable, especially the technique

used throughout the video, which we refer to

as homotopic image mapping. This is followed by

a discussion of Möbius transformations and the
specific theorem illustrated in the video. We con-

clude by describing aspects of the movie that

are generally unnoticed by the public but can be

appreciated by mathematicians.

Visualization of Functions
Among the most insightful tools that mathematics

has developed is the representation of a function

of a real variable by its graph. In fact, historically,

graphs of functions appeared before the notion
of function itself. A graph of the inclinations of

planets as a function of time appears already

in a tenth century manuscript [1], and in the

fourteenth century Nicolas Oresme published a
graphical method for displaying data that leads to

graphs that appear quite familiar (see Figure 1).

By the late seventeenth and early eighteenth

century, when the notion of function was devel-

oped by Leibniz, John Bernoulli, Euler, and others,
graphs appeared in their works that would not

be out of place in today’s calculus texts. Who

today would attempt to teach the trigonometric

functions, without drawing a graph?
The situation is quite different for a function of

a complex variable. The graph is then a surface in

four-dimensional space, and not so easily drawn.

Many texts in complex analysis are without a single

depiction of a function. Nor is it unusual for aver-
age students to complete a course in the subject

with little idea of what even simple functions, say

trigonometric functions, “look like”. (Fortunately
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Figure 1. Tenth and fourteenth century graphs.

there are some exceptional textbooks, such as the
lovely Visual Complex Analysis by Needham [2].)

The most straightforward way to visually repre-
sent a function w = f (z) of a complex variable is
to depict the image in thew -plane of some identifi-
able point set in the domain. At the simplest level,
this may consist of finitely many labeled points
or curves, but more information is transmitted by
depicting the image of a region labeled with an
easily identifiable pattern, such as a checkerboard
(see Figure 2). With the aid of computer graphics,
one can easily incorporate colors or even images.

Figure 2. A checkerboard on the unit square
and its image under f (z) = z3.

This can help the viewer to ascertain the config-
uration of large parts of the image at a glance.
See Figures 3 and 4. Note that this image mapping
approach to visualizing complex functions offers
a great deal of freedom in comparison to standard
graphs of real functions, in which the only signifi-
cant choices to be made are the ranges and scales
of the axes. For complex image mapping we have
the choice of the region in the z-plane to display
and the domain pattern, i.e., the pattern, coloring,
or other labeling of the region. Different choices

Figure 3. A colored rectangle and its image
mapped via cos z.

Figure 4. The first author’s photo under z3.

of domain pattern can significantly enhance the
communication of salient features of the function.
Transparency is a commonly implemented feature
in many computer graphics systems, and the use
of partially transparent domain patterns can help
with the difficulties image mapping encounters
with multivalent functions (see Figure 5). (An al-
ternative method of depicting complex functions,
called domain coloring, avoids the difficulties with
multivalence by depicting the inverse image of a
pattern in the range [3].)

Figure 5. f (z) = (2z3 − 6z2 − z − 2)/6.

Even with a well-chosen domain pattern, it may
be difficult to relate points in the image plane to
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their inverse images in the domain plane. Anima-

tion is a very effective tool in this regard. With

homotopic image mapping we depict not just the

image of the domain pattern under the mapping

f , but the evolution of the image under a ho-

motopy connecting the identity map to f . In this

way a great deal of information can be conveyed

quickly. A glance at even four frames from such a

homotopy, shown in Figure 6, makes it easy to see

how the complex exponential map takes the rec-

tangle |Re(z)| ≤ a, | Im(z)| ≤ π onto the annulus

e−a ≤ |w | ≤ ea. In this example, we use a sim-

ple linear homotopy, F(z, t) = (1− t)z + t exp(z),

0 ≤ t ≤ 1, but the choice of homotopy is another

factor that can be used to advantage. For exam-

ple, to visualize the function f (z) = z3 we might

want to use a homotopy through power maps:

F(z, t) = z1+t , 0 ≤ t ≤ 2.

Figure 6. Homotopy to f (z) = ez .

Möbius Transformations
Möbius transformations, i.e., non-constant rational

maps of the form

f (z) = az + b
cz + d ,

are fundamental complex maps, useful in many

applications, and studied in most courses on com-

plex analysis. They are invertible meromorphic

functions (in fact the group of meromorphic au-

tomorphisms of the extended complex plane C∞
consists precisely of the Möbius transformations),

and so are conformal everywhere. They also pos-

sess the less common geometrical property that

they map arcs of circles (understood to include line

segments as a limiting case) to arcs of circles. Thus

Möbius transformations are natural candidates for

visualization by image mapping. These can be ani-
mated effectively by using a homotopy consisting
entirely of Möbius transformations that joins the
identity (which is a Möbius transformation) to
the given transformation. This technique is used
extensively in Möbius Transformations Revealed.

The characterization of the Möbius transfor-
mations as the meromorphic automorphisms of
the extended complex plane can be interpreted
geometrically. The extended plane can be identi-
fied with the unit sphere in R3 as usual. Namely,
we identify the complex plane with the plane
x3 = 0 in R3, and map it to the unit sphere by
inverse stereographic projection from the north
pole. Completing the identification by mapping
the point at infinity in C∞ to the north pole, the
Möbius transformations correspond to the holo-
morphic automorphisms of this Riemann sphere.
However, it is not obvious what the holomorphic
automorphisms of the sphere look like, and it
takes some effort and sophistication to get a clear
picture of the Möbius transformations in this way.

Stereographic projection can be used to char-
acterize Möbius transformations in a distinctly
different way, which is both elegant and visual-
ly accessible. Call a sphere S in R3 admissible
if its north pole lies in the upper half-space
H = {x3 > 0 }, and, for such spheres, denote by
PS the stereographic projection from the north
pole s0 of S, which identifies C∞ with S. Choose
some such sphere, and also a rigid motion T of R3

such that S′ := TS is also admissible, i.e., Ts0 ∈ H.
Consider the composition PS′ ◦T ◦P−1

S , which maps
C∞ to itself. It is easy to verify that the composi-
tion is a Möbius transformation, either by direct
calculation, or, from a more advanced viewpoint,
by noting that it corresponds to the map from S
to itself given by P−1

S ◦ PS′ ◦ T , which is surely a
holomorphic automorphism.

In fact, every Möbius transformation is obtained
in this way.

Theorem 1. A complex mapping is a Möbius trans-
formation if and only if it can be obtained by stere-
ographic projection of the complex plane onto an
admissible sphere in R3, followed by a rigid motion
of the sphere inR3 which maps it to another admis-
sible sphere, followed by stereographic projection
back to the plane.

We have not been able to ascertain the origin of
this simple, elegant result. A broad, if unscientific,
survey of colleagues indicates that the theorem is
known by some, but no one has been able to pro-
vide a concrete reference. In 2006 it was added by
an anonymous contributor as the second sentence
of the article on Möbius transformations in the
web-based free content encyclopedia Wikipedia
(“A Möbius transformation may be performed
by performing a stereographic projection from a
plane to a sphere, rotating and moving that sphere
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to a new arbitrary location and orientation, and

performing a stereographic projection back to the
plane.”) More recently, in 2008 this sentence was
removed from Wikipedia by a contributor whose
comments indicate a misunderstanding of the

result.
To prove Theorem 1, we must show that for

any Möbius transformation f there exists an ad-

missible sphere S and a rigid motion T such that
S′ = TS is admissible and that

(1) f = PS′ ◦ T ◦ P−1
S .

We rely on the elementary fact that the Möbius

transformations are generated by the translations
z ֏ z + α (α ∈ C), the rotations z ֏ eiθ (θ ∈ R),
the dilations z ֏ ρz (ρ > 0), and the inversion
z ֏ 1/z. In fact, it is easy to write any Möbius

transformation (except a linear polynomial, which
is an easier case) as

(2) f (z) = ρeiθ

z +α + β

for appropriate α,β ∈ C and ρ, θ ∈ R. In other
words, f is obtained as the composition

(1) translation by α
(2) inversion
(3) dilation by ρ
(4) rotation by θ

(5) translation by β

Now, the translation byαmay be realized in the
form (1) by choosing S to be any admissible sphere
and T to be the same translation extended to R3.

For each of the other maps, rotation, dilation, and
inversion, we choose S to the be the unit sphere.
To obtain a rotation, of course, we take T to be
the same rotation extended to R3 (rotation about

the x3-axis). To obtain dilation by ρ, we take T to
be translation of the sphere upwards a distance
ρ − 1. And to obtain the inversion, we take T to
be rotation around the real axis of the complex

plane through an angle π . Therefore, we can write
the general Möbius transformation (2) in the form
(1) by choosing S to be a sphere of unit radius

centered at the point −α of the complex plane,
and construct T as the composition of translation
by α, rotation by π around the real axis, rotation
by θ around the axis orthogonal to the plane,

translation upwards by ρ − 1, and translation by
β.

Note that the choice of the sphere S and rigid
motion T are far from unique. After all, they

offer ten degrees of freedom, while the Möbius
group is just six-dimensional. An example of non-
uniqueness is shown in Figure 7, which displays
two representations of the Möbius transformation
f (z) = [(−1 + i)z −

√
2]/[(−1 + i)z +

√
2] using

spheres of unit radius. In the first, T is a rotation

about the center of the initial sphere S, so the
final sphere S′ coincides with S. In the second

Figure 7. Distinct representations of the same
Möbius transformation.

representation, T involves translation as well as

rotation.

Möbius Transformations Revealed
The videoMöbius Transformations Revealed dem-

onstrates various geometric properties of Möbius

transformations—e.g., conformality, circle-to-

circle mapping, and generation by translations, ro-

tations, dilations, and inversion—using homotopic

image mapping.With the additionof3-dimensional

computer animation, it demonstrates the relation

between Möbius transformations of the plane to

stereographic projections of a sphere and gives

a convincing demonstration of the elusive Theo-

rem1.

A very satisfying aspect of the production of the

video is that the theorem it demonstrates—that

Möbius transformations can be obtained by sim-

ple rigid motions of a sphere through 3-space via

stereographic projection—was a key to producing

the video itself. As we often teach in the classroom,

stereographic projection is the mathematical real-

ization of the physical process of illuminating a

plane from a bright light placed at the far pole of
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a translucent sphere and following the light rays

from the pole through the sphere onto the plane.
See Figure 8. The frames of Möbius Transforma-

Figure 8. Stereographic projection.

tions Revealed were produced using ray-tracing
software. We used the Persistence of Vision Ray-

tracer (POV-Ray), a totally free and widely available
program that runs on most computer platforms.

With ray-tracing, the user enters the configura-
tions and attributes (such as texture, color, and

transparency) of objects, light sources, and a cam-
era in a virtual 3-dimensional world. The software

then renders the 2-dimensional image seen by the
camera as a result of light rays interacting with

the objects.
The 3-dimensional world of Möbius Transfor-

mations Revealed is very simple. We needed only
to provide a sphere, appropriately colored and

translucent, a plane with appropriate markings
(grid) and reflectivity, and a light source on the

pole of the sphere opposite the plane. For each
frame we positioned and oriented the sphere and

the camera appropriately, and POV-Ray did the
rest.

Of course this is oversimplified. The description
for POV-Ray of a transparent sphere colored with

a translucent image of a rainbow-colored square
under inverse stereographic projection involves

a messy calculation with spherical coordinates,
and we used Mathematica to compute it. A fair

amount of calculation was needed as well to
choose the positions and orientations, and a lot

of adjustment of visual attributes was needed to
obtain images of high quality. In mathematical

videos, as in other movies, production values are
important, and thought has to be given to non-

mathematical issues such as color choices, line
thickness, viewing area, choice and depiction of

axes, speed of the homotopies, etc. As with any ed-
ucational activity, decisions had to be made about

what to include and what to omit, and the level

of presentation. Möbius Transformations Revealed

could even be said to have a simple plot, in which

the Möbius transformations are introduced in two

dimensions, and then “revealed” by moving the

camera from straight overhead, looking down at
the plane, with the sphere invisible, to a side view

in which the sphere becomes visible and can be

seen together with the plane. It is set to music,

and the affinity between the images on the screen

and the selection from Schumann’s Kinderscenen

performed by pianist Donald Betts undoubtedly
contributed to the popularity of the video.

An interesting aspect of the ray-traced frames

in the 3-dimensional portion of the video, is that

they combine the effects of stereographic projec-

tion onto a plane and perspective projection of the
plane onto the camera’s imaging plane. Because

of the perspective projection, the image of a line

segment under a Möbius transformation, i.e., the

image under stereographic projection on the com-

plex plane of a circular arc on the sphere, does not
appear as a circular arc on the screen, but rather

as an ellipse. In some cases, the eccentricity of

the ellipse is large: circles with a large radius may

appear to be nearly straight lines until they bend

sharply in the distance; see Figure 9. As was dis-
covered by artists during the Renaissance, a circle

rendered as the appropriate ellipse via projection

conveys a more genuine sense of a circle, than if

it were rendered as a circle.

Figure 9. A circle appears to bend sharply at
upper left.

In fact, the situation is more complicated. The

black curves drawn as a grid on the sphere are not

1-dimensional curves at all, but have width. There-

fore, even without the perspective projection, they

would not be projected onto true circles and lines
on the plane, but rather onto two-dimensional

tubular neighborhoods of circles and lines. These

neighborhoods become quite distorted when the

curves are close to the light source. Figure 10, for
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example, shows a line which should be project-
ed onto the positive imaginary axis, but in fact
becomes arbitrarily wide. Readers will also notice
the varying width of the circular arcs in the image.
Again this contributes to a sense of reality of the
image.

Figure 10. A thin segment becomes very thick
near infinity.

The correspondence between stereographic
projection and its ray-tracing realization illus-
trated in Figure 8 is not perfect. Mathematically,
the case where the sphere intersects the plane
is perfectly allowable, but the physical model of
stereographic projection we used in the video
breaks down in that case. Figure 11 shows this
situation clearly. Inside the unit circle |z| = 1 light
rays hit the plane before reaching the color on
the sphere. We avoided choosing such spheres in
Möbius Transformations Revealed.

Figure 11. The physical model of stereo-
graphic projection fails when the sphere
intersects the plane.

The first part of Möbius Transformations Re-
vealed is 2-dimensional, but we still used ray-
tracing to generate the Möbius transformations.

Figure 12. In the video, unlike in this image,
the sphere underneath the plane is hidden
from view and the camera points straight
down to get a 2-dimensional view.

How did we hide the sphere? We placed the camera
directly above the origin of the plane, looking down
at it, but placed the sphere underneath the plane
with the light source at the south pole, causing
the plane to be illuminated by colors from below.
See Figure 12, where the camera has been moved
away from the z-axis and the plane is transparent
enough to see the sphere. Note that this sphere
is not admissible, as defined above, showing that
Theorem 1 can be generalized further.

In our own experience, computer visualization
of mathematical concepts is an insightful tool
for both research and education. The reaction to
Möbius Transformations Revealed demonstrates
the breadth of its appeal.
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