Preliminary

Lemma 1. Let \(f : X \to Y \) be a continuous map of topological spaces. If \(A \subseteq X \) is irreducible, then so is \(f(A) \subseteq Y \).

Proof. Suppose \(f(A) \subseteq C \cup D \) where \(C, D \) are closed subsets of \(Y \). Then
\[
A \subseteq f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D),
\]
and since \(A \) is irreducible, either \(A \subseteq f^{-1}(C) \) or \(A \subseteq f^{-1}(D) \). Thus either \(f(A) \subseteq C \) or \(f(A) \subseteq D \). This shows that \(f(A) \) is irreducible. \(\square \)

Solutions

2.4.1. Let \(k \) be a field and \(P \in k[T_1, \ldots, T_n] \). Show that \(\text{Spec}(k[T_1, \ldots, T_n]/(P)) \) is reduced (resp. irreducible; resp. integral) if and only if \(P \) has no square factor (resp. admits only one irreducible factor; resp. is irreducible).

Write \(A = k[T_1, \ldots, T_n] \). We may assume \((P) \) is a proper ideal since by Proposition 2.4.2, \(\text{Spec}(A/(P)) \) is reduced if and only if \(A/(P) \) is a reduced ring and that holds if and only if \((P) \) is a radical ideal of \(A \).

Note that \(A \) is a UFD, so we can write \(P = p_1^{e_1} \cdots p_n^{e_n} \) where \(p_j \)'s are mutually non-associate irreducibles in \(A \) and \(e_j \in \mathbb{Z}^+ \). Then the element \(f = p_1 \cdots p_n \) lies in \(\sqrt{(P)} \).

So if \((P) \) is radical, then \(P \) divides \(f \) and this forces \(e_j = 1 \) for all \(j \). Conversely, if \(P \) has no square factor, then \(f = P \). So if \(g \in \sqrt{(P)} \), then \(P \mid g^n \) for some \(n \); and hence \(p_j \mid g^n \) for all \(j \) and that yields \(p_j \mid g \) because \(p_j \) is irreducible. Thus \(P = f \mid g \), that is, \(g \in (P) \).

By Proposition 2.4.7, \(\text{Spec}(A/(P)) \) is irreducible if and only if \(A/(P) \) has a unique minimal prime ideal. Assume that there is a unique prime ideal \(\mathfrak{p} \) of \(A \) which is minimal among the primes containing \(P \). As \(\mathfrak{p} \) is prime, by reordering we may assume \(p_1 \in \mathfrak{p} \). So \((p_1) \subseteq \mathfrak{p} \). But \((p_1) \) is also a prime ideal containing \(P \); hence \(\mathfrak{p} = (p_1) \). If \(n \) were larger than 1, we would have \((p_1) = \mathfrak{p} \subseteq (p_2) \) so the irreducibility of \(p_1 \) forces \((p_1) = (p_2) \) contradicting the fact that \(p_1 \) and \(p_2 \) are non-associate. Thus \(n = 1 \), that is, \(P \) admits only one irreducible factor. Conversely, assume \(P = p^n \) where \(p \) is an irreducible. Then every prime ideal containing \(P \) also contains \(p \) and hence \((p) \) is the unique prime ideal which is minimal among the primes containing \(P \).

Finally, \(\text{Spec}(A/(P)) \) is an integral scheme iff \(A/(P) \) is an integral domain iff \((P) \) is prime iff \(P \) is irreducible.

2.4.2. Let \(X \) be a scheme and \(x \in X \). Show that the image of the morphism \(\text{Spec} \mathcal{O}_{X,x} \to X \) is the set of points of \(X \) that specialize to \(x \).
Let \(y \) be in the image. Then \(y \) lies in an affine open subset \(U \cong \text{Spec} \, A \) which contains \(x \). So we can write \(x = p \) and \(y = q \) where \(p, q \in \text{Spec} \, A \). So \(\mathcal{O}_{X,x} \) gets identified with the localization \(A_p \) and writing \(\varphi : A \to A_p \) for the localization map, we have \(q \in \text{im}(\text{Spec} \, \varphi) \); hence \(q \subseteq p \). By Lemma 4.11 (b) \(y \) specializes to \(x \). And also every such point lies in the image because \(\text{im}(\text{Spec} \, \varphi) = \{ q \in \text{Spec} \, A : q \subseteq p \} \).

2.4.3. Let \(\mathcal{O}_K \) be a discrete valuation ring with field of fractions \(K \) and uniformizing parameter \(t \) (i.e., a generator of the maximal ideal). Show that \(\text{Spec} \, K[T] \) can be identified with an open subscheme of \(\text{Spec} \, \mathcal{O}_K[T] \). Determine the set of closed points of \(\text{Spec} \, K[T] \) which specialize to the point corresponding to the maximal ideal \((T, t) \) of \(\mathcal{O}_K[T] \). See also Proposition 10.1.40(c).

2.4.4. We say that a scheme \(X \) is connected if the underlying topological space is connected. For example, an irreducible scheme is connected. Let \(X \) be a scheme having only finitely many irreducible components \(\{ X_i \}_i \). Show that \(X \) is connected if and only if for any pair \(i, j \), there exists indices \(i_0 = i, i_1, \ldots, i_r = j \) such that \(X_{i_l} \cap X_{i_{l+1}} \neq \emptyset \) for every \(l < r \). Also show that \(X \) is integral if and only if \(X \) is connected, and integral at every point \(x \in X \).

We may assume \(X \neq \emptyset \). Say \(\{ X_i : i \in I \} \) are the irreducible components of \(X \). For \(i, j \in I \) declare \(i \sim j \) if and only if \(X_i \cap X_j \neq \emptyset \). This defines a reflexive and symmetric relation on \(I \) so its transitive closure is an equivalence relation for which we also write \(\sim \). So we can restate the first part of the question as

“\(X \) is connected iff \(\sim \) yields a single equivalence class on \(I \).”

For every equivalence class \(E \subseteq I \), write \(X_E := \bigcup_{i \in E} X_i \). As \(E \) is a finite set and each \(X_i \) is closed, \(X_E \) is closed. Also by construction, if \(F \) is another equivalence class under \(\sim \), then \(X_E \cap X_F = \emptyset \). But

\[
\bigcup_{E \in I/\sim} \ X_E = \bigcup_{i \in I} X_i = X,
\]

so each \(X_E \) is also open. Moreover, because of the following standard point-set topology lemma and noting that irreducibility is stronger than being connected, we can conclude that \(X_E \) is connected.

Lemma 2. Let \(\{ X_i : i \in E \} \) be a finite collection of connected subspaces of a topological space \(X \), where \(|E| > 1 \). If for every \(i \in E \) there exists \(j \in E \setminus \{i\} \) such that \(X_i \cap X_j \neq \emptyset \), then \(\bigcup_{i \in E} X_i \) is connected.

Proof. Omitted. \(\square \)

Thus \(\{ X_E : E \in I/\sim \} \) is the set of connected components of \(X \). Therefore \(X \) is connected if and only if \(I/\sim \) is a singleton.

For the second part, the “only if” part is clear. For the “if” part, assume \(X \) is connected and integral at every point \(x \in X \). So \(X \) is reduced at every \(x \in X \), which means by definition that \(X \) is reduced. Also by Proposition 2.4.12(b), every point \(x \) has a unique irreducible component passing through it. This means that the irreducible components of \(X \) are mutually disjoint, that is, \(X_i \cap X_j = \emptyset \) whenever \(i, j \in I \) with \(i \neq j \). So \(\sim \) is just equality and therefore by above \(\{ X_i : i \in I \} \) are the connected components of \(X \). But \(X \) is connected, so \(|I| = 1 \) and \(X \) is irreducible.
2.4.5. Let X be a scheme. Show that every irreducible component of X is contained in a connected component (in the topological sense). Show that if X is locally Noetherian, then the connected components are open. If X is Noetherian, then there are only finitely many connected components.

We may assume $X \neq \emptyset$. Let X_0 be an irreducible component of X. Pick $x \in X_0$. Then the connected component, say C, containing x is the union of all connected subsets of X containing x. Since X_0 is one of these, $X_0 \subseteq C$.

Suppose X is a Noetherian scheme. Then X has finitely many irreducible components. So Exercise 2.4.4 is applicable, and we have shown in its solution that X has finitely many connected components. Note that this implies that the connected components of X are open.

Suppose X is locally Noetherian. To show that the connected components of X are open, it suffices to show that every $x \in X$ has a connected neighborhood. We know that x has a Noetherian neighborhood U, so we may pick the connected component of U containing x.

2.4.6. Let A be a ring. We say that $e \in A$ is idempotent if $e \neq 0$ and $e^2 = e$. We will say that e is indecomposable if it cannot be written as a sum of two idempotent elements. Let X be a scheme.

(a) Show the equivalence of the following properties:
 (i) X is connected;
 (ii) $\mathcal{O}_X(X)$ has no other idempotent elements than 1;
 (iii) $\text{Spec} \mathcal{O}_X(X)$ is connected.

(b) Show that any local scheme (i.e. the spectrum of a local ring) is connected.

(c) Let us suppose that the connected components of X are open (e.g., X locally Noetherian). Let U be a connected component of X. Show that there exists a unique idempotent element e of $\mathcal{O}_X(X)$ such that $e|_U = 1$ and $e|_{X \setminus U} = 0$. Show that this establishes a canonical bijection from the set of connected components onto the set of indecomposable idempotent elements of $\mathcal{O}_X(X)$, the converse map being given by $e \mapsto V(1 - e)$.

(a) (iii) \Rightarrow (ii): We show the contrapositive. Write $A = \text{Spec} \mathcal{O}_X(X)$. Suppose A has an idempotent $e \neq 1$. Then $1 - e$ is also an idempotent and Ae, $A(1 - e)$ are nonzero rings such that $A \cong Ae \times A(1 - e)$ via $a \mapsto (ae, a(1 - e))$. Therefore the nontrivial decomposition

$$\text{Spec } A \cong \text{Spec } Ae \sqcup \text{Spec } A(1 - e)$$

shows that $\text{Spec } A$ is disconnected.

(ii) \Rightarrow (i): We show the contrapositive. Suppose X is disconnected. Then X is the disjoint union of two nonempty open subsets, say U and V. Then we have a ring isomorphism

$$\mathcal{O}_X(X) \cong \mathcal{O}_X(U) \times \mathcal{O}_X(V).$$

But $\mathcal{O}_X(U)$ and $\mathcal{O}_X(V)$ are nonzero rings, so $\mathcal{O}_X(X)$ has nontrivial idempotents.

(i) \Rightarrow (iii): BILEMEDIM
(b) Let A be a local ring and $e \in A$ be an idempotent. Since $e^2 = e$, if $e \neq 1$, then e is a non-unit therefore lies in the unique maximal ideal, which is the (Jacobson) radical of A. Therefore $1 - e$ is a unit, but $1 - e$ is also an idempotent so $1 - e = 1$ and so $e = 0$, a contradiction. Thus A has no nontrivial idempotents and therefore by (a) Spec A is connected.

(c) Note that connected components are always closed, so $X \setminus U$ is open. Hence
\[O_X(X) \to O_X(U) \times O_X(X \setminus U) \]
\[s \mapsto (s|_U, s|_{X \setminus U}) \]
is a ring isomorphism and therefore there is a unique $e \in O_X(X)$ such that $e|_U = 1$ and $e|_{X \setminus U} = 0$. Since $(1, 0)$ is an idempotent in the product ring $O_X(U) \times O_X(X \setminus U)$, so is e in $O_X(X)$.

Moreover, e is indecomposable. Suppose not, so $e = f + g$ where f, g are idempotents in $A := O_X(X)$. Since $e = e^2 = fe + ge$, we may assume that $f, g \in Ae$. But then f, g are nontrivial idempotents in the ring Ae and therefore since $Ae \cong O_X(U) \cong O_U(U)$, by (a) U is not connected; a contradiction.

So we may write $\varepsilon(U)$ for e and get a well-defined map
\[\varepsilon : \{\text{connected components of } X\} \to \{\text{indecomposable idempotents of } O_X(X)\} . \]

Now let e be an indecomposable idempotent of $O_X(X)$. Recall that any subset S of $O_X(X)$ gives rise to the closed subset
\[V(S) = \{ x \in X : s_x = 0 \text{ for all } s \in S \} \]
of X. We claim that $V(e)$ is a connected component of X. First, since $1 = e + (1 - e)$ we have
\[\emptyset = V(e, 1 - e) = V(e) \cap V(1 - e) . \]

Second, if $x \in X$??????????????????????????????

2.4.7. We say that a topological space X verifies the separation axiom T_0 if for every pair of points $x \neq y$, there exists an open subset which contains one of the points and not the other one. Show that the underlying topological space of a scheme verifies T_0.

Let x, y be distinct points in X. Let $U \cong \text{Spec } A$ be an affine neighborhood of x. If $y \notin U$ then we are done. If $y \in U$, we can make the identifications $x = p$ and $y = q$ where p and q are distinct prime ideals of A. Since $p \neq q$, either $p \nsubseteq q$ or $q \nsubseteq p$. WLOG assume $p \nsubseteq q$; so there exists $f \in p - q$. Then q lies in the principal open set $D(f)$ but p doesn’t.

2.4.8. Let X be a quasi-compact scheme (Exercise 3.14). Show that X contains a closed point. See also Exercise 3.3.26 for a counterexample when X is not quasi-compact.

Let’s define a topological space to be cool if it is nonempty and every nonempty closed subset contains a closed point.

Lemma 3. Let X be a topological space which has a finite open covering of cool subsets. Then X contains a closed point.
Proof. We show by induction on \(n \) that if \(X \) can be written as a union of \(n \) cool and open subsets then \(X \) has a closed point. The basis case is easy since then \(X \) is cool and hence the closed subset \(X \) contains a closed point.

Now assume that the claim is true for \(n - 1 \). Suppose \(X = \bigcup_{j=1}^n U_j \) where each \(U_j \) is cool and open. By induction hypothesis, the subspace \(X_1 = \bigcup_{j=2}^n U_j \) contains a closed point \(x \). Note that this means \(\overline{\{x\}} \cap X_1 = \{x\} \). Consider the closed subset \(\{x\} \cap U_1 \) of \(U_1 \). There are two cases:

- \(\{x\} \cap U_1 = \emptyset \). Then
 \[
 \{x\} = (\{x\} \cap X_1) \cup (\{x\} \cap U_1) = \{x\}
 \]
 hence \(x \) is a closed point of \(X \).
- \(\{x\} \cap U_1 \neq \emptyset \). Then by the coolness of \(U_1 \) its closed subset \(\{x\} \cap U_1 \) contains a closed point \(x_1 \) of \(U_1 \). So we have \(x_1 \in \{x\} \) and \(\{x_1\} \cap U_1 = \{x_1\} \). We want to show that \(x_1 \) is a closed point of \(X \). Observe that
 \[
 \{x_1\} \cap X_1 \subseteq \{x\} \cap X_1 = \{x\}.
 \]
 Suppose \(x \in \{x_1\} \). Then either \(x = x_1 \) or \(x \notin U_1 \). In the former case \(x = x_1 \) is closed in both \(X_1 \) and \(U_1 \), hence in \(X \) and we are done. So assume \(x \notin U_1 \). Then \(X \setminus U_1 \) is a closed subset of \(X \) containing \(x \). This forces \(x_1 \in X \setminus U_1 \); a contradiction. Thus \(x \notin \{x_1\} \) and hence \(\{x_1\} \cap X_1 = \emptyset \). Thus
 \[
 \{x_1\} = ((\{x_1\} \cap X_1) \cup (\{x_1\} \cap U_1)) = \{x_1\}
 \]
 which means \(x_1 \) is a closed point in \(X \).

\(\square \)

Note that affine schemes are cool topological spaces because every nonempty closed subset \(V(I) \) in \(\text{Spec } A \) contains a maximal ideal. Thus quasi-compact schemes, which can be covered by finitely many affine schemes contain a closed point.

2.4.9. Let \(X \) be a Noetherian scheme. Show that the set of points \(x \in X \) such that \(\mathcal{O}_{X,x} \) is reduced (resp. is an integral domain) is open.

Let’s call a scheme \(X \) **nice** if \(\{x \in X : \mathcal{O}_{X,x} \text{ is reduced} \} \) is open in \(X \). Suppose \(\{U_i\}_i \) is an open covering of \(X \) such that each \(U_i \) is nice. Then

\[
\{x \in X : \mathcal{O}_{X,x} \text{ is reduced} \} = \bigcup_i \{x \in U_i : \mathcal{O}_{X,x} \text{ is reduced} \} = \bigcup_i \{x \in U_i : \mathcal{O}_{U_i,x} \text{ is reduced} \}
\]

is open, hence \(X \) is nice. Therefore we may assume that \(X = \text{Spec } A \) where \(A \) is a Noetherian ring. Suppose \(A_p \) is reduced for some \(p \in \text{Spec } A \). It suffices to find \(f \in A \setminus p \) such that \(A_f \) is reduced. Indeed localizations of reduced rings are reduced, so for every \(q \in D(f) \) the ring \(A_q \) would be reduced.

Consider the ideal

\[
I = \{a \in A : sa = 0 \text{ for some } s \in A \setminus p\}
\]

of \(A \), which is the kernel of the localization \(A \to A_p \). As \(A_p \) is reduced, \(I \) is a radical ideal of \(A \). And since \(A \) is Noetherian, \(I \) has a finite generating set, say \(\{a_1, \ldots, a_n\} \). So there exists \(s_i \in A \setminus p \) such that \(s_i a_i = 0 \) for each \(i \).
Let \(f = \prod_{i=1}^{n} s_i \in A \setminus p \). We claim that \(A_f \) is reduced. So suppose \((a/1)^n = 0\) in \(A_f \). Then \(f^k a^n = 0 \) for some \(k \in \mathbb{Z}^+ \). So \(a^n \in I \) and hence \(a \in I \) as \(I \) is radical. So
\[
a = \sum_{i=1}^{n} c_i a_i
\]
for some \(c_i \in A \). Therefore \(fa = 0 \), thus \(a/1 = 0 \) in \(A_f \). Since every element of \(A_f \) is of the form \(a/1 \) times a unit, this implies that \(A_f \) is reduced.

For the integral domain part, it suffices to show that if \(A_p \) is a domain then so is \(A_f \) (the argument reducing to this is the same as above). Suppose \(b/1 \cdot c/1 = 0 \) in \(A_f \). Then \(f^k bc = 0 \) for some \(k \in \mathbb{Z}^+ \). Hence \(bc \in I \), but since \(A_p \) is a domain \(I \) is a prime ideal, hence WLOG \(b \in I \). Therefore
\[
b = \sum_{i=1}^{n} d_i a_i
\]
for some \(d_i \in A \). Thus \(fb = 0 \), so \(b/1 = 0 \) in \(A_f \).

2.4.10. Let \(f : X \to \text{Spec } A \) be a quasi-compact morphism (Exercise 3.17). Let \(I \) be an ideal of \(A \). Show that \(f(X) \subseteq V(I) \) if and only if \(f_{\text{Spec } A}(I) \subseteq \mathcal{O}_X(X) \) is nilpotent.

Assume \(f(X) \subseteq V(I) \). Let \(a \in I \). We want to show that the section \(s = f_{\text{Spec } A}(a) \in \mathcal{O}_X(X) \) is nilpotent. Fix \(x \in X \) and write \(p = f(x) \). Via the local homomorphism \(A_p \to \mathcal{O}_{X,x} \) which maps \(a/1 \) to \(s_x \), we obtain \(s_x \in m_x \) since \(a \in I \subseteq p \).

So if we pick an affine open subset \(U = \text{Spec } B \) of \(X \) and consider \(t = s|_U \in \mathcal{O}_X(U) = B \), then for every \(q \in \text{Spec } B \) the element \(t/1 \in B_q \) lies in the maximal ideal \(qB_q \), that is, \(t \in q \). Thus \(t \) is nilpotent.

Now being quasi-compact, \(X \) has a finite open covering by affine open subsets, say \(U_1, \ldots, U_n \). By above, \(s|_{U_i} \in \mathcal{O}_X(U_i) \) is nilpotent for every \(i = 1, \ldots, n \). So picking \(m > 0 \) such that \(0 = (s|_{U_i})^m = (s^m)|_{U_i} \) for every \(i \), we get \(s^m = 0 \) since \(\mathcal{O}_X \) is a sheaf.

Conversely, assume \(f(X) \not\subseteq V(I) \), so there exists \(x \in X \) such that \(p = f(x) \) does not contain \(I \). So pick \(a \in I \setminus p \). As \(a/1 \) is a unit in \(A_p \), writing \(s = f_{\text{Spec } A}(a) \), we get that \(s_x \) is a unit in \(\mathcal{O}_{X,x} \). As \(\mathcal{O}_{X,x} \neq 0 \), \(s_x \) is not nilpotent, therefore \(s \) cannot be nilpotent.

2.4.11. Let \(f : X \to Y \) be a morphism of irreducible schemes with respective generic points \(\xi_X, \xi_Y \). We say that \(f \) is dominant if \(f(X) \) is dense in \(Y \). Let us suppose that \(X, Y \) are integral. Show that the following properties are equivalent:

(i) \(f \) is dominant;
(ii) \(f^\# : \mathcal{O}_Y \to f_* \mathcal{O}_X \) is injective;
(iii) for every open subset \(V \) of \(Y \) and every nonempty open subset \(U \subseteq f^{-1}(V) \), the map \(\mathcal{O}_Y(V) \to \mathcal{O}_X(U) \) is injective;
(iv) \(f(\xi_X) = \xi_Y \);
(v) \(\xi_Y \in f(X) \).

(v) \(\Rightarrow \) (iv): Since \(\{\xi_X\} = X \) and \(f \) is continuous, we have
\[
\xi_Y \in f(X) = f(\{\xi_X\}) \subseteq \{f(\xi_X)\}.
\]
Therefore \(f(\xi_X) \) specializes to \(\xi_Y \). But since \(\xi_Y \) is a (actually the) generic point of \(Y \), by definition this implies that \(f(\xi_X) = \xi_Y \).

(iv) \(\Rightarrow \) (iii): We may assume that \(V \) is nonempty as the statement is vacuously true for \(V = \emptyset \). Since \(\xi_Y \) is the generic point of \(Y \), we have \(\xi_Y \in V \) and similarly \(\xi_X \in U \). Then since \(f(\xi_X) = \xi_Y \) we have a commutative diagram

\[
\begin{array}{ccc}
\mathcal{O}_Y(V) & \xrightarrow{a} & \mathcal{O}_X(U) \\
\downarrow{b} & & \downarrow{d} \\
\mathcal{O}_{Y,\xi_Y} & \xrightarrow{c} & \mathcal{O}_{X,\xi_x}
\end{array}
\]

of rings. By Proposition 2.4.18, \(\mathcal{O}_{Y,\xi_Y} \) is a field (which immediately implies that \(c \) is injective) and \(b \) is injective. So \(d \circ a = c \circ b \) is injective and hence \(a \) is injective.

(iii) \(\Rightarrow \) (ii): If \(f^{-1}(V) \neq \emptyset \), then by assumption \(f^\#: \mathcal{O}_Y(V) \to \mathcal{O}_X(f^{-1}(V)) = f^*\mathcal{O}_X(V) \) is injective for every open \(V \) in \(Y \).

SIKINTI?????????????????

Thus \(f^\# \) is injective as a sheaf map.

(ii) \(\Rightarrow \) (i): We show the contrapositive. Suppose that \(f \) is not dominant. So there exists a nonempty open subset \(V \) of \(Y \) such that \(V \cap f(X) = \emptyset \), or equivalently \(f^{-1}(V) = \emptyset \).

(i) \(\Rightarrow \) (v): The proof is almost the same with (v) \(\Rightarrow \) (iv). Since \(f(X) \subseteq \{f(\xi_X)\} \), the assumption forces \(\{f(\xi_X)\} = Y \). So \(f(\xi_X) \) specializes to \(\xi_Y \) and hence \(f(\xi_X) = \xi_Y \).

2.4.12. Let \(B \) be a graded ring. Let \(Y \) be a reduced closed subscheme of \(\text{Proj} \, B \).

Show that there exists a homogenous ideal \(I \) of \(B \) such that \(Y \cong \text{Proj} \, B \).

As a topological subspace \(Y \) can be identified with \(V_+(I) \) for a homogenous ideal \(I \) of \(B \) because that’s what the closed subspaces of \(\text{Proj} \, B \) look like.

Lemma 4. With the notation above, \(\sqrt{I} \) is also a homogenous ideal.

Proof. Suppose that \(\mathfrak{p} \) is a prime ideal containing \(I \). Then for every \(d \geq 0 \)

\[I = \bigoplus_{d \geq 0} (I \cap B_d) \subseteq \bigoplus_{d \geq 0} (\mathfrak{p} \cap B_d) = \mathfrak{p}^h. \]

and we know by Lemma 3.35 that \(\mathfrak{p}^h \) is prime. So we have shown that \(\mathfrak{p} \in V(I) \) implies \(\mathfrak{p}^h \in V_+(I) \). Hence

\[\bigcap_{\mathfrak{p} \in V(I)} \mathfrak{p} \supseteq \bigcap_{\mathfrak{p} \in V(I)} \mathfrak{p}^h \supseteq \bigcap_{q \in V_+(I)} q \]

but since \(V_+(I) \subseteq V(I) \) the reverse containment is trivial; hence

\[\sqrt{I} = \bigcap_{\mathfrak{p} \in V(I)} \mathfrak{p} = \bigcap_{q \in V_+(I)} q \]

is homogenous. \(\square \)

Now we have that \(\sqrt{I} \) is homogenous and moreover \(V_+(I) = V_+(\sqrt{I}) \). Thus we may assume \(I = \sqrt{I} \).

The ring \(B/I \) is reduced since its nilradical is \(\sqrt{I}/I = 0 \). Thus the scheme \(\text{Spec} \, B/I \) is reduced. So in particular for every homogenous \(f \in A := B/I \), \(\mathcal{O}_{\text{Spec} \, A}(D(f)) = A_f \).
is a reduced ring. This implies that the subring $A(f)$ of A_X is also reduced. Since $A(f) = \mathcal{O}_{\text{Proj} A}(D_+(f))$ and $\{D_+(f) : f \text{ homogenous}\}$ forms an affine open covering of $\text{Proj} A$, by Proposition 4.2 part (b) $\text{Proj} A = \text{Proj} B/I$ is a reduced scheme which can be identified as a closed subscheme of $\text{Proj} B$ whose underlying topological space is $V_+(I)$.

But by Proposition 4.2 part (d), there is a unique structure of a reduced closed subscheme on $V_+(I)$. Since $\text{Proj} B/I$ and Y are both such subschemes, we get $Y \simeq \text{Proj} B/I$.

2.5.1. Let X be a topological space. Let $\{X_i\}_i$ be a covering of X by closed subsets X_i. We assume that it is a locally finite covering, that is to say that every point $x \in X$ admits an open neighborhood U which meets only a finite number of X_i. Show that $\dim X = \sup_i \dim X_i$.

First, we observe that we can reduce to the case where the covering is finite. So assume that the claim holds for finite coverings by closed subsets. By assumption, every $x \in X$ has a neighborhood U_x such that U_x intersect only finitely many X_i. So $\{X_i \cap U_x\}_i$ is a finite covering of U_x by closed subsets of U_x. Therefore by our assumption we have

$$\dim U_x = \sup_i \dim (X_i \cap U_x) \leq \sup_i \dim X_i.$$

But $\{U_x : x \in X\}$ is an open covering of X, so

$$\dim X = \sup_i (\dim U_x : x \in X) \leq \sup_i \dim X_i.$$

Therefore $X = \sup_i \dim X_i$.

Thus we may assume $\{X_i\}_i = \{X_1, \ldots, X_n\}$ is a finite covering of X. It suffices to prove the case $n = 2$, the rest follow by induction (the basis case $n = 1$ is trivial) because X_1 and $X_2 \cup \cdots \cup X_n$ is also a covering of X by closed subsets.

So we may write C and D to be closed subsets of X such that $C \cup D = X$ where we want to prove that $\dim X \leq \max\{\dim C, \dim D\}$. If X_0 is an irreducible component of X, then $X_0 = (C \cap X_0) \cap (D \cap X_0)$ so $X_0 \subseteq C \cap X_0$ or $X_0 \subseteq D \cap X_0$, that is, $X_0 \subseteq C$ or $X_0 \subseteq D$. In either case, we have $\dim X_0 \leq \max\{\dim C, \dim D\}$. By Proposition 5.5(c), we have $\dim X \leq \max\{\dim C, \dim D\}$.

2.5.2. Let X be a scheme and Z be a closed subset of X. Show that for all $x \in X$, we have $\text{codim}(\{x\}, X) = \dim \mathcal{O}_{X,x}$ and $\text{codim}(Z, X) = \min_{z \in Z} \dim \mathcal{O}_{X,z}$.

We first work out some basic facts about irreducible sets and dimension which are not (or just stated without proof) in Liu’s book. If Y is an irreducible subset of X, we define $\text{codim}(Y, X)$ in the same way as in Definition 2.5.7, observing that it is equal to $\text{codim}(\overline{Y}, X)$.

Lemma 5. Let X be a topological space. Let Y be an irreducible and let U be an open subset of X such that $Y \cap U \neq \emptyset$.

(a) $Y \cap U$ is irreducible.

(b) If Z is an irreducible closed subset of Y such that $Z \subseteq Y$, then $Z \cap U \subseteq Y \cap U$.

(c) $\text{codim}(Y \cap U, U) \geq \text{codim}(Y, X)$.

(d) If $Y \subseteq U$, then $\text{codim}(Y, U) = \text{codim}(Y, X)$.

Proof. (a) Suppose \(Y \cap U \subseteq A \cup B \) where \(A, B \) are closed in \(X \). Then
\[
Y \subseteq A \cup B \cup (X \setminus U)
\]
and since \(Y \not\subseteq X \setminus U \) by assumption, by the irreducibility of \(Y \) either \(Y \subseteq A \) or \(Y \subseteq B \). In particular, either \(Y \cap U \subseteq A \) or \(Y \cap U \subseteq B \).

(b) We show the contrapositive: assume \(Z \cap U = Y \cap U \). So
\[
Y = (Y \cap U) \cup (Y \setminus U) = (Z \cap U) \cup (Y \setminus U).
\]
As \(Z \subseteq Y \) by assumption, by the irreducibility of \(Z \) either \(Y \subseteq Z \) or \(Y \subseteq Y \setminus U \). In particular, either \(Y \cap U \subseteq Z \) or \(Y \cap U \subseteq Y \setminus U \).

(c) Note that it makes sense to talk about \(\text{codim}(Y \cap U, U) \) because \(Y \cap U \) is irreducible by (a). Now if
\[
Y \subseteq Y_0 \subsetneq Y_1 \subsetneq \cdots \subsetneq Y_n
\]
is a chain of irreducible closed subsets of \(X \) containing \(Y \), then by (a) and (b)
\[
Y \cap U \subseteq Y_0 \cap U \subsetneq Y_1 \cap U \subsetneq \cdots \subsetneq Y_n \cap U
\]
is a chain of irreducible closed subsets of \(U \) containing \(Y \cap U \). The assertion follows from this observation.

(d) “\(\geq \)” follows from (c). To see “\(\leq \)”, let
\[
Y \subseteq Y_0 \subsetneq Y_1 \subsetneq \cdots \subsetneq Y_n
\]
be a chain of irreducible closed subsets of \(U \) containing \(Y \). Then if we let \(Z_j \) to be the closure of \(Y_j \) in \(X \) for each \(j \), then \(Y_j = Z_j \cap U \) and \(Z_j \) is irreducible for each \(j \). Hence
\[
Y \subseteq Z_0 \subsetneq Z_1 \subsetneq \cdots \subsetneq Z_n
\]
is a chain of irreducible closed subsets of \(X \) containing \(Y \).

\[\square\]

Note that Lemma 5(d) says that the codimension can be calculated locally.

Now we solve the first part of the question. Let \(U \cong \text{Spec} \ A \) to be an affine open neighborhood of \(x \) in \(X \) where \(x \) corresponds to \(p \in \text{Spec} \ A \). Then by Lemma 5(d) and Proposition 2.5.8(b), we have
\[
\text{codim} \{x\}, X) = \text{codim}(\{x\}, U) = \text{codim}(\{p\}, \text{Spec} \ A) = \text{codim}(\{p\}, \text{Spec} \ A) = \text{codim}(V(p), \text{Spec} \ A) = \dim A_p = \dim \mathcal{O}_{X,x}.
\]

For the second part, if \(\{Z_\lambda : \lambda \in \Lambda\} \) are the irreducible components of \(Z \), then by definition
\[
\text{codim}(Z, X) = \min \{\text{codim}(Z_\lambda, X) : \lambda \in \Lambda\}
\]
and also
\[
\min_{z \in Z} \dim \mathcal{O}_{X,z} = \min_{z \in Z} \min_{\lambda \in Z_\lambda} \dim \mathcal{O}_{X,z} = \lambda \in \Lambda\}
\]
so we can reduce to the case where \(Z \) is irreducible. For every \(z \in Z \), as \(\overline{\{z\}} \subseteq Z \), we have
\[
\text{codim}(Z, X) \leq \text{codim}(\overline{\{z\}}, X).
\]
Hence $\text{codim}(Z, X) \leq \min_{z \in Z} \text{codim}(\{z\}, X)$. On the other hand, since Z is irreducible, it has a generic point $\xi \in Z$, so in particular $\{\xi\} = Z$. Thus
\[
\text{codim}(Z, X) = \min_{z \in Z} \text{codim}(\{z\}, X) = \min_{z \in Z} \dim O_{X,z}
\]
where the last equality is by the first part.

2.5.3 Show the following properties.

(a) Let Z be a closed subset of a topological space X. Show that we have $\text{codim}(Z, X) = 0$ if and only if Z contains an irreducible component of X. Give an example (with X non-irreducible) where $\text{codim}(Z, X) = 0$ and $\dim Z < \dim X$.

(b) Let $X = \text{Spec} \ O_K[T]$ where \mathcal{O}_K is a discrete valuation ring, with uniformizing parameter $t \neq 0$. Let $f = tT - 1$. Show that the ideal generated by f is maximal. Let $x \in X$ be the corresponding point. Show that X is irreducible, $\dim O_{X,x} = 1$, and that $\text{codim}\{x\}, X) + \dim\{x\} < \dim X$.

(a) Note that if Z_0 is irreducible, $\text{codim}(Z_0, X) = 0$ means that Z_0 is maximal among irreducible closed subsets of X, that is, Z_0 is an irreducible component of X.

In general, if $\text{codim}(Z, X) = 0$, then (by the definition of codimension for general closed subsets) there exists an irreducible component Z_0 of Z such that $\text{codim}(Z_0, X) = 0$. Then by above Z_0 must be an irreducible component of X. Conversely, if Z contains an irreducible component X_0 of X, then X_0 is also an irreducible component of Z. Therefore $\text{codim}(Z, X) \leq \text{codim}(X_0, X) = 0$, hence $\text{codim}(Z, X) = 0$.

For the desired example, by above it suffices to find a scheme X which has two irreducible components of different dimensions; because we may then choose Z to be the irreducible component with smaller dimension, which ensures $\dim Z < \dim X$ while $\text{codim}(Z, X) = 0$. So pick integral domains A, B such that $\dim A < \dim B$ (for instance $A = k[X]$ and $B = k[X, Y]$ where k is a field). Then let $X = \text{Spec}(A \times B) = \text{Spec} A \sqcup \text{Spec} B$ and $Z = \text{Spec} A$, $Z' = \text{Spec} B$. Here Z and Z' are irreducible because A and B are domains, and they are the irreducible components of X by Proposition 2.4.5(c) such that $\dim Z < \dim Z'$.

(b) Note that the quotient ring $\mathcal{O}_K[T]/(f)$ is isomorphic to the localization $(\mathcal{O}_K)_t$.

Lemma 6. If \mathcal{O}_K is a discrete valuation ring with uniformizing parameter t, then every nonzero proper ideal of \mathcal{O}_K is generated by t^n for some $n \geq 1$.

Proof. By the book’s definition, \mathcal{O}_K is a local PID which is not a domain and (t) is the unique maximal ideal. So in particular \mathcal{O}_K is a UFD such that every irreducible element is associate with t. Then if (g) is an arbitrary nonzero proper ideal of \mathcal{O}_K, then g is nonzero and non-unit so $g = ut^n$ for some unit $u \in \mathcal{O}_K$ and $n \geq 1$. Thus $(g) = (t^n)$. \[\square\]

Every nonzero element of $(\mathcal{O}_K)_t$ can be written of the form a/t^n where $\gcd(a, t^n) = 1$. By the above lemma, the ideal generated by a in \mathcal{O}_K cannot be a proper ideal, hence a must be a unit. Thus a/t^n is a unit in $(\mathcal{O}_K)_t$.

This shows that $(\mathcal{O}_K)_t$ is a field, therefore $m := (f)$ is maximal in $\mathcal{O}_K[T]$.

As $\mathcal{O}_K[T]$ is an integral domain, $X = \text{Spec} \mathcal{O}_K[T]$ is a fortiori irreducible. Note that
\[
\dim O_{X,x} = \dim (\mathcal{O}_K[T])_m = \text{ht}(m).
\]
Thanks to the chain $0 \subseteq \mathfrak{m}$, $\text{ht}(\mathfrak{m}) \geq 1$. On the other hand, by Krull’s principal ideal theorem (which is applicable as $O_K[T]$ is Noetherian and $(f) = \mathfrak{m}$ is prime), we have $\text{ht}(\mathfrak{m}) \leq 1$. Thus $\dim \mathcal{O}_{X,x} = 1$.

Since x is a closed point, by Exercise 2.5.2 we have $\text{codim}(\{x\}, X) = \text{codim}(\overline{\{x\}}, X) = \dim \mathcal{O}_{X,x} = 1$. And trivially $\dim \{x\} = 0$. However, by Example 2.5.4 and Corollary 2.5.17, $\dim X = \dim \mathcal{O}_K[T] = 1 + 1 = 2$.

2.5.4. Let A be a ring and p_1, \ldots, p_r be prime ideals of A. Let I be an ideal of A contained in none of the p_i. We want to show that I is not contained in $p_1 \cup \cdots \cup p_r$.

(a) Show that the property is true for $r \leq 2$.

(b) Assume that the property is true for $r - 1$ and that p_r does not contain any p_i, $i \leq r - 1$. Let $x \in I \setminus (p_1 \cup \cdots \cup p_{r-1})$. Show that there exists a $y \in (Ip_1 \cdots p_{r-1}) \setminus p_r$.

(c) Show that either x or $x + y$ is not in $p_1 \cup \cdots \cup p_r$.

(a) Suppose $I \subseteq p_1 \cup p_2$. Since $I \not\subseteq p_1$, there exists $x_2 \in I \setminus p_1$ and similarly there exists $x_1 \in I \setminus p_2$. Then necessarily $x_1 \in p_1$ and $x_2 \in p_2$. Consider $x_1 + x_2 \in I$. Since $x_1 \in p_1$ and $(x_1 + x_2) - x_1 = x_2 \notin p_1$, we get $x_1 + x_2 \notin p_1$. But similarly $x_1 + x_2 \notin p_2$, so $x_1 + x_2 \in I \setminus (p_1 \cup p_2)$; a contradiction. Note that we didn’t need to use the fact that p_1, p_2 are prime here.

(b) Pick $y_i \in p_i \setminus p_r$ for each $1 \leq i \leq r - 1$ and also $y_0 \in I \setminus p_r$. Then since p_r is prime, $y := \prod_{i=0}^{r-1} y_i \notin p_r$. Yet evidently $y \in Ip_1 \cdots p_{r-1}$.

(c) Note that since $y \in p_i$ and $x \notin p_i$ for every $1 \leq i \leq r - 1$, we have $x + y \notin p_i$ for every $1 \leq i \leq r - 1$. Suppose $x \in p_1 \cup \cdots \cup p_r$. Then by the choice of x, we have $x \in p_r$. But $y \notin p_r$, so $x + y \notin p_r$. Thus $x + y \notin p_1 \cup \cdots \cup p_r$.

2.5.5. Let A be a graded ring, and let p_1, \ldots, p_r be homogeneous prime ideals of A. Let I be a homogeneous ideal of A contained in none of the p_i. We want to show that there exists a homogeneous element of I not contained in $\bigcup p_i$. One can suppose that p_r does not contain any p_i, $i < r$.

(a) Show that there exists a homogeneous element $a \in Ip_1 \cdots p_{r-1} \setminus p_r$.

(b) Let $b \in I$ be a homogeneous element such that $b \notin \bigcup_{i \leq r-1} p_i$. Show that b or $a^{\deg b} + b^{\deg a}$ is not in $p_1 \cup \cdots \cup p_r$. Conclude.

(a) For each $1 \leq i \leq r - 1$, since $p_i \not\subseteq p_r$ and p_i is a homogeneous ideal, there exists a homogeneous element $a_i \in p_i \setminus p_r$. Similarly there exists a homogeneous element $a_0 \in I \setminus p_r$. Then $a := \prod_{i=0}^{r-1} a_i$ is a homogeneous element which lies in $Ip_1 \cdots p_{r-1}$ but is not in p_r since p_r is prime.

(b) Fix $i \in \{1, \ldots, r - 1\}$. Note that $a^{\deg b} \in p_i$ because $a \in p_i$ and $b^{\deg a} \notin p_i$ because $b \notin p_i$ and p_i is prime. Then the homogeneous element $c := a^{\deg b} + b^{\deg a}$ lies outside p_i.

Suppose $b \in p_1 \cup \cdots \cup p_r$. Then by the choice of b, we have $b \in p_r$, hence $b^{\deg a} \in p_r$. But $a \notin p_r$, so $a^{\deg b} \notin p_r$ as p_r is prime. Thus $c \notin p_r$ and so $c \notin p_1 \cup \cdots \cup p_r$.

2.5.8. Let O_K be as in Exercise 5.3, and let $K = \text{Frac}(O_K)$, $k = O_K/tO_K$ be the residue field of O_K. Let us set $A = K \times k$ and let $\varphi : O_K \to A$ be the homomorphism induced by $O_K \to K$ and $O_K \to k$. Show that $\text{Spec} \varphi : \text{Spec} A \to \text{Spec} O_K$ is
surjective and that \(\dim \mathcal{O}_K > \dim A \). Also show that \(A \) is a finitely generated \(\mathcal{O}_K \)-algebra (i.e., quotient of a polynomial ring over \(\mathcal{O}_K \)).

We know that the only prime ideals of \(\mathcal{O}_K \) are 0 and \(\mathfrak{m} = (t) \). Since \(\mathcal{O}_K \to K \) is injective, \(\varphi \) is injective, so \(\varphi^{-1}(0) = 0 \). And \(\varphi^{-1}(K \times 0) = \mathfrak{m} \). Thus \(\text{Spec} \varphi \) is surjective, as both primes of \(\mathcal{O}_K \) are realized as inverse images under \(\varphi \). However, \(\dim \mathcal{O}_K = 1 \) whereas being an artinian ring, \(\dim A = 0 \).

Also, \(K \cong \mathcal{O}_K[T]/(tT - 1) \) by Exercise 2.5.3 and \(k \cong \mathcal{O}_K/\mathfrak{m} \) so \(A \) is a product of two finitely generated \(\mathcal{O}_K \)-algebras, so \(A \) itself is a finitely generated \(\mathcal{O}_K \)-algebra.

Lemma 7. Let \(X \) be a scheme over a field \(k \). Show that the points of \(X(k) \) are closed in \(X \). If \(X \) is an algebraic variety over \(k \), then \(x \in X \) is closed if and only if \(k(x) \) is algebraic over \(k \).

We prove the initial statement first assuming \(X \cong \text{Spec} A \) is affine. Then \(\mathfrak{p} \in X(k) \) means that structure morphism \(X \to \text{Spec} k \) has a section \(\text{Spec} k \to X \) with image \(\mathfrak{p} \). Translating these morphisms between affine schemes to ring homomorphisms, this means that \(A \) is a \(k \)-algebra such that there is a \(k \)-algebra homomorphism \(\varphi : A \to k \) with \(\varphi^{-1}(0) = \mathfrak{p} \). Then \(\varphi \) is surjective and has kernel \(\mathfrak{p} \), therefore \(\mathfrak{p} \) is a maximal ideal, that is, a closed point in \(\text{Spec} A \).

Now let \(X \) be an arbitrary \(k \)-scheme with \(x \in X(k) \). Let \(y \in \overline{\{x\}} \). Then \(y \) has an affine open neighborhood \(U \) such that \(x \in U \). But by Remark 3.31, \(x \in U(k) \) and by what we have shown above,

\[
\overline{\{x\}} \cap U = \{x\}.
\]

So \(y = x \), and hence \(\overline{\{x\}} = \{x\} \).

We follow a similar strategy for the second statement. Let \(A \) be a finitely generated \(k \)-algebra, and \(x \) be a point in \(X = \text{Spec} A \), given by the prime ideal \(\mathfrak{p} \). Then

\[
k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}
\]

is the field of fractions of the integral domain \(A/\mathfrak{p} \). So if \(x \) is a closed point, then \(\mathfrak{p} \) is maximal and hence \(k(x) = A/\mathfrak{p} \) is a finite algebraic extension of \(k \) by Corollary 2.1.12. Conversely, if \(k(x) \) is an algebraic extension of \(k \), then \(A/\mathfrak{p} \) must be a field by the following lemma; so \(\mathfrak{p} \) is maximal and \(x \) is a closed point.

Lemma 7. Let \(k \subseteq K \) be an algebraic extension and let \(B \) be a subring of \(K \) that contains \(k \). Then \(B \) is a field.

Proof. Let \(b \in B \setminus \{0\} \). Then \(b \in K \) is algebraic over \(k \) so the subring \(k[b] \) of \(B \) is a field; hence \(b \) has an inverse in \(B \). \(\square \)

Now let \(X \) be an arbitrary algebraic variety over \(k \). Then \(X \) is a \(k \)-scheme that has a finite open covering \(X = \bigcup_{i=1}^{n} X_i \) such that \(X_i \cong \text{Spec} A_i \) where \(A_i \) is a finitely generated \(k \)-algebra. Let \(x \in X \). If \(x \) is closed in \(X \), then pick \(X_i \) such that \(x \in X_i \). Then \(x \) is closed in \(X_i \) and so by above \(k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x = \mathcal{O}_{X_i,x}/\mathfrak{m}_{x_i} \) is algebraic over \(k \). Conversely, if \(k(x) \) is algebraic over \(k \), then for each \(X_i \) that contains \(x \), by above \(x \) is closed in \(X_i \). And if \(x \notin X_i \), then \(x \) lies in the closed set \(X \setminus X_i \) and hence \(\{x\} \subseteq X \setminus X_i \).
Thus, for every X_i, $\{x\} \cap X_i$ is either empty or equal to $\{x\}$, hence
\[
\{x\} = \bigcup_{i=1}^{n}(\{x\} \cap X_i) = \{x\},
\]
so x is closed in X.

2.5.11. (Schemes of dimension 0)

(a) Let X be a scheme which is a (finite or not) disjoint union of open subschemes X_i. Show that $\mathcal{O}_X(X) \cong \prod_i \mathcal{O}_X(X_i)$.

(b) Show that any scheme of finite cardinal and dimension 0 is affine.

(c) Let $X = \text{Spec} A$ be a scheme of finite cardinal and dimension 0. Show that every point $x \in X$ is open. Deduce from this that $A \cong \bigoplus_{p \in \text{Spec} A} A_p$.

(d) Show that the statement (c) is false if we do not suppose that $\text{Spec} A$ of dimension 0.

(a) Since \mathcal{O}_X is a sheaf and
\[
X_i \cap X_j = \begin{cases} X_i, & \text{if } i = j \\ \emptyset, & \text{if } i \neq j, \end{cases}
\]
the diagram
\[
\mathcal{O}_X(X) \longrightarrow \prod_i \mathcal{O}_X(X_i) \longrightarrow \prod_i \mathcal{O}_X(X_i),
\]
where the parallel arrows are both the identity, is an equalizer diagram in the category of rings. Thus $\mathcal{O}_X(X) \cong \prod_i \mathcal{O}_X(X_i)$.

(b) Since X has finite cardinal, it has finitely many irreducible components, say X_1, \ldots, X_n. Pick any $x \in X_1$. Since $x \subset X_1$ is a chain of irreducible closed subsets, because $\dim X = 0$ we have $x = X_1$. Hence every point of X_1 is a generic point of X_1, but then by Proposition 4.12 X_1 must be a singleton. Similarly every X_i is a singleton, say $\{x_i\}$ and $x_i \neq x_j$ if $i \neq j$. $X = \{x_1, \ldots, x_n\}$ and every point of X is closed, hence also open as $|X| = n$ is finite. Therefore each $\{x_i\}$ must be affine, say isomorphic to $\text{Spec} A_i$ where A_i is a ring with a unique prime ideal. Then
\[
X \cong \bigcup_{i=1}^{n} \text{Spec} A_i \cong \text{Spec} \left(\prod_{i=1}^{n} A_i \right).
\]

(c) This follows immediately from what we’ve shown above in (b).

(d) Let \mathcal{O}_K be a discrete valuation ring with field of fractions K. Then 0 and the unique maximal ideal are the only prime ideals of \mathcal{O}_K with respective localizations K and \mathcal{O}_K. However \mathcal{O}_K is not isomorphic to $K \times \mathcal{O}_K$ (the latter ring is not even a domain).

2.5.14. Let $K \subseteq L$ be a finite field extension. Let $x \in L$. Then the multiplication by x is an endomorphism of L as a K-vector space. We let $\text{Norm}_{L/K}(x)$ denote the determinant of this endomorphism. We also call it the norm of x over K.

(a) Show that $\text{Norm}_{L/K}$ is a multiplicative map from L to K.

(b) Let $A \subseteq B$ be rings such that $K = \text{Frac}(A)$, $L = \text{Frac}(B)$, and that B is integral over A. Show that for any $b \in B$, $\text{Norm}_{L/K}(b)$ is integral over A.

(c) Let us moreover suppose that A is a polynomial ring over a field k. Show that $\text{Norm}_{L/K}(B) \subseteq A$.
(a) Clearly $\text{Norm}_{L/K}$ maps L to K. Given $x \in L$, let’s write m_x for the endomorphism of L defined by “multiply by x”. Then observe that the map

$$\theta : L \to \text{End}_K(L)$$

$$x \mapsto m_x$$

is a ring homomorphism, in particular multiplicative. And $\text{Norm}_{L/K}$ is, by definition, the composition of θ with the multiplicative map $\det : \text{End}_K(L) \to K$.

(b) Since L is a field, the map θ above is an embedding. Therefore the minimal polynomial $f \in K[T]$ of the K-linear endomorphism m_b is precisely the minimal polynomial of the element b over K. So if we let $g \in K[T]$ to be the characteristic polynomial of m_b, then by linear algebra we know that

- $g(0) = \pm \det(m_b) = \text{Norm}_{L/K}(b)$,
- the irreducible factors of g and f are the same.

But $f \in K[T]$ is already irreducible, hence $g = f^r$ for some r. Thus if b_1, \ldots, b_n are the roots of f in a splitting field, then $g(0)$ is a product of b_i’s. But for each b_i is the image of b under some field automorphism fixing K, hence is integral over B. Thus $g(0)$, and hence $\text{Norm}_{L/K}(b)$, is integral over B.

(c) By (b), $\text{Norm}_{L/K}(B)$ lies in the integral closure of A in K. If $A = k[T_1, \ldots, T_n]$ then A is a UFD, hence it is integrally closed. Thus $\text{Norm}_{L/K}(B) \subseteq A$.