Clearly, \(X_i - \alpha_i \) is the minimal polynomial of \(\alpha_i \) over \(k \) for every \(i \). Therefore, by the proof of Theorem 5.1 (iii), the kernel of the map \(k[\alpha_1, \ldots, \alpha_n] \to k(\alpha_1, \ldots, \alpha_n) = k \) is generated by \(X_i - \alpha_i \), \(i = 1, \ldots, n \).

Since \(f \) is in the kernel, we are done.

Let \(m = \text{ht} \mathfrak{p} \). So there exists a chain of prime ideals

\[
P_0 \subset P_1 \subset \ldots \subset P_m = P \subset \mathfrak{p} \quad (X)
\]

in \(R \). By the first part of the proof of Theorem 5.6, the transcendence degree of the quotient ring should decrease at each step in (X). Thus, we have concluded \((R/\mathfrak{p})_0 \).

5.2 Definition. A ring \(R \) is called semiprimary if \(\text{rad} \ R \) is nilpotent and \(R/\text{rad} \ R \) is semisimple.

(A module is semisimple if it is equal to the sum of its simple submodules. A ring is called semisimple if every module over that ring is semisimple.)

Theorem (Hopkins-Levitzki): Let \(R \) be a semiprimary ring and \(M \) a (left) \(R \)-module.

The following are equivalent:

(i) \(M \) is Noetherian.

(ii) \(M \) is Artinian.

Proof: \((\text{rad} \ R)^n = 0 \) for some \(n \), so we get a filtration (writing \(J = \text{rad} \ R \))

\[
O = J^n M \leq J^{n-1} M \leq \ldots \leq J M \leq M
\]

Here every successive quotient \(J^{n-1} M/J^n M \) is annihilated by \(J \), so it is locally finite on \(R/J \)-module, hence semisimple. Assuming (i), each quotient is also Noetherian, hence Artinian (because under semisimplicity, Artinian \(\Rightarrow \) Noetherian). Thus \(M \) is Artinian. (ii) \(\Rightarrow \) (i) is similar.
We want to show that if \(A \) is a Noetherian zero-dimensional ring, then \(A \) is Artinian. By the above theorem, it suffices to show that \(A \) is semiprimary. (Then we can apply the theorem to the regular module \(_A A \))

Firstly, since all prime ideals are maximal in \(A \), we have
\[
\text{rad} A = \bigcap \text{intersection of all max. ideals}
= \bigcap \text{intersection of all prime ideals}
= \text{nil} A
\]

Hence, every element in \(\text{rad} A \) is nilpotent. As \(A \) is Noetherian, \(\text{rad} A \) is finitely generated. The following lemma shows that \(\text{rad} A \) must be nilpotent:

Lemma: Let \(I \) be a finitely generated ideal in a commutative ring \(A \) such that every \(x \in I \) is nilpotent. Then \(I \) is nilpotent.

Proof: Write \(I = (x_1, \ldots, x_n) \). Since \(A \) is commutative, for every \(r \in \mathbb{Z}^+ \) we have
\[
I^r = \left\langle x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} : a_1 + a_2 + \cdots + a_n = r \right\rangle \quad \text{(this means \(I^r \) is generated by \(\sum \text{such elements} \))}
\]

By assumption, \(x_i^{l_i} = 0 \) for some \(l_i \) (for each \(i \)). So if we choose \(r > \sum_{i=1}^n (l_i + 1) \), we get that
\[
\sum_{i=1}^n a_i = r \Rightarrow a_i > 1 \text{ for some } i.
\]

Thus every generator of \(I^r \) has an \(x_i \) appearing in it, so \(I^r = 0 \). \(\square \)

Finally, we show that \(A/\text{rad} A \) is semisimple. Since \(A \) is zero dimensional, every prime ideal is a minimal prime. But we know that Noetherian rings have finitely many minimal primes. Thus \(A \) has finitely many primes, hence finitely many maximal ideals, say \(m_1, \ldots, m_k \). By Chinese remainder theorem,
\[
A/\text{rad} A = A/m_1 \cdots A/m_k \cong A/m_1 \times \cdots \times A/m_k
\]
being a finite product of fields, this ring is semisimple.
6.6. Clearly \(x_1, x_2 \in (x) \cap (x_2, y) \), so \((x; x, y) \subseteq (x) \cap (x_2, y)\) relatively in the UFD \(k[x, y]\). We have \(x \mid y \cdot h \) and yet \(x, y \) are relatively prime in the UFD \(k[x, y]\); therefore \(x \mid h \). So writing \(h = x \tilde{h} \), we get
\[
f = x^2 g + y x \tilde{h} \in (x^2, xy).
\]
Thus \((x^2, xy) = (x) \cap (x^2, y)\).

Clearly \(x, y, x^2 \in (x) \cap (x^2, xy, y^2)\), so \((x^2, xy) \subseteq (x) \cap (x^2, xy, y^2)\).

Let \(f \in (x) \cap (x^2, x_2, y, y^2)\). So \(x \mid f \) and \(f = x^2 \cdot p + xy \cdot q + y^2 \cdot r \) for some \(p, q, r \in k[x, y] \). Observe that \(x \mid y \cdot r \). Since \(x \) and \(y \) are relatively prime in the UFD \(k[x, y]\), we get \(x \mid r \). So writing \(r = x \tilde{r} \), we get
\[
f = x^2 \cdot p + xy \cdot q + y^2 \cdot x \tilde{r}.
\]
Thus \((x^2, xy) = (x) \cap (x^2, xy, y^2)\).

6.1. Note that in general if we have \(A\)-modules \(M \) and \(N \), then the annihilator \(\text{ann}(x) \cap \text{ann}(y) \), where \((x, y) \in M \oplus N\), is equal to \(\text{ann}(x) \cap \text{ann}(y) \). (Because \(x, y \neq 0 \implies a x = 0 \) and \(a y = 0 \).)

So for \(A = \mathbb{Z} \), \(M = \mathbb{Z} \) and \(N = \mathbb{Z}/3\mathbb{Z} \); for \((x, y) \in M \oplus N\) we have
\[
\text{ann}(x) \cap \text{ann}(y) = \begin{cases} \mathbb{Z} \cap \text{ann}(y) & \text{if } x = 0 \\
\mathbb{Z} \cap \text{ann}(y) & \text{if } x = 0 \\
\{0\} & \text{if } x \neq 0 \\
\text{ann}(y) & \text{if } x = 0 \end{cases}
\]
\[
= \begin{cases} \mathbb{Z} & \text{if } x = 0 \\
\mathbb{Z}/3\mathbb{Z} & \text{if } x = 0 \end{cases}
\]
\[
= \begin{cases} \mathbb{Z} & \text{if } x = 0 \\
\mathbb{Z} & \text{if } x = 0 \end{cases}
\]
\[
= \begin{cases} \mathbb{Z} & \text{if } x = 0 \\
\mathbb{Z} & \text{if } x = 0 \end{cases}
\]
\[
= \begin{cases} \mathbb{Z} & \text{if } x = 0 \\
\mathbb{Z} & \text{if } x = 0 \end{cases}
\]
Thus \(\text{Ass} \left(\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \right) = \{ 0, 3\mathbb{Z} \} \).

Let \(M = \mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \). Consider the \(\mathbb{Z} \)-submodules of \(M \)

\[
M_1 = \left\{ (x, x+3\mathbb{Z}) : x \in \mathbb{Z} \right\}
\]

\[
M_2 = \left\{ (x, 0) : x \in \mathbb{Z} \right\}
\]

Note that for any \(x, y \in \mathbb{Z} \),

\[
(x, y+3\mathbb{Z}) = (x, 0) + (0, y+3\mathbb{Z})
\]

\[
= (x-0, 0) + (y, y+3\mathbb{Z}) \in M_2 + M_1
\]

so \(M = M_1 + M_2 \).

But by the computation in 6.1, an element in \(M \) has nontrivial annihilator only when the first coordinate is zero. This yields \(\text{Ass}(M_1) = \{ 0 \} \neq \text{Ass}(M_2) \).

But we saw in 6.1 that \(\text{Ass}(M) = \{ 0, 3\mathbb{Z} \} \). So the answer to the question is "No."

1. Let \(\alpha_1 = \sqrt[3]{5} \), \(\alpha_2 = e^{2\pi i/3} \), \(\alpha_3 = e^{2\pi i/3} + 3 \).

 - The minimal polynomial of \(\alpha_1 \) over \(\mathbb{Q} \) is \(x^3 - 5 \), irreducible by Eisenstein.
 - \(\alpha_2 \) is a root of \(x^2 + x + 1 \). Since \(\mathbb{Q}(\alpha_1) \subseteq \mathbb{R} \) and \(\alpha_2 \notin \mathbb{R} \), we have
\(\alpha_2 \notin \mathbb{Q}(\alpha_1) \). Therefore \(x^2 + x + 1 \) is irreducible in \(\mathbb{Q}(\alpha_1)[X] \), hence is the minimal polynomial of \(\alpha_2 \) over \(\mathbb{Q}(\alpha_1) \).

* \(\alpha_3 \) is a root of \((x - \alpha_1 - \alpha_2)^2 - 2 \in \mathbb{Q}(\alpha_1, \alpha_2)[X] \). To deduce that this is the minimal polynomial of \(\alpha_3 \) over \(\mathbb{Q}(\alpha_1, \alpha_2) \), it suffices to show that \(\alpha_3 \notin \mathbb{Q}(\alpha_1, \alpha_2) \). First, note that the above two items show that

\[
[\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}] = [\mathbb{Q}(\alpha_2, \alpha_3) : \mathbb{Q}(\alpha_1)] \cdot [\mathbb{Q}(\alpha_1) : \mathbb{Q}] = 2 \cdot 3 = 6
\]

Second, since \(\mathbb{Q}(\alpha_1, \sqrt{2}) \subseteq \mathbb{R} \), we have \(\alpha_2 \notin \mathbb{Q}(\alpha_1, \sqrt{2}) \) and hence

\[
[\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3) : \mathbb{Q}(\alpha_1, \sqrt{2})] = [\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3) : \mathbb{Q}(\alpha_1, \sqrt{2})] = 2.
\]

since \(\alpha_3 = \alpha_1 + \alpha_2 + \sqrt{2} \).

Now, since \(x^2 - 2 \) is the minimal polynomial of \(\sqrt{2} \) over \(\mathbb{Q} \), we have

\[
[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2.
\]

Thus \(2 \mid [\mathbb{Q}(\alpha_1, \sqrt{2}) : \mathbb{Q}] \). We also have \([\mathbb{Q}(\alpha_1) : \mathbb{Q}] = 3 \), so \(3 \mid [\mathbb{Q}(\alpha_1, \sqrt{2}) : \mathbb{Q}] \). Hence \(6 \mid [\mathbb{Q}(\alpha_1, \sqrt{2}) : \mathbb{Q}] \) and as the degree of the extension cannot be larger, we get the equality

\[
[\mathbb{Q}(\alpha_1, \sqrt{2}) : \mathbb{Q}] = 6.
\]

Collapsing with

Using (1) and (1), we get

\[
[\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3) : \mathbb{Q}] = 12 > 6 = [\mathbb{Q}(\alpha_1, \alpha_1) : \mathbb{Q}]
\]

So \(\alpha_3 \notin \mathbb{Q}(\alpha_1, \alpha_2) \).

By the proof of Theorem 5.1, the kernel is generated by the polynomials

\[
x^3 - 5, \ y^2 + y + 1, \ (z - x - y)^2 - 2.
\]

(6.3) Note that for any \(\lambda \in \mathbb{Z}^* \), \(\lambda A \subseteq \lambda A \) so we have an \(A \)-module homomorphism \(\Pi : A/A^2 \lambda A \to A/A^2 \lambda A \). Note that

\[
\ker \Pi = \{ a \in A/A^2 \lambda A : \Pi(a) = 0 \} = \{ a + \lambda A : a \in \lambda A \}
\]

\[
= \{ a + \lambda A : a \in \lambda A \}
\]

\[
= \{ \lambda a : a \in A \} = im \Pi \]
Note that \(\ker q = \{ a \in A : x a \in x^n A \} \),
\[
\{ a \in A : x a = x^n b \text{ for some } b \in A \}.
\]
Thus, we have an exact sequence
\[
0 \longrightarrow A / x^{n-1} A \longrightarrow A / x^n A \longrightarrow A / x A \longrightarrow 0. \quad (\star)
\]
The claim of the question is a tautology for \(n = 1 \) and using
the induction hypothesis together with \((\star)\) yields
\[
\text{Ass } (A / x^n A) = \text{Ass } (A / x^{n-1} A) \cup \text{Ass } (A / x A) = \text{Ass } (A / x A).
\]
Since \(A / x^{n-1} A \) injects into \(A / x^n A \), we also have
\[
\text{Ass } (A / x A) = \text{Ass } (A / x^{n-1} A) \subseteq \text{Ass } (A / x^n A).
\]
Thus, we get \(\text{Ass } (A / x^n A) = \text{Ass } (A / x A) \) for every \(n \).

By the Noetherian assumption, \(I \) has a primary decomposition \(I = I_1 \cap \ldots \cap I_r \).
Write \(\text{Ass } (A / I_k) = \{ p_k \} \) for each \(k = 1, \ldots, r \).
So \(p_k = \sqrt{\text{ann}_A (A / I_k)} = \sqrt{I_k} \).
Also \(\text{Ass } (A / I) = \{ p_1, \ldots, p_r \} \).

It suffices to show \(J \subseteq I_k \) for every \(k \). By assumption, we have \(J : A p_k \subseteq I : A p_k \subseteq I_k : A p_k \). So for every \(x \in J, \)
\[
\frac{y}{s} \quad \text{for some } y \in I_k \text{ and } s \in A - p_k.
\]
Thus, \(tsx = ty \in I_k \) for some \(t \in A - p_k \). Since \(tsx \in I_k \) and \(ts \notin p_k = I_k \),
we get \(x \in I_k \) as \(I_k \) is a primary ideal.
Note that for \(x \in M \), we have
\[
\begin{align*}
a \in \operatorname{ann}_A(x) & \iff a \cdot x = 0 \\
& \iff f(a) \cdot x = 0 \\
& \iff f(a) \in \operatorname{ann}_B(x) \\
& \iff a \in f^{-1}(\operatorname{ann}_B(x)).
\end{align*}
\]

Thus \(\operatorname{ann}_A(x) = f^{-1}(\operatorname{ann}_B(x)) \). In other words, the inverse image sends annihilators to annihilators. We also know that the inverse image of a prime is prime; therefore there is a well-defined map
\[
f^*: \text{Ass}_B(M) \rightarrow \text{Ass}_A(M)
\]
\[
\begin{array}{c}
P \\
\mapsto f^{-1}(P)
\end{array}
\]

\((f^* is just the restriction of the continuous map \ Spec B \rightarrow \ Spec A)\)

The question asks us to show that \(f^* \) is surjective...

(?)

5.1 Denote the image of \(X_i \) under the natural map \(R \rightarrow R/P \) by \(\alpha_i \); so we have \(R/P = k[x_1, \ldots, x_n] \). Note that
\[
\text{coht}(R) = \dim (R/P) = \text{tr.deg}_k (R/P) \quad (\star)
\]

(\textbf{Theorem 5.6})

So we first prove the special case that \(\text{coht}(P) = 0 \Rightarrow \text{ht}(P) = n \).

Indeed, \(\text{coht}(P) = 0 \) means \((\text{b} \ (\star))\) that \(x_1, \ldots, x_n \) are algebraic over \(k \).

Let \(P_j \) be the kernel of the map
\[
\phi_j: k[x_1, \ldots, x_j, x_{j+1}, \ldots, x_n] \rightarrow k[x_1, \ldots, x_j][x_{j+1}, \ldots, x_n]
\]
\[
\begin{array}{c}
x_i \\
\mapsto \begin{cases} x_i & \text{if } i \leq j \\
X_i & \text{if } i > j
\end{cases}
\end{array}
\]

Note that \(\phi_j \) is surjective and \(k[x_1, \ldots, x_j]_k \) is a field (\(x_1, \ldots, x_j \) are algebraic)
the codomain of \(\phi_j \) is an integral domain. Thus \(P_j \)'s are prime. Moreover by the construction in \textbf{Theorem 5.1}, each \(P_j \) be generated by polynomials which involve every variable \(x_1, \ldots, x_j \) and none of the rest. Thus
\[
0 \subseteq P_1 \subseteq \ldots \subseteq P_n = P
\]
is a strictly increasing chain and hence \(\text{ht}(P) \leq n \). As \(\dim(R) = n \), we get \(\text{ht}(P) = n \).

General case... (?)
Let P_1, \ldots, P_r be the minimal prime ideals of A (there are finitely many because A is Noetherian). Since A is reduced, we have

$$0 = \text{nil } A = P_1 \cap \cdots \cap P_r \quad (\times)$$

So (\times) is a primary decomposition of 0. Since $\text{Ass } (A/\mathfrak{p}_i) = \{ \mathfrak{p}_i \}$, by Theorem 6.8 (ii) we have $\text{Ass } (A) = \text{Ass } (A/0) \subseteq \{ P_i, \ldots, P_r \}$.

On the other hand, by Theorem 6.5 (iii), the set of minimal elements of $\text{Ass } (A)$ and $\text{Supp } (A) = V(\text{ann } (A)) = V(0) = \text{Spec } A$ coincide. Therefore $P_1, \ldots, P_r \subseteq \text{Ass } (A)$. Thus we have

$$\text{Ass } (A) = \{ P_1, \ldots, P_r \}. \quad \text{[This is not an equality because we don't know a priori that } (\times) \text{ is an irredundant decomposition.]}$$

If we let S to be the multiplicative set of non-zero-divisors of A, Theorem 6.1 (ii) yields $S = A - \bigcup_{i=1}^r P_i$. Note that a prime ideal P intersects satisfies $P \cap S = \emptyset$ if and only if $P \subseteq \bigcup_{i=1}^r P_i$, and this happens if and only if $P \subseteq P_j$ for some j (by Exercise 1.6, a.t.a. prime avoidance).

By the minimality of P_j, we get $P = P_j$. Thus, the only prime ideals of the localization A_S are $P_1 A_S, \ldots, P_r A_S$.

But these are also the minimal primes of A_S by the correspondence theorem (Theorem 4.1 (ii)). Hence A_S is a zero dimensional ring with maximal ideals $P_1 A_S, \ldots, P_r A_S$. Also note that $P_1 A_S \cap \cdots \cap P_r A_S = (P_1 \cap \cdots \cap P_r) A_S = 0 A_S = 0$.

Therefore, the Chinese remainder theorem yields an isomorphism $A_S \cong A_S / P_1 A_S \times \cdots \times A_S / P_r A_S$, a direct product of fields.