And since 3 corresponds to \(11 \) in \(\mathbb{Q}_3 \) and
\[
\begin{array}{c}
\text{10101011} \\
\times \quad 11 \\
\hline
\text{10101011} \\
\text{10101011} \\
\hline
\text{00000000} \\
\end{array}
\]
we have \(\text{10101011} = \frac{1}{3} \).

If we shift \(x = \overline{1001101} \) two units to the left of the
decimal point (appending 0s) and add it to itself, we get
\[
\begin{array}{c}
\overline{1001101} \\
\overline{1001101} \\
\hline
\overline{50000000} \\
\end{array}
\]
Shifting two to the left means multiplying with 4 in \(\mathbb{Q}_3 \).
So our computation shows \(x + 4x = 1 \); thus \(x = \frac{1}{5} \).

We know that a \(p \)-adic integer is a positive (rational) integer if and only if it is of the form \(\overline{0} c_n \ldots c_3 c_2 c_1 c_0 \).

If we let \(c_i = c_i \) with not all of \(c_i \)'s zero.

For each \(i \), we have
\[
\begin{array}{c}
\overline{0} c_n \ldots c_{k+1} c_k c_{k-1} \ldots c_1 c_0 \\
+ \overline{1} a_n \ldots a_k a_{k-1} \ldots a_1 a_0 \\
\hline
\overline{0} 0 \ldots 0 0 0 \ldots 0 0 = 0 \\
\end{array}
\]
So let \(k = \min \{ i : c_i = 1 \} \). And define \(a_i = \begin{cases} 0 & \text{if } i < k \\ 1 & \text{if } i = k \\ 1 - c_i & \text{if } i > k \end{cases} \).

Then we have
\[
\begin{array}{c}
\overline{0} c_n \ldots c_{k+1} c_k c_{k-1} \ldots c_1 c_0 \\
+ \overline{1} a_n \ldots a_k a_{k-1} \ldots a_1 a_0 \\
\hline
\overline{0} 0 \ldots 0 0 0 \ldots 0 0 = 0 \\
\end{array}
\]
Thus negative (rational) integers are of the desired form (as they are additive inverses of positive integers).
Let A be the subset of \mathbb{Q}_ρ consisting of strings $a_m \ldots a_n a_2 a_1 a_0 \ldots$. We want to show that $A = \mathbb{Z}_\rho(\rho)$. Let B be the subset of A where the periodic behaviour starts right away. More precisely, B is the subset of \mathbb{Q}_ρ consisting of strings $a_k \ldots a_1 a_0$. Observe that every element $x \in A$ can be written as $x = \rho^s \gamma + n$ where $s > 0$, $\gamma \in B$ and $n \geq 0$.

(To see the periodic part of x to be γ, then x can be reconstructed by appending a sufficient number of zeros next to γ and shifting by a positive integer).

Since $\mathbb{Z} \subseteq \mathbb{Z}_\rho(\rho)$, it suffices to show that $B \subseteq \mathbb{Z}_\rho(\rho)$ to conclude that $A \subseteq \mathbb{Z}_\rho(\rho)$ by this observation.

Take $a_k \ldots a_1 a_0$ in B. We have

\[
\begin{align*}
\overline{a_k \ldots a_1 a_0} &= a_0 + a_1 \rho + a_2 \rho^2 + \ldots + a_k \rho^k \\
&= a_0 \rho^k + a_1 \rho^{k+1} + a_2 \rho^{k+2} + \ldots + a_k \rho^{2k+1} \\
&+ a_0 \rho^{2k+2} + a_1 \rho^{2k+3} + \ldots + a_k \rho^{3k+2} \\
&+ a_0 \rho^{3k+3} + a_1 \rho^{3k+4} + \ldots + a_k \rho^{4k+3} \\
&+ \ldots \\
&= a_0 \left(1 + \rho^{k+1} + \rho^{2k+2} + \rho^{3k+3} + \ldots\right) \\
&+ a_1 \rho \left(1 + \rho^{k+1} + \rho^{2k+2} + \rho^{3k+3} + \ldots\right) \\
&+ \ldots \\
&+ a_k \rho^k \left(1 + \rho^{k+1} + \rho^{2k+2} + \rho^{3k+3} + \ldots\right) \\
&= \left(a_0 + a_1 \rho + \ldots + a_k \rho^k\right) \frac{\left(1 + \rho^{k+1} + \rho^{2k+2} + \ldots\right)}{1 - \rho^{k+1}}
\end{align*}
\]

This geometric series type equality makes sense in \mathbb{Q}_ρ. Indeed, direct computation yields $(1 - \rho^{k+1})(1 + \rho^{k+1} + \rho^{2k+2} + \ldots) = 1$.
Conversely, we now show that \(Z(p) \subseteq A \). As addition and multiplication are defined inductively on \(Q_p \), eventually periodic elements add and multiply into eventually periodic elements; so \(A \) is a subring of \(Q_p \) which clearly contains the positive integers. Every element in \(Z(p) \) can be written of the form \(\frac{r}{s} \) where \(r \) is a positive integer and \(s \) is an integer coprime to \(p \). Hence it suffices to show that \(\frac{1}{s} \in A \) when \(p \nmid s \). Write the \(p \)-adic expansion of \(s \):

\[
s = a_0 + a_1 p + \cdots + a_k p^k.
\]

Since \(a_0 \neq 0 \), the \(p \)-adic extension of \(s \), \(\frac{1}{s} \), can be constructed inductively. Write

\[
\frac{1}{s} = c_0 + c_1 p + c_2 p^2 + \cdots
\]

The \(c_i \)'s are found by solving the equations:

\[
a_0 c_0 = 1 \pmod{p},
\]

\[
a_0 c_1 + a_1 c_0 + (\text{carry from previous step}) = 0 \pmod{p},
\]

\[
\vdots
\]

Since the \(p \)-adic extension of \(s \) is finite (i.e. \(a_{k+1} = a_{k+2} = \ldots = 0 \)), after some point these equations will repeat themselves, resulting in periodic \(c_i \)'s. Hence we conclude that \(\frac{1}{s} \in A \).

Thus \(A = Z(p) \), as desired. Note that every \(q \in Q \) can be written as \(q = p^t a \) where \(t \geq 0 \) and \(a \in Z(p) \). Let \(p^t \) be the \(p \)-part of the denominator of \(q \). Since multiplying by \(p^t \) corresponds to shifting \(t \) units to the right of the point, we get the given description of \(Q \) since \(Z(p) = A \).

(4) We need an intrinsic definition of exactness in the category Fun(\(C \), Ab) to be able to answer this question without "cheating". Here is an attempt for defining exactness in other categories than module categories. We need some definitions first.

Defn. Let \(C \) be a category. An object \(Z \) is called a zero object in \(C \) if for every \(A \in \text{Obj}(C) \) both \(\text{Hom}_C(Z,A) \) and \(\text{Hom}_C(A,Z) \) are singletons.
In other words, \(Z \) is a zero object iff \(Z \) is both an initial object and a final object.

(For example, the category of rings has no zero object because \(Z \) is initial but the zero ring \(0 \) is final.)

By their universal property, (if they exist) all zero objects are isomorphic and so we just write \(0 \) for any of them.

In a category with a zero object \(0 \), every pair of objects \(A, B \) can be connected by the morphism \(A \rightarrow 0 \rightarrow B \).

This morphism does not depend on which zero object is used in the middle and is called the "zero morphism" and also denoted by \(0 \).

With the presence of zero morphisms, we can define kernels and cokernels.

Defn: Let \(A \) be a category with a zero object, and \(\eta : A \rightarrow B \) be a morphism in \(A \). A morphism \(\lambda : K \rightarrow A \) is called a kernel of \(\eta \) if \(\eta \circ \lambda = 0 \) and \(\lambda \) is universal with this property.

That is, if \(\xi : Z \rightarrow A \) also satisfies \(\eta \circ \xi = 0 \), then \(\exists ! \xi \) s.t.

\[
\begin{array}{ccc}
K & \overset{\lambda}{\rightarrow} & A \\
\downarrow & & \downarrow \eta \\
Z & \overset{\xi}{\rightarrow} & A
\end{array}
\]

commutes.

Defn: Let \(A \) be a category with a zero object, and \(\eta : A \rightarrow B \) be a morphism in \(A \). A morphism \(\mu : B \rightarrow C \) is called a cokernel of \(\eta \) if \(\mu \circ \eta = 0 \) and \(\mu \) is universal with this property.

That is, if \(\beta : B \rightarrow V \) also satisfies \(\beta \circ \eta \), then \(\exists ! \beta \) s.t.

\[
\begin{array}{ccc}
A & \overset{\eta}{\rightarrow} & B \\
\downarrow \beta & & \downarrow \mu \\
C & \overset{\beta}{\rightarrow} & V
\end{array}
\]

commutes.
Defn: A category \(\mathcal{A} \) with a zero object and every morphism has a kernel and a cokernel is called an exact category.

(This is not a standard usage of the phrase 'exact category'.)

For example for any ring \(R \), the category \(R\text{-Mod} \) is exact because the zero module is a zero object and given an \(R \)-module homomorphism \(\psi : M \to N \); the inclusion \(\ker \psi \to M \) and the projection \(N \to N/\ker \psi \) serve as kernel and cokernel morphisms of \(\psi \), respectively.

The source of a kernel morphism and the target of a cokernel morphism is unique up to isomorphism by their universal properties.

Finally:

Defn: A sequence \(A \xrightarrow{\psi} B \xrightarrow{\psi} C \) in an exact category is called an exact sequence if \(\psi \circ \psi = 0 \) and \(\ker \psi \circ \ker \psi = 0 \).

It can be checked that this definition agrees with the usual notion of exactness in the exact category \(R\text{-Mod} \).

Proposition: Let \(\mathcal{C} \) be a small category and \(\mathcal{A} \) be an exact category. Then \(\text{Fun}(\mathcal{C}, \mathcal{A}) \) is also an exact category.

Proof: First, we need to show that \(\text{Fun}(\mathcal{C}, \mathcal{A}) \) has a zero object.
Define the zero functor \(0 : \mathcal{C} \to \mathcal{A} \) by assigning each \(X \in \text{Obj}(\mathcal{C}) \) to the zero object in \(\mathcal{A} \) and every morphism in \(\mathcal{C} \) to the identity.

Now given any functor \(F : \mathcal{C} \to \mathcal{A} \), the diagram \(F(X) \to 0 \)

commutes for every \(X, Y \in \text{Obj}(\mathcal{C}) \), \(x \in \text{Hom}_C(X, Y) \) and so we get a natural tran. \(F \to 0 \).
Clearly there is no other nat. tran. from F to 0 so 0 is final in $\text{Fun}(C, A)$. Similarly, it is also initial in $\text{Fun}(C, A)$.

Next, we show that $\text{Fun}(C, A)$ has kernels. Let $\nu: F \to G$ be a morphism in $\text{Fun}(C, A)$.

Consider the following assignments:

So F, G are functors from C to A and $\nu: F \to G$ is a natural transformation. So for every $X \in \text{Obj}(C)$, we have a morphism

$$\nu_x : F(X) \to G(X)$$

in A. Since A is exact, this morphism has a kernel

$$\lambda_x : K(X) \to F(X)$$

And if $\phi: X \to Y$ is a morphism in C, we have a diagram

$$
\begin{array}{ccc}
K(X) & \xrightarrow{\lambda_x} & F(X) \\
\downarrow{F(\phi)} & & \downarrow{\nu_x} \\
K(Y) & \xrightarrow{\lambda_y} & F(Y)
\end{array}
$$

$$
\begin{array}{ccc}
& & G(X) \\
G(\phi) & \downarrow{G(\phi)} & \\
& & G(Y)
\end{array}
$$

We have

$$\nu_y \circ F(\phi) = \lambda_x = G(\phi) \circ \nu_x \circ \lambda_x$$

$$\lambda_x \text{ is a kernel} \Rightarrow \nu_x \circ \lambda_x = 0$$

Since λ_y is a kernel of ν_y $\exists! \ k(\phi): K(X) \to K(Y)$ which makes

$$
\begin{array}{ccc}
K(X) & \xrightarrow{\lambda_x} & F(X) \\
\downarrow{k(\phi)} & & \downarrow{F(\phi)} \\
K(Y) & \xrightarrow{\lambda_y} & F(Y)
\end{array}
$$

commute. From here, it is straightforward, but long, to check that with these assignments $K: C \to A$ defines a functor and the collection of λ_x's define a natural transformation from K to F. That is, we get a morphism

$$\lambda : K \to F \in \text{Fun}(C, A)$$

and some further diagram chasing shows that λ is...
\lambda \text{ satisfies the universal property of being a kernel of } \nu.

The existence of cokernels is similar.

Proposition: Let \(\mathcal{A} \) be an exact category and \(\mathcal{C} \) be a small category. A sequence \(F_1 \xrightarrow{\nu} F_2 \xrightarrow{\mu} F_3 \) in \(\text{Fun}(\mathcal{C}, \mathcal{A}) \) is exact if and only if \(F_1(x) \xrightarrow{\nu} F_2(x) \xrightarrow{\mu} F_3(x) \) is exact in \(\mathcal{A} \) for every \(x \in \text{Obj}(\mathcal{C}) \).

Proof: \(M \circ \nu = 0 \iff (M \circ \nu)_x = 0 \) in \(\mathcal{A} \) for every \(x \).

\[\iff \quad M_x \circ \nu_x = 0 \quad \text{for every } x. \]

And since kernels and cokernels in \(\text{Fun}(\mathcal{C}, \mathcal{A}) \) are defined object-wise we have

\[(\text{coker } \nu) \circ (\ker \mu) = 0 \iff \left((\text{coker } \nu) \circ (\ker \mu) \right)_x = 0 \quad \text{for every } x \]

\[\iff \quad (\text{coker } \nu)_x \circ (\ker \mu)_x = 0 \quad \text{for every } x \]

\[\iff \quad \text{coker } (\nu_x) \circ \ker (\mu_x) = 0 \quad \text{for every } x. \]

\[\square \]

3. We show that \(\mathbb{Z}_p = \{ \ldots, a_2a_1a_0 : a_0 \in \mathbb{Z}, p \mid 1 \} \) satisfies the universal property of the inverse limit. For each \(k \), define \(\Pi_k : \mathbb{Z}_p \to \mathbb{Z}/p^k \mathbb{Z} \)

\[\ldots a_2a_1a_0 \to (a_{k-1}p^{k-1} + \ldots + a_1p + a_0) + p^k \mathbb{Z}. \]

In other words, we define \(\Pi_k \) by truncating the string \(\ldots a_2a_1a_0 \) to \(a_{k-1}a_{k-2}a_{k-3} \ldots a_0 \). By the definition of addition and multiplication in \(\mathbb{Z}_p \), \(\Pi_k \) is a ring homomorphism (essentially, \(\Pi_k \) ignores what happens after the \(k \)-th digit and that's nothing but arithmetic modulo \(p^k \)).

Also, if we write \(\varphi_k : \mathbb{Z}/p^k \mathbb{Z} \to \mathbb{Z}/p^{k+1} \mathbb{Z} \), we have

\[a + p^k \mathbb{Z} \mapsto a + p^{k+1} \mathbb{Z} \]

\[\left(\varphi_k \circ \Pi_k \right)(\ldots + a_kp^{k} + \ldots + a_1p + a_0) = \varphi_k((a_{k-1}p^{k-1} + \ldots + a_1p + a_0) + p^k \mathbb{Z}) \]

\[= (a_{k-1}p^{k-1} + \ldots + a_1p + a_0) + p^k \mathbb{Z}. \]
That is, the diagram
\[
\begin{array}{ccc}
\mathbb{Z}_p & \xrightarrow{\Psi_k} & Z/pk\mathbb{Z} \\
\downarrow{\Psi_k} & & \downarrow{q_k} \\
Z/p^k\mathbb{Z} & \xrightarrow{q_k} & Z/p^{k-1}\mathbb{Z}
\end{array}
\]
commutes for each \(k\).

Suppose \(A\) is another ring equipped with ring homomorphisms
\[
\Psi_k : A \rightarrow Z/pk\mathbb{Z}
\]
such that
\[
\begin{array}{ccc}
A & \xrightarrow{\Psi_k} & Z/pk\mathbb{Z} \\
\downarrow{\Psi_k} & & \downarrow{q_k} \\
Z/p^k\mathbb{Z} & \xrightarrow{q_k} & Z/p^{k-1}\mathbb{Z}
\end{array}
\]
commutes for every \(k\).

For each \(x \in A\), the coset \(\Psi_k(x)\) can be represented by a number between 0 and \(p^{k-1}\). So it has a \(p\)-adic expansion of the form
\[
a_{k-1}p^{k-1} + \ldots + a_1p + a_0.
\]
Since the above diagram commutes, the \(p\)-adic expansions for different \(k\)'s will be consistent. For example, \(\Psi_{k+1}(x)\) will have a \(p\)-adic expansion
\[
a_{k+1}p^{k+1} + a_{k-1}p^{k-1} + \ldots + a_1p + a_0
\]
some coefficients that we get from \(\Psi_k(x)\).

Thus we get a well-defined map
\[
\Psi : A \rightarrow \mathbb{Z}_p
\]
where the first \(k\) digits of \(\Psi(x)\) is given by the \(p\)-adic expansion of \(\Psi_k(x)\). Thus the diagram
\[
\begin{array}{ccc}
A & \xrightarrow{\Psi} & \mathbb{Z}_p \\
\downarrow{\Psi_k} & & \downarrow{\Psi_k} \\
Z/p^k\mathbb{Z} & \xrightarrow{q_k} & Z/p^{k-1}\mathbb{Z}
\end{array}
\]
commutes for every \(k\) and clearly \(\Psi\) is the unique such map which makes this diagram commute (because it is enough to look at \(\Psi_k(x)\) to recover the \(k\)th digit of \(\Psi(x)\)). It remains to show that \(\Psi\) is a ring homomorphism.
Given \(x, y \in A \), the \(k^{th} \) digit of \(\Psi(x, y) \) is determined by the \(p \)-adic expansion of \(\Psi_k(x, y) = \Psi_k(x) \Psi_k(y) \).

\[
\Psi_k : A \to \mathbb{Z}_p, \quad \text{is a ring homomorphism by assumption}
\]

which is also the \(k^{th} \) digit of the \(p \)-adic expansion of \(\Psi(x) \Psi(y) \). Thus we conclude that \(\Psi(x, y) = \Psi(x) \Psi(y) \). Similarly \(\Psi \) preserves addition and clearly \(\Psi(1) = 1 \).

\(\therefore \Psi \) is a ring homomorphism.

(5) Whenever \(\lambda \leq \mu \), we have \(M_\lambda \supseteq M_\mu \) and we denote the natural map \(M / M_\lambda \to M / M_\mu \) by \(\Psi_{\lambda \mu} \).

We have \(\widehat{M} = \{ (x_\lambda)_{\lambda \in \Lambda} : x_\lambda \in M / M_\lambda \text{ and } \Psi_{\lambda \mu}(x_\lambda) = x_\lambda \text{ whenever } \lambda \leq \mu \} \).

To show that two topologies are the same, we show that every basis element in one topology contains a basis element from the other topology, such that \(x \in B_2 \subseteq B_1 \).

Since singletons form a basis for the discrete topology and product of open sets form a basis for the product topology, a basis element of the "subspace of the product topology" on \(\widehat{M} \) is of the form

\[
B = \left(\prod \{ U_{\lambda} \} \right) \cap \widehat{M}
\]

where \(\Lambda \) has a finite subset \(\Lambda_f \) such that \(U_{\lambda} = \begin{cases} \{ x_\lambda \} & \text{if } \lambda \in \Lambda_f \\ M / M_\lambda & \text{o.w.} \end{cases} \)

So if \(x = (x_\lambda) \in B \) is inside this basis element, we have

\[
U_x = \begin{cases} \{ x_\lambda \} & \text{if } \lambda \in \Lambda_f \\ M / M_\lambda & \text{o.w.} \end{cases}
\]

Since \(\Lambda_f \) is a finite subset of the directed set \(\Lambda \), there exists \(\mu \in \Lambda \).
such that $\lambda \leq \mu$ for each $\lambda \in \Lambda_f$. Now $x + M^*_\mu$ is a basic neighbourhood of x in the linear topology and we claim that $x + M^*_\mu \subseteq B$.

Indeed, let $y \in x + M^*_\mu$. So $y - x \in M^*_\mu$ which means by definition of M^*_μ that $0 = (y - x)_\mu = y_\mu - x_\mu \sim x_\mu = y_\mu$.

So for every $\lambda \in \Lambda_f$, $\lambda \leq \mu$ and $x_\lambda = \psi_{x,\lambda}(x_\mu) = \psi_{\lambda,\mu}(y_\mu) = y_\lambda$.

Thus $y_\lambda \in U_\lambda$ for every λ, hence $y \in B = (\prod U_\lambda) \cap \hat{M}$.

Conversely, take a basis element $x + M^*_\mu$ in the linear topology with $y \in x + M^*_\mu$. We want to find a

Let $U_\lambda = \{ \{ x_\lambda \} \text{ if } \lambda = \mu \text{ Then } U = \prod_{\lambda \in \Lambda} U_\lambda, \}

U \cap \hat{M}$ is a basis element in the subspace topology which contains y because $y - x \in M^*_\mu$, i.e. $y_\mu = x_\mu$.

We claim that $y \in U \cap \hat{M} \subseteq x + M^*_\mu$.

shown above

if $z \in U \cap \hat{M}$, $z_\mu = x_\mu$ so $z - x \in M^*_\mu$; i.e. $z \in x + M^*_\mu$.

This finishes the proof.

6. The collection of M^*_μ is a directed system satisfying the first criterion in section 8. That is, if $x \leq \mu$ then $M^*_x \geq M^*_\mu$.

Indeed, consider the commutative diagram

\[\begin{array}{cc}
\Lambda & \xrightarrow{P} & \hat{M} \\
M_{x} & \xrightarrow{\sim} & \hat{M}_{x} \\
\end{array} \]
If $\lambda \in \mathcal{M}$, we have $M^*_\lambda \cong M_\lambda$. Therefore, we have a commutative diagram

$$
\begin{array}{ccc}
\hat{M} & \xrightarrow{p_\lambda} & M/ M_\lambda \\
\pi_\lambda \downarrow & & \downarrow q_\lambda \\
M/ M_\lambda & \xrightarrow{\psi_{\lambda \mu}} & M/ M_\mu \\
\end{array}
$$

Since M^*_λ is defined to be $\ker(p_\lambda)$, by the commutativity of the diagram we have

$$M^*_\lambda = \ker(p_\lambda) \subseteq \ker(p_\mu) = M^*_\mu.$$

So there is a natural map $\psi_{\lambda \mu} : \hat{M}/M^*_\mu \to \hat{M}/M^*_\lambda$.

Also, observe that the universal property of \hat{M} yields a map $M \to \hat{M}$ which sits in a commutative diagram

$$
\begin{array}{ccc}
M & \xrightarrow{\pi_\lambda} & \hat{M} \\
\downarrow & & \downarrow p_\lambda \\
M/ M_\lambda & \to & M/ M_\lambda \\
\end{array}
$$

for each λ, where π_λ is the natural projection. Since π_λ is surjective, p_λ is surjective. Since $\ker(p_\lambda) = M^*_\lambda$, we have a commutative diagram

$$
\begin{array}{ccc}
0 & \to & M^*_\lambda & \to & \hat{M} & \xrightarrow{p_\lambda} & M/ M_\lambda & \to & 0 \\
\| & & \| & & \| & & \| & & \| \\
0 & \to & M^*_\lambda & \to & \hat{M} & \xrightarrow{q_\lambda} & \hat{M}/ M^*_\lambda & \to & 0 \\
\end{array}
$$

with exact rows, and here f_λ is an isomorphism. (First isomorphism theorem, if you will.)

Here is the general framework. Since $\lambda \in \mathcal{M} \Rightarrow M^*_\lambda \cong M_\lambda$, regarding the poset Λ as a category, we have a contravariant functor

$$F : \Lambda \to \mathbf{A-Mod},$$

$$\lambda \mapsto M/ M_\lambda,$$

$$\lambda \leq \mu \mapsto \psi_{\lambda \mu} : M/ M_\mu \to M/ M_\lambda.$$
And since $\lambda \leq \mu \Rightarrow M^* \cong M_\lambda^*$, we have another contravariant functor:

$$G: \lambda \rightarrow A-\text{Mod}$$

\[\begin{array}{c}
\chi \leq \mu \\
\psi_{\lambda \mu}: \widehat{M} / M^*_\chi \\
\Rightarrow \widehat{M} / M^*_\mu
\end{array} \]

By definition, we have $\widehat{M} = \varinjlim F$. We will show that F and G are naturally isomorphic functors.

By above, we already have isomorphisms

$$f_\lambda: M / M_\lambda \rightarrow \widehat{M} / M^*_\lambda$$

for each λ. We need to show naturality, i.e. the assertion that whenever $\chi \leq \mu$, the diagram

\[\begin{array}{c}
\chi \leq \mu \\
M / M_\chi \\
\downarrow f_\chi \\
\widehat{M} / M^*_\chi
\end{array} \]

\[\begin{array}{c}
\mu \leq \lambda \\
M / M_\mu \\
\downarrow f_\mu \\
\widehat{M} / M^*_\mu
\end{array} \]

commutes. This can be checked as follows: Insert \widehat{M} on the top:

\[\begin{array}{c}
\lambda \leq \mu \\
\psi_{\lambda \mu}: \widehat{M} / M^*_\lambda \\
\Rightarrow \widehat{M} / M^*_\mu
\end{array} \]

Now $\psi_{\lambda \mu} \circ f_\mu \circ f_\lambda = \psi_{\lambda \mu} \circ g_\lambda = q_\lambda = f_\lambda \circ \psi_\lambda \circ f_\mu$.

Since f_μ is surjective, we get

$$\psi_{\lambda \mu} \circ f_\mu = f_\lambda \circ \psi_\lambda \circ f_\mu$$

as desired.
Thus the collection of f_λ's define a natural isomorphism between F and G. Thus $\hat{M} = \varprojlim F$ and $\varprojlim G$ are isomorphic, via f_λ's.

That is, since $\varprojlim G$ constructs precisely the completion of \hat{M} with respect to the family of submodules $\{M_\lambda^*\}_{\lambda \in \Lambda}$, we get that \hat{M} is complete.

Recall that A being I-adically complete means that for every sequence (a_1, a_2, \ldots) which satisfies $a_n - a_{n+1} \in I^n$ for every n, there exists a unique element $a \in A$ such that $a - a_n \in I^n$ for every n.

Note that by the third paragraph from the bottom of page 55, I-adic and I'-adic topology on A are the same because the two families of ideals $\{I, I^2, I^3, \ldots\}$ and $\{I', I^4, I^5, \ldots\}$ satisfy the given condition there.

Back to the question: Suppose A is I-adically and J-adically complete. We will show that A is $(I+J)^2$-adically complete (hence $(I+J)$-adically complete). So let (a_1, a_2, \ldots) be a sequence in A which satisfies $a_n - a_{n+1} \in (I+J)^2$ for every n.

In particular, $a_n - a_{n+1} \in (I+J)^2 \subseteq I^n + J^n$, so $a_n - a_{n+1} \in I^n + J^n$, hence a_n is $I^n + J^n$-adically Cauchy.

Let $c_n = \sum_{k=1}^{\infty} c_k$ and $d_n = \sum_{k=1}^{\infty} d_k$.

Since \(C_n - C_{n-1} = c_n \in I^n \) for every \(n \) and \(A \) is I-adically complete, \(\exists ! \) \(C \in A \) such that
\[
C - C_n \in I^n.
\]
Similarly, \(\exists ! \) \(D \in A \) such that
\[
D - D_n \in J^n.
\]
Observe that
\[
C_n + D_n = \sum_{k=1}^{\infty} (c_k + d_k)
\]
\[
l = \sum_{k=1}^{\infty} (a_k - a_{k-1})
\]
\[
= a_n - a_1.
\]
So if we let \(a = C + D + a_1 \), we have
\[
a - a_n = C + D + a_1 - (C_n + D_n + a_1)\]
\[
= (C - C_n) + (D - D_n) \in I^n + J^n \subseteq (I+J)^n.
\]

8.1 Let \((a_n) \) be a Cauchy sequence in \(A \) w.r.t. the \((I+J) \)-adic topology. So given \(m \in \mathbb{Z}^+ \), \(\exists N_m \) s.t.
\[
p, q > N_m \Rightarrow a_p - a_q \in (I+J)^m \subseteq I^m + J^m.
\]

In particular, \(n > N_m \Rightarrow a_{n+m} - a_n \in I^n + J^n \).

We may take \(N_1 < N_2 < N_3 < \ldots \).

So then
\[
a_{N_1} - a_{N_2} \in I + J
\]
\[
a_{N_2} - a_{N_3} \in (I+J)^2
\]
\[
a_{N_3} - a_{N_4} \in I^2 + J^2
\]
\[
\vdots
\]

That is, \((a_n) \) is Cauchy. (Note: \((I+J)\)-adic topology is Hausdorff, hence metrizable because \(A \) is I-adically complete, \(I \subseteq \text{rad}(A) \) so \(I+J \subseteq \text{rad}(A) \) hence \((I+J)^n = 0 \) by Krull's Intersection Theorem.)
Let's ease up the notation. What we showed above is that
\((a_n)\) has a subsequence \((a_{n_k}) = (b_n)\) such that

\[b_n - b_{n+1} \in I^n J^n. \quad (\star) \]

A Cauchy sequence with a convergent subsequence must be convergent itself, so it is enough to show that \((b_n)\) converges.

By \((\star)\), there exist \(u_n, v_n \in I^n\) such that

\[b_{n+k} - b_n = u_n + v_n. \quad (\dagger) \]

Now let \(U_n = \sum_{k=1}^{n} u_k\) and \(V_n = \sum_{k=1}^{n} v_k\). Observe that \((U_n)\) is a Cauchy sequence in the \(I\)-adic topology

\((\text{because for } \rho < q, \quad U_q - U_p = \sum_{k=p}^{q} u_k \in I^\rho)\).

Since \(A\) is \(I\)-adically complete, \((U_n)\) has a limit, say \(U\).

By the same argument, \((V_n)\) has a limit in the \(J\)-adic topology, say \(V\).

Let \(B_n = U_n + V_n + 1\). Observe that

\[\sum_{k=1}^{n} (b_{n+k} - b_k) = \sum_{k=1}^{n} (u_k + v_k) \]

\(\downarrow\) telescope

\[b_n - b_1 = U_n + V_n. \]

So we write

\[b_n = U_n + V_n + 1. \]

Now note that \(I\)-adic convergence is stronger than \((I+J)\)-adic convergence. So \(U_n \rightarrow U\) in the \((I+J)\)-adic topology as well. Similarly, \(V_n \rightarrow V\) in the \((I+J)\)-adic topology. Thus \(b_n \rightarrow U + V + 1\) in the \((I+J)\)-adic topology.

We found a limit for \((b_n)\).
8.2 Since A is I-adically complete, $I \subseteq \operatorname{rad} A$. Hence $J \subseteq \operatorname{rad} A$ and therefore the J-adic topology on A is Hausdorff by Krull's intersection theorem.

Now let (a_n) be a Cauchy sequence in A w.r.t J-adic topology. Then (a_n) is also a Cauchy sequence in A w.r.t I-adic topology (the J-adic topology is finer), thus converges to an element a in the I-adic topology.

We want to show that $a_n \to a$ in the J-adic topology also.

By passing to a subsequence if necessary, as we did in (8.1), we may assume that

$$a_{n+1} - a_n \in I^n \quad \text{for } n \geq N.$$

Also for sufficiently large m, n we have $a - a_m \in I^m$.

Then

$$a - a_n = a - a_m + a_m - a_n \quad \in I^m + J^n.$$

By telescoping

$$
\sum_{n \geq N} (a_{n+1} - a_n) \in J^n,
\sum_{n \geq N} (a_{n+1} - a_n) \in J^n
$$

Then $a - a_n \in \bigcap_{m \geq N} (I^m + J^n)$. By Theorem 8.7, the finite A-module A/\mathfrak{p} is I-adically complete. Thus $\bigcap_{m \geq N} I^n (A/\mathfrak{p}) = \bigcap_{m \geq N} (I^m + J^n)/\mathfrak{p} = 0$, i.e. $\bigcap_{m \geq N} (I^m + J^n) = J^n$. Thus $a - a_n \in J^n$. This yields $a_n \to a$ in J-adic topology, as desired.