Let $10 = \{ z \in \mathbb{C} : |z| < 1 \}$. For every $a \in 10$, by the problem on p.11, 1 of the 1st homework we have a holomorphic function

$$
\Phi_a : 10 \to 10
$$

$$
z \mapsto \frac{a-z}{1-\overline{a}z}
$$

We make the following observations about Φ_a:

- Φ_a is a linear transformation with matrix form $A = \begin{bmatrix} -1 & a \\ \overline{a} & 1 \end{bmatrix}$.

Since $A^2 = \begin{bmatrix} 1-|a|^2 & 0 \\ 0 & 1-|a|^2 \end{bmatrix}$, we set $\Phi_a^2 = \text{id}$.

In other words, Φ_a is an involution.

- $\Phi_a(a) = 0$ and $\Phi_a(0) = a$.
- $\Phi_a'(z) = \frac{d}{dz} \left(\frac{z-a}{\overline{a}z-1} \right) = \frac{\overline{a}z-1-\overline{a}(z-a)}{(\overline{a}z-1)^2}$

$$
= \frac{|a|^2-1}{(\overline{a}z-1)^2}.
$$

So $\Phi_a'(0) = |a|^2-1$ and $\Phi_a'(a) = \frac{1}{|a|^2-1}$.

The assumptions of the problem say that $f : 10 \to \mathbb{C}$ is an analytic function with $f(10) \subseteq \overline{10}$. Therefore if f is constant, $f \equiv 0$ so the desired inequality trivially holds. So we may assume f is nonconstant. Then by the open mapping theorem $f(10)$ is open, therefore $f(10) \subseteq \text{Int}(\overline{10}) = 10$.

So we may regard f as an analytic function

$$
f : 10 \to 10.
$$
Fix $a \in \mathbb{D}$. Let $b = f(a) \in \mathbb{D}$. Consider the composition

$$g = \phi_b \circ f \circ \phi_a : \mathbb{D} \to \mathbb{D}$$

Since $g(0) = \phi_b(f(\phi_a(0))) = \phi_b(f(a)) = \phi_b(b) = 0$, and $g : \mathbb{D} \to \mathbb{D}$ is analytic, by the Schwarz Lemma,

$$1 > |g'(0)| = |\phi_b'(b) \cdot f'(a) \cdot \phi_a'(0)|$$

$$= \left| \frac{1}{|b|^2 - 1} \cdot f'(a) \cdot (|a|^2 - 1) \right|$$

$$= \frac{1}{1 - |b|^2} \cdot |f'(a)| \cdot (1 - |a|^2)$$

$$= \frac{|f'(a)|}{1 - |f(a)|^2} \cdot (1 - |a|^2)$$

Hence

$$\frac{|f'(a)|}{1 - |f(a)|^2} \leq \frac{1}{1 - |a|^2}$$

Since $a \in \mathbb{D}$ above was arbitrary, we are done.
So elements of $\text{Aut}(\Omega)$ are linear transformations. For the general case as in the question, let f be a conformal mapping of Ω onto Ω, where $\Omega \in \Delta$ be generalized disks in \mathbb{C}.

Hence we can write $f: \Omega \to \Omega$ is analytic. Since f is one-to-one and onto, it has a set-theoretic inverse $f^{-1}: \Omega \to \Omega$.

By the open mapping theorem f^{-1} is continuous. Moreover as f is conformal, f' never vanishes. Thus, together with the continuity of f' implies that f^{-1} is differentiable.

Now we know that there exist linear transformations (10-Unit disk)

$$T: \Omega \to \Omega$$

$$S: \Omega \to \Omega$$

Hence $gS\circ fT \in \text{Aut}(\Omega)$. By above g is a linear transformation, thus so is $f = S^{-1}g \circ T^{-1}$.

Problem Set:

Problem Set:

5. First we observe that the relation "being homotopic in $\Delta^n(\omega)$" is a transitive relation among closed curves in Δ^n (it is actually an equivalence relation). Suppose $\gamma \sim \delta$ and $\delta \sim \psi$.

Let $\Gamma: [0,1] \times [0,1] \to \Delta^n$ be a homotopy from γ to δ and $\Lambda: [0,1] \times [0,1] \to \Delta^n$ be a homotopy from δ to ψ.

Then define

$$H: [0,1] \times [0,1] \to \Delta^n$$

$$(s, t) \mapsto \begin{cases} \Gamma(s, 2t), & 0 \leq t \leq \frac{1}{2} \\ \Lambda(s, 2t-1), & \frac{1}{2} \leq t \leq 1 \end{cases}$$
H is well-defined since
\[H(s, 2 \cdot \frac{1}{2}) = H(s, 1) = \delta(s) \]
\[= \Delta(s, 0) = \Delta(s, 2 \cdot \frac{1}{2}) \]
Moreover \(H \) is continuous since \([0,1] \times [0,1] = \overbrace{[0,1] \times [0, \frac{1}{2}]}^{A} \cup \underbrace{[0,1] \times [\frac{1}{2}, 1]}_{B} \)
\(A, B \) are closed subsets of \([0,1] \times [0,1] \) and \(H|_A, H|_B \) are continuous.
Finally, we observe that (by using the fact that \(\Gamma, \Delta \) are homotopies)
\[H(s, 0) = \Gamma(s, 0) = \gamma(s) \] for all \(s \in [0,1] \).
\[H(s, 1) = \Delta(s, 1) = \psi(s) \]
\[H(0, t) = \begin{cases}
\Gamma(0, 2t), & 0 \leq t \leq \frac{1}{2} \\
\Delta(0, 2t-1), & \frac{1}{2} \leq t \leq 1
\end{cases} \]
\[= \begin{cases}
\Gamma(1, 2t), & 0 \leq t \leq \frac{1}{2} \\
\Delta(1, 2t-1), & \frac{1}{2} \leq t \leq 1
\end{cases} \]
Thus \(\gamma \sim \psi \).

Hence for the question, it suffices to show that for any \(a, b \in \mathcal{L} \) we have \(\gamma_a \sim \gamma_b \).
Indeed, since \(\mathcal{L} \) is open and connected, it is path-connected. So there exists continuous \(\lambda : [0,1] \to \mathcal{L} \) with \(\lambda(0) = a, \lambda(1) = b \).
Now define
\[\Gamma : [0,1] \times [0,1] \longrightarrow \mathcal{L}
\begin{align*}
(s, t) & \longmapsto \lambda(t)
\end{align*} \]
\(\Gamma \) is clearly well-defined and continuous. Finally, we check
\[\Gamma(s, 0) = \lambda(0) = \gamma_a(s) \text{ for all } s \in [0,1], \]
\[\Gamma(s, 1) = \lambda(1) = \gamma_b(s) \text{ for all } s \in [0,1]. \]
\[\Gamma(0, t) = \lambda(t) = \Gamma(1, t) \text{ for all } t \in [0,1], \]
\[\Gamma \text{ is a homotopy from } \gamma_a \text{ to } \gamma_b. \]
2. Consider the continuous function
\[\Gamma: [0,1] \times [0,1] \rightarrow \mathbb{C} - \{0\} \]
\[(s,t) \mapsto e^{2\pi i s(1-t)} \]

We have

Then in the altered sense, the curve

Let \(\gamma: [0,1] \rightarrow \mathbb{C} - \{0\} \)
\[s \mapsto e^{2\pi i s} \]

\(c: [0,1] \rightarrow \mathbb{C} - \{0\} \)
\[s \mapsto 1 \]

\(\gamma \) and \(c \) are closed curves in \(\mathbb{C} - \{0\} \) and

1) \(\Gamma(s,0) = e^{2\pi i s} = \gamma(s) \)
2) \(\Gamma(s,1) = e^0 = 1 = c(s) \)

for all \(s \in [0,1] \)

Hence \(\gamma \) and \(c \) are "homotopic" in the altered sense. However,

\[\int_{\gamma} \frac{1}{z} \, dz = 2\pi i \neq 0 \neq \int_{c} \frac{1}{z} \, dz . \]