In the following questions, \(\# \) denotes the connected sum of surfaces.

1. Show that any open subset of a manifold is a manifold.

2. For each value of \(t \in \mathbb{R} \), decide whether the space
 \[
 \{(x, y, z) \in \mathbb{R}^3 \mid xyz = t\}
 \]
 is a manifold, and explain why or why not.

3. For which values of \(t \in \mathbb{R} \) is the space
 \[
 \{(x, y) \in \mathbb{R}^2 \mid x^2 + xy + ty^2 = 1\}
 \]
 a closed manifold?

4. If \(M \) is any surface and \(S^2 \) is the 2-sphere, explain why \(S^2 \# M \cong M \).

5. Show that, if \(P \) is a copy the real projective plane, \(P \# P \) is homeomorphic to a Klein bottle.