1. Let M be an n-manifold and U be an open subset of M. U is Hausdorff because M is Hausdorff. If $x, y \in U$ with $x \neq y$, there exist disjoint open sets A and B in M such that $x \in A$, $y \in B$. Hence $A \cap U$ and $B \cap U$ are disjoint open sets in U such that $x \in A \cap U$ and $y \in B \cap U$.

U is second countable: Since M is second countable, M has a countable basis \mathcal{B}. Then it follows that $\mathcal{B}_U := \{ B \cap U : B \in \mathcal{B} \}$ is a basis for U and it is countable.

U is locally Euclidean: Let $x \in U$. As M is an n-manifold, x has a neighborhood V homeomorphic to an open subset of \mathbb{R}^n, say via an embedding $\varphi : V \to \mathbb{R}^n$.

Now $U \cap V$ is open in V, hence $\varphi(U \cap V)$ is open in \mathbb{R}^n. As $\varphi(V)$ is open in \mathbb{R}^n, we get that $\varphi(U \cap V)$ is open in \mathbb{R}^n. Shortly, the whole $U \cap V$ is homeomorphic to an open subset of \mathbb{R}^n. As $U \cap V$ is a nbhd of x in U, we are done.
2. Let $M_t = \{(x,y,z) \in \mathbb{R}^3 : xy^2 = t\}$.

We claim that for $t \neq 0$, M_t is a 2-manifold.

First, as a subspace of \mathbb{R}^3, M_t is Hausdorff and 2nd countable.

Let $f_t : \mathbb{R}^3 \rightarrow \mathbb{R}$

$$(x,y,z) \mapsto xy^2 - t$$

f_t is a smooth function and its Jacobian

$$J(f_t) = \begin{bmatrix} y^2 & 2xy & xy \end{bmatrix}$$

does never vanish on M_t since $t \neq 0$.

Hence for every $(x,y,z) \in M_t$, $J(f_t)_{(x,y,z)}$ has rank 1.

Thus by implicit function theorem, M_t is a 2-manifold.

Conversely, note that $M_0 = \{(x,y,0) : x \in \mathbb{R} \} \cup \{(0,y,0) : y \in \mathbb{R} \} \cup \{(0,0,t) : t \in \mathbb{R} \}$

So every point in M_0 except the origin has a nbhd homeomorphic to \mathbb{R}^2, but the origin has no such neighbourhood.
3. Let \(f_t : \mathbb{R}^2 \rightarrow \mathbb{R} \)
\[(x,y) \mapsto x^2 + xy + ty^2 - t \]

\(f_t \) is smooth and \(J(f_t) = \begin{bmatrix} 2x + y & 2t + 2y \end{bmatrix} \)

Let \(M_t = \{ (x,y) \in \mathbb{R}^2 : x^2 + xy + ty^2 - t = 1 \} \) = \{ (x,y) \in \mathbb{R}^2 : f_t(x,y) = 0 \}

\(J(f_t) \) vanishes at some point in \(M_t \) only if
\[2x + y = 0 \]
\[x + 2ty = 0 \]
\[x^2 + xy + ty^2 = 1 \]

These give \(y = -2x = -2(-2t + y) = 4ty \) and \(y \neq 0 \), so \(t = 1/4 \).

Thus if \(t \neq 1/4 \), \(J(f_t) \) has rank 1 at every point of \(M_t \); and hence by IFT \(M_t \) is a 1-manifold.

Note that \(M_{1/4} = \{ (x,y) \in \mathbb{R}^2 : (x + y)^2 = 1 \} \) is not compact (it is unbounded), hence is not a closed manifold.

In general, \(M_t = \{ (x,y) \in \mathbb{R}^2 : (x + \frac{y}{2})^2 + (t - \frac{1}{4})y^2 = 1 \} \).

So we see that if \(t > 1/4 \), \(M_t \) is an ellipse; hence it is compact and therefore is a closed 1-manifold.

If \(t \leq 1/4 \) however, \(M_t \) is a hyperbola - not bounded.

So we get
\[M_t \text{ is a closed manifold } \iff t > 1/4. \]
4. Let \(U \) be a regular coordinate ball in \(M \) (as defined in Lee).

Let \(H \) be the lower hemisphere of \(S^2 \), \((H \cong \mathbb{R}^2) \). Now \(\partial M - U \) and \(S^2 - H \) are both manifolds with boundary and \(\partial (M - U) \cong \partial (S^2 - H) \cong S^1 \).

And \(S^2 \# M \) is the manifold without boundary when we glue \(M - U \) and \(S^2 - H \) along their boundaries.

First, observe that \(S^2 - H \cong \mathbb{D}^2 \). The inclusion \(S^1 \hookrightarrow \mathbb{D}^2 \) embeds \(S^1 \) as the boundary of the manifold \(\mathbb{D}^2 \). Also, let \(\varphi: S^1 \rightarrow \partial (M - U) \) be an embedding.

Also, let \(\Psi: S^1 \rightarrow M - U \) be an embedding such that \(\Psi(S^1) = \partial (M - U) \).

Thus, the push-out of the diagram

\[
\begin{array}{ccc}
S^1 & \rightarrow & \mathbb{D}^2 \\
\downarrow \Psi & & \downarrow \\
M - U & \rightarrow & \\
\end{array}
\]

gives \(S^2 \# M \).

Now since \(U \) is a regular coordinate ball, \(\Psi \) extends to an embedding \(\Psi: \mathbb{D}^2 \rightarrow M \) such that
\[
\Psi(\mathbb{D}^2 - S^1) = U.
\]

So we have a commutative diagram.
We claim that this is the required push-out diagram. Indeed, if $\alpha : M-U \to X$ and $\beta : O^2 \to X$ are continuous functions such that

\[
\begin{array}{ccc}
S^1 & \rightarrow & O^2 \\
\downarrow & & \downarrow \\
M-U \xrightarrow{\alpha} & \rightarrow & M \\
\end{array}
\]

commutes, it follows that the functions

\[
\alpha : M-U \to X, \quad \beta \circ \Psi^{-1} : \Psi(O^2) \to X
\]

are continuous. Then $(M-U) \cup \Psi(O^2) = M$ and α and $\beta \circ \Psi^{-1}$ agree on $(M-U) \cap \Psi(O^2) = \Psi(S^1)$.

As $M-U$ and $\Psi(O^2)$ are closed subsets of M, α and $\beta \circ \Psi^{-1}$ give a continuous function

\[
\mu : M \to X
\]

And μ makes the diagram commute.

\[
\begin{array}{ccc}
S^1 & \rightarrow & O^2 \\
\downarrow & & \downarrow \\
M-U \xrightarrow{\alpha} & \rightarrow & X \\
\end{array}
\]

Clearly, μ is the unique such map. Thus $M \cong S^2 \# M$.
5. First, we observe that if we remove a disk from P, we get a Möbius strip:

![Diagram of Möbius strip]

where the boundary of the disk is the unmarked edges. So identifying two Möbius strips along this boundary amounts to the edge identifications:

![Diagram of edge identifications]

And this is the Klein bottle.