(Note that these exercises are not identical with the corresponding ones in Lee’s text.)

1. Show that two smooth atlases for a manifold \(M \) determine the same maximal atlas if and only if their union is a smooth atlas.

2. Let \(M \) be a nonempty topological manifold of dimension \(n \geq 1 \). If \(M \) has a smooth structure, show that it has uncountably many distinct ones. (Hint: Begin by constructing homeomorphisms from the open unit disc \(\mathbb{D}^n \) to itself that are smooth on \(\mathbb{D}^n \setminus \{0\} \).)

3. Let \(N = (0, \ldots, 0, 1) \) be the “north pole” of \(S^n \subset \mathbb{R}^{n+1} \), and let \(S = -N \) be the “south pole”. Define stereographic projection \(\sigma : S^n \setminus \{N\} \to \mathbb{R}^n \) by

\[
\sigma(x^1, \ldots, x^{n+1}) = \left(\frac{x^1, \ldots, x^n}{1 - x^{n+1}}\right).
\]

Let \(\tilde{\sigma}(x) = -\sigma(-x) \) for \(x \in S^n \setminus \{S\} \).

(a) For any \(x \in S^n \setminus \{N\} \), show that \(\sigma(x) \) is the point where the line through \(N \) and \(x \) intersects the plane where \(x^{n+1} = 0 \).

(b) Show that \(\sigma \) is bijective, and

\[
\sigma^{-1}(u^1, \ldots, u^n) = \left(\frac{2u^1, \ldots, 2u^n, |u|^2 - 1}{|u|^2 + 1}\right).
\]

(c) Compute the transition map \(\tilde{\sigma} \circ \sigma^{-1} \) and verify that these two charts determine a smooth atlas on \(S^n \).

4. An angle function on a subset \(U \subset S^1 \subset \mathbb{C} \) is a continuous function \(\theta : U \to \mathbb{R} \) such that \(e^{i\theta(p)} = p \) for all \(p \in U \). Show that there exists an angle function \(\theta \) on an open subset \(U \subset S^1 \) if and only if \(U \neq S^1 \). For any such angle function, show that \((U, \theta)\) is a smooth coordinate chart for \(S^1 \) with its standard smooth structure.

5. Show that pointwise multiplication turns the set \(C^\infty(M) \) of smooth real-valued functions on \(M \) into a commutative, associative algebra over \(\mathbb{R} \).