1. Let \mathcal{A} and \mathcal{B} be two smooth atlases for M. Assume $\mathcal{A} = \mathcal{B}$. Then the maximal atlas $\mathcal{A} = \mathcal{B}$ contains both \mathcal{A} and \mathcal{B}, hence contains $\mathcal{A} \cup \mathcal{B}$. Hence the charts in $\mathcal{A} \cup \mathcal{B}$ are smoothly compatible. Moreover, the charts in $\mathcal{A} \cup \mathcal{B}$ cover M, as the ones in \mathcal{A} already cover M. Thus $\mathcal{A} \cup \mathcal{B}$ is a smooth atlas.

Conversely, assume $\mathcal{A} \cup \mathcal{B}$ is a smooth atlas. Then \mathcal{A} and \mathcal{B} are both smooth maximal atlases which contain \mathcal{A}. But \mathcal{A} is contained in a unique smooth maximal atlas, hence $\mathcal{A} = \mathcal{A} \cup \mathcal{B}$. Similarly $\mathcal{B} = \mathcal{A} \cup \mathcal{B}$.

Thus $\mathcal{A} = \mathcal{B}$, i.e. \mathcal{A} and \mathcal{B} determine the same maximal atlas.

3. a) The line passing through N and $x = (x_1', \ldots, x_m')$ can be parameterized by

$$(1-t)N + t \cdot x = (1-t)(0,0,\ldots,0,1) + t(x_1', \ldots, x_m') = (tx_1', tx_2', \ldots, tx_m', 1-t + t, 1)$$

To find where this line crosses the given plane, we solve

$$1-t + tx_m' = 0$$

$$1 = t - tx_m' = t(1-x_m')$$

$$t = \frac{1}{1-x_m'}$$

$$x_m' = 1$$

Hence the line through N and x intersects the given plane at

$$\left(1 - \frac{1}{1-x_m'}, \frac{1}{1-x_m'}, \ldots, \frac{1}{1-x_m'}, 0\right)$$

b) Note that for any $u = (u_1', \ldots, u_m') \in \mathbb{R}^m$, since

$$(2u_1')^2 + \ldots + (2u_m')^2 + (|u_1'|^2 - 1)^2 = 4|u|^2 + 4u_1'^2 + 2u_1'^2 + 1 = |u|^2 + 2|u|^2 + 1 = (|u|')^2$$
and \(\frac{|u|^2 - 1}{|u|^2 + 1} \neq 1 \), we have \(\frac{(2u^1, \ldots, 2u^n, |u|^2 - 1)}{|u|^2 + 1} \in S^\ast \setminus \{N\} \)

Thus \(\mathcal{T} : \mathbb{R}^n \rightarrow S^\ast \setminus \{N\} \)
\[
(u^1, \ldots, u^n) \rightarrow \left(\frac{2u^1}{|u|^2 + 1}, \ldots, \frac{2u^n}{|u|^2 + 1}, 1 \right)
\]
is a well-defined function. Now,

i) \((\delta \circ \mathcal{T}) (u^1, \ldots, u^n) = \delta \left(\frac{(2u^1, \ldots, 2u^n, |u|^2 - 1)}{|u|^2 + 1} \right) \)
\[= \delta \left(\frac{\frac{2u^1}{|u|^2 + 1}, \ldots, \frac{2u^n}{|u|^2 + 1}, 1}{1 - \frac{|u|^2 - 1}{|u|^2 + 1}} \right) \]
\[= \left(\frac{2u^1}{|u|^2 + 1}, \ldots, \frac{2u^n}{|u|^2 + 1}, 1 \right) \]
\[= (u^1, \ldots, u^n) \]

ii) \((\mathcal{T} \circ \delta) (x^1, \ldots, x^{n+1}) = \mathcal{T} \left(\frac{(x^1, \ldots, x^n, x^{n+1})}{1 - x^{n+1}} \right) \)
\[= \mathcal{T} \left(\frac{x^1}{1 - x^{n+1}}, \ldots, \frac{x^n}{1 - x^{n+1}} \right) \]
\[= \left(\frac{2x^1}{1 - x^{n+1}}, \ldots, \frac{2x^n}{1 - x^{n+1}}, \left(\frac{x^1}{1 - x^{n+1}} \right)^2 + \cdots + \left(\frac{x^n}{1 - x^{n+1}} \right)^2 + 1 \right) \]
\[= \left(\frac{x^1}{1 - x^{n+1}} \right)^2 + \cdots + \left(\frac{x^n}{1 - x^{n+1}} \right)^2 + 1 \]
Since \((x_1, x_2, x_n) \in S^n\) and

\[(x_1)^2 + \ldots + (x_n)^2 = 1 - (x_{n+1})^2\]

we can write:

\[
\left(\frac{2x_1}{1-x^{n+1}}, \ldots, \frac{2x_n}{1-x^{n+1}}, \frac{(x_1)^2 + \ldots + (x_n)^2 - (1-x^{n+1})^2}{(1-x^{n+1})^2} \right)
\]

\[
= \left(\frac{2x_1}{1-x^{n+1}}, \ldots, \frac{2x_n}{1-x^{n+1}}, \frac{1 - (x_{n+1})^2 - 2x_{n+1}(x_{n+1})^2}{(1-x^{n+1})^2} \right)
\]

\[
= \left(\frac{2x_1}{1-x^{n+1}}, \ldots, \frac{2x_n}{1-x^{n+1}}, \frac{2x_{n+1}}{(1-x^{n+1})^2} \right)
\]

Thus \(\tilde{\sigma}\) is bijective and \(T = \sigma^{-1}\).

c) The transition map is the composition (since \(S^n \setminus \{N,S\} \cong \mathbb{R}^n \setminus \{0\}\))

\[
\delta^{-1}: S^n \setminus \{N,S\} \rightarrow \mathbb{R}^n \setminus \{0\}
\]

\[
\delta^{-1} \left(S^n \setminus \{N,S\} \right) = \mathbb{R}^n \setminus \{\delta^{-1}(S)\}
\]

\[
\delta\left(S^n \setminus \{N,S\} \right) = \mathbb{R}^n \setminus \{\delta(N)\}
\]

\[
= \mathbb{R}^n \setminus \{0\}
\]
So the transition map is given by

\[
\begin{align*}
\mathbb{R}^n \setminus \{0\} & \rightarrow \mathbb{R}^n \setminus \{0\} \\
u = (u^1, \ldots, u^n) & \mapsto \tilde{\sigma}^{-1} \left(\frac{2u^1}{|u|^2 + 1}, \ldots, \frac{2u^n}{|u|^2 + 1}, \frac{1}{|u|^2 + 1} \right) \\
& = \tilde{\sigma}^{-1} \left(\frac{-2u^1}{|u|^2 + 1}, \ldots, \frac{-2u^n}{|u|^2 + 1}, \frac{1}{|u|^2 + 1} \right) \\
& = \left(\frac{2u^1}{|u|^2 + 1}, \ldots, \frac{2u^n}{|u|^2 + 1} \right)
\end{align*}
\]

which is clearly a smooth function. So the two charts \((S^n \setminus \{N\}, \tilde{\sigma})\) and \((S^n \setminus \{S\}, \tilde{\sigma}^2)\) are smoothly compatible. Clearly they also cover \(S^n\), hence they determine a smooth atlas on \(S^n\).

What about \((\tilde{\sigma}^{-1})^{-1}\)?
4. Consider the covering map \(\exp : \mathbb{R} \to S^1 \). Now the first part of the problem can be restated as follows: Show that the inclusion map \(U \to S^1 \) can be lifted to \(\mathbb{R} \) if and only if \(U \neq S^1 \).

\[
\theta : U \to \mathbb{R}
\]

If \(U = S^1 \), the above means that the identity map \(\text{id} : S^1 \to S^1 \) factors through \(\mathbb{R} \) and that is impossible (applying \(\text{H}_1 \), we get that \(\pi_1 S^1 \approx \mathbb{Z} \) is the zeroth group, for instance).

If \(U \neq S^1 \), we first show that \(U \) is simply connected: Pick \(\rho \in S^1 \setminus U \), so \(U \) is an open subset of \(S^1 \setminus \{ \rho \} \). But \(S^1 \setminus \{ \rho \} \) is homeomorphic with \(\mathbb{R} \), via stereographic projection and open subsets of \(\mathbb{R} \) are disjoint unions of open intervals.

So for a component \(U_0 \) of \(U \), \(U_0 \) is simply connected and (as an open subset of \(S^1 \)) \(U_0 \) is locally path connected. Thus by covering space theory (Corollary 11.19 in Lee's Intro to Top Manifolds), the inclusion of \(U_0 \) in \(S^1 \) can be lifted to \(\mathbb{R} \) along \(\exp \). Lifting each of the components like this, we get a lifting of \(U \).

For the second part, we observe the following:

- \(\theta(U) \) is open in \(\mathbb{R} \): Let \(U_0 \) be a (connected) component of \(U \). It is enough to show that \(\theta(U_0) \) is open in \(\mathbb{R} \) (because \(\theta(U) = \bigcup_{U_0 \in U} \theta(U_0) \)).

 As \(U_0 \) is connected, \(\theta(U_0) \subset \mathbb{R} \) is connected, hence \(\theta(U_0) \) is an interval.

 We showed above that via stereographic projection, \(\theta \) is a homeomorphism onto its image. Since \(e^{i \theta(p)} = p \) for all \(p \in U \), the map \(\theta(U) \to U \) is a well-defined continuous inverse of \(\theta : U \to \mathbb{R} \).

- \(\theta(U) \) is open in \(\mathbb{R} \): Let \(U_0 \) be a (connected) component of \(U \). It is enough to show that \(\theta(U_0) \) is open in \(\mathbb{R} \) (because \(\theta(U) = \bigcup_{U_0 \in U} \theta(U_0) \)).
On one hand, $\Theta(U_0)$ is homeomorphic to U_0 and we showed above via stereographic projection that U_0 is homeomorphic to an open interval in \mathbb{R}.

On the other hand, $\Theta(U_0)$ is a connected subset of \mathbb{R}, hence is an interval.

Therefore, being homeomorphic to an open interval, $\Theta(U_0)$ itself must be an open interval because other kinds of intervals in \mathbb{R} contain a point which can be removed without destroying connectivity.

- The above arguments show that (U, θ) is a coordinate chart on S^1. Now we show that it is compatible with the smooth structure on S^1. By Example 1.31 in Lee's book Introduction to Smooth Manifolds,

$$\left\{ (U_1^+, \psi_1^+), (U_2^+, \psi_2^+), (U_1^-, \psi_1^-), (U_2^-, \psi_2^-) \right\}$$

is a smooth atlas on S^1 where

$$U_1^+ = \left\{ (x, \gamma) \in S^1 : x > 0 \right\} \quad U_2^+ = \left\{ (x, \gamma) \in S^1 : \gamma > 0 \right\}$$

$$U_1^- = \left\{ (x, \gamma) \in S^1 : x < 0 \right\} \quad U_2^- = \left\{ (x, \gamma) \in S^1 : \gamma < 0 \right\}$$

$$\psi_1^+ : U_1^+ \longrightarrow (-1, 1) \quad \psi_2^+ : U_2^+ \longrightarrow (-1, 1)$$

$$\begin{array}{c}
(x, \gamma) \mapsto \gamma \\
(x, \gamma) \mapsto x
\end{array}$$

$$\psi_1^- : U_1^- \longrightarrow (-1, 1) \quad \psi_2^- : U_2^- \longrightarrow (-1, 1)$$

$$\begin{array}{c}
(x, \gamma) \mapsto \gamma \\
(x, \gamma) \mapsto x
\end{array}$$

Let’s check that (U, θ) and (U_i^+, ψ_i^+) are smoothly compatible.

We want to show that the map $\Theta(U_1^+ \cap U) \to \psi_1^+(U_1^+ \cap U)$ is smooth with a smooth inverse.

$$\psi_1^+(U_1^+ \cap U) \xrightarrow{\psi_1^+ \circ \Theta} \psi_1^+(\Theta^{-1}(U_1^+ \cap U))$$
Note that since θ is an angle function,
\[\theta^{-1}(c^t) = e^{i \theta(\theta^{-1}(c^t))} = e^{i c^t} \]
So
\[\Phi_t^\circ (\theta^{-1}(c^t)) = \Phi_t^\circ (e^{i c^t}) = \Phi_t^\circ (\cos, \sin) = \sin t \]
Thus the homeomorphism $\Phi_t^\circ \circ \theta^{-1}$ is just taking sine, hence is smooth.
Moreover since $\sin (\Phi_t^\circ \circ \theta^{-1}) \leq (-1,1)$ the derivative cost is never zero, therefore $\Phi_t^\circ \circ \theta^{-1}$ has a smooth inverse.
Similarly, we get
\[\Phi_t^\circ \circ \theta^{-1} = \sin \left(\int_0^{u_t^\circ \circ \theta^{-1}} \right) \]
\[\Phi_t^\circ \circ \theta^{-1} = \cos \left(\int_0^{u_t^\circ \circ \theta^{-1}} \right) \]
\[\Phi_t^\circ \circ \theta^{-1} = \cos \left(\int_0^{u_t^\circ \circ \theta^{-1}} \right) \]
which are all smooth with nonvanishing derivatives, so they

5. First we observe that for any set X, the set of all functions \mathbb{R}^X is a commutative associative algebra with

\[
\begin{align*}
(f \cdot g)(x) &= f(x) \cdot g(x) \\
(f + g)(x) &= f(x) + g(x) \\
(\lambda f)(x) &= \lambda f(x)
\end{align*}
\]

The axioms of an \mathbb{R}-algebra directly follow from the fact that \mathbb{R} itself is an \mathbb{R}-algebra. For instance, to check associativity of \cdot, we observe

\[
(f \cdot (g \cdot h))(x) = \left(f \cdot \left((g \cdot h)(x)\right)\right)(x) = f(x) \cdot (g(x) \cdot h(x)) = f(x) \cdot (g(x) \cdot h(x)) = f(x) \cdot (g(x) \cdot h(x))
\]

Or for distributivity, we check

\[
(f \cdot (g + h))(x) = f(x) \cdot (g(x) + h(x)) = f(x) \cdot g(x) + f(x) \cdot h(x)
\]

for all $x \in X$, so $f \cdot (g + h) = f \cdot g + f \cdot h$

and so on. This is nothing but the construction of the direct product \mathbb{R}^X as an \mathbb{R}-algebra.
For a smooth manifold M, $C^\infty(M)$ is clearly a subset of \mathbb{R}^M. We show that it is actually a subalgebra of \mathbb{R}^M by checking closure under multiplication, addition and scalar multiplication:

1. Let $f, g \in C^\infty(M)$, i.e. $f : M \to \mathbb{R}, g : M \to \mathbb{R}$ are smooth functions. Then the function
 \[
 \langle f, g \rangle : M \to \mathbb{R}^2, \quad x \mapsto (f(x), g(x))
 \]
 is also smooth (by proposition 2.12 in Lee's book). Moreover, the addition and multiplication functions
 \[
 + : \mathbb{R}^2 \to \mathbb{R}, \quad (a, b) \mapsto a + b
 \]
 \[
 \cdot : \mathbb{R}^2 \to \mathbb{R}, \quad (a, b) \mapsto ab
 \]
 are smooth functions. Therefore the compositions
 \[
 M \xrightarrow{\langle f, g \rangle} \mathbb{R}^2 \xrightarrow{+} \mathbb{R} \quad M \xrightarrow{\langle f, g \rangle} \mathbb{R}^2 \xrightarrow{\cdot} \mathbb{R}
 \]
 are also smooth. We see that the first function is nothing but $f + g$ and the second function is fg.

 Thus $f + g, fg \in C^\infty(M)$.

2. For scalar multiplication, note that for any $\lambda \in \mathbb{R}$ the function
 \[
 \cdot_\lambda : \mathbb{R} \to \mathbb{R}, \quad a \mapsto \lambda a
 \]
 is smooth. Therefore given $f \in C^\infty(M)$, λf is nothing but the composition
 \[
 M \xrightarrow{f} \mathbb{R} \xrightarrow{\cdot_\lambda} \mathbb{R} \quad \text{Thus } \lambda f \in C^\infty(M).
 \]
2. Let \(\mathcal{A} = \{(U_k, \varphi_k) : k \in I \} \) be a smooth atlas of \(M \).

(B.7 Lemma 1.10 in Lee) \(M \) has a basis of coordinate balls.

So by restricting to these coordinate balls, we may assume that \(\varphi_k \) is a homeomorphism from \(U_k \) to the unit disk \(\mathbb{D}^n \).

Moreover, since \(\mathbb{D}^n \) is diffeomorphic to \(\mathbb{R}^n \) via \(x \mapsto \frac{x}{1 + \|x\|^2} \), we may assume that \(\varphi_k \) is a homeomorphism onto \(\mathbb{R}^n \) (since composing \(\varphi_k \) with the above map retains smoothness).

Now, since \(M \) is paracompact we may assume that the open cover \(\{U_k : k \in I\} \) of \(M \) is locally finite.

To see this, apply Theorem 1.15 in Lee to \(M \) with \(X = \{U_k : k \in I\} \) and \(\mathcal{B} = \{ \text{coordinate balls in } M \} \).

Lemma: \(\mathcal{A} \) has a minimal subset which covers \(M \).

Proof: Let \(\mathcal{I} = \{ \mathcal{B} \subset \mathcal{A} : \mathcal{B} \text{ covers } M \} \) partially ordered by reverse inclusion. Observe that

- \(\mathcal{I} \neq \emptyset \), so \(\mathcal{I} \) is nonempty.

- Let \((\mathcal{B}_k)_{k \in A} \) be a chain in \(\mathcal{I} \). We show that \(\mathcal{B} = \bigcap_{k \in A} \mathcal{B}_k \in \mathcal{I} \), i.e. \(\mathcal{B} \) covers \(M \).

Take any \(x \in M \) and define \(\mathcal{B}^x = \{(U, \varphi) \in \mathcal{B} : x \in U\} \).

We want to show \(\mathcal{B}^x \neq \emptyset \). Note that if we similarly define \(\mathcal{B}_k^x = \{(U, \varphi) \in \mathcal{B}_k : x \in U\} \), we have

\[
\mathcal{B}^x = \bigcap_{k \in A} \mathcal{B}_k^x
\]

But each \(\mathcal{B}_k^x \) is a finite set since \(\mathcal{B}_k \) is a locally finite cover of \(M \). Thus, being a decreasing sequence of nonempty finite sets (since \(\mathcal{B}_k^x \subset \mathcal{B}_k \) if \(\mathcal{B}_k \subset \mathcal{B}_k \)), \(\mathcal{B}^x \) is nonempty.

By Zorn's lemma, we are done.

\(\square \)
Let \mathcal{B} be this minimal subset. Since \mathcal{B} covers M, and the charts in \mathcal{B} are smoothly compatible because they are already in \mathcal{A}, hence \mathcal{B} is a smooth atlas for M.

We also make the following observation: Every (U_α, ψ_α) in \mathcal{B} contains a point which is not contained in any other chart. Because otherwise $\mathcal{B} = \{(U_\alpha, \psi_\alpha)\}$ would still cover M, contradicting the minimality of \mathcal{B}.

We did all of the above to verify that we can proceed with the following assumption:

Assumption: $\mathcal{A} = \{(U_\alpha, \psi_\alpha) : \alpha \in J\}$ is a smooth atlas of M such that each ψ_α is a homeomorphism onto \mathbb{R}^n and each U_α contains a point x_α which is not contained in any other U_β.

Now we construct homeomorphisms of \mathbb{R}^n to itself to which we will use to alter \mathcal{A} &

For every $s \in (0, \infty)$ consider the map

$$F_s : \mathbb{R}^n \to \mathbb{R}^n$$

$$x \mapsto \begin{cases} \frac{|x|^{s-1}}{|x|^s} x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Since the Euclidean norm $\|x\|_2 \to |x|$ is smooth on $\mathbb{R}^n - \{0\}$, so is F_s. Note that $\lim_{x \to 0} \frac{\|F_s(x)\|_2}{\|x\|_2} = \lim_{x \to 0} \frac{|x|^s}{\|x\|^s} = 0 \Rightarrow F_s(0)$, so F_s is continuous everywhere.

Claim: $F_s \circ F_t = F_{st}$.

Proof: $(F_s \circ F_t)(x) = F_s(F_t(x)) = F_s(\frac{|x|^{t(s-1)}}{|x|^t} x) = \frac{|x|^{t(s-1)}}{|x|^s} \frac{|x|^{s-1}}{|x|^t} x = \frac{|x|^{ts-t(s-1)}}{|x|^t} = F_{ts-t(s-1)}(x) = F_{st}(x)$.

For $x = 0$ $(F_s \circ F_t)(0) = 0 = F_{st}(0)$.

\[\Box\]
As a result, since $F_1 = \text{id}$ for every $s \in (0, \infty)$, F_s is a homeomorphism with $(F_s)^{-1} = F_{1/s}$.

Claim: For $s \in (0, 1)$, F_s is not differentiable (hence not smooth) at the origin.

Proof: If F_s were differentiable, the function given by the composition

$$f: \mathbb{R} \longrightarrow \mathbb{R}^n \xrightarrow{F_s} \mathbb{R}^n \xrightarrow{(x_0, \ldots, x_n) \longmapsto x_1} \mathbb{R},$$

would be differentiable at 0.

But for $x \neq 0$, $f(x) = 1x_1^{s-1} x$ and so

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{1h^{s-1} h}{h} = \lim_{h \to 0} h^{s-1} = \infty \text{ since } s < 0.$$

Now, for each $s \in (0, 1)$, let $\mathcal{A}_s = \{(U_s, F_s \circ \psi_s) : \alpha \in I\}$. That is, we compose every chart

For every $\alpha \in I$, define $t_\alpha: \mathbb{R}^n \longrightarrow \mathbb{R}^n$

$$t_\alpha \circ F_s \circ \psi_s \circ t_\alpha^{-1} \circ \psi_\alpha^{-1}$$

t_\alpha is clearly a diffeomorphism, it is just a translate.

Now for each $\beta \in \mathcal{A}_0$, let $\mathcal{A}_s = \{(U_\alpha, F_s \circ \psi_\alpha) : \alpha \in I\}$.

Proposition: For every $s \in (0, 1)$, \mathcal{A}_s is a smooth atlas on M.

Proof: We didn't change the U_α's in \mathcal{A}_0, so \mathcal{A}_s also covers M.

Write $\psi_{s, \alpha} = F_s \circ t_\alpha \circ \psi_\alpha$. Since each $F_s, t_\alpha, \psi_\alpha$ is a homeomorphism onto \mathbb{R}^n, so is $\psi_{s, \alpha}$.

Finally, we show that the charts in \mathcal{A}_s are smoothly compatible.

So we look at the diagram

$$
\begin{align*}
 & U_{s, \alpha} \\
\rightarrow & U_{s, \alpha} \cap U_{s, \beta} \\
\rightarrow & U_{s, \beta}
\end{align*}
$$

Finally, we show that the charts in \mathcal{A}_s are smoothly compatible.
Spelling this out, we have

\[
\begin{align*}
& (F_5 \circ t_{\beta} \circ \psi_{\beta}) \circ (F_5 \circ t_{\alpha} \circ \psi_{\alpha})^{-1} \\
= & F_5 \circ t_{\beta} \circ \psi_{\beta} \circ (t_{\alpha} \circ \psi_{\alpha})^{-1} \circ F_5^{-1} \quad (\star)
\end{align*}
\]

Note that by our assumption, \(x_\alpha \notin U_\beta \). Thus \(\psi_{\alpha}(x_\alpha) \notin \psi_{\beta}(U_\alpha \cap U_\beta) \), and hence \(\bar{\varnothing} = t_{\alpha}(\psi_{\alpha}(x_\alpha)) \notin (t_{\alpha} \circ \psi_{\alpha})(U_\alpha \cap U_\beta) \), and hence

\[
F_5 \circ \bar{\varnothing} = F_5(t_{\alpha}(\psi_{\alpha}(x_\alpha))) \notin (F_5 \circ t_{\alpha} \circ \psi_{\alpha})(U_\alpha \cap U_\beta).
\]

And since \(x_\beta \notin U_\alpha \), we have \(\bar{\varnothing} \notin (t_{\beta} \circ \psi_{\beta})(U_\alpha \cap U_\beta) \).

Therefore, in the long composition in (\star), \(\bar{\varnothing} \) is not in the domain of \(F_5^{-1} \) and not in the domain \(F_5 \). Thus these maps are smooth on their domains, so the whole composition is smooth, as \(\psi_{\beta} \circ \psi_{\alpha}^{-1} \) is smooth since \(\alpha \) is a smooth atlas and \(t_{\alpha}, t_{\beta} \) are already smooth.

\[\square\]

Proposition: For \(s,t \in (0,1) \) \(U_s \) and \(U_t \) are not smoothly compatible atlases on \(M \) unless \(s = t \).

Proof: WLOG, say \(s > t \). For an arbitrary \(\alpha \in \mathcal{I} \), we show that the charts \((U_\beta, \psi_{s, \alpha}) \in A_s \) and \((U_\beta, \psi_{t, \alpha}) \in A_t \) are not compatible.
Here, the diagram to look at is

\[
\begin{array}{c}
\begin{array}{c}
\in\downarrow \quad \in\downarrow \\
U_{k, \ell} \quad U_{k, \ell} \\
\downarrow t_k \quad \downarrow t_k \\
F_\ell \quad F_\ell \\
\downarrow \quad \downarrow \\
\mathbb{R}^n \quad \mathbb{R}^n \\
\end{array}
\end{array}
\end{array}
\]

Since

\[
\begin{align*}
U_{k, \ell} \circ U_{k, s}^{-1} &= (F_\ell \circ t_k \circ U_{k, \ell}) \circ (F_\ell \circ t_k \circ U_{k, s})^{-1} \\
&= F_\ell \circ t_k \circ (U_{k, \ell}^{-1} \circ t_k^{-1} \circ F_\ell^{-1}) \\
&= F_\ell \circ F_\ell^{-1} \\
&= F_\ell \circ F_\ell^{-1} \\
&= F_\ell / s
\end{align*}
\]

and since \(t/s < 1 \), the transition map \((F_\ell / s)\) is not smooth on its domain by a previous claim.

Thus \(\{ U_s : s \in \mathbb{R} \} \) is an uncountable collection of atlases on \(M \) s.t. none of them are compatible with each other.