1. Let \(f : M \to N \) be a map of smooth manifolds, and suppose \(N \) is equipped with a covariant vector field (given in local coordinates \(y^i \) by \(a_i dy^i \)). Show that this pulls back to a natural covariant vector field on \(M \).

2. Given a map \(f : M \to N \) of smooth manifolds and a vector field on \(M \) (given in local coordinates \(x^i \) by \(a^i \partial / \partial x^i \)), explain why this does not push forward to a natural vector field on \(N \). Give an example to illustrate this; if it is a complicated one, you are working too hard.

3. Let \(M \) be a smooth manifold. Given a smooth atlas of \(M \), give a smooth atlas on the tangent bundle \(TM \). Show that a smooth function \(f : M \to N \) gives rise to a smooth function \(df : TM \to TN \).

4. Suppose \(M \) is a smooth manifold and \(p : Y \to M \) is a covering map. Show that \(Y \) can be given the structure of a smooth manifold so that the projection map \(p \) is smooth.

5. Suppose that \(M \) is a smooth manifold and \(f \) is a smooth function from \(M \to \mathbb{R}^\text{v} \setminus \{0\} \). Give necessary and sufficient conditions for the smooth map

\[
p \mapsto f(p) / ||f(p)||
\]

from \(M \) to \(S^{n-1} \) to be

(a) a submersion,

(b) an immersion, or

(c) a local diffeomorphism.