Math 8302, Manifolds and Topology II
Auxiliary problems
Due in-class on Monday, April 29

The interaction between these problems and the final is as stated in class.

1. Suppose M is a smooth manifold of dimension n. A \textit{smoothly time-dependent} 1-form on M is a family of 1-forms $\omega(t)$ for $t \in (a, b)$ such that, in any coordinate chart (x^1, \ldots, x^n), the coordinate expression of ω is of the form
 \[\sum_{k=1}^{n} f_k(x^1, \ldots, x^n, t) \ dx^k \]
 where each f_k is a smooth function of (x^1, \ldots, x^k, t).
 Give (and prove) the most concise condition that you can find for ω to satisfy the following:
 \textit{For any time interval $[c, d] \subset (a, b)$ and any two smooth curves $\gamma_1, \gamma_2 : [c, d] \to M$, the line integrals of $\omega(t)$ over γ_1 and γ_2 agree.}

 Note that such a line integral involves the change of $\gamma_i(t)$ and substituting the time t into the 1-form $\omega(t)$. For example, such a line integral would be calculated in coordinates as
 \[\sum_{k=1}^{n} \int_{c}^{d} f_k(x^1(t), \ldots, x^n(t), t) \frac{dx^k}{dt} \ dt \]

2. For $n > 0$, the manifold \mathbb{CP}^n contains \mathbb{CP}^1 as a submanifold, and the second de Rham cohomology group $H^2_{dR}(\mathbb{CP}^n)$ is \mathbb{R}. Find, for each n, a generator of H^2_{dR} in the following way: give an explicit \textit{closed} 2-form, take the integral over \mathbb{CP}^1, and show that this integral is nonzero.
 Do the same for the complex Grassmannian $Gr_{\mathbb{C}}(2, 4)$.

3. Track down the definition of the Moore manifold from Royden’s real analysis text. Prove that it is a manifold. (Unless you’re reading someone’s transcription, there is probably not a mistake in the problem.)