Gaussian integrals and Feynman diagrams

February 28
“A mathematician is one to whom the equality \[\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \, dx = \sqrt{2\pi} \] is as obvious as that twice two makes four is to you.”

Lord W.T. Kelvin to his students
“A mathematician is one to whom the equality
\[\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \, dx = \sqrt{2\pi} \] is as obvious as that twice two makes four is to you.”

Lord W.T. Kelvin to his students

A physicist must be one to whom the formula

\[= \bar{v}^{s'}(p')(-ie\gamma^\mu)w^s(p)\left(\frac{-ig_{\mu\nu}}{q^2}\right)\bar{u}^r(k)(-ie\gamma^\nu)v^{r'}(k'). \]

is equally obvious.
Introduction

Generalizing \(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \, dx = \sqrt{2\pi} \):

\[
\int_{-\infty}^{\infty} P(x) e^{-\frac{x^2}{2}} \, dx
\]

- \(\int_{\mathbb{R}^n} P(x) e^{-\frac{\langle x, Ax \rangle}{2}} \, dx \) Here, \(A \) is a positively-defined symmetric matrix and \(\langle -, - \rangle \) is the standard inner product on \(\mathbb{R}^n \).
- \(\int_{\mathbb{R}^n} P(x) e^{-\frac{\langle x, Ax \rangle}{2}} - \sum_{r \geq 3} \hbar^{r/2-1} \frac{1}{r!} B_r(x, ..., x) \, dx \), where \(\hbar \) is a parameter.
Generalizing $\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \, dx = \sqrt{2\pi}$:

- $\int_{-\infty}^{\infty} P(x) e^{-\frac{x^2}{2}} \, dx$
- $\int_{\mathbb{R}^n} P(x) e^{-\frac{\langle x, Ax \rangle}{2}} \, dx$
 Here, A is a positively-defined symmetric matrix and $\langle - , - \rangle$ is the standard inner product on \mathbb{R}^n.
- $\int_{\mathbb{R}^n} P(x) e^{-\frac{\langle x, Ax \rangle}{2}} - \sum_{r \geq 3} \frac{\hbar^r}{r!} B_r(x, \ldots, x) \, dx$, where \hbar is a parameter.
Generalizing $\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \, dx = \sqrt{2\pi}$:

- $\int_{-\infty}^{\infty} P(x) e^{-\frac{x^2}{2}} \, dx$
- $\int_{\mathbb{R}^n} P(x) e^{-\frac{\langle x, Ax \rangle}{2}} \, dx$ Here, A is a positively-defined symmetric matrix and $\langle -, - \rangle$ is the standard inner product on \mathbb{R}^n.
- $\int_{\mathbb{R}^n} P(x) e^{-\frac{\langle x, Ax \rangle}{2}} - \sum_{r \geq 3} \frac{\hbar^r/2 - 1}{r!} B_r(x, \ldots, x) \, dx$, where \hbar is a parameter.

Gaussian integrals and Feynman diagrams
In *classical mechanics*, the motion of a point-particle of mass \(m \) in a potential field \(V = V(x) \) is determined by the *Newton’s equation*

\[
x'' = -\nabla V(x).
\]

Alternatively, one can state the law of motion in the form of the *stationary action principle*. One starts by introducing the *Lagrangian* of the system

\[
L(x, x', t) = (\text{kinetic energy}) - (\text{potential energy})
\]

and the *action functional*

\[
S[x] = \int_a^b L(x, x', t) \, dt.
\]

Stationary action principle

The trajectory of a particle \(x = x(t) \) (\(t \in [a, b] \)) has to be an extremum of the action functional \(S \).
In *classical mechanics*, the motion of a point-particle of mass m in a potential field $V = V(x)$ is determined by the *Newton’s equation*

$$mx'' = -\nabla V(x).$$

Alternatively, one can state the law of motion in the form of the *stationary action principle*. One starts by introducing the *Lagrangian* of the system $L(x, x', t) = (\text{kinetic energy}) - (\text{potential energy})$ and the *action functional* $S[x] = \int_{a}^{b} L(x, x', t) \, dt$.

Stationary action principle

The trajectory of a particle $x = x(t)$ ($t \in [a, b]$) has to be an extremum of the action functional S.

Gaussian integrals and Feynman diagrams
In classical mechanics, the motion of a point-particle of mass m in a potential field $V = V(x)$ is determined by the Newton’s equation
\[mx'' = -\nabla V(x). \]

Alternatively, one can state the law of motion in the form of the stationary action principle. One starts by introducing the Lagrangian of the system $L(x, x', t) = (\text{kinetic energy}) - (\text{potential energy})$ and the action functional $S[x] = \int_a^b L(x, x', t) \, dt$.

Stationary action principle

The trajectory of a particle $x = x(t) \ (t \in [a, b])$ has to be an extremum of the action functional S.

Gaussian integrals and Feynman diagrams
Motivation

In *classical mechanics*, the motion of a point-particle of mass \(m \) in a potential field \(V = V(x) \) is determined by the *Newton’s equation*

\[
mx'' = -\nabla V(x).
\]

Alternatively, one can state the law of motion in the form of the *stationary action principle*. One starts by introducting the *Lagrangian* of the system \(L(x, x', t) = (\text{kinetic energy}) - (\text{potential energy}) \) and the *action functional* \(S[x] = \int_a^b L(x, x', t) \, dt \).

Stationary action principle

The trajectory of a particle \(x = x(t) \) \((t \in [a, b]) \) has to be an extremum of the action functional \(S \).
Motivation

Stationary action principle

The trajectory of a particle $x = x(t) \ (t \in [a, b])$ has to be an extremum of the action functional S.

This means that such a trajectory has to be a solution of the \textit{variational} problem $\delta S = 0$. The latter can be reduced to solving the \textit{Euler-Lagrange equation} (or rather a system of EL equations). In the one-dimensional case it has the form

$$
\frac{\partial L}{\partial x} - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial x'} \right) = 0, \quad x(a) = x_0, x(b) = x_1.
$$

Example

The Lagrangian for a mass on a spring system is $L = \frac{m x'^2}{2} - \frac{k x^2}{2}$. The EL equation reads: $-kx - \frac{\partial}{\partial t} mx' = 0$. That is, $mx'' = -kx$ (with some boundary conditions).
Motivation

Stationary action principle

The trajectory of a particle $\mathbf{x} = \mathbf{x}(t) \ (t \in [a, b])$ has to be an extremum of the action functional S.

This means that such a trajectory has to be a solution of the variational problem $\delta S = 0$. The latter can be reduced to solving the *Euler-Lagrange equation* (or rather a system of EL equations). In the one-dimensional case it has the form

$$\frac{\partial L}{\partial x} - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial x'} \right) = 0, \quad x(a) = x_0, x(b) = x_1.$$

Example

The Lagrangian for a mass on a spring system is $L = \frac{mx'^2}{2} - \frac{kx^2}{2}$. The EL equation reads: $-kx - \frac{\partial}{\partial t} mx' = 0$. That is, $mx'' = -kx$ (with some boundary conditions).
Motivation

Stationary action principle

The trajectory of a particle $x = x(t) \ (t \in [a, b])$ has to be an extremum of the action functional S.

This means that such a trajectory has to be a solution of the variational problem $\delta S = 0$. The latter can be reduced to solving the Euler-Lagrange equation (or rather a system of EL equations). In the one-dimensional case it has the form

$$\frac{\partial L}{\partial x} - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial x'} \right) = 0, \quad x(a) = x_0, \ x(b) = x_1.$$

Example

The Lagrangian for a mass on a spring system is $L = \frac{mx'^2}{2} - \frac{kx^2}{2}$. The EL equation reads: $-kx - \frac{\partial}{\partial t}mx' = 0$. That is, $mx'' = -kx$ (with some boundary conditions).
Motivation

Remark

The stationary action principle is often referred to as the principle of the *least* action, but, in general, classical trajectories do not have to minimize the action.

In classical field theory one studies not the motion of point-particles, but rather motion of a "continuum of particles" (e.g. a string, a membrane, a jet of fluid etc.). Now, the "trajectory" of a system is described by a classical field $\phi = \phi(x,t)$.

The stationary action principle still holds: one starts with the Lagrangian $L = L(\phi, \ldots)$ and looks for ϕ's that give the extremum to the action functional $S[\phi] = \int_D L(\phi, \ldots) \, dx \, dt$.

Example

The Lagrangian for a string has the form

$$L(z, z_x, z_t) = \frac{1}{2} \left[m \left(\frac{\partial z}{\partial t} \right)^2 - \lambda \left(\frac{\partial z}{\partial x} \right)^2 \right].$$

The EL equation for the
Motivation

In classical field theory one studies not the motion of point-particles, but rather motion of a "continuum of particles" (e.g. a string, a membrane, a jet of fluid etc.) Now, the "trajectory" of a system is described by a classical field \(\phi = \phi(x, t) \).

The stationary action principle still holds: one starts with the Lagrangian \(L = L(\phi, \ldots) \) and looks for \(\phi \)'s that give the extremum to the action functional \(S[\phi] = \int_D L(\phi, \ldots) \, dx \, dt \).

Example

The Lagrangian for a string has the form

\[
L(z, z_x, z_t) = \frac{1}{2} \left[m \left(\frac{\partial z}{\partial t} \right)^2 - \lambda \left(\frac{\partial z}{\partial x} \right)^2 \right].
\]

The EL equation for the variational problem \(\delta S = 0 \) takes the form

\[
\frac{\partial^2 z}{\partial t^2} - \frac{\lambda}{m} \frac{\partial^2 z}{\partial x^2} = 0.
\]
In classical field theory one studies not the motion of point-particles, but rather motion of a "continuum of particles" (e.g. a string, a membrane, a jet of fluid etc.) Now, the "trajectory" of a system is described by a classical field $\phi = \phi(x, t)$.

The stationary action principle still holds: one starts with the Lagrangian $L = L(\phi, \ldots)$ and looks for ϕ’s that give the extremum to the action functional $S[\phi] = \int_D L(\phi, \ldots) \, dx \, dt$.

Example

The Lagrangian for a string has the form

$$L(z, z_x', z_t') = \frac{1}{2} \left[m \left(\frac{\partial z}{\partial t} \right)^2 - \lambda \left(\frac{\partial z}{\partial x} \right)^2 \right].$$

The EL equation for the variational problem $\delta S = 0$ takes the form

$$\frac{\partial^2 z}{\partial t^2} - \frac{\lambda}{m} \frac{\partial^2 z}{\partial x^2} = 0.$$
In *classical field theory* one studies not the motion of point-particles, but rather motion of a "continuum of particles" (e.g. a string, a membrane, a jet of fluid etc.) Now, the "trajectory" of a system is described by a classical field \(\phi = \phi(\mathbf{x}, t) \).

The stationary action principle still holds: one starts with the Lagrangian \(L = L(\phi, \ldots) \) and looks for \(\phi \)'s that give the extremum to the action functional \(S[\phi] = \int_D L(\phi, \ldots) \, d\mathbf{x} \, dt \).

Example

The Lagrangian for a string has the form

\[
L(z, z', z'') = \frac{1}{2} \left[m \left(\frac{\partial z}{\partial t} \right)^2 - \lambda \left(\frac{\partial z}{\partial x} \right)^2 \right].
\]

The EL equation for the variational problem \(\delta S = 0 \) takes the form

\[
\frac{\partial^2 z}{\partial t^2} - \frac{\lambda}{m} \frac{\partial^2 z}{\partial x^2} = 0.
\]
Motivation

Let \mathcal{F} be a space of fields (for us: scalar or vector-valued functions of space-time). An observable f is a function $f : \mathcal{F} \to \mathbb{R}$.

On the quantum level, the behavior of physical systems is no longer deterministic and we cannot use the SAP directly. Instead, we just hope to find the expectation values of observables: for $f : \mathcal{F} \to \mathbb{R}$,

$$
\langle f \rangle = \frac{1}{Z} \int_{\mathcal{F}} f(\phi) e^{\frac{i}{\hbar} S[\phi]} \mathcal{D}\phi,
$$

where $Z = \int_{\mathcal{F}} e^{\frac{i}{\hbar} S[\phi]} \mathcal{D}\phi$ is the normalizing factor (partition function).

Gaussian integrals and Feynman diagrams
Motivation

Let \mathcal{F} be a space of fields (for us: scalar or vector-valued functions of space-time). An observable f is a function $f : \mathcal{F} \rightarrow \mathbb{R}$.

On the quantum level, the behavior of physical systems is no longer deterministic and we cannot use the SAP directly.

Instead, we just hope to find the expectation values of observables: for $f : \mathcal{F} \rightarrow \mathbb{R}$,

$$\langle f \rangle = \frac{1}{Z} \int_{\mathcal{F}} f(\phi) e^{\frac{i}{\hbar} S[\phi]} \mathcal{D}\phi,$$

where $Z = \int_{\mathcal{F}} e^{\frac{i}{\hbar} S[\phi]} \mathcal{D}\phi$ is the normalizing factor (partition function).

Gaussian integrals and Feynman diagrams
Motivation

Let \mathcal{F} be a space of fields (for us: scalar or vector-valued functions of space-time). An observable f is a function $f : \mathcal{F} \to \mathbb{R}$.

On the quantum level, the behavior of physical systems is no longer deterministic and we cannot use the SAP directly. Instead, we just hope to find the expectation values of observables: for $f : \mathcal{F} \to \mathbb{R}$,

$$
\langle f \rangle = \frac{1}{Z} \int_{\mathcal{F}} f(\phi) e^{i\frac{\hbar}{\hbar} S[\phi]} \mathcal{D}\phi,
$$

where $Z = \int_{\mathcal{F}} e^{i\frac{\hbar}{\hbar} S[\phi]} \mathcal{D}\phi$ is the normalizing factor (partition function).
Motivation

\[\langle f \rangle = \frac{1}{Z} \int_{\mathcal{F}} f(\phi) e^{\frac{i}{\hbar} S[\phi]} \mathcal{D}\phi, \]

Intuitively, we are counting contributions from all possible \(\phi \)'s, but the ones which are closer to the extrema of the action functional \(S[\phi] \) yield greater contributions (if \(\phi \) deviates a lot from a classical trajectory, then oscillations of \(e^{\frac{i}{\hbar} S[-]} \) near \(\phi \) will cancel each other out).

Stationary phase formula

Let \(f = f(x) \) be a smooth function with a unique critical point \(c \in (a, b) \), \(f''(c) \neq 0 \) and \(g = g(x) \) be a smooth function with vanishing derivatives at \(x = a, b \). Then

\[
\int_{a}^{b} g(x) e^{\frac{i}{\hbar} f(x)} \, dx = \hbar^{1/2} e^{i f(c)/\hbar} I(\hbar),
\]

where \(I \) is a smooth function on \([0, \infty)\) such that \(I(0) = \sqrt{2\pi} e^{\pm \pi i/4} \frac{g(c)}{\sqrt{|f''(c)|}}. \)
Motivation

$$\langle f \rangle = \frac{1}{Z} \int_{\mathcal{F}} f(\phi) e^{\frac{i}{\hbar} S[\phi]} \mathcal{D}\phi,$$

Intuitively, we counting contributions from all possible ϕ’s, but the ones which are closer to the extrema of the action functional $S[\phi]$ yield greater contributions (if ϕ deviates a lot from a classical trajectory, then oscillations of $e^{\frac{i}{\hbar} S[-]}$ near ϕ will cancel each other out).

Stationary phase formula

Let $f = f(x)$ be a smooth function with a unique critical point $c \in (a, b)$, $f''(c) \neq 0$ and $g = g(x)$ be a smooth function with vanishing derivatives at $x = a, b$. Then

$$\int_{a}^{b} g(x) e^{\frac{i}{\hbar} f(x)} \, dx = \hbar^{1/2} e^{i f(c)/\hbar} I(\hbar),$$

where I is a smooth function on $[0, \infty)$ such that $I(0) = \sqrt{2\pi} e^{\pm \pi i/4} \frac{g(c)}{\sqrt{|f''(c)|}}$.

Gaussian integrals and Feynman diagrams
Motivation

The (very) **bad** thing about the formula
\[\langle f \rangle = \frac{1}{Z} \int_{\mathcal{F}} f(\phi) e^{i\frac{i}{\hbar}S[\phi]} \mathcal{D}\phi: \]

since the space of fields \mathcal{F} is, in general, huge (infinitely-dimensional), $\mathcal{D}\phi$ is ill-defined.

Yet, it makes sense to approximate such integrals by their finite-dimensional analogs. This leads to the problem of studying oscillating integrals of the form

\[\int_{\mathbb{R}^n} P(x) e^{i\frac{i}{\hbar}S[x]} \, dx \]

and their real counterparts

\[\int_{\mathbb{R}^n} P(x) e^{-\frac{1}{\hbar}S[x]} \, dx \]
Motivation

The (very) **bad** thing about the formula
\[\langle f \rangle = \frac{1}{Z} \int_{\mathcal{F}} f(\phi) e^{\frac{i}{\hbar} S[\phi]} \mathcal{D}\phi: \]

since the space of fields \(\mathcal{F} \) is, in general, huge (infinitely-dimensional), \(\mathcal{D}\phi \) is ill-defined.

Yet, it makes sense to approximate such integrals by their finite-dimensional analogs. This leads to the problem of studying oscillating integrals of the form
\[\int_{\mathbb{R}^n} P(x) e^{\frac{i}{\hbar} S[x]} \, dx \]
and their real counterparts
\[\int_{\mathbb{R}^n} P(x) e^{-\frac{1}{\hbar} S[x]} \, dx \]
Motivation

The (very) **bad** thing about the formula
\[\langle f \rangle = \frac{1}{Z} \int_{\mathcal{F}} f(\phi) e^{i \frac{\hbar}{\hbar} S[\phi]} \, D\phi: \]

since the space of fields \(\mathcal{F} \) is, in general, huge (infinitely-dimensional), \(D\phi \) is ill-defined.

Yet, it makes sense to approximate such integrals by their finite-dimensional analogs. This leads to the problem of studying oscillating integrals of the form
\[\int_{\mathbb{R}^n} P(x) e^{i \frac{\hbar}{\hbar} S[x]} \, dx \]

and their real counterparts
\[\int_{\mathbb{R}^n} P(x) e^{-\frac{1}{\hbar} S[x]} \, dx \]
Steepest descent and stationary phase

Stationary phase formula

Let $f = f(x)$ be a smooth function with a unique critical point $c \in (a, b)$, $f''(c) \neq 0$ and $g = g(x)$ be a smooth function with vanishing derivatives at $x = a, b$. Then

$$\int_a^b g(x) e^{i\frac{i}{\hbar}f(x)} \, dx = \hbar^{1/2} e^{if(c)/\hbar} I(\hbar),$$

where I is a smooth function on $[0, \infty)$ such that $I(0) = \sqrt{2\pi} e^{\pm \frac{\pi i}{4}} \frac{g(c)}{\sqrt{|f''(c)|}}$.

Steepest descent formula

Let $f = f(x)$ be a smooth function with a unique minimum point $c \in (a, b)$, $f''(c) > 0$ and $g = g(x)$ be a smooth function.

Then

$$\int_a^b g(x) e^{-\frac{1}{\hbar}f(x)} \, dx = \hbar^{1/2} e^{-f(c)/\hbar} I(\hbar),$$

where I is a smooth function on $[0, \infty)$ such that $I(0) = \sqrt{2\pi} \frac{g(c)}{\sqrt{|f''(c)|}}$.
Steepest descent and stationary phase

Let B be a box region in \mathbb{R}^n and $f = f(x)$ be a smooth function with a unique critical point $c \in B$ such that...

Stationary phase formula

... $|Hf(c)| \neq 0$. Then if $g = g(x)$ is a smooth function with vanishing derivatives at the boundary of B, we have

$$\int_B g(x)e^{\frac{i}{\hbar}f(x)} \, dx = \hbar^{n/2}e^{i\ell/\hbar}I(\hbar),$$

where I is a smooth function on $[0, \infty)$ such that $I(0) = \left(\frac{2\pi}{2}\right)^{n/2}e^{\pm\pi i\sigma/4}g(c)\sqrt{|Hf(c)|}$

Steepest descent formula

... $Hf(c) > 0$. Then if $g = g(x)$ is a smooth function, we have

$$\int_B g(x)e^{-\frac{1}{\hbar}f(x)} \, dx = \hbar^{n/2}e^{-f(c)/\hbar}I(\hbar),$$

where I is a smooth function on $[0, \infty)$ such that $I(0) = \left(\frac{2\pi}{2}\right)^{n/2}\frac{g(c)}{\sqrt{|Hf(c)|}}$
Asymptotic expansion

\[
\int_B g(x)e^{-\frac{1}{\hbar}f(x)} \, dx = \hbar^{n/2} e^{-f(c)/\hbar} I(\hbar) \]

What do we want: find a power series expansion for
\[I(\hbar) = A_0 + A_1 \hbar + A_2 \hbar^2 + \ldots \]

(Not so) bad thing: Although, \(I = I(\hbar) \) is smooth, it is not analytic at in general: the Taylor series for \(I \) at \(\hbar = 0 \) may have the zero radius of convergence.

How to fix it: We still can try to find a *formal* power series expansion for \(I \). Then under some pretty mild conditions on \(A_i \)'s there is canonical way to ”sum“ the series up (key term: Borel summation).

Thus, we can focus on finding the power series coefficients \(A_i \).
Asymptotic expansion

\[\int_{B} g(x)e^{-\frac{1}{\hbar} f(x)} \, dx = \hbar^{n/2} e^{-f(c)/\hbar} I(\hbar) \]

What do we want: find a power series expansion for
\[I(\hbar) = A_0 + A_1 \hbar + A_2 \hbar^2 + \ldots \]

(Not so) bad thing: Although, \(I = I(\hbar) \) is smooth, it is not analytic at in general: the Taylor series for \(I \) at \(\hbar = 0 \) may have the zero radius of convergence.

How to fix it: We still can try to find a formal power series expansion for \(I \). Then under some pretty mild conditions on \(A_i \)'s there is canonical way to "sum" the series up (key term: Borel summation).

Thus, we can focus on finding the power series coefficients \(A_i \).
Asymptotic expansion

\[\int_B g(x) e^{-\frac{1}{\hbar} f(x)} \, dx = \hbar^{n/2} e^{-f(c)/\hbar} I(\hbar) \]

What do we want: find a power series expansion for
\[I(\hbar) = A_0 + A_1 \hbar + A_2 \hbar^2 + \ldots \]

(Not so) bad thing: Although, \(I = I(\hbar) \) is smooth, it is not analytic at in general: the Taylor series for \(I \) at \(\hbar = 0 \) may have the zero radius of convergence.

How to fix it: We still can try to find a *formal* power series expansion for \(I \). Then under some pretty mild conditions on \(A_i \)'s there is canonical way to ”sum“ the series up (key term: Borel summation).

Thus, we can focus on finding the power series coefficients \(A_i \).
Asymptotic expansion

\[\int_B g(x) e^{-\frac{1}{\hbar} f(x)} \, dx = \hbar^{n/2} e^{-f(c)/\hbar} I(\hbar) \]

What do we want: find a power series expansion for
\[I(\hbar) = A_0 + A_1 \hbar + A_2 \hbar^2 + \ldots \]

(Not so) bad thing: Although, \(I = I(\hbar) \) is smooth, it is not analytic at in general: the Taylor series for \(I \) at \(\hbar = 0 \) may have the zero radius of convergence.

How to fix it: We still can try to find a *formal* power series expansion for \(I \). Then under some pretty mild conditions on \(A_i \)'s there is canonical way to ”sum“ the series up (key term: Borel summation).

Thus, we can focus on finding the **power series coefficients** \(A_i \).
Wick’s theorem

Theorem [Gian-Carlo Wick]

Let A be a symmetric, positively-defined d-by-d matrix and l_i’s be linear forms on \mathbb{R}^d ($i = 1, 2, \ldots, m$). Then

$$
\int_{\mathbb{R}^d} l_1(x) \ldots l_m(x) e^{-\langle x, Ax \rangle / 2} \, dx = \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_{\sigma} \prod_i \langle l_i, A^{-1} l_{\sigma(i)} \rangle,
$$

where σ’s run through all pairings on $\{1, 2, \ldots, m\}$ (that is, σ is an involution on $\{1, 2, \ldots, m\}$).
Wick’s theorem

Theorem [Gian-Carlo Wick]

Let A be a symmetric, positively-defined d-by-d matrix and l_i’s be linear forms on \mathbb{R}^d ($i = 1, 2, \ldots, m$). Then

$$\int_{\mathbb{R}^d} l_1(x) \ldots l_m(x) e^{-\langle x, Ax \rangle/2} \, dx = \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_\sigma \prod_i \langle l_i, A^{-1} l_{\sigma(i)} \rangle,$$

where σ’s run through all pairings on $\{1, 2, \ldots, m\}$ (that is, σ is an involution on $\{1, 2, \ldots, m\}$).

Example

$m = 0, \ d = 1, \ A = 1$: $\int_{\mathbb{R}} e^{-x^2/2} \, dx = \sqrt{2\pi}$
Wick’s theorem

Theorem [Gian-Carlo Wick]

Let A be a symmetric, positively-defined d-by-d matrix and l_i’s be linear forms on \mathbb{R}^d ($i = 1, 2, \ldots, m$). Then

$$\int_{\mathbb{R}^d} l_1(x) \cdots l_m(x) e^{-\langle x, Ax \rangle / 2} \, dx = \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_{\sigma} \prod_i \langle l_i, A^{-1} l_{\sigma(i)} \rangle,$$

where σ’s run through all pairings on $\{1, 2, \ldots, m\}$ (that is, σ is an *involution* on $\{1, 2, \ldots, m\}$).

Example

$m = 2, d = 2, A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, l_1 = x, l_2 = y$:

$$\int_{\mathbb{R}^2} xy \cdot e^{-(x^2 + xy + y^2)} \, dx \, dy = \frac{2\pi}{\sqrt{3}} \cdot \frac{-1}{3}.$$
Wick’s theorem

Theorem [Gian-Carlo Wick]

Let A be a symmetric, positively-defined d-by-d matrix and l_i’s be linear forms on \mathbb{R}^d ($i = 1, 2, \ldots, m$). Then

$$
\int_{\mathbb{R}^d} l_1(x) \ldots l_m(x) e^{-\langle x, Ax \rangle / 2} \, dx = \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_{\sigma} \prod_i \langle l_i, A^{-1} l_{\sigma(i)} \rangle,
$$

where σ’s run through all pairings on $\{1, 2, \ldots, m\}$ (that is, σ is an *involution* on $\{1, 2, \ldots, m\}$).

Example

$m = 4$:

$$
\int_{\mathbb{R}^d} (\ldots) \sim \langle l_1, A^{-1} l_2 \rangle \cdot \langle l_3, A^{-1} l_4 \rangle + \langle l_1, A^{-1} l_3 \rangle \cdot \langle l_2, A^{-1} l_4 \rangle + \langle l_1, A^{-1} l_4 \rangle \cdot \langle l_2, A^{-1} l_4 \rangle
$$
Wick’s theorem

It is convenient to represent pairings using graphs. Namely, for a pairing σ on a set $\{1, 2, \ldots, m\}$, consider a graph with vertices indexed by $1, 2, \ldots, m$ and connect vertices $i, \sigma(i)$ with an edge.

Example

The graph

![Graph Image](image)

represents the pairing $\langle 1, 3 \rangle, \langle 2, 5 \rangle, \langle 4, 6 \rangle$.
Wick’s theorem

Example

\[
\left(\frac{(2\pi)^{d/2}}{\sqrt{\det A}} \right)^{-1} \int_{\mathbb{R}^d} l_1(x) \ldots l_4(x) e^{-\langle x, A x \rangle / 2} \, dx =
\]

\[= F\left(\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right) + F\left(\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right) \]

\[+ F\left(\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right) \]
Wick’s theorem: sketch of the proof

The main idea: reduce everything to the one-dimensional case, where all computations can be performed in terms of the Gamma-function.

Useful facts:

- Any real symmetric matrix A can be diagonalized.
- Polarization identity. Let $P : V \times \cdots \times V \to \mathbb{R}$ be a symmetric polylinear form. Then

$$P(x_1, x_2, \ldots, x_n) = \frac{1}{n!} \sum_{I \subset \{1, \ldots, n\}} (-1)^{n-|I|} P(\sum_{i \in I} x_i, \ldots, \sum_{i \in I} x_i).$$

- $\Gamma\left(\frac{2k+1}{k}\right) = \frac{(2k)!}{4^k k!} \sqrt{\pi}$
Wick’s theorem: sketch of the proof

The main idea: reduce everything to the one-dimensional case, where all computations can be performed in terms of the Gamma-function.

Useful facts:

- Any real symmetric matrix A can be diagonalized.
- Polarization identity. Let $P : V \times \cdots \times V \to \mathbb{R}$ be a symmetric polylinear form. Then

$$P(x_1, x_2, \ldots, x_n) = \frac{1}{n!} \sum_{I \subset \{1, \ldots, n\}} (-1)^{n-|I|} P(\sum_{i \in I} x_i, \ldots, \sum_{i \in I} x_i).$$

- $\Gamma\left(\frac{2k+1}{k}\right) = \frac{(2k)!}{4^k k!} \sqrt{\pi}$
Wick’s theorem: sketch of the proof

The main idea: reduce everything to the one-dimensional case, where all computations can be performed in terms of the Gamma-function.

Useful facts:

- Any real symmetric matrix A can be diagonalized.
- Polarization identity. Let $P : V \times \cdots \times V \to \mathbb{R}$ be a symmetric polylinear form. Then

$$P(x_1, x_2, \ldots, x_n) = \frac{1}{n!} \sum_{I \subset \{1, \ldots, n\}} (-1)^{n-|I|} P(\sum_{i \in I} x_i, \ldots, \sum_{i \in I} x_i).$$

- \(\Gamma \left(\frac{2k+1}{k} \right) = \frac{(2k)!}{4^k k!} \sqrt{\pi} \)
Wick’s theorem: sketch of the proof

\[\int_{\mathbb{R}^d} l_1(x) \ldots l_m(x) e^{-\langle x, Ax \rangle/2} \, dx = \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_{\sigma} \prod_i \langle l_i, A^{-1} l_{\sigma(i)} \rangle, \]

We can assume that \(m \) is even.

Step 1. Both sides of the desired identity are symmetric and polylinear forms with respect to \(l_i \)'s. Thus, *it suffices to prove it for \(l_1 = \cdots = l_m \).*

Step 2. The desired identity is stable under a linear change of variables. Thus, *we can choose a basis in such a way that \(A \) becomes diagonal.* Moreover, by rescaling, we can make \(A = E \). Then \(\langle x, Ax \rangle = x_1^2 + \cdots + x_d^2 \)

Step 3. We find \(\int_{-\infty}^{\infty} x^{2k} e^{-x^2/2} \, dx = \sqrt{2\pi} \frac{(2k)!}{2^k k!} \) by substituting \(y = x^2/2 \) and reducing it to the Gamma-function.
Wick’s theorem: sketch of the proof

\[\int_{\mathbb{R}^d} l_1(x) \ldots l_m(x) e^{-\langle x, A x \rangle / 2} \, dx = \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_\sigma \prod_i \langle l_i, A^{-1} l_{\sigma(i)} \rangle, \]

We can assume that \(m \) is even.

Step 1. Both sides of the desired identity are symmetric and polylinear forms with respect to \(l_i \)'s. Thus, it suffices to prove it for \(l_1 = \cdots = l_m \).

Step 2. The desired identity is stable under a linear change of variables. Thus, we can choose a basis in such a way that \(A \) becomes diagonal. Moreover, by rescaling, we can make \(A = E \). Then \(\langle x, A x \rangle = x_1^2 + \cdots + x_d^2 \)

Step 3. We find \(\int_{-\infty}^{\infty} x^{2k} e^{-x^2/2} \, dx = \sqrt{2\pi} \frac{(2k)!}{2^k k!} \) by substituting \(y = x^2/2 \) and reducing it to the Gamma-function.
Wick’s theorem: sketch of the proof

\[\int_{\mathbb{R}^d} l_1(x) \ldots l_m(x) e^{-\langle x, Ax \rangle / 2} \, dx = \frac{(2\pi)^{d/2}}{\sqrt{\text{det} A}} \sum_{\sigma} \prod_i \langle l_i, A^{-1} l_{\sigma(i)} \rangle, \]

We can assume that \(m \) is even.

Step 1. Both sides of the desired identity are symmetric and polylinear forms with respect to \(l_i \)'s. Thus, it suffices to prove it for \(l_1 = \cdots = l_m \).

Step 2. The desired identity is stable under a linear change of variables. Thus, we can choose a basis in such a way that \(A \) becomes diagonal. Moreover, by rescaling, we can make \(A = E \). Then \(\langle x, Ax \rangle = x_1^2 + \cdots + x_d^2 \).

Step 3. We find \(\int_{-\infty}^{\infty} x^{2k} e^{-x^2 / 2} \, dx = \sqrt{2\pi} \frac{(2k)!}{2^k k!} \) by substituting \(y = x^2 / 2 \) and reducing it to the Gamma-function.
Wick’s theorem: sketch of the proof

\[
\int_{\mathbb{R}^d} l_1(x) \ldots l_m(x) e^{-\langle x, Ax \rangle / 2} \, dx = \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_{\sigma} \prod_i \langle l_i, A^{-1} l_{\sigma(i)} \rangle,
\]

We can assume that \(m = 2k \).

Step 4. What is \(\frac{(2k)!}{2^k k!} \)? It’s the number of pairings on a set \(\{1, 2 \ldots, 2k\} \).
Back to our main problem: find the coefficients of the asymptotic power series expansion of the integral

$$\int_B P(x) e^{-S(x)/\hbar} \, dx,$$

where P is a polynomial and S is a smooth function having a unique minimum critical point $c \in B$.
Back to our main problem: find the coefficients of the asymptotic power series expansion of the integral

$$\int_B l_1(x) \ldots l_m(x) e^{-S(x)/\hbar} \, dx,$$

where S is a smooth function having a unique minimum critical point $c \in B$.
Feynman’s theorem

Back to our main problem: find the coefficients of the asymptotic power series expansion of the integral

\[\int_{B} l_1(x) \ldots l_m(x) e^{-S(x)/\hbar} \, dx, \]

where \(S \) is a smooth function having a unique minimum critical point \(c \in B \).

WLOG, we can assume \(c = 0 \), \(S(c) = 0 \). Then \(S(x) \) has a (formal, at least) power series expansion

\[S(x) = \frac{\langle x, Ax \rangle}{2} + \sum_{r \geq 3} \frac{1}{r!} B_r(x, \ldots, x) \]

where \(B_r \)’s are symmetric polylinear forms.
Feynman’s theorem

Make a change of variables $x \mapsto \frac{x}{\sqrt{\hbar}}$:

$$\int_B l_1(x) \cdots l_m(x) e^{-S(x)/\hbar} \, dx =$$

$$\hbar^{m/2} \int_{B'} l_1(x) \cdots l_m(x) e^{-\frac{\langle x, Ax \rangle}{2} - \sum_{r \geq 3} \hbar^{r/2-1} \frac{B_r(x, \ldots, x)}{r!}} \, dx =$$

$$\hbar^{m/2} \int_{\mathbb{R}^d} l_1(x) \cdots l_m(x) e^{-\frac{\langle x, Ax \rangle}{2} - \sum_{r \geq 3} \hbar^{r/2-1} \frac{B_r(x, \ldots, x)}{r!}} \, dx + o(\hbar)$$
Feynman diagrams

Definition

A *Feynman diagram with m external vertices* is a graph (possibly, with loops and multiple edges) with m vertices of degree 1 labeled by 1, 2, \ldots, m and finitely many unlabeled vertices of degrees ≥ 3.

$G_{\geq 3}(m) := \{\text{isomorphism classes of Feynman diagrams with } m \text{ external vertices}\}$. Here, an isomorphism of a labeled graph is supposed to preserve the labeling.
Definition

A *Feynman diagram with m external vertices* is a graph (possibly, with loops and multiple edges) with m vertices of degree 1 labeled by $1, 2, \ldots, m$ and finitely many unlabeled vertices of degrees ≥ 3.

$G_{\geq 3}(m) := \{\text{isomorphism classes of Feynman diagrams with m external vertices}\}$. Here, an isomorphism of a *labeled* graph is supposed to preserve the labeling.
Feynman diagrams

Definition

A *Feynman diagram with* m *external vertices* is a graph (possibly, with loops and multiple edges) with m vertices of degree 1 labeled by $1, 2, \ldots, m$ and finitely many unlabeled vertices of degrees ≥ 3.

$G_{\geq 3}(m) := \{\text{isomorphism classes of Feynman diagrams with } m \text{ external vertices}\}$. Here, an isomorphism of a *labeled* graph is supposed to preserve the labeling.

Example
Feynman’s theorem

\[
\langle l_1 \ldots l_m \rangle := \hbar^{m/2} \int_{\mathbb{R}^d} l_1(x) \ldots l_m(x) e^{-\frac{\langle x, Ax \rangle}{2} - \sum_{r \geq 3} \frac{\hbar^r}{r!} - 1 \frac{B_r(x, \ldots, x)}{r!}} \, dx
\]

\[
= \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_{\Gamma \in G_{\geq 3}(m)} \frac{\hbar^{b(\Gamma)}}{|\text{Aut}(\Gamma)|} F_{\Gamma}(l_1, \ldots, l_m),
\]

where

- \(b(\Gamma) = |\text{Edges of } \Gamma| - |\text{internal vertices of } \Gamma| \);
- \(|\text{Aut}(\Gamma)| \) is the number of \textit{automorphisms} of a graph \(\Gamma \) which leave the external vertices fixed;
- \(F_{\Gamma}(l_1, \ldots, l_m) \) is the \textit{Feynman amplitude} of the graph \(\Gamma \) computed as follows.
Feynman’s theorem

Theorem

\[\langle l_1 \ldots l_m \rangle := \hbar^{m/2} \int_{\mathbb{R}^d} l_1(x) \ldots l_m(x) e^{-\frac{\langle x, Ax \rangle}{2} - \sum_{r \geq 3} \frac{\hbar^r}{r!} B_r(x, \ldots, x)} \, dx \]

\[= \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_{\Gamma \in G_{\geq 3}(m)} \frac{\hbar^{b(\Gamma)}}{|\text{Aut}(\Gamma)|} F_{\Gamma}(l_1, \ldots, l_m), \]

where

- \(b(\Gamma) = |\text{Edges of } \Gamma| - |\text{internal vertices of } \Gamma|; \)
- \(|\text{Aut}(\Gamma)| \) is the number of \textit{automorphisms} of a graph \(\Gamma \) which leave the external vertices fixed;
- \(F_{\Gamma}(l_1, \ldots, l_m) \) is the \textit{Feynman amplitude of the graph } \(\Gamma \) computed as follows.
Theorem

\[
\langle l_1 \ldots l_m \rangle := \hbar^{m/2} \int_{\mathbb{R}^d} l_1(x) \ldots l_m(x) e^{-\frac{\langle x, Ax \rangle}{2}} - \sum_{r \geq 3} \frac{\hbar^r/2^r - 1}{r!} B_r(x, \ldots, x)\ dx
\]

\[
= \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_{\Gamma \in G \geq 3(m)} \frac{\hbar^b(\Gamma)}{|\text{Aut}(\Gamma)|} F_\Gamma(l_1, \ldots, l_m),
\]

where

- \(b(\Gamma) = \text{Edges of } \Gamma - \text{internal vertices of } \Gamma \);
- \(|\text{Aut}(\Gamma)| \) is the number of automorphisms of a graph \(\Gamma \) which leave the external vertices fixed;
- \(F_\Gamma(l_1, \ldots, l_m) \) is the Feynman amplitude of the graph \(\Gamma \) computed as follows.
Feynman’s theorem

Theorem

\[
\langle l_1 \ldots l_m \rangle := \hbar^{m/2} \int_{\mathbb{R}^d} l_1(x) \ldots l_m(x) e^{-\frac{\langle x, Ax \rangle}{2} - \sum_{r \geq 3} \frac{\hbar^r}{2^{r-1}} B_r(x, \ldots, x)} d x
\]

\[
= \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_{\Gamma \in G_{\geq 3}(m)} \frac{\hbar^b(\Gamma)}{|\text{Aut}(\Gamma)|} F_\Gamma(l_1, \ldots, l_m),
\]

where

- \(b(\Gamma) = |\text{Edges of } \Gamma| - |\text{internal vertices of } \Gamma|; \)
- \(|\text{Aut}(\Gamma)| \) is the number of **automorphisms** of a graph \(\Gamma \) which leave the external vertices fixed;
- \(F_\Gamma(l_1, \ldots, l_m) \) is the **Feynman amplitude of the graph** \(\Gamma \) computed as follows.
Feynman amplitude of a graph

For a connected graph Γ,

Step 1. put the linear form l_i at the i-th external vertex $(i = 1, \ldots, m)$;

Step 2. put the polylinear form B_r at each internal vertex of degree r ($r = 3, 4, \ldots$);

Step 3. take contractions of these forms along the edges of Γ using the pairing $\langle -, A^{-1} - \rangle$.

If Γ has several connected components Γ_i, F_Γ is defined to be the product of F_{Γ_i}'s.
Feynman amplitude of a graph

For a connected graph Γ,

Step 1. put the linear form l_i at the i-th external vertex ($i = 1, \ldots, m$);

Step 2. put the polylinear form B_r at each internal vertex of degree r ($r = 3, 4, \ldots$);

Step 3. take contractions of these forms along the edges of Γ using the pairing $\langle -, A^{-1} - \rangle$.

If Γ has several connected components Γ_i, F_Γ is defined to be the product of F_{Γ_i}'s.
Feynman amplitude of a graph

For a connected graph Γ,

Step 1. put the linear form l_i at the i-th external vertex $(i = 1, \ldots, m)$;

Step 2. put the polylinear form B_r at each internal vertex of degree r $(r = 3, 4, \ldots)$;

Step 3. take contractions of these forms along the edges of Γ using the pairing $\langle - , A^{-1} - \rangle$.

If Γ has several connected components Γ_i, F_Γ is defined to be the product of F_{Γ_i}'s.
Feynman amplitude of a graph

For a connected graph Γ,

Step 1. put the linear form l_i at the i-th external vertex ($i = 1, \ldots, m$);

Step 2. put the polylinear form B_r at each internal vertex of degree r ($r = 3, 4, \ldots$);

Step 3. take contractions of these forms along the edges of Γ using the pairing $\langle -, A^{-1} - \rangle$.

If Γ has several connected components Γ_i, F_Γ is defined to be the product of F_{Γ_i}'s.
Example

Let $S(x) = \langle x, Ax \rangle$ (free theory). Then

$$\langle l_1 \ldots l_N \rangle = \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_{\Gamma \in G_{\geq 3}(N)} \frac{\hbar^b(\Gamma)}{|Aut(\Gamma)|} F_\Gamma(l_1, \ldots, l_N)$$

$$= \frac{(2\pi)^{d/2}}{\sqrt{\det A}} \sum_{\text{pairings}} \frac{\hbar^{N/2}}{1} \prod_i \langle l_i, A^{-1}l_{\sigma(i)} \rangle$$

That’s basically the statement of Wick’s theorem.
Example

Let $d = 1$, $S(x) = \frac{x^2}{2} + 4x^3$. Then

$$\langle xx xx \rangle = \sqrt{2\pi} \sum_{\Gamma \in G_3(4)} \frac{\hbar^2}{1} F_{\Gamma}(x, x, x, x)$$
Feynman diagrams in physics

\[e^+ \rightleftharpoons \Gamma/Z^0 \rightleftharpoons e^- \]

\[e^+ \rightleftharpoons \tilde{e}^{\pm}_{R/L} \rightleftharpoons e^- \]

\[e^+ \rightleftharpoons \tilde{e}^{\pm}_{R/L} \rightleftharpoons \chi_1 \]

\[e^+ \rightleftharpoons \tilde{e}^{\pm}_{R/L} \rightleftharpoons \chi_1 \]