Outline

- Lattice models: definitions and examples.
- Yang-Baxter equation and integrability.
- Quantum groups and their representations.
- Integrable lattice models from intertwining operators.
Outline

- Lattice models: definitions and examples.
- Yang-Baxter equation and integrability.
- Quantum groups and their representations.
- Integrable lattice models from intertwining operators.
Outline

- Lattice models: definitions and examples.
- Yang-Baxter equation and integrability.
- Quantum groups and their representations.
- Integrable lattice models from intertwining operators.
Outline

- Lattice models: definitions and examples.
- Yang-Baxter equation and integrability.
- Quantum groups and their representations.
- Integrable lattice models from intertwining operators.
Lattice models

Consider a collection of “atoms” located at the vertices of a 2D-lattice $\mathbb{Z}_M \times \mathbb{Z}_N$:

Assumptions:

- each “atom” interacts only with its nearest neighbors;
- the energy of interaction depends only on the states of the bonds (the edges);
- bonds satisfy periodic (”toroidal“) boundary conditions.
Lattice models

Consider a collection of “atoms” located at the vertices of a 2D-lattice $\mathbb{Z}_M \times \mathbb{Z}_N$:

Assumptions:

- each “atom” interacts only with its nearest neighbors;
- the energy of interaction depends only on the states of the bonds (the edges).
- bonds satisfy periodic (”toroidal“) boundary conditions.
Lattice models

Consider a collection of “atoms” located at the vertices of a 2D-lattice $\mathbb{Z}_M \times \mathbb{Z}_N$:

Assumptions:

- each “atom” interacts only with its nearest neighbors;
- the energy of interaction depends only on the states of the bonds (the edges);
- bonds satisfy periodic (”toroidal“) boundary conditions.
Denote by $\mathcal{E}_{\epsilon_1,\epsilon_2}^{\epsilon_3,\epsilon_4}$ the interaction energy of a single atom with the bonds in states $\epsilon_1, \ldots, \epsilon_4 \in \{1, \ldots, n\}$. The state of the lattice is a map

$$\phi : \text{bonds} \rightarrow \{1, \ldots, n\}$$

The energy of such a state is $\mathcal{E}(\phi) := \sum_{\text{atoms}} \mathcal{E}_{\epsilon_1,\epsilon_2}^{\epsilon_3,\epsilon_4}$.
Lattice models

Denote by $\mathcal{E}_{\epsilon_1,\epsilon_2}^{\epsilon_3,\epsilon_4}$ the interaction energy of a single atom with the bonds in states $\epsilon_1, \ldots, \epsilon_4 \in \{1, \ldots, n\}$.

The state of the lattice is a map

$$\phi : \text{bonds} \rightarrow \{1, \ldots, n\}$$

The energy of such a state is

$$\mathcal{E}(\phi) := \sum_{\text{atoms}} \mathcal{E}_{\epsilon_1,\epsilon_2}^{\epsilon_3,\epsilon_4}$$
The **partition function** $Z = Z_{M,N}$ of such a system is

$$Z = \sum_{\text{states}} \exp(-\beta \mathcal{E}(\text{state})), \text{ where } \beta = \frac{1}{kT}.$$

We have

$$\exp(-\beta \mathcal{E}(\text{state})) = \exp(-\beta \sum_{\text{atoms}} \mathcal{E}_{\epsilon_3,\epsilon_4}) = \prod_{\text{atoms}} \exp(-\beta \mathcal{E}_{\epsilon_1,\epsilon_2}).$$

It what follows, it will be more convenient to work with the **Boltzmann weights**

$$R_{\epsilon_1,\epsilon_2}^{\epsilon_3,\epsilon_4} := \exp(-\beta \mathcal{E}_{\epsilon_1,\epsilon_2}^{\epsilon_3,\epsilon_4})$$

rather than with energy terms.
The partition function $Z = Z_{M,N}$ of such a system is

$$Z = \sum_{\text{states}} \exp(-\beta \mathcal{E}(\text{state})), \text{ where } \beta = \frac{1}{kT}.$$

We have

$$\exp(-\beta \mathcal{E}(\text{state})) = \exp(-\beta \sum_{\text{atoms}} \mathcal{E}_{\epsilon_1,\epsilon_2}^{\epsilon_3,\epsilon_4}) = \prod_{\text{atoms}} \exp(-\beta \mathcal{E}_{\epsilon_1,\epsilon_2}^{\epsilon_3,\epsilon_4}).$$

It what follows, it will be more convenient to work with the Boltzmann weights

$$R_{\epsilon_1,\epsilon_2}^{\epsilon_3,\epsilon_4} := \exp(-\beta \mathcal{E}_{\epsilon_1,\epsilon_2}^{\epsilon_3,\epsilon_4})$$

rather than with energy terms.
The partition function $Z = Z_{M,N}$ of such a system is

$$Z = \sum_{\text{states}} \exp(-\beta E(\text{state})), \text{ where } \beta = \frac{1}{kT}.$$

We have

$$\exp(-\beta E(\text{state})) = \exp(-\beta \sum_{\text{atoms}} E^\epsilon_{\epsilon_1, \epsilon_2}) = \prod_{\text{atoms}} \exp(-\beta E^\epsilon_{\epsilon_1, \epsilon_2}).$$

It what follows, it will be more convenient to work with the Boltzmann weights

$$R^\epsilon_{\epsilon_1, \epsilon_2} := \exp(-\beta E^\epsilon_{\epsilon_1, \epsilon_2})$$

rather than with energy terms.
Standard properties of the partition function:

- \(P(\text{the system is in a state with energy } \mathcal{E}) = \frac{1}{Z} \exp(-\beta \mathcal{E}) \)
- If \(Q = Q(\phi) \) is a function of states (an "observable"), then its expectation value is

\[
\langle Q \rangle = \frac{1}{Z} \sum_{\phi \in \text{states}} Q(\phi) \exp(-\beta \mathcal{E}(\phi)).
\]
Standard properties of the partition function:

- $P(\text{the system is in a state with energy } E) = \frac{1}{Z} \exp(-\beta E)$
- If $Q = Q(\phi)$ is a function of states (an "observable"), then its expectation value is:

$$\langle Q \rangle = \frac{1}{Z} \sum_{\phi \in \text{states}} Q(\phi) \exp(-\beta E(\phi)).$$

Example

- $\langle \mathcal{E} \rangle = \frac{1}{Z} \sum_{\text{states}} \mathcal{E}(\phi) \exp(-\beta \mathcal{E}(\phi)) = \cdots = kT^2 \frac{\partial}{\partial T} \ln Z$
- The correlation function of edges j_1, \ldots, j_k is:

$$\langle \epsilon_{j_1} \cdots \epsilon_{j_k} \rangle = \frac{1}{Z} \sum_{\text{states}} \epsilon_{j_1} \cdots \epsilon_{j_k} \exp(-\beta \mathcal{E}).$$
Partition function of a lattice model

Standard properties of the partition function:

- \(P(\text{the system is in a state with energy } \mathcal{E}) = \frac{1}{Z} \exp(-\beta \mathcal{E}) \)
- If \(Q = Q(\phi) \) is a function of states (an "observable"), then its expectation value is

\[
\langle Q \rangle = \frac{1}{Z} \sum_{\phi \in \text{states}} Q(\phi) \exp(-\beta \mathcal{E}(\phi)).
\]

Example

1. \(\langle \mathcal{E} \rangle = \frac{1}{Z} \sum_{\text{states}} \mathcal{E}(\phi) \exp(-\beta \mathcal{E}(\phi)) = \cdots = kT^2 \frac{\partial}{\partial T} \ln Z \)
2. The correlation function of edges \(j_1, \ldots, j_k \) is

\[
\langle \epsilon_{j_1} \cdots \epsilon_{j_k} \rangle = \frac{1}{Z} \sum_{\text{states}} \epsilon_{j_1} \cdots \epsilon_{j_k} \exp(-\beta \mathcal{E}).
\]
Standard properties of the partition function:

- \(P(\text{the system is in a state with energy } \mathcal{E}) = \frac{1}{Z} \exp(-\beta \mathcal{E}) \)
- If \(Q = Q(\phi) \) is a function of states (an ”observable“), then its expectation value is

\[
\langle Q \rangle = \frac{1}{Z} \sum_{\phi \in \text{states}} Q(\phi) \exp(-\beta \mathcal{E}(\phi)).
\]

Example

1. \(\langle \mathcal{E} \rangle = \frac{1}{Z} \sum_{\text{states}} \mathcal{E}(\phi) \exp(-\beta \mathcal{E}(\phi)) = \cdots = kT^2 \frac{\partial}{\partial T} \ln Z \)

2. The correlation function of edges \(j_1, \ldots, j_k \) is

\[
\langle \epsilon_{j_1} \cdots \epsilon_{j_k} \rangle = \frac{1}{Z} \sum_{\text{states}} \epsilon_{j_1} \cdots \epsilon_{j_k} \exp(-\beta \mathcal{E}).
\]
Standard properties of the partition function:

- \(P(\text{the system is in a state with energy } E) = \frac{1}{Z} \exp(-\beta E) \)
- If \(Q = Q(\phi) \) is a function of states (an "observable"), then its expectation value is
 \[
 \langle Q \rangle = \frac{1}{Z} \sum_{\phi \in \text{states}} Q(\phi) \exp(-\beta E(\phi)).
 \]

Example

1. \(\langle E \rangle = \frac{1}{Z} \sum_{\text{states}} E(\phi) \exp(-\beta E(\phi)) = \cdots = k T^2 \frac{\partial}{\partial T} \ln Z \)
2. The correlation function of edges \(j_1, \ldots, j_k \) is
 \[
 \langle \epsilon_{j_1} \cdots \epsilon_{j_k} \rangle = \frac{1}{Z} \sum_{\text{states}} \epsilon_{j_1} \cdots \epsilon_{j_k} \exp(-\beta E).
 \]
Examples of lattice models

1) *Eight-vertex model.*

Characteristics:

- two bond states (we denote them by + and −).
- only 8 out of 16 possible vertex configurations are allowed:

Here, a, b, c, d are Boltzmann weights of the corresponding configurations.
Examples of lattice models

2) *Six-vertex model* (two-dimensional ice).
 Characteristics:
 - two bond states (we denote them by $+$ and $-$).
 - only 6 out of 16 possible vertex configurations are allowed:

\[
\begin{align*}
+ & \quad - & = & \quad - & \quad + & = & \quad =d \\
- & \quad + & = & \quad + & \quad - & = & \quad =b \\
+ & \quad - & = & \quad - & \quad + & = & \quad =c
\end{align*}
\]
Lattice models

To *solve* a model (a lattice model, in our context) means to find an explicit formula for \(Z = Z_{M,N} \), its *thermodynamical limit*

\[
\lim_{M,N \to \infty} Z_{M,N} \text{ or } \text{thermodynamical limit per site}
\]

\[
\lim_{M,N \to \infty} (Z_{M,N})^{\frac{1}{MN}}
\]

Example

Eight- and six-vertex models are solvable (R. Baxter, 1971).
Transfer matrix

\[Z = \sum_{\text{states}} \exp(-\beta \mathcal{E}(\text{state})) = \sum_{\text{states}} \prod_{\text{atoms}} R_{\epsilon_1, \epsilon_2}^{\epsilon_3, \epsilon_4} \]

The contribution of a single column of the lattice to the partition function is

\[T_{\epsilon_1'...\epsilon_N'} = \sum_{\nu_1,...,\nu_N \in \{+, -\}} R_{\nu_1 \epsilon_1}^{\nu_2 \epsilon_1'} R_{\nu_2 \epsilon_2}^{\nu_3 \epsilon_2'} ... R_{\nu_N \epsilon_N}^{\nu_1 \epsilon_N'} \]
Transfer matrix

\[Z = \sum_{\text{states}} \exp(-\beta \varepsilon(\text{state})) = \sum_{\text{states}} \prod_{\text{atoms}} R_{\epsilon_1,\epsilon_2}^{\epsilon_3,\epsilon_4} \]

The contribution of a single column of the lattice to the partition function is

\[T_{\epsilon_1'...\epsilon_N'} = \sum_{\nu_1,...,\nu_N \in \{+,-\}} R_{\nu_1 \epsilon_1}^{\nu_2 \epsilon_2'} R_{\nu_2 \epsilon_2}^{\nu_3 \epsilon_3'} \ldots R_{\nu_N \epsilon_N}^{\nu_1 \epsilon_N'} \]
We let $V = \mathbb{C}\langle v_+, v_- \rangle$ and regard $T_{\epsilon_1 \ldots \epsilon_N}$'s as coefficients of a linear operator ("the transfer matrix")

$$T : V \otimes N \rightarrow V \otimes N$$

$$v_{\epsilon_1} \otimes \cdots \otimes v_{\epsilon_N} \mapsto \sum_{\epsilon'_i \in \{+, -\}} T_{\epsilon_1 \ldots \epsilon_N}^{{\epsilon'_1} \ldots {\epsilon'_N}} v_{\epsilon'_1} \otimes \cdots \otimes v_{\epsilon'_N}$$
Transfer matrix

Observation

The coefficients of $T \circ T$ capture the contributions from two consecutive columns; the coefficients of $T \circ T \circ T$ do this for three columns and so on.

Due to the periodic boundary conditions, we have the following Proposition

$$Z_{M,N} = \text{tr}(T^M)$$
Transfer matrix

Observation
The coefficients of $T \circ T$ capture the contributions from two consecutive columns; the coefficients of $T \circ T \circ T$ do this for three columns and so on. Due to the periodic boundary conditions, we have the following

Proposition
$Z_{M,N} = \text{tr}(T^M)$
Let $\lambda_1 \geq \lambda_2 \geq \ldots$ be the eigenvalues of T

$$Z_{M,N} = \text{tr}(T^M) = \lambda_1^M \left(1 + \left(\frac{\lambda_2}{\lambda_1}\right)^M + \ldots\right).$$

So $Z \sim \lambda_1^M$ for $M \gg 0$.

Solving the six-vertex model \rightarrow Solving the eigenvalue problem for T

The eigenvalue problem will simplify once we find a (large) family of operators commuting with T.

Goal

Construct a family of operators commuting with T.
Let $\lambda_1 \geq \lambda_2 \geq \ldots$ be the eigenvalues of T

$$Z_{M,N} = \text{tr}(T^M) = \lambda_1^M \left(1 + \left(\frac{\lambda_2}{\lambda_1}\right)^M + \ldots\right).$$

So $Z \sim \lambda_1^M$ for $M \gg 0$.

Solving the six-vertex model \leadsto Solving the eigenvalue problem for T

The eigenvalue problem will simplify once we find a (large) family of operators commuting with T.

Goal

Construct a family of operators commuting with T.
Let $\lambda_1 \geq \lambda_2 \geq \ldots$ be the eigenvalues of T

$$Z_{M,N} = \text{tr}(T^M) = \lambda_1^M \left(1 + \left(\frac{\lambda_2}{\lambda_1}\right)^M + \ldots\right).$$

So $Z \sim \lambda_1^M$ for $M \gg 0$.

Solving the six-vertex model \leadsto Solving the eigenvalue problem for T

The eigenvalue problem will simplify once we find a (large) family of operators commuting with T.

Goal

Construct a family of operators commuting with T.
Let \(\lambda_1 \geq \lambda_2 \geq \ldots \) be the eigenvalues of \(T \)

\[
Z_{M,N} = \text{tr}(T^M) = \lambda_1^M \left(1 + \left(\frac{\lambda_2}{\lambda_1} \right)^M + \ldots \right).
\]

So \(Z \sim \lambda_1^M \) for \(M \gg 0 \).

Solving the six-vertex model \(\rightsquigarrow \) Solving the eigenvalue problem for \(T \)

The eigenvalue problem will simplify once we find a (large) family of operators commuting with \(T \).

Goal

Construct a family of operators commuting with \(T \).
Let $\lambda_1 \geq \lambda_2 \geq \ldots$ be the eigenvalues of T

$$Z_{M,N} = \text{tr}(T^M) = \lambda_1^M \left(1 + \left(\frac{\lambda_2}{\lambda_1} \right)^M + \ldots \right).$$

So $Z \sim \lambda_1^M$ for $M \gg 0$.

Solving the six-vertex model \approx Solving the eigenvalue problem for T

The eigenvalue problem will simplify once we find a (large) family of operators commuting with T.

Goal

Construct a family of operators commuting with T.
Remark

- The six-vertex model is equivalent (in a rather precise sense - relating the transfer matrix to the Hamiltonian) to the Heisenberg XXZ-chain model.

- This is an example of the quantum/statistical correspondence.

\[(d + 1) - \text{dimensional classical statistical model} \leftrightarrow d - \text{dimensional quantum model}\]

- Under this correspondence, the transfer matrix T is analogous to the infinitesimal time evolution operator $e^{-H\Delta\tau}$.
Remark

The six-vertex model is equivalent (in a rather precise sense - relating the transfer matrix to the Hamiltonian) to the *Heisenberg XXZ-chain* model.

This is an example of the *quantum/statistical* correspondence.

\[(d + 1) – \text{dimensional classical statistical model} \quad \leftrightarrow \quad d – \text{dimensional quantum model}\]

Under this correspondence, the transfer matrix \(T\) is analogous to the infinitesimal time evolution operator \(e^{-H\Delta \tau}\).
Remark

- The six-vertex model is equivalent (in a rather precise sense - relating the transfer matrix to the Hamiltonian) to the *Heisenberg XXZ-chain* model.

- This is an example of the *quantum/statistical* correspondence.

\[(d + 1) - \text{dimensional classical statistical model} \quad \leftrightarrow \quad d - \text{dimensional quantum model}\]

- Under this correspondence, the transfer matrix T is analogous to the infinitesimal time evolution operator $e^{-H\Delta \tau}$.
Transfer matrix

Remark

- The six-vertex model is equivalent (in a rather precise sense - relating the transfer matrix to the Hamiltonian) to the Heisenberg XXZ-chain model.
- This is an example of the quantum/statistical correspondence.

\[(d + 1) - \text{dimensional classical statistical model} \iff d - \text{dimensional quantum model}\]

- Under this correspondence, the transfer matrix \(T\) is analogous to the infinitesimal time evolution operator \(e^{-H\Delta\tau}\).
Working in the same vector space $V = \mathbb{C}\langle v_+, v_- \rangle$, we define

$$R : V \otimes V \rightarrow V \otimes V$$

$$v_{\epsilon_1} \otimes v_{\epsilon_2} \mapsto \sum_{\epsilon'_1, \epsilon'_2 \in \{+, -\}} R^{\epsilon'_1 \epsilon'_2}_{\epsilon_1 \epsilon_2} v_{\epsilon'_1} \otimes v_{\epsilon'_2}$$

This operator ("R-matrix") captures contributions of a single vertex to the partition function. Consider an $(N + 1)$-fold tensor product $V_0 \otimes V_1 \otimes \cdots \otimes V_N$ ($V_i = V$) and let R_{ij} be the operator acting on the $V_i \otimes V_j$ component of this product as R and as identity on any other V_l.
Working in the same vector space $V = \mathbb{C}\langle v_+, v_- \rangle$, we define

$$R : V \otimes V \rightarrow V \otimes V$$

$$v_{\epsilon_1} \otimes v_{\epsilon_2} \mapsto \sum_{\epsilon'_1, \epsilon'_2 \in \{+, -\}} R^{\epsilon_1 \epsilon_2}_{\epsilon'_1 \epsilon'_2} v_{\epsilon'_1} \otimes v_{\epsilon'_2}$$

Consider an $(N + 1)$-fold tensor product $V_0 \otimes V_1 \otimes \cdots \otimes V_N$ ($V_i = V$) and let R_{ij} be the operator acting on the $V_i \otimes V_j$ component of this product as R and as identity on any other V_l.
Working in the same vector space \(V = \mathbb{C}\langle v_+, v_- \rangle \), we define

\[
R : V \otimes V \rightarrow V \otimes V
\]

\[
v_{\epsilon_1} \otimes v_{\epsilon_2} \mapsto \sum_{\epsilon'_1, \epsilon'_2 \in \{+, -\}} R^{\epsilon_1 \epsilon_2 \epsilon'_1 \epsilon'_2} v_{\epsilon'_1} \otimes v_{\epsilon'_2}
\]

Consider an \((N + 1)\)-fold tensor product \(V_0 \otimes V_1 \otimes \cdots \otimes V_N \) \((V_i = V)\) and let \(R_{ij} \) be the operator acting on the \(V_i \otimes V_j \) component of this product as \(R \) and as identity on any other \(V_i \).

\[
R_{0N} \cdots R_{02} R_{01} : V_0 \otimes V_1 \otimes \cdots \otimes V_N \rightarrow V_0 \otimes V_1 \otimes \cdots \otimes V_N
\]
Working in the same vector space $V = \mathbb{C} \langle v_+, v_- \rangle$, we define

$$R : V \otimes V \to V \otimes V$$

$$v_{\epsilon_1} \otimes v_{\epsilon_2} \mapsto \sum_{\epsilon'_1, \epsilon'_2 \in \{+, -\}} R^{\epsilon_1 \epsilon_2}_{\epsilon'_1 \epsilon'_2} v_{\epsilon'_1} \otimes v_{\epsilon'_2}$$

Consider an $(N + 1)$-fold tensor product $V_0 \otimes V_1 \otimes \cdots \otimes V_N$ ($V_i = V$) and let $R_{i,j}$ be the operator acting on the $V_i \otimes V_j$ component of this product as R and as identity on any other V_l.

$$R_{0N} \ldots R_{02} R_{01} : V_0 \otimes (V_1 \otimes \cdots \otimes V_N) \to V_0 \otimes (V_1 \otimes \cdots \otimes V_N)$$
R-matrix

Working in the same vector space $V = \mathbb{C}\langle v_+, v_- \rangle$, we define

\[R : V \otimes V \to V \otimes V \]

\[v_{\epsilon_1} \otimes v_{\epsilon_2} \mapsto \sum_{\epsilon'_1, \epsilon'_2 \in \{+, -\}} R_{\epsilon_1' \epsilon_2'}^{\epsilon_1 \epsilon_2} v_{\epsilon_1'} \otimes v_{\epsilon_2'} \]

Consider an $(N + 1)$-fold tensor product $V_0 \otimes V_1 \otimes \cdots \otimes V_N$ ($V_i = V$) and let R_{ij} be the operator acting on the $V_i \otimes V_j$ component of this product as R and as identity on any other V_l.

\[R_{0N} \cdots R_{02} R_{01} : V_0 \otimes (V_1 \otimes \cdots \otimes V_N) \to V_0 \otimes (V_1 \otimes \cdots \otimes V_N) \]

\[L = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \]

"monodromy matrix"
R-matrix

Working in the same vector space $V = \mathbb{C}\langle v_+, v_- \rangle$, we define

$$R : V \otimes V \rightarrow V \otimes V$$

$$v_{\epsilon_1} \otimes v_{\epsilon_2} \mapsto \sum_{\epsilon'_1, \epsilon'_2 \in \{+,-\}} R_{\epsilon'_1 \epsilon_1 \epsilon'_2 \epsilon_2} v_{\epsilon'_1} \otimes v_{\epsilon'_2}$$

Consider an $(N + 1)$-fold tensor product $V_0 \otimes V_1 \otimes \cdots \otimes V_N$ ($V_i = V$) and let R_{ij} be the operator acting on the $V_i \otimes V_j$ component of this product as R and as identity on any other V_l.

$$R_{0N} \cdots R_{02} R_{01} : V_0 \otimes (V_1 \otimes \cdots \otimes V_N) \rightarrow V_0 \otimes (V_1 \otimes \cdots \otimes V_N)$$

$$L = \begin{bmatrix}
A & B \\
C & D
\end{bmatrix}$$

"monodromy matrix"

$$\text{tr}_{V_0}(R_{0N} \cdots R_{02} R_{01}) = A + D$$
R-matrix

Working in the same vector space $V = \mathbb{C}\langle v_+, v_- \rangle$, we define

$$R : V \otimes V \to V \otimes V$$

$$v_{\epsilon_1} \otimes v_{\epsilon_2} \mapsto \sum_{\epsilon'_1, \epsilon'_2 \in \{+, -\}} R_{\epsilon'_1 \epsilon'_2 \epsilon_1 \epsilon_2}^\epsilon v'_{\epsilon_1} \otimes v'_{\epsilon_2}$$

Consider an $(N + 1)$-fold tensor product $V_0 \otimes V_1 \otimes \cdots \otimes V_N$ ($V_i = V$) and let R_{ij} be the operator acting on the $V_i \otimes V_j$ component of this product as R and as identity on any other V_l.

$$R_{0N} \ldots R_{02} R_{01} : V_0 \otimes (V_1 \otimes \cdots \otimes V_N) \to V_0 \otimes (V_1 \otimes \cdots \otimes V_N)$$

Proposition

$$T = \text{tr}_{V_0}(R_{0N} \ldots R_{02} R_{01})$$
For the six-vertex model, the R-matrix (in the appropriate basis of $V \otimes V$) is

$$R = \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & b & c & 0 \\ 0 & c & b & 0 \\ 0 & 0 & 0 & d \end{bmatrix} \quad (1)$$

Theorem

Let R and R' be matrices of the form (1). Define $T = \text{tr}(R_{0N} \ldots R_{01})$ and $T' = \text{tr}(R'_{0N} \ldots R'_{01})$. If there is a matrix R'' of the form (1) such that

$$R''_{12} R'_{13} R_{23} = R_{23} R'_{13} R''_{12} \quad (\text{on } V \otimes V \otimes V) \quad (2)$$

then $[T, T'] = 0$. Equation (2) is known as the quantum Yang-Baxter equation.
R-matrix

Example

For the six-vertex model, the R-matrix (in the appropriate basis of $V \otimes V$) is

$$R = \begin{bmatrix}
d & 0 & 0 & 0 \\
0 & b & c & 0 \\
0 & c & b & 0 \\
0 & 0 & 0 & d
\end{bmatrix} \tag{1}$$

Theorem

Let R and R' be matrices of the form (1). Define $T = \text{tr}(R_{0N} \ldots R_{01})$ and $T' = \text{tr}(R'_{0N} \ldots R'_{01})$. If there is a matrix R'' of the form (1) such that

$$R''_{12}R'_{13}R_{23} = R_{23}R'_{13}R''_{12} \quad (\text{on } V \otimes V \otimes V) \tag{2}$$

then $[T, T'] = 0$.

Equation (2) is known as the quantum Yang-Baxter equation.
Theorem

Let R and R' be matrices of the form (1). Define $T = \text{tr}_{V_0}(R_{0N} \ldots R_{01})$ and $T' = \text{tr}_{V_0'}(R'_{0N} \ldots R'_{01})$. If there is a matrix R'' of the form (1) such that

$$R''_{12}R'_{13}R_{23} = R_{23}R'_{13}R''_{12} \quad (\text{on } V \otimes V \otimes V) \quad (2)$$

then $[T, T'] = 0$.

Plan of the proof.

- Repeatedly using QYBE, show that

 $$R''_{12}L'L_{12}^{''-1} = LL',$$

 where $L = R_{0N} \ldots R_{01}$, $L' = R'_{0N} \ldots R'_{01}$ are the monodromy operators acting on $V_0 \otimes V_0' \otimes V_1 \otimes \ldots \otimes V_N$.

- Take the trace of the above identity over $V_0 \otimes V_0'$ and use the previous proposition.
Theorem

Let R and R' be matrices of the form (1). Define $T = \text{tr}_{V_0} (R_{0N} \ldots R_{01})$ and $T' = \text{tr}_{V'_0} (R'_{0N} \ldots R'_{01})$. If there is a matrix R'' of the form (1) such that

\[R''_{12} R'_{13} R_{23} = R_{23} R'_{13} R''_{12} \quad (\text{on } V \otimes V \otimes V) \quad (2) \]

then $[T, T'] = 0$.

Plan of the proof.

- Repeatedly using QYBE, show that
 \[R''_{12} L' L R''_{12}^{-1} = LL' , \]
 where $L = R_{0N} \ldots R_{01}$, $L' = R'_{0'N} \ldots R'_{0'1}$ are the monodromy operators acting on $V_0 \otimes V'_0 \otimes V_1 \otimes \ldots \otimes V_N$.
- Take the trace of the above identity over $V_0 \otimes V'_0$ and use the previous proposition.
Theorem

Let R and R' be matrices of the form (1). Define $T = tr_{V_0}(R_{0N} \ldots R_{01})$ and $T' = tr_{V_0'}(R'_{0N} \ldots R'_{01})$. If there is a matrix R'' of the form (1) such that

$$R''_{12}R'_{13}R_{23} = R_{23}R'_{13}R''_{12} \quad (on \ V \otimes V \otimes V) \quad (2)$$

then $[T, T'] = 0$.

Plan of the proof.

- Repeatedly using QYBE, show that
 $$R''_{12}L'L R''_{12}^{-1} = LL',$$
 where $L = R_{0N} \ldots R_{01}$, $L' = R'_{0'N} \ldots R'_{0'1}$ are the monodromy operators acting on $V_0 \otimes V_{0'} \otimes V_1 \otimes \ldots V_N$.

- Take the trace of the above identity over $V_0 \otimes V_{0'}$ and use the previous proposition.
Integrability

Definition

A hamiltonian dynamical system is said to be *completely integrable* if it has the maximal possible number of conserved quantities in involution (by Liouville, it’s $\frac{1}{2} \dim(\text{phase space})$).

By analogy, we would call a lattice model *integrable* if it admits a “large” family of operators commuting with each other and with T.

Due to the previous theorem, that can be formalized as follows:

Definition

A lattice model is *integrable* if there is a family of R-matrices depending on parameters λ, μ, ν such that for any μ, ν, there is a λ such that

$$R_{12}(\lambda)R_{13}(\mu)R_{23}(\nu) = R_{23}(\nu)R_{13}(\mu)R_{12}(\lambda)$$
A hamiltonian dynamical system is said to be completely integrable if it has the maximal possible number of conserved quantities in involution (by Liouville, it’s $\frac{1}{2} \dim(\text{phase space})$).

By analogy, we would call a lattice model integrable if it admits a “large” family of operators commuting with each other and with T.

Due to the previous theorem, that can be formalized as follows:

A lattice model is integrable if there is a family of R-matrices depending on parameters λ, μ, ν such that for any μ, ν, there is a λ such that

$$R_{12}(\lambda) R_{13}(\mu) R_{23}(\nu) = R_{23}(\nu) R_{13}(\mu) R_{12}(\lambda)$$
Integrability

Definition

A hamiltonian dynamical system is said to be *completely integrable* if it has the maximal possible number of conserved quantities in involution (by Liouville, it’s $\frac{1}{2} \dim(\text{phase space})$).

By analogy, we would call a lattice model *integrable* if it admits a “large” family of operators commuting with each other and with T.

Due to the previous theorem, that can be formalized as follows:

Definition

A lattice model is *integrable* if there is a family of R-matrices depending on parameters λ, μ, ν such that for any μ, ν, there is a λ such that

$$R_{12}(\lambda)R_{13}(\mu)R_{23}(\nu) = R_{23}(\nu)R_{13}(\mu)R_{12}(\lambda)$$
Quantum integrability

In general, a QYBE is a system of 64 non-linear algebraic equations with 16 variables. In case of the six-vertex model, it boils down to three equations that can be solved explicitly. A family of solutions is given by

\[R = \begin{bmatrix}
\rho \text{sh}(\eta + u) & 0 & 0 & 0 \\
0 & \rho \text{sh}(u) & \rho \text{sh}(\eta) & 0 \\
0 & \rho \text{sh}(\eta) & \rho \text{sh}(u) & 0 \\
0 & 0 & 0 & \rho \text{sh}(\eta + u)
\end{bmatrix} \]

Question

Is there a systematic way of constructing \(R \)-matrices (=integrable lattice models) for the cases other than six- or eight-vertex models?

Answer (V. Drinfeld, M. Jimbo and others) Yes.
Quantum integrability

In general, a QYBE is a system of 64 non-linear algebraic equations with 16 variables. In case of the six-vertex model, it boils down to three equations that can be solved explicitly. A family of solutions is given by

\[
R = \begin{bmatrix}
\rho \text{sh}(\eta + u) & 0 & 0 & 0 \\
0 & \rho \text{sh}(u) & \rho \text{sh}(\eta) & 0 \\
0 & \rho \text{sh}(\eta) & \rho \text{sh}(u) & 0 \\
0 & 0 & 0 & \rho \text{sh}(\eta + u)
\end{bmatrix}
\]

Question

Is there a systematic way of constructing R-matrices (=integrable lattice models) for the cases other than six- or eight-vertex models?

Answer (V. Drinfeld, M. Jimbo and others) Yes.
Quantum integrability

In general, a QYBE is a system of 64 non-linear algebraic equations with 16 variables.
In case of the six-vertex model, it boils down to three equations that can be solved explicitly.
A family of solutions is given by

\[
R = \begin{bmatrix}
\rho \text{sh}(\eta + u) & 0 & 0 & 0 \\
0 & \rho \text{sh}(u) & \rho \text{sh}(\eta) & 0 \\
0 & \rho \text{sh}(\eta) & \rho \text{sh}(u) & 0 \\
0 & 0 & 0 & \rho \text{sh}(\eta + u)
\end{bmatrix}
\]

Similarly, there is a family of solutions of the QYBE for the eight-vertex model given in terms of elliptic functions.

Question

Is there a systematic way of constructing \(R \)-matrices (integrable lattice models) for the cases other than six- or eight-vertex models?
Quantum integrability

In general, a QYBE is a system of 64 non-linear algebraic equations with 16 variables. In case of the six-vertex model, it boils down to three equations that can be solved explicitly. A family of solutions is given by

\[R = \begin{bmatrix}
\rho \text{sh}(\eta + u) & 0 & 0 & 0 \\
0 & \rho \text{sh}(u) & \rho \text{sh}(\eta) & 0 \\
0 & \rho \text{sh}(\eta) & \rho \text{sh}(u) & 0 \\
0 & 0 & 0 & \rho \text{sh}(\eta + u)
\end{bmatrix} \]

Question

Is there a systematic way of constructing \(R \)-matrices (=integrable lattice models) for the cases other than six- or eight-vertex models?

Answer (V. Drinfeld, M. Jimbo and others) Yes.
Quantum integrability

In general, a QYBE is a system of 64 non-linear algebraic equations with 16 variables. In case of the six-vertex model, it boils down to three equations that can be solved explicitly. A family of solutions is given by

\[
R = \begin{bmatrix}
\rho \text{sh}(\eta + u) & 0 & 0 & 0 \\
0 & \rho \text{sh}(u) & \rho \text{sh}(\eta) & 0 \\
0 & \rho \text{sh}(\eta) & \rho \text{sh}(u) & 0 \\
0 & 0 & 0 & \rho \text{sh}(\eta + u)
\end{bmatrix}
\]

Question

Is there a systematic way of constructing \(R\)-matrices (=integrable lattice models) for the cases other than six- or eight-vertex models?

Answer (V. Drinfeld, M. Jimbo and others) Yes.
Hopf algebras and quantum groups

Definition

A coalgebra over a commutative ring k is a k-module A equipped with a comultiplication map $\Delta : A \rightarrow A \otimes A$ and a counit $A \rightarrow k$ subject to coassociativity and counitality conditions ("diagrammatical" duals of the usual associativity and unit conditions).

Definition

A Hopf algebra over k is a k-module A such that

- A is both unital algebra and coalgebra;
- (co)multiplication and (co)unit are homomorphisms of coalgebras (algebras);
- there is a bijective k-linear map S called the antipode, such that $\mu \otimes (S \otimes \text{id}) \Delta = \text{id} \otimes \epsilon$ and $\mu \otimes (\text{id} \otimes S) \Delta = \text{id} \otimes \epsilon$.
Definition

A coalgebra over a commutative ring k is a k-module A equipped with a comultiplication map $\Delta : A \to A \otimes A$ and a counit $A \to k$ subject to coassociativity and counitality conditions ("diagrammatical" duals of the usual associativity and unit conditions).

Definition

A Hopf algebra over k is a k-module A such that

- A is both unital algebra and coalgebra;
- (co)multiplication and (co)unit are homomorphisms of coalgebras (algebras);
- there is a bijective k-linear map S, called the antipode, such that $\mu \otimes (S \otimes id) \otimes \Delta = i \otimes \epsilon$ and $\mu \otimes (id \otimes S) \otimes \Delta = i \otimes \epsilon$.
Hopf algebras and quantum groups

Definition

A coalgebra over a commutative ring k is a k-module A equipped with a comultiplication map $\Delta: A \rightarrow A \otimes A$ and a counit $A \rightarrow k$ subject to coassociativity and counitality conditions ("diagrammatical" duals of the usual associativity and unit conditions).

Definition

A Hopf algebra over k is a k-module A such that

- A is both unital algebra and coalgebra;
- (co)multiplication and (co)unit are homomorphism of coalgebras (algebras);
- there is a bijective k-linear map S, called the antipode, such that $\mu \otimes (S \otimes id) \otimes \Delta = i \otimes \epsilon$ and $\mu \otimes (id \otimes S) \otimes \Delta = i \otimes \epsilon$.
Hopf algebras and quantum groups

Definition

A coalgebra over a commutative ring \(k \) is a \(k \)-module \(A \) equipped with a comultiplication map \(\Delta : A \to A \otimes A \) and a counit \(A \to k \) subject to coassociativity and counitality conditions ("diagrammatical" duals of the usual associativity and unit conditions).

Definition

A Hopf algebra over \(k \) is a \(k \)-module \(A \) such that

- \(A \) is both unital algebra and coalgebra;
- (co)multiplication and (co)unit are homomorphism of coalgebras (algebras);
- there is a bijective \(k \)-linear map \(S \), called the antipode, such that \(\mu \otimes (S \otimes \text{id}) \otimes \Delta = i \otimes \epsilon \) and \(\mu \otimes (\text{id} \otimes S) \otimes \Delta = i \otimes \epsilon \).
Hopf algebras and quantum groups

Definition

A coalgebra over a commutative ring k is a k-module A equipped with a comultiplication map $\Delta : A \to A \otimes A$ and a counit $A \to k$ subject to coassociativity and counitality conditions ("diagrammatical" duals of the usual associativity and unit conditions).

Definition

A Hopf algebra over k is a k-module A such that

- A is both unital algebra and coalgebra;
- (co)multiplication and (co)unit are homomorphism of coalgebras (algebras);
- there is a bijective k-linear map S, called the antipode, such that $\mu \otimes (S \otimes id) \otimes \Delta = i \otimes \epsilon$ and $\mu \otimes (id \otimes S) \otimes \Delta = i \otimes \epsilon$.
Hopf algebras and quantum groups

Example

1. For a group G, a group algebra $k[G]$ equipped with a coproduct $\Delta(g) = g \otimes g$ and an antipode $S(g) = g^{-1}$ is a Hopf algebra.

2. Let G be a finite group. The algebra of k-functions $\mathcal{F}(G)$ on G is a commutative Hopf algebra with a comultiplication is $\Delta(f)(g_1, g_2) = f(g_1 g_2)$ and an antipode $S(f)(g) = f(g^{-1})$. A variation of this construction exists for compact topological groups.

3. Let \mathfrak{g} be a Lie algebra over a field k. The universal enveloping algebra $U(\mathfrak{g})$ acquires a structure of a Hopf algebra via $\Delta(x) = x \otimes 1 + 1 \otimes x$, $S(x) = -x$, $\epsilon(x) = 0$ for $x \in \mathfrak{g}$.
Hopf algebras and quantum groups

Example

1. For a group G, a group algebra $k[G]$ equipped with a coproduct $\Delta(g) = g \otimes g$ and an antipode $S(g) = g^{-1}$ is a Hopf algebra.

2. Let G be a finite group. The algebra of k-functions $\mathcal{F}(G)$ on G is a commutative Hopf algebra with a comultiplication is $\Delta(f)(g_1, g_2) = f(g_1g_2)$ and an antipode $S(f)(g) = f(g^{-1})$. A variation of this construction exists for compact topological groups.

3. Let \mathfrak{g} be a Lie algebra over a field k. The universal enveloping algebra $U(\mathfrak{g})$ acquires a structure of a Hopf algebra via $\Delta(x) = x \otimes 1 + 1 \otimes x$, $S(x) = -x$, $\epsilon(x) = 0$ for $x \in \mathfrak{g}$.
Example

1. For a group G, a group algebra $k[G]$ equipped with a coproduct $\Delta(g) = g \otimes g$ and an antipode $S(g) = g^{-1}$ is a Hopf algebra.

2. Let G be a finite group. The algebra of k-functions $\mathcal{F}(G)$ on G is a commutative Hopf algebra with a comultiplication is $\Delta(f)(g_1, g_2) = f(g_1g_2)$ and an antipode $S(f)(g) = f(g^{-1})$. A variation of this construction exists for compact topological groups.

3. Let \mathfrak{g} be a Lie algebra over a field k. The universal enveloping algebra $U(\mathfrak{g})$ acquires a structure of a Hopf algebra via $\Delta(x) = x \otimes 1 + 1 \otimes x$, $S(x) = -x$, $\epsilon(x) = 0$ for $x \in \mathfrak{g}$.
Example

1. For a group \(G \), a group algebra \(k[G] \) equipped with a coproduct \(\Delta(g) = g \otimes g \) and an antipode \(S(g) = g^{-1} \) is a Hopf algebra.

2. Let \(G \) be a finite group. The algebra of \(k \)-functions \(\mathcal{F}(G) \) on \(G \) is a commutative Hopf algebra with a comultiplication is \(\Delta(f)(g_1, g_2) = f(g_1g_2) \) and an antipode \(S(f)(g) = f(g^{-1}) \).

A variation of this construction exists for compact topological groups.

3. Let \(\mathfrak{g} \) be a Lie algebra over a field \(k \). The universal enveloping algebra \(U(\mathfrak{g}) \) acquires a structure of a Hopf algebra via \(\Delta(x) = x \otimes 1 + 1 \otimes x \), \(S(x) = -x \), \(\epsilon(x) = 0 \) for \(x \in \mathfrak{g} \).
A *representation* of a Hopf algebra A is a module V over the *algebra* A.

A nice property: two representations V, W of a Hopf algebra A can be tensor-multiplied:

$$a \cdot (v \otimes w) = \Delta(a).(v \otimes w)$$
A representation of a Hopf algebra A is a module V over the algebra A.

A nice property: two representations V, W of a Hopf algebra A can be tensor-multiplied:

$$a \cdot (v \otimes w) = \Delta(a).(v \otimes w)$$
Definition

- A Hopf algebra A is called **cocommutative** if
 \[\Delta^{op} := \sigma \otimes \Delta = \Delta, \]
 where σ is the transposition
 \[v \otimes u \mapsto u \otimes v. \]

- A Hopf algebra A is called **almost cocommutative** if there exists an invertible element $R \in A \otimes A$ such that
 \[\Delta^{op} = R \Delta R^{-1}. \]

- A **quasitriangular** Hopf algebra (=a quantum group) is an almost cocommutative Hopf algebra (A, R) such that
 \[(\Delta \otimes id)(R) = R_{13} R_{23}, \quad (id \otimes \Delta)(R) = R_{13} R_{12} \]
 where
 \[R_{13} := (\sigma \otimes id)(R), \quad R_{12} := R \otimes 1, \quad R_{23} = 1 \otimes R. \]
Definition

- A Hopf algebra A is called *cocommutative* if $\Delta^{\text{op}} := \sigma \otimes \Delta = \Delta$, where σ is the transposition $v \otimes u \mapsto u \otimes v$.

- A Hopf algebra A is called *almost cocommutative* if there exists an invertible element $R \in A \otimes A$ such that $\Delta^{\text{op}} = R \Delta R^{-1}$.

- A *quasitriangular* Hopf algebra (a quantum group) is an almost cocommutative Hopf algebra (A, R) such that

 $$(\Delta \otimes id)(R) = R_{13} R_{23}, \quad (id \otimes \Delta)(R) = R_{13} R_{12}$$

where $R_{13} := (\sigma \otimes id)(R)$, $R_{12} := R \otimes 1$, $R_{23} = 1 \otimes R$.

A Hopf algebra A is called **cocommutative** if
\[\Delta^{\text{op}} := \sigma \otimes \Delta = \Delta, \] where σ is the transposition $v \otimes u \mapsto u \otimes v$.

A Hopf algebra A is called **almost cocommutative** if there exists an invertible element $\mathcal{R} \in A \otimes A$ such that
\[\Delta^{\text{op}} = \mathcal{R} \Delta \mathcal{R}^{-1}. \]

A **quasitriangular** Hopf algebra (=a quantum group) is an almost cocommutative Hopf algebra (A, \mathcal{R}) such that
\[(\Delta \otimes \text{id})(\mathcal{R}) = \mathcal{R}_{13} \mathcal{R}_{23}, \quad (\text{id} \otimes \Delta)(\mathcal{R}) = \mathcal{R}_{13} \mathcal{R}_{12} \]
where $\mathcal{R}_{13} := (\sigma \otimes \text{id})(\mathcal{R})$, $\mathcal{R}_{12} := \mathcal{R} \otimes 1$, $\mathcal{R}_{23} = 1 \otimes \mathcal{R}$.
Definition

- A Hopf algebra A is called cocommutative if $\Delta^{op} := \sigma \otimes A = \Delta$, where σ is the transposition $v \otimes u \mapsto u \otimes v$.

- A Hopf algebra A is called almost cocommutative if there exists an invertible element $R \in A \otimes A$ such that $\Delta^{op} = R \Delta R^{-1}$.

- A quasitriangular Hopf algebra (=a quantum group) is an almost cocommutative Hopf algebra (A, R) such that

\[(\Delta \otimes id)(R) = R_{13} R_{23}, \quad (id \otimes \Delta)(R) = R_{13} R_{12}\]

where $R_{13} := (\sigma \otimes id)(R), R_{12} := R \otimes 1, R_{23} = 1 \otimes R$.
Hopf algebras and quantum groups

What is the meaning of the quasitriangular condition?
It’s mainly due to the following

Theorem

Let A be a Hopf algebra. Then the category of A-modules (=$representations of A) is braided (=has intertwiners) if and only if A is quasitriangular.

What quantum groups have to do with QYBE?

Proposition
Let (A, \mathcal{R}) be a quasitriangular Hopf algebra. Then the following form of QYBE holds in $A^\otimes 3$:

$$\mathcal{R}_{12}\mathcal{R}_{13}\mathcal{R}_{23} = \mathcal{R}_{23}\mathcal{R}_{13}\mathcal{R}_{12}$$

An upshot: finite-dimensional representations of a quantum group give rise to an \mathcal{R}-matrices.
For this reason, \mathcal{R} is sometimes called a universal \mathcal{R}-matrix.
Hopf algebras and quantum groups

What is the meaning of the quasitriangular condition? It’s mainly due to the following

Theorem

Let A be a Hopf algebra. Then the category of A-modules ($=\text{representations of } A$) is braided ($=\text{has intertwiners}$) if and only if A is quasitriangular.

What quantum groups have to do with QYBE?

Proposition

Let (A, \mathcal{R}) be a quasitriangular Hopf algebra. Then the following form of QYBE holds in $A^{\otimes 3}$:

$$\mathcal{R}_{12}\mathcal{R}_{13}\mathcal{R}_{23} = \mathcal{R}_{23}\mathcal{R}_{13}\mathcal{R}_{12}$$

An upshot: finite-dimensional representations of a quantum group give rise to an \mathcal{R}-matrices.

For this reason, \mathcal{R} is sometimes called a **universal \mathcal{R}-matrix**.
Hopf algebras and quantum groups

What is the meaning of the quasitriangular condition? It’s mainly due to the following

Theorem

Let A be a Hopf algebra. Then the category of A-modules (=representations of A) is braided (=has intertwiners) if and only if A is quasitriangular.

What quantum groups have to do with QYBE?

Proposition

Let (A, \mathcal{R}) be a quasitriangular Hopf algebra. Then the following form of QYBE holds in $A \otimes^3$:

\[
\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23} = \mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}
\]

An upshot: finite-dimensional representations of a quantum group give rise to an R-matrices. For this reason, \mathcal{R} is sometimes called a universal R-matrix.
What is the meaning of the quasitriangular condition? It’s mainly due to the following

Theorem

Let A be a Hopf algebra. Then the category of A-modules (=representations of A) is braided (=has intertwiners) if and only if A is quasitriangular.

What quantum groups have to do with QYBE?

Proposition

Let (A, \mathcal{R}) be a quasitriangular Hopf algebra. Then the following form of QYBE holds in $A^\otimes 3$:

$$\mathcal{R}_{12}\mathcal{R}_{13}\mathcal{R}_{23} = \mathcal{R}_{23}\mathcal{R}_{13}\mathcal{R}_{12}$$

An upshot: finite-dimensional representations of a quantum group give rise to an R-matrices. For this reason, \mathcal{R} is sometimes called a universal R-matrix.
Hopf algebras and quantum groups

What is the meaning of the quasitriangular condition? It’s mainly due to the following

Theorem

Let A *be a Hopf algebra. Then the category of* A-*modules (=representations of* A *) is braided (=has intertwiners) if and only if* A *is quasitriangular.*

What quantum groups have to do with QYBE?

Proposition

Let (A, R) *be a quasitriangular Hopf algebra. Then the following form of QYBE holds in* $A^\otimes 3$:

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$$

An upshot: finite-dimensional representations of a quantum group give rise to an R-matrices. *For this reason,* R *is sometimes called a universal* R-*matrix.*
Quantum groups from affine Lie algebras

A rich source of quantum groups comes from affine Lie algebras.

- Start with a simple finite-dimensional Lie algebra \mathfrak{g}.
- Consider a central extension $\hat{\mathfrak{g}}$ of its loop algebra $\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$.
- There is a way to deform the universal enveloping algebra of $\hat{\mathfrak{g}}$ into the so-called quantum UEA $U_q(\hat{\mathfrak{g}})$, which has a structure of a quantum group.
- Under favorable conditions, one can obtain a family of $U_q(\hat{\mathfrak{g}})$-modules V_ζ, $\zeta \in \mathbb{C}$ and the universal R-matrix of $U_q(\hat{\mathfrak{g}})$ would give rise to the intertwining operators

$$R(\zeta_1, \zeta_2) : V_{\zeta_1} \otimes V_{\zeta_2} \to V_{\zeta_2} \otimes V_{\zeta_1}.$$

- These intertwiners satisfy the QYBE. Thus we got a family of R-matrices.
Quantum groups from affine Lie algebras

A rich source of quantum groups comes from affine Lie algebras.

- Start with a simple finite-dimensional Lie algebra \(\mathfrak{g} \).
- Consider a central extension \(\hat{\mathfrak{g}} \) of its loop algebra \(\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \).
- There is a way to deform the universal enveloping algebra of \(\hat{\mathfrak{g}} \) into the so-called quantum UEA \(U_q(\hat{\mathfrak{g}}) \), which has a structure of a quantum group.
- Under favorable conditions, one can obtain a family of \(U_q(\hat{\mathfrak{g}}) \)-modules \(V_{\zeta} \), \(\zeta \in \mathbb{C} \) and the universal \(R \)-matrix of \(U_q(\hat{\mathfrak{g}}) \) would give rise to the intertwining operators

\[
R(\zeta_1, \zeta_2) : V_{\zeta_1} \otimes V_{\zeta_2} \rightarrow V_{\zeta_2} \otimes V_{\zeta_1}.
\]

- These intertwiners satisfy the QYBE. Thus we got a family of \(R \)-matrices.
Quantum groups from affine Lie algebras

A rich source of quantum groups comes from affine Lie algebras.

- Start with a simple finite-dimensional Lie algebra \mathfrak{g}.
- Consider a central extension $\hat{\mathfrak{g}}$ of its loop algebra $\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$.
- There is a way to deform the universal enveloping algebra of $\hat{\mathfrak{g}}$ into the so-called quantum UEA $U_q(\hat{\mathfrak{g}})$, which has a structure of a quantum group.
- Under favorable conditions, one can obtain a family of $U_q(\hat{\mathfrak{g}})$-modules V_ζ, $\zeta \in \mathbb{C}$ and the universal R-matrix of $U_q(\hat{\mathfrak{g}})$ would give rise to the intertwining operators

$$R(\zeta_1, \zeta_2) : V_{\zeta_1} \otimes V_{\zeta_2} \to V_{\zeta_2} \otimes V_{\zeta_1}.$$

- These intertwiners satisfy the QYBE. Thus we got a family of R-matrices.
Quantum groups from affine Lie algebras

A rich source of quantum groups comes from affine Lie algebras.

- Start with a simple finite-dimensional Lie algebra \mathfrak{g}.
- Consider a central extension $\hat{\mathfrak{g}}$ of its loop algebra $\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$.
- There is a way to deform the universal enveloping algebra of $\hat{\mathfrak{g}}$ into the so-called quantum UEA $U_q(\hat{\mathfrak{g}})$, which has a structure of a quantum group.
- Under favorable conditions, one can obtain a family of $U_q(\hat{\mathfrak{g}})$-modules V_ζ, $\zeta \in \mathbb{C}$ and the universal R-matrix of $U_q(\hat{\mathfrak{g}})$ would give rise to the intertwining operators

$$R(\zeta_1, \zeta_2) : V_{\zeta_1} \otimes V_{\zeta_2} \rightarrow V_{\zeta_2} \otimes V_{\zeta_1}.$$

- These intertwiners satisfy the QYBE. Thus we got a family of R-matrices.
Quantum groups from affine Lie algebras

A rich source of quantum groups comes from affine Lie algebras.

- Start with a simple finite-dimensional Lie algebra \(\mathfrak{g} \).
- Consider a central extension \(\hat{\mathfrak{g}} \) of its loop algebra \(\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \).
- There is a way to deform the universal enveloping algebra of \(\hat{\mathfrak{g}} \) into the so-called quantum UEA \(U_q(\hat{\mathfrak{g}}) \), which has a structure of a quantum group.
- Under favorable conditions, one can obtain a family of \(U_q(\hat{\mathfrak{g}}) \)-modules \(V_\zeta \), \(\zeta \in \mathbb{C} \) and the universal \(R \)-matrix of \(U_q(\hat{\mathfrak{g}}) \) would give rise to the intertwining operators

\[
R(\zeta_1, \zeta_2) : V_{\zeta_1} \otimes V_{\zeta_2} \to V_{\zeta_2} \otimes V_{\zeta_1}.
\]

- These intertwiners satisfy the QYBE. Thus we got a family of \(R \)-matrices.
Example

The above construction applied to \mathfrak{sl}_2 produces R-matrices of the six-vertex model.