'Where shall I begin, please your Majesty?' he asked.
'Begin at the beginning,' the King said gravely,
'and go on till you come to the end: then stop,'
Lewis Carroll
Alice’s Adventures in Wonderland

Worksheet 1

1. Given vectors \(\mathbf{u}, \mathbf{v} \) and \(\mathbf{w} \), draw the vectors
a) \(\mathbf{u} + \mathbf{w} \);
 b) \(\mathbf{u} + \mathbf{v} + \mathbf{w} \);
 c) \(\mathbf{v} - \mathbf{w} \);
 d) \(-\frac{1}{2} \mathbf{u} + 2 \mathbf{w} \);
 e) \(\mathbf{u} - \mathbf{v} + \mathbf{u} - \mathbf{v} + \cdots - \mathbf{v} + \mathbf{u} \);

2. Let \(\triangle ABC \) be a triangle with medians \(AA', BB' \) and \(CC' \).
Prove that
a) \(AA' = \frac{1}{2}(AB + AC) \);
 b) \(AA' + BB' + CC' = 0 \).

3. \(\square ABCD \) is a parallelogram with the vertices \(A(-6,-1), B(1,2), D(-3,-2) \). Find the coordinates of the point \(C \).
4. Determine if the triangle ABC with $A = (1, 2, 3)$, $B = (2, 1, 3)$, $C = (3, 1, 2)$, is obtuse-angled.

$\angle ABC > \frac{\pi}{2}$.

5. Find the angle between the main diagonal of a cube and the diagonal of one of its faces.

6. (The Converse Pythagorean Theorem)
Let ABC be a triangle such that $|AB|^2 + |BC|^2 = |AC|^2$. Show that ABC must be a right triangle.