Worksheet 7

Geometric interpretation of a double integral. The double integral \(\int \int_D f(x, y) \, dA \) of a non-negative function \(f = f(x, y) \) is equal to the volume of a solid lying over the region \(D \) under the surface \(z = f(x, y) \).

Physical interpretation of a double integral. Let \(D \) be a thin plate contained in the \(xy \)-plane. If \(f = f(x, y) \) is a function that gives the area density of the plate at point \((x, y) \), then the double integral \(\int \int_D f(x, y) \, dA \) is equal to the total mass of the plate.

1. Find the volume of the solid \(W \).

 a) The solid \(W \) is the solid bounded by the paraboloid \(z = x^2 + y^2 \) and the planes \(x = 0, \ y = 0, \ z = 0, \ x + y = 1 \).

 Solution. That is how the given solid looks like:

 ![Graph of the solid]

 It is the solid lying under the graph of the function \(z(x, y) = x^2 + y^2 \) over the triangle

 \[0 \leq x \leq 1, \quad 0 \leq y \leq 1 - x \]

 Thus the volume is equal to

 \[
 \int \int_D x^2 + y^2 \, dA = \int_0^1 \int_0^{1-x} x^2 + y^2 \, dy \, dx = \int_0^1 \left(x^2 y + \frac{y^3}{3} \right) \bigg|_{y=0}^{y=1-x} \, dx
 \]

 \[
 = \int_0^1 x^2(1 - x) + \frac{(1 - x)^3}{3} \, dx = \frac{1}{6}.
 \]
b) The solid W is the solid bounded by the surface $x^2 + y^2 = 2y$ and the planes $z = y, z = 0$.

Hint: Completing the square in the first equation might be helpful.

In order to see what surface is defined by the equation $x^2 + y^2 = 2y$, we complete the square (we are reducing it to the canonical form):

\[
x^2 + (y^2 - 2y) = 0 \\
x^2 + (y^2 - 2y + 1) = 1 \\
x^2 + (y - 1)^2 = 1
\]

The equation $x^2 + (y - 1)^2 = 1$ defines a circular cylinder of radius 1 whose axis is vertical and passes through the point $(0, 1)$ on the xy-plane. The planes $z = y$ and $z = 0$ cut a certain piece of this cylinder off. So the given solid looks as follows:

![Diagram of the solid W](image)

It can be described by the inequalities

\[-1 \leq x \leq 1, \quad 1 - \sqrt{1 - x^2} \leq y \leq 1 + \sqrt{1 - x^2}\]

To find the volume, we evaluate the integral

\[
\int \int_D y \, dA = \int \int_{-1}^{1} \int_{1-\sqrt{1-x^2}}^{1+\sqrt{1-x^2}} y \, dy \, dx = \int_{-1}^{1} \frac{y^2}{2} \bigg|_{y=1-\sqrt{1-x^2}}^{y=1+\sqrt{1-x^2}} dx = 2 \int_{-1}^{1} \sqrt{1-x^2} \, dx.
\]

To compute the last integral, one can make the standard substitution $x = \sin \theta$ or use the geometric meaning of a definite integral. Namely, $\int_{-1}^{1} \sqrt{1-x^2} \, dx$ is equal to the area under the curve $y = \sqrt{1-x^2}$ over the interval $[-1, 1]$. The curve $y = \sqrt{1-x^2}$ is the upper half-circle of radius 1. Thus the area is equal to $\frac{\pi}{2}$. Then

\[
\int \int_D y \, dA = \pi.
\]
2. Fill in the blanks.

\[
\int_{\frac{1}{2}}^{1} \int_{2^{x-1}}^{\cdots} f(x, y) \, dy \, dx = \int_{0}^{\cdots} \int_{y}^{\cdots} f(x, y) \, dx \, dy
\]

Solution. From the given equality, we deduce that the domain of integration \(D \) is bounded by the curves \(y = 2^{x} - 1 \), \(x = y \). That is how it looks like:

Thus

\[
\int_{0}^{1} \int_{2^{x-1}}^{x} f(x, y) \, dy \, dx = \int_{0}^{1} \frac{\ln(y+1)}{\ln 2} \int_{y}^{\cdots} f(x, y) \, dx \, dy.
\]

3. A plate has the shape of the square \(0 \leq x \leq 1 \), \(0 \leq y \leq 1 \). The area density of the material at point \((x, y) \) is equal to \(\rho(x, y) = \frac{y}{(1+y^2)^2} \) units. We cut the plate into two pieces along the curve \(y = \sqrt{x} \). Which of these pieces is heavier?

Solution. The mass of the upper part is given by the integral

\[
\int_{\text{upper region}} \int \frac{y}{(1+y^2)^2} \, dA
\]

The upper region is determined by the inequalities

\[
0 \leq x \leq 1, \quad \sqrt{x} \leq y \leq 1.
\]
We compute
\[
\int \int_{\text{upper region}} \frac{y}{(1 + y^2)^2} \, dA = \int_0^1 \left(\int_0^1 \frac{y}{(1 + y^2)^2} \, dy \right) \, dx = \frac{1}{2} \int_0^1 \left(\int_0^2 \frac{1}{u^2} \, du \right) \, dx
\]
\[
= \frac{1}{2} \int_0^1 \left(-\frac{1}{u} \right)_{u=1+x} \, dx = \frac{1}{2} \int_0^1 \left(\frac{1}{1+x} - \frac{1}{2} \right) \, dx = \frac{1}{2} \ln 2 - \frac{1}{4}.
\]

The mass of the lower part is equal to the total mass of the plate with the mass of the upper part subtracted. We compute

Total mass = \[
\int \int_{0}^{1} \int_{0}^{1} \frac{y}{(1 + y^2)^2} \, dy \, dx = \int_0^1 \left(\int_0^1 \left(-\frac{1}{u} \right)_{u=1+x} \, du \right) \, dx = \int_0^1 \left(\frac{1}{4} \right) \, dx = \frac{1}{4}.
\]

Hence, the mass of the lower part is equal to

\[
\frac{1}{4} - \left(\frac{1}{2} \ln 2 - \frac{1}{4} \right) = \frac{1}{2} - \frac{1}{2} \ln 2 \text{ units}.
\]

We observe that \(\frac{1}{2} - \frac{1}{2} \ln 2 > \frac{1}{2} \ln 2 - \frac{1}{4} \). Thus the lower part is heavier.

Triple integral

4. Sketch the domain of integration and evaluate the integral.

a) \(\int \int \int_{W} yz \, dx \, dy \, dz \), where \(W \) is the solid bounded by the surfaces \(x + y = 1, \ x = 0, \ y = 0, z = 0, \ z = 1. \)

Solution. The solid \(W \) is a prism:
\[
\int \int \int_W yz \, dx \, dy \, dz = \int_0^1 \int_0^1 \int_0^{1-y} yz \, dx \, dy \, dz = \int_0^1 \int_0^{1-y} xyz \bigg|_{x=0}^{x=1-y} \, dy \, dz
\]

\[
= \int_0^1 \int_0^1 yz - y^2z \, dy \, dz = \int_0^1 \frac{y^2}{2}z - \frac{y^3}{3} \bigg|_{y=0}^{y=1} \, dz
\]

\[
= \int_0^1 \frac{z}{2} \, dz = \frac{z^2}{4} - \frac{z^2}{6} \bigg|_{z=0}^{z=1} = \frac{1}{12}.
\]

b) \(\int \int \int_W \frac{x}{1+z} \, dx \, dy \, dz\), where \(W\) is the solid determined by the inequalities \(x^2 + y^2 \leq 1\), \(0 \leq z \leq 1\), \(0 \leq x \leq 1\).

Solution. The region \(W\) is a half of a solid cylinder:

\[
\int \int \int_W \frac{x}{1+z} \, dx \, dy \, dz = \int_0^1 \int_{-1}^0 \int_0^{\sqrt{1-y^2}} \frac{x}{1+z} \, dx \, dy \, dz = \int_0^1 \int_{-1}^0 \frac{x^2}{2(1+z)} \bigg|_{x=0}^{x=\sqrt{1-y^2}} \, dy \, dz
\]

\[
= \int_0^1 \int_{-1}^0 \frac{1-y^2}{2(1+z)} \, dy \, dz = \int_0^1 \frac{y - \frac{y^3}{3}}{2(1+z)} \bigg|_{y=-1}^{y=1} \, dz
\]

\[
= \int_0^1 \frac{4}{3} \, dz = \frac{2}{3} \ln(1+z) \bigg|_{z=0}^{z=1} = \frac{2}{3} \ln 2.
\]