Worksheet 10

Review of polar coordinates

1. Find the polar coordinates of the points $A(-1, \sqrt{3})$, $B(2, 0)$ and the midpoint C of the line segment AB.

\[
\begin{align*}
\rho_A &= 2, \quad \theta_A = \frac{2\pi}{3}, \\
\rho_B &= 2, \quad \theta_B = \frac{\pi}{4}, \\
\rho_C &= 1, \quad \theta_C = \frac{\pi}{3}.
\end{align*}
\]

2. The points A and B have polar coordinates \((1, \frac{5\pi}{12})\) and \((2, \frac{\pi}{12})\) respectively. Find the distance \(|AB|\).

\[
\sqrt{3}.
\]

3. Sketch the plane curves given by the equations in the polar coordinates.

 a) $\theta = 1$;

 b) $\rho = 2 \sin \theta$;

 c) $\rho = \frac{2}{\sin \theta}$;

 d) $\rho = \theta$;

 e) $\rho^2 \sin 2\theta = 1$.

4. Sketch the regions given in the polar coordinates.

 a) $1 < \rho \leq 2$;

 b) $\rho \leq 2, \quad \frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$;

 c) $\frac{\pi}{4} < \theta < \frac{5\pi}{4}$;

 d) $-\frac{\pi}{2} < \theta < \frac{\pi}{2}, \quad 0 \leq \rho \leq \frac{\cos \theta}{\sin^2 \theta}$.

5. Describe the regions in polar coordinates.
Changing variables in a multiple integral

A change of variables in a double integral \(\int \int_D f(x, y) \, dx \, dy \), can be done as follows:

Step 1. Choose two continuously differentiable functions \(x = x(u, v), \ y = y(u, v) \) (\(u \) and \(v \) will be our new variables in the integral). The choice of these functions depends on the problem.

Example: Usually, changing to polar coordinates (via \(x = \rho \cos \theta, \ y = \rho \sin \theta \) is worth trying when 1) the region of integration \(D \) looks like a part of a disk or has a nice description in polar coordinates; 2) the function \(f = f(x, y) \) has some sort of a rotational symmetry (a good sign of it is the presence of the term \(x^2 + y^2 \) or similar).

Step 2. Describe the region \(D \) using the new variables \(u \) and \(v \). In other words, find the region \(D^* \) in the \(uv \)-plane such that \(x = x(u, v), \ y = y(u, v) \) would map \(D^* \) to \(D \).

Step 3. Compute the Jacobian determinant \(\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \). We will denote this determinant by \(\left| \frac{\partial (x, y)}{\partial (u, v)} \right| \).

Example: For polar coordinates, \(\left| \frac{\partial (x, y)}{\partial (\rho, \theta)} \right| = \rho \).

Step 4. Evaluate the double integral \(\int \int_{D^*} f(x(u, v), y(u, v)) \cdot \left| \frac{\partial (x, y)}{\partial (u, v)} \right| \, du \, dv \).

6. Changing to polar coordinates, evaluate the integral \(\int \int_D \ln(1 + x^2 + y^2) \, dA \), where \(D \) is the quarter of the unit disk lying in the first quadrant \((x \geq 0, \ y \geq 0) \).

\[\frac{\pi}{4} \left(2 \ln 2 - 1\right) \]

6. Changing to polar coordinates, evaluate the integral \(\int \int_D 2xy \, dx \, dy \), where \(D \) is the region lying between the circles \(x^2 + y^2 = 1 \) and \(x^2 + y^2 = 2 \) in the second quadrant.

\[\frac{5}{6} \]

2