Worksheet 9.5

Changing variables in a multiple integral

A change of variables in a triple integral \(\int \int \int_W f(x, y, z) \, dx \, dy \, dz \), can be done as follows:

Step 1. Choose three continuously differentiable functions \(x = x(u, v, w), \) \(y = y(u, v, w), \) \(z = z(u, v, w) \) (\(u, v \) and \(w \) will be our new variables in the integral). The choice of these functions depends on the problem.

Example: Usually, changing to spherical coordinates (via \(x = \rho \cos \theta \sin \phi, \) \(y = \rho \sin \theta \sin \phi, \) \(z = \rho \cos \phi \)) or cylindrical coordinates (via \(x = r \cos \theta, \) \(y = r \sin \theta, \) \(z = z \)) is worth trying when 1) the region of integration \(D \) looks like a part of a ball or a solid cylinder, or it has a 'nice' description in spherical or cylindrical coordinates; 2) the function \(f = f(x, y, z) \) has some sort of a 'rotational symmetry' (a good sign is the presence of the term \(x^2 + y^2, \) \(x^2 + y^2 + z^2 \) or similar).

Step 2. Describe the region \(W \) using the new variables \(u, v \) and \(w \). In other words, find the region \(W^* \) in the \(uvw \)-space such that \(x = x(u, v, w), \) \(y = y(u, v, w), \) \(z = z(u, v, w) \) would map \(W^* \) to \(W \).

Step 3. Compute the Jacobian determinant

\[
\begin{vmatrix}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{vmatrix}
\]

We will denote this determinant

\[
\begin{vmatrix}
\frac{\partial (x, y, z)}{\partial (u, v, w)}
\end{vmatrix}
\]

Example: For cylindrical coordinates, \(\begin{vmatrix}
\frac{\partial (x, y, z)}{\partial (r, \theta, z)}
\end{vmatrix} = r \); for spherical coordinates, \(\begin{vmatrix}
\frac{\partial (x, y, z)}{\partial (\rho, \theta, \phi)}
\end{vmatrix} = \rho^2 \sin \phi \).

Step 4. Evaluate the triple integral \(\int \int \int_{W^*} f(x(u, v, w), y(u, v, w), z(u, v, w)) \begin{vmatrix}
\frac{\partial (x, y, z)}{\partial (u, v, w)}
\end{vmatrix} \, du \, dv \, dw \).

1. Changing to spherical coordinates, evaluate the integral \(\int \int \int_W (x^2 + y^2) \, dV \), where \(W \) is the region determined by the inequality \(1 \leq x^2 + y^2 + z^2 \leq 4 \).
2. Changing to cylindrical coordinates, evaluate the integral \(\int \int \int_P \frac{1}{\sqrt{1+x^2+y^2}} dV \), where \(P \) is the region bounded by the paraboloid \(z = x^2 + y^2 \) and the plane \(z = 1 \).

\[(1 - \xi^2) \mu^2 \cdot \text{Vol} \]

3. Find the volume of the solid bounded by the sphere \(x^2 + y^2 + z^2 = \frac{3}{2} \) and the cone \(x^2 + y^2 - z^2 = 0 \).

\[\pi \left(\sqrt{3} - \tau \right) \frac{\sqrt{3}}{2} \cdot \text{Vol} \]

4. Let \(D \) be the region in the first quadrant of the \(xy \)-plane bounded by the curves \(xy = 1 \), \(xy = 2 \), \(y = x \), \(y = 4x \). Find the area of \(D \).

\(\text{Hint: Make an appropriate change of variables in the area integral.} \)