Worksheet 11

Changing variables in a multiple integral

A change of variables in a triple integral \(\int \int \int_W f(x, y, z) \, dx \, dy \, dz \), can be done as follows:

Step 1. Choose three continuously differentiable functions \(x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) \) (\(u, v \) and \(w \) will be our new variables in the integral). The choice of these functions depends on the problem.

Example: Usually, changing to spherical coordinates (via \(x = \rho \cos \theta \sin \phi, y = \rho \sin \theta \sin \phi, z = \rho \cos \phi \)) or cylindrical coordinates (via \(x = r \cos \theta, y = r \sin \theta, z = z \)) is worth trying when 1) the region of integration \(D \) looks like a part of a ball or a solid cylinder, or it has a ‘nice’ description in spherical or cylindrical coordinates; 2) the function \(f = f(x, y, z) \) has some sort of a ‘rotational symmetry’ (a good sign is the presence of the term \(x^2 + y^2, x^2 + y^2 + z^2 \) or similar).

Step 2. Describe the region \(W \) using the new variables \(u, v \) and \(w \). In other words, find the region \(W^* \) in the \(uvw \)-space such that \(x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) \) would map \(W^* \) to \(W \).

Step 3. Compute the Jacobian determinant

\[
\left| \begin{array}{ccc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array} \right|
\]

We will denote this determinant

\[
\left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right|
\]

Example: For cylindrical coordinates, \(\left| \frac{\partial(x,y,z)}{\partial(r,\theta,z)} \right| = r \); for spherical coordinates, \(\left| \frac{\partial(x,y,z)}{\partial(\rho,\theta,\phi)} \right| = \rho^2 \sin \phi \).

Step 4. Evaluate the triple integral \(\int \int \int_{W^*} f(x(u, v, w), y(u, v, w), z(u, v, w)) \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| \, du \, dv \, dw \).
1. Changing to spherical coordinates, evaluate the integral \(\int \int \int_W (x^2 + y^2) \, dV \), where \(W \) is the region determined by the inequality \(1 \leq x^2 + y^2 + z^2 \leq 4 \).

Solution.

Step 1. We change to spherical coordinates \((\rho, \theta, \phi)\) by making the substitution
\[
x = \rho \cos \theta \sin \phi, \quad y = \rho \sin \theta \sin \phi, \quad z = \rho \cos \phi.
\]

Step 2. The equations \(x^2 + y^2 + z^2 = 1 \) and \(x^2 + y^2 + z^2 = 4 \) define spheres centered at the origin of radii 1 and 2 respectively. Thus the region \(W \) enclosed between these spheres can be defined by the inequalities
\[
0 \leq \theta \leq 2\pi, \quad 0 \leq \phi \leq \pi, \quad 1 \leq \rho \leq 2.
\]

Step 3. The Jacobian determinant, when changing from Cartesian to spherical coordinates, is equal to
\[
\left| \frac{\partial (x, y, z)}{\partial (\rho, \theta, \phi)} \right| = \rho^2 \sin \phi.
\]

Step 4. We compute
\[
\int \int \int_W (x^2 + y^2) \, dV = \int_0^{2\pi} \int_0^\pi \int_1^2 \left((\rho \cos \theta \sin \phi)^2 + (\rho \sin \theta \sin \phi)^2 \right) \rho^2 \sin \phi \, d\rho d\phi d\theta
\]
\[
= \int_0^{2\pi} \int_0^\pi \int_1^2 \rho^4 \sin^3 \phi \, d\rho d\phi d\theta
\]
\[
= \frac{31}{5} \int_0^\pi \sin^2 \phi \cdot \sin \phi \, d\phi d\theta = \frac{31}{5} \int_0^\pi (1 - \cos^2 \phi) \cdot \sin \phi \, d\phi d\theta
\]
\[
= -\frac{31}{5} \int_0^{2\pi} \int_0^1 (1 - u^2) \, du d\theta = -\frac{31}{5} \int_0^{2\pi} \left(u - \frac{u^3}{3} \right) \left|_{u=-1}^{u=1} \right. d\theta
\]
\[
= \frac{124}{15} \int_0^{2\pi} 1 \, d\theta = \frac{248}{15} \pi.
\]
2. Changing to cylindrical coordinates, evaluate the integral \(\int \int \int_P \frac{1}{\sqrt{1+x^2+y^2}} \, dV \), where \(P \) is the region bounded by the paraboloid \(z = x^2 + y^2 \) and the plane \(z = 1 \).

Solution.

Step 1. As suggested, we will set up the integral in cylindrical coordinates \((r, \theta, z)\). That means that we are making the substitution

\[x = r \cos \theta, \quad y = r \sin \theta, \quad z = z. \]

Step 2. This is how the region \(P \) looks like:

Due to rotational symmetry, the \(\theta \)-coordinate varies within \(P \) from 0 to \(2\pi \).

We can notice that \(z \) and \(r \) depend on each other. In cylindrical coordinates the equation \(z = x^2 + y^2 \) becomes \(z = r^2 \). Thus, \(r \) varies from 0 to \(\sqrt{z} \) as \(z \) goes from 0 to 1.

So \(P \) is determined by the inequalities

\[0 \leq \theta \leq 2\pi, \quad 0 \leq z \leq 1, \quad 0 \leq r \leq \sqrt{z}. \]

Step 3. The Jacobian determinant, when changing from Cartesian to cylindrical coordinates, is equal to

\[\left| \begin{array}{ccc} \frac{\partial(x, y, z)}{\partial(r, \theta, z)} \end{array} \right| = r. \]
Step 4. We compute

\[
\int \int \int_P \frac{1}{\sqrt{1 + x^2 + y^2}} \, dV = \int \int \int_0^1 \frac{1}{\sqrt{1 + r^2}} \cdot r \, dz \, d\theta = \int_{\text{Jacobian}} \frac{u}{2} \, dz \, d\theta = \frac{1}{2} \int 1 + z \, dz \, d\theta
\]

\[
= \int \int \int \frac{1}{2\sqrt{u}} \, du \, dz \, d\theta = \int \frac{1}{2} \sqrt{1 + z} \, dz \, d\theta
\]

\[
= \int \int \int (\sqrt{1 + z} - 1) \, dz \, d\theta = \frac{2}{3} \int (1 + z) \, dz \, d\theta
\]

\[
= \frac{2}{3} \int (1 + z) \, d\theta = \frac{4}{3} \pi (2\sqrt{2} - 1).
\]

3. Find the volume of the solid bounded by the sphere \(x^2 + y^2 + z^2 = \frac{3}{2}\) and the cone \(x^2 + y^2 - z^2 = 0\).

Solution. This is how the given solid (we will denote it by \(W\)) looks like (on the right):

Its volume is equal to the triple integral \(\int \int \int_W 1 \, dV\). We are going to set up and evaluate this integral in spherical coordinates.

Step 1. We change to spherical coordinates \((\rho, \theta, \phi)\) by making the substitution

\[
x = \rho \cos \theta \sin \phi, \quad y = \rho \sin \theta \sin \phi, \quad z = \rho \cos \phi.
\]

In our case, since the integrand is a constant function, we do not need to plug anything in it.
Step 2. By symmetry, we can compute the volume of the upper part of the solid \(W \) and multiply the result by two. Consider the cross-section of \(W \) by the vertical plane \(y = 0 \):

As we can see, within \(W \) the \(\theta \)-coordinate varies from 0 to \(2\pi \) and \(\rho \) goes from 0 to \(\sqrt{\frac{3}{2}} \) (the radius of the sphere).

To find the bounds for \(\phi \), let us recall the Cartesian equations of the given surfaces. The solution of the system of equations

\[
\begin{cases}
 x^2 + y^2 + z^2 = \frac{3}{2} \\
 x^2 + y^2 - z^2 = 0
\end{cases}
\]

would give us information about the intersection of these surfaces. We find \(z = \pm \sqrt{\frac{3}{2}} \). So the cone and the sphere intersect along the circles contained in the planes \(z = \pm \sqrt{\frac{3}{2}} \). It follows now that \(\phi \) within the upper half of the region \(W \) is goes from 0 to \(\arccos\left(\frac{\sqrt{3}/2}{\sqrt{3}/2}\right) = \frac{\pi}{4} \).

4. The Jacobian determinant, when changing from Cartesian to spherical coordinates, is equal to

\[
\left| \frac{\partial(x,y,z)}{\partial(\rho,\theta,\phi)} \right| = \rho^2 \sin \phi.
\]

5. We compute

\[
\int \int \int_{\text{upper half of } W} 1 \, dV = \int_0^{\frac{\pi}{4}} \int_0^{\frac{\pi}{2}} \int_0^{\rho(\sqrt{\frac{3}{2}})} r^2 \sin \phi \, d\rho d\phi d\theta = \int_0^{\frac{\pi}{4}} \int_0^{\rho(\sqrt{\frac{3}{2}})} \frac{\rho^3}{3} \sin \phi \bigg|_{\rho=0}^{\rho=\sqrt{\frac{3}{2}}} d\phi d\theta
\]

\[
= \int_0^{\frac{\pi}{4}} \int_0^{\rho(\sqrt{\frac{3}{2}})} \frac{\sqrt{3}}{2\sqrt{2}} \sin \phi \, d\phi d\theta = \frac{1}{2} \sqrt{\frac{3}{2}}(2 - \sqrt{2})\pi.
\]

Thus the total volume is \(\sqrt{\frac{3}{2}}(2 - \sqrt{2})\pi \) units.
6. Let D be the region in the first quadrant of the xy-plane bounded by the curves $xy = 1$, $xy = 2$, $y = x$, $y = 4x$. Find the area of D.

Hint: Make an appropriate change of variables in the area integral.

Solution. This is how the region D looks like:

![Diagram of the region D](image)

The area of D is given by the double integral $\int \int_D 1 \, dA$. Within this region the quantity xy varies from 1 to 2 and $\frac{y}{x}$ goes from 1 to 4. It suggests to consider the substitution $u = xy$, $v = \frac{y}{x}$ in the area integral.

Step 1. We let $u = xy$, $v = \frac{y}{x}$.

Step 2. As we already noticed, in terms of u and v the region D is determined by the inequalities

$$1 \leq u \leq 2, \quad 1 \leq v \leq 4.$$

Step 3. Now we need to compute the Jacobian determinant $\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \left| \begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array} \right|$. To do that, one can either express x and y as functions of u and v and compute the determinant directly or, alternatively, one can use the fact that

$$\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \left| \frac{\partial(u,v)}{\partial(x,y)} \right|^{-1}.$$

Let us consider both approaches.

i. From $u = xy$, $v = \frac{y}{x}$ we find $uv = y^2$, $\frac{u}{v} = x^2$. Since both x and y are assumed positive, then $y(u,v) = \sqrt{uv}$, $x(u,v) = \sqrt{\frac{u}{v}}$. We compute

$$\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \left| \begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array} \right| = \left| \begin{array}{cc} \frac{1}{\sqrt{uv}} & -\frac{1}{2} \sqrt{\frac{u}{v}} \\ \frac{1}{2} \sqrt{\frac{v}{u}} & \frac{1}{2} \sqrt{\frac{v}{u}} \end{array} \right| = \frac{1}{2v}.$$

ii.

$$\left| \frac{\partial(u,v)}{\partial(x,y)} \right| = \left| \begin{array}{cc} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{array} \right| = \left| \begin{array}{cc} y & x \\ -\frac{x}{y} & \frac{1}{x} \end{array} \right| = \frac{2y}{x},$$

$$\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \left(\frac{\partial(u,v)}{\partial(x,y)} \right)^{-1} = \left(\frac{2y}{x} \right)^{-1} = \frac{1}{2v}.$$

6
Step 4. We compute

\[
\int \int \int D 1 \, dA = \int_1^2 \int_1^4 1 \cdot \frac{1}{2v} \, dv \, du = \int_1^2 \frac{1}{2} \cdot \ln v \bigg|_1^4 \, du = \ln 2.
\]