Definition 1. A relation $R \subseteq S \times S$ is called an equivalence relation if it is
- reflexive: for any $x \in S$, xRx;
- symmetric: if $x, y \in S$ are such that xRy, then yRx;
- transitive: if $x, y, z \in S$ are such that xRy and yRz, then xRz.

Definition 2. Let R be an equivalence relation on a set S and $x \in S$. Then the set of all elements of S, which are equivalent to x with respect to the relation R, is called the equivalence class of x and denoted by E_x. More formally, $E_x = \{ y \in S | xRy \}$. An element $y \in E_x$ is called a representative of the class E_x.

1. Let P be the set of all living people. Define a relation B on P by the rule $xB y \Leftrightarrow x$ and y have the same birthday. Verify that B is an equivalence relation. How many equivalence classes for the relation B are there? How many elements (approximately) is in the equivalence class $E_{\text{Bob Dylan}}$?

2. Define a relation on $\mathbb{N} \times \mathbb{N}$ by the rule $(a, b)R(c, d) \Leftrightarrow a^b = c^d$.
 a) Prove that R is an equivalence relation.
 b) What are the elements of the equivalence class $E_{(9,2)}$?
 c) Find an equivalence class with exactly one element. Find an equivalence class with exactly three elements. Is there an equivalence class, which has infinitely many elements?

Definition 3. Let A and B be sets. A function (or a mapping) f from A to B (commonly denoted by $f : A \rightarrow B$) is a relation $f \subseteq A \times B$ such that
- for any $a \in A$, there is $b \in B$ such that $(a, b) \in f$;
- if $(a, b), (a, c) \in f$, then $b = c$.

One can think of f as of a rule, which associates an element of set B to each element of set A. In particular, if $(a, b) \in f$ then we say that the value of f at a is equal to b and write $f(a) = b$. The set A is called the domain of a function $f : A \rightarrow B$ and B is called the codomain of f. The range of f is the set of all values that f takes.

Example. Define $f : \mathbb{R} \rightarrow \mathbb{R}$ by the rule $f(x) = \sin(x)$ for $x \in \mathbb{R}$. Then both domain and codomain of f is the set of real numbers \mathbb{R}, but the range of f is just the closed interval $[-1; 1].$

Definition 4. We give names to some important classes of functions
- A function $f : A \rightarrow B$ is called surjective (or onto) if the range of f is equal to the entire set B.
- A function $f : A \rightarrow B$ is called injective (or one-to-one) if it maps distinct elements of A to distinct elements of B. More formally, it means that an equality $f(a) = f(a')$ implies that $a = a'$.
- A function $f : A \rightarrow B$ is called bijective if it is both surjective and injective.

1 Alternative notations: $[x]_{\mathbb{R}}, [x], \bar{x}$.
2 From French sur - 'on', 'onto', 'over', 'above'. Compare with surveillance or surplus.
3. For each of the following functions, determine if it is surjective, injective, bijective or none of these.
 (a) \(f : \{ \text{the U.S. citizens}\} \to \mathbb{N} \) defined by \(f(x) = \text{SSN of } x \).
 (b) \(f : \{ \text{all people in the world}\} \to \{ \text{Jan.1, Jan.2, \ldots, Dec.31}\} \) defined by \(f(x) = \text{the birthday of } x \).
 (c) \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = x^3 - 3 \)
 (d) \(f : \mathbb{N} \times \mathbb{N} \to \mathbb{Z} \) defined by \(f(n, m) = n^2 + m^2 \)
 (e) \(f : \mathbb{Z} \to \mathbb{N} \times \mathbb{N} \) defined by \(f(k) = (k^2, k + 3) \)

4. Find a function \(f : \mathbb{N} \to \mathbb{N} \), which has the desired properties.
 (a) surjective, but not injective;
 (b) injective, but not surjective;

5. For each of the following statements, prove it or give a counterexample.
 a) \(f(A \cup B) = f(A) \cup f(B) \)
 b) \(f(A \cap B) = f(A) \cap f(B) \)
 c) if \(A \subset B \), then \(f(A) \subset f(B) \)
 d) if \(f(A) \subset f(B) \), then \(A \subset B \)
 e) \(f(A \setminus C) \subset f(A) \setminus f(C) \)
 f) \(f(A \setminus C) \subset f(A \setminus C) \)