3.3 5

(a)
\[
\begin{bmatrix}
 1 & 0 \\
 0 & 1 \\
\end{bmatrix}
+ \begin{bmatrix}
 1 & 0 \\
 0 & 1 \\
\end{bmatrix}
+ \begin{bmatrix}
 0 & 1 \\
 1 & 0 \\
\end{bmatrix}
+ \begin{bmatrix}
 0 & 1 \\
 0 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
 0 & 0 \\
 0 & 0 \\
\end{bmatrix}
\]

\[\implies C_1 + C_2 = 0 \]
It is easy to observe that \(C_1 = C_4 = 1 \) \(C_2 = C_3 = -1 \) are nontrivial solutions. Thus, it is linearly dependent.

(b)
\[
\begin{bmatrix}
 1 & 0 \\
 0 & 1 \\
\end{bmatrix}
+ \begin{bmatrix}
 1 & 0 \\
 0 & 1 \\
\end{bmatrix}
+ \begin{bmatrix}
 0 & 1 \\
 1 & 0 \\
\end{bmatrix}
+ \begin{bmatrix}
 2 & -2 \\
 -1 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
 0 & 0 \\
 0 & 0 \\
\end{bmatrix}
\]

\[\implies \begin{cases}
 C_1 + C_2 + 2C_4 = 0 \\
 C_3 - 2C_4 = 0 \\
 C_1 + C_3 - C_4 = 0 \\
 C_2 + C_4 = 0
\end{cases} \implies C_1 + C_2 + C_3 = 0 \]
\[\implies \text{There are arbitrary many solutions. } \implies \text{linearly dependent.} \]

7.

(a)
Notice that \(\frac{d^2 y}{dt^2} - y = 0 \) is linear. And the axioms to justify a vector space implicate that if \(y_1 \) and \(y_2 \) are in \(V \), then linear combination \(ay_1 + by_2 \) is again in \(V \) for any choice of constants \(a \) and \(b \). So, \(V \) is a vector space in this problem clearly.
(b)
\[\frac{d^2 y}{dt^2} - y = 0 \]
The characteristic equation is \[r^2 - 1 = 0 \Rightarrow r = \pm 1 \]
Thus, the two solutions are \[y_1 = e^t, \quad y_2 = e^{-t} \]
Clearly, \(y_1 \) and \(y_2 \) are linearly independent. So \(y_1, y_2 \) form the basis.

10. Let's check \(x'(t), x^2(t), x^3(t) \) are solutions of the ODE, which is in \(V \). This is clear.
Then we need to show they are linearly independent.
Notice that \(e^t, e^{2t}, e^{3t} \) are linearly independent, then \(x'(t), x^2(t), x^3(t) \) are also linearly independent clearly. So they form a basis for \(V \).

3.6 10.
\[
A = \begin{pmatrix}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{pmatrix}
\]
\[\det A = \begin{vmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{vmatrix} = 1 \neq 0 \]
The inverse of \(A \) exists.
\[
A^{-1} = \frac{\text{adj} A}{\det A} = \text{adj} A = \begin{pmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{pmatrix}
\]