An interest rate cap ensures that a floating rate note does not exceed a prescribed value over a prescribed time. The prescribed value is the 'cap rate'.

Mechanics The floating rate note resets the reference Libor amount periodically (say quarterly). The time between resets is the tenor.

Rough Example Consider an interest rate cap with a five year life, cap rate of 4%, and quarterly tenor.

Suppose on a reset date Libor is 5%. The floating rate note would require a payment of

$$1,000,000 \times 0.05 \times 0.25 = 125,000$$

While the cap would reduce it to 100,000.

The cap, then, is worth $25k ... in 3 months.

AN INTEREST RATE CAP IS A PORTFOLIO OF INTEREST RATE OPTIONS

Consider a cap with a life, \(T \), against principal, \(L \), and cap rate \(R \).
Let the reset dates be given by \(t_k \), \(k = 1, \ldots, n \), and let \(t_{n+1} = T \).

Let \(R_{t_k} \) be the realized Libor rate on \([t_k, t_{k+1}] \) (observed on \(t_k \)).

At time \(t_{n+1} \), the cap gives payoff

\[
L \cdot (t_{n+1} - t_k) \cdot \max \left(R_{t_k} - R, 0 \right)
\]

* \(R \) and \(R \) expressed expressed in same compounding frequency as resets.

Each such call option above is called a caplet. It is an option on a future rate to be observed in the future, paid at a date later than that of observation.

An interest cap is simply a portfolio of caplets.

A caplet can also be defined as a put on a zero-coupon bond.

This can be seen by rewriting \(C_1 \) by beginning by writing the payoff of \(C_1 \) discounting back

\[
6 \text{ to } t_k: \quad \frac{L \cdot (t_{n+1} - t_k)}{1 + R_{t_k} \cdot (t_{n+1} - t_k)} \cdot \max \left(R_{t_k} - R, 0 \right)
\]
This is equivalent to, letting $\Delta b_k = b_{k+1} - b_k$,

$$\max \left(\frac{R_{b_k} - R}{L \Delta b_k + 1 + R_{b_k} \Delta b_k}, 0 \right)$$

$$= \max \left(\frac{L \Delta b_k R_{b_k} - L \Delta b_k R}{1 + R_{b_k} \Delta b_k}, 0 \right)$$

$$= \max \left(\frac{L + L \Delta b_k R_{b_k} - L - L \Delta b_k R}{1 + R_{b_k} \Delta b_k}, 0 \right)$$

$$= \max \left(\frac{L \frac{1 + \Delta b_k R_{b_k}}{1 + \Delta b_k R_{b_k}} - L \frac{1 - \Delta b_k R_{b_k}}{1 + \Delta b_k R_{b_k}}}{1 + R_{b_k} \Delta b_k}, 0 \right)$$

$$= \max \left(L - \frac{L \frac{1 - \Delta b_k R_{b_k}}{1 + \Delta b_k R_{b_k}}}{1 + R_{b_k} \Delta b_k}, 0 \right)$$

At time b_k,

$$L \frac{1 - R \Delta b_k}{1 + R_{b_k} \Delta b_k}$$

is the value of a zero coupon bond paying $L \left(1 - R \Delta b_k \right)$ at time b_{k+1}.

(02) This can be seen as a put on a zero coupon bond expiring at time b_k. The face is of course $L \left(1 - R \Delta b_k \right)$ maturing at time b_{k+1}.

We know how to price it! <<(on)> Jump to page 11 and return
Floors

An interest rate floor ensures the interest rate of a floating rate note does not fall below a prescribed value over a prescribed time. The prescribed value is the floor rate. It pays when interest rates fall below the floor rate.

Using the same notation as before, an floor is a portfolio of floorlets

\[
L \Delta t \max(R - R_k, 0)
\]

or

\[
\max\left(\frac{L (1 - R_k \Delta t)}{1 + R_k \Delta t} - L, 0\right)
\]

That is, a floor is a portfolio of zero coupon bonds.

Collar

A collar ensures rates are between two specified values. It is a long position in a cap and a short position in a floor.

Swaps, Caps, and Floors

For a swap agreement to receive Libor and pay \(R \), we have, for floors and caps with strike \(R \), that a collar has the following payoff.

\[
\begin{cases}
R_k & \text{if Libor} > R \\
R_k - R & \text{if Libor} < R \\
\end{cases}
\]

(Cap pays)

\[
\text{Floor pays} \quad -(R - R_k) = R_k - R
\]

In any case, the payoff is \(R_k - R \).
That is, pay fixed, receive LIBOR. That is, a collar is equivalent to a swap or:

\[\text{Value of Swap} = \text{Value of Cap} - \text{Value of Floor} \]

Valuation of Each Caplet (as an option on rates)

Each caplet has payoff at time \(t_{k+1} \) for rate observed at \(t_k \) of

\[L \Delta t_k \cdot \max (R_{t_k} - R, 0) \]

Using Black's Model the value of \(t_{k+1} \) caplet today is

\[L \Delta t_k \cdot P(0, t_{k+1}) \cdot \left[F_{t_k} \cdot N(d_1) - R \cdot N(d_2) \right] \]

with

\[d_1 = \frac{\ln \left(\frac{F_{t_k}}{R} \right) - \frac{1}{2} \sigma_{t_k}^2 \Delta t_k}{\sigma_{t_k} \sqrt{\Delta t_k}} \]

\[d_2 = d_1 - \sigma_{t_k} \sqrt{\Delta t_k} \]

with

\[F_{t_k} = \text{forward interest rate from } t_k \text{ to } t_{k+1} \text{ observed today} \]

\[\sigma_{t_k} = \text{the volatility of } F_{t_k} \]

The discount factor reflects that payment is made at \(t_{k+1} \).
Whereas the volatility is scaled by $\sqrt{T_k}$ since the rate R_{t_k} is observed at t_k.

NB: Each caplet and floorlet is valued separately here, introducing the possible need for a forward structure in rate R_{t_k} volatility.

Example

Consider a contract that caps LIBOR at 8%annually (compounded quarterly) for 3 months beginning in one year [i.e. a caplet].

Suppose the LIBOR zero curve is flat at 7% annually (compounded quarterly).

Let the 3 months forward rate for this caplet have a volatility of 20% annually.

We need, to use Black's model: F_k, R, δ, L, Δt_k, Δt_{k+1}, $P(0, t_{k+1})$

We have

$F_k := 0.07$

$R := 0.08$

$\delta := 0.20$

$L := 10$ (MM)

$\Delta t_k := 1.25$ (t.k := 1)

$\Delta t_{k+1} := 0.25$

$P(0, t_{k+1}) = e^{-t_{k+1}}$

$e^{\frac{-r}{\Delta t_{k+1}}} = \left(1 + 0.07 \cdot 0.25\right)$

$r = 6.94%$
Putting it all together, we have the value of the caplet is

\[10 \cdot 0.25 \cdot e^{-0.044 \cdot 1.25} \cdot \left[0.07 N(d_1) - 0.08 N(d_2) \right] \]

with

\[d_1 = \frac{\ln \left(\frac{0.07}{0.08} \right) + \frac{1}{2} 0.02^2 \cdot 1}{0.2 \cdot 1} \approx -0.5677 \]

This gives a value of $5162.

NB: Caps and caplets can be quoted in vol.

On Volatilities

Spot Volatilities: Volatility for Caplet

Flat Volatilities: Volatility for Cap

\[e^{-t} \]

Maturity

Justification/ Back Calculation of Numeraires

Consider a world that is forward risk neutral with respect to a zero coupon bond maturing at \(t + \tau \).

The price of a caplet is
\[P(0, t_{n+1}) \Phi_{t_{n+1}} \left(L \cdot (E_{t_{n+1}} - E_k) \cdot \max (R_{t_{n+1}} - R, 0) \right) \]

with \(\Phi_{t_{n+1}}(\cdot) \) the expected value in the world forward risk neutral w.r.t. a zero coupon bond maturing at \(t_{n+1} \).

It simplifies to

\[L \cdot (E_{t_{n+1}} - E_k) \cdot P(0, t_{n+1}) \Phi_{t_{n+1}} \left(\max (R_{t_{n+1}} - R, 0) \right) \]

If the forward rate, \(R_{t_{n+1}} \), is assumed to have constant volatility, it is log normal in this world with standard deviation \(\sqrt{\ln(R_{t_{n+1}})} \) equal to \(\sigma \cdot \sqrt{t_{n+1}} \).

As before, this gives

\[L \cdot (E_{t_{n+1}} - E_k) \cdot P(0, t_{n+1}) \cdot \Phi_{t_{n+1}} \left(R_{t_{n+1}} N(d_1) \right) \]

with \(d_1 \) and \(d_2 \) as usual, and

\[\Phi_{t_{n+1}}(R_k) = F_k \]