One Garnir to Rule Them All

Sarah Brauner
(joint with Tamar Friedmann)

University of Minnesota
braun622@umn.edu

October 21, 2018
Representations of the Symmetric Group

Irreducible representations of S_n correspond to partitions λ of n
Each irreducible of S_n of shape λ can be realized as a *Specht Module* S^λ
Each irreducible of S_n of shape λ can be realized as a *Specht Module* S^λ

1. Take a Young tableau: $t = \begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}$
Each irreducible of S_n of shape λ can be realized as a *Specht Module* S^λ.

1. Take a Young tableau: $\mathbf{t} = \begin{array}{cc}
1 & 3 \\
2 & 4
\end{array}$

2. Turn it into a row tabloid: $\{\mathbf{t}\} = \begin{array}{cc}
1 & 3 \\
2 & 4
\end{array} = \begin{array}{cc}
3 & 1 \\
4 & 2
\end{array}$
Classical Specht Module Construction

Each irreducible of S_n of shape λ can be realized as a *Specht Module* S^λ

1. Take a Young tableau: $t = \begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}$

2. Turn it into a row tabloid: $\{t\} = \begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array} = \begin{array}{cc} 3 & 1 \\ 4 & 2 \end{array}$

3. Construct a row polytabloid:

$$e_t = \frac{1 \quad 3}{2 \quad 4} - \frac{2 \quad 3}{1 \quad 4} - \frac{1 \quad 4}{2 \quad 3} + \frac{2 \quad 4}{1 \quad 3}$$
Each irreducible of S_n of shape λ can be realized as a *Specht Module* S^λ.

1. Take a Young tableau: $t = \begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}$

2. Turn it into a row tabloid: $\{t\} = \begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array} = \begin{array}{cc} 3 & 1 \\ 4 & 2 \end{array}$

3. Construct a row polytabloid:

$$e_t = \begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array} - \begin{array}{cc} 2 & 3 \\ 1 & 4 \end{array} - \begin{array}{cc} 1 & 4 \\ 2 & 3 \end{array} + \begin{array}{cc} 2 & 4 \\ 1 & 3 \end{array}$$

S^λ has a basis of row polytabloids e_t where the corresponding t is a *Standard Young Tableau*.
From our motivation, it would be more convenient to realize the Specht Module S^λ as a *quotient* of elements which are naturally anti-symmetric.
Column Tabloids

A *column tabloid* is an equivalence on the set of Young Tableaux by columns, up to anti-symmetry.
Column Tabloids

A *column tabloid* is an equivalence on the set of Young Tableaux by columns, up to anti-symmetry.

Given \(t = \begin{array}{cc}
1 & 3 \\
2 & 4 \\
\end{array} \), construct an *column tabloid* \([t]\):

\[
[t] = \begin{array}{cc}
1 & 3 \\
2 & 4 \\
\end{array}
\]
A *column tabloid* is an equivalence on the set of Young Tableaux by columns, up to anti-symmetry.

Given \[t = \begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array} \], construct an *column tabloid* \([t]\):

\[
[t] = \begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array} = - \begin{array}{cc} 2 & 3 \\ 1 & 4 \end{array}
\]
Column Tabloids

A column tabloid is an equivalence on the set of Young Tableaux by columns, up to anti-symmetry.

Given $t = \begin{array}{|c|c|}
1 & 3 \\
2 & 4 \\
\end{array}$, construct an column tabloid $[t]$:

$$[t] = \begin{array}{|c|c|}
1 & 3 \\
2 & 4 \\
\end{array} = - \begin{array}{|c|c|}
2 & 3 \\
1 & 4 \\
\end{array} = - \begin{array}{|c|c|}
1 & 4 \\
2 & 3 \\
\end{array} = \begin{array}{|c|c|}
2 & 4 \\
1 & 3 \\
\end{array}$$
A Dual Construction

Fulton defines a map

$$\alpha : \text{column tabloids of shape } \lambda \rightarrow \text{Specht module of shape } \lambda$$
Fulton defines a map

\[\alpha : \text{column tabloids of shape } \lambda \rightarrow \text{Specht module of shape } \lambda \]

\[\alpha : [t] \mapsto e_t \]
Fulton defines a map

$$\alpha : \text{column tabloids of shape } \lambda \rightarrow \text{Specht module of shape } \lambda$$

$$\alpha : [t] \mapsto e_t$$

$$\alpha : \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} \mapsto \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} - \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} - \begin{vmatrix} 1 & 4 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 4 \\ 1 & 3 \end{vmatrix}$$
What is \(\ker(\alpha) \)?
A Dual Straightening Algorithm

Definition (Fulton)

A dual Garnir relations is

$$\pi_{c,k}(t) := \sum [s]$$

where the sum is over column tabloids obtained by exchanging the top k elements in the $(c + 1)^{st}$ column in all possible ways with k elements in the c^{th} column.
A Dual Straightening Algorithm

\[\pi_{1,1} \left(\begin{array}{cc} 1 & 4 \\ 2 & 5 \\ 3 \end{array} \right) = \begin{array}{c|c} 4 & 1 \\ \hline 2 & 5 \\ \hline 3 & 3 \end{array} + \begin{array}{c|c} 1 & 2 \\ \hline 4 & 5 \\ \hline 3 & 3 \end{array} + \begin{array}{c|c} 1 & 3 \\ \hline 2 & 5 \\ \hline 4 & 4 \end{array} \]
Theorem (Fulton)

The relations

\[[t] - \pi_{c,k}(t) \]

over all \(t, c \) and \(k \) generate \(\ker(\alpha) \).

In characteristic 0, only the \(\pi_{1,1} \) relations are needed.

Upshot: The Specht Module \(S_\lambda \) can be realized as a quotient module of the space of column tabloids by dual Garnir relations.
Theorem (Fulton)

The relations

\[[t] - \pi_{c,k}(t) \]

over all \(t, c \) and \(k \) generate \(\ker(\alpha) \).

Theorem (Fulton)

In characteristic 0, only the \(\pi_{1,1} \) relations are needed.
Theorem (Fulton)

The relations

$$[t] - \pi_{c,k}(t)$$

over all t, c and k generate $\ker(\alpha)$.

Theorem (Fulton)

In characteristic 0, only the $\pi_{1,1}$ relations are needed.

Upshot: The Specht Module S^λ can be realized as a quotient module of the space of column tabloids by dual Garnir relations.
What generates $\ker(\alpha)$?
What generates $\ker(\alpha)$?

\[
\pi_{1,1} \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 2 & 5 \\ 3 & 3 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}
\]
What generates \(\ker(\alpha) \)?

\[
\pi_{1,1} \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 2 & 5 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 2 & 5 \\ 4 \end{pmatrix}
\]

\[
\pi_{1,1} \begin{pmatrix} 1 & 5 \\ 2 & 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 2 & 5 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 5 & 4 \\ 3 & 5 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 5 \end{pmatrix}
\]
A New Relation

Definition (B., Friedmann)

For \(\lambda \) of shape \(2^m 1^{n-m} \) with \(n \geq m \),

\[
\eta([t]) = m[t] - \sum [s]
\]

where the sum ranges over all tableaux \(s \) obtained from \(t \) by swapping an entry in the first column with an entry in the second column.
A New Relation

\[\eta : \begin{array}{c|c|c} 1 & 4 \\ \hline 2 & 5 \\ \hline 3 \\ \end{array} \]

\[\downarrow \]

\[2 \begin{array}{c|c|c} 1 & 4 \\ \hline 2 & 5 \\ \hline 3 \\ \end{array} - \left(\begin{array}{c|c|c} 4 & 1 \\ \hline 2 & 5 \\ \hline 3 \\ \end{array} + \begin{array}{c|c|c} 1 & 2 \\ \hline 3 & 4 \\ \hline 4 \\ \end{array} + \begin{array}{c|c|c} 1 & 3 \\ \hline 2 & 5 \\ \hline 3 \\ \end{array} + \begin{array}{c|c|c} 5 & 1 \\ \hline 2 & 4 \\ \hline 3 \\ \end{array} + \begin{array}{c|c|c} 1 & 2 \\ \hline 3 & 4 \\ \hline 5 \\ \end{array} + \begin{array}{c|c|c} 1 & 3 \\ \hline 2 & 4 \\ \hline 5 \\ \end{array} \right) \]
Theorem (B., Friedmann)

The η relations generate $\ker(\alpha)$.
One Garnir to Rule them All

Theorem (B., Friedmann)

The η relations generate $\ker(\alpha)$.

Upshot: To generate $\ker(\alpha)$ for any partition shape, we only need to enumerate over pairs of adjacent columns in *column tabloids* with *ordered columns.*
Theorem (B., Friedmann)

The η relations generate $\ker(\alpha)$.

Upshot: To generate $\ker(\alpha)$ for any partition shape, we only need to enumerate over pairs of adjacent columns in *column tabloids* with *ordered columns*.

Upshot 2: The Specht Module S^λ can be realized as a quotient of column tabloids by the η-relations!
Proof Outline

1. Look at the two-column case
Proof Outline

1. Look at the two-column case

2. Use anti-symmetry to describe the space of column tabloids as an induced (multiplicity-free!) representation of S_{n+m}

\[e^n(x) e^m(x) = m \sum_{i=0}^{n} s_{2i}^1 (x) - i (x) \]

by the Pieri Rule
Proof Outline

1. Look at the two-column case

2. Use anti-symmetry to describe the space of column tabloids as an induced (multiplicity-free!) representation of S_{n+m}

(In the language of symmetric functions:

$$e_n(x)e_m(x) = \sum_{i=0}^{m} s_{2^i 1^{n-i}}(x)$$

by the Pieri Rule)
Proof Outline

1. Look at the two-column case

2. Use anti-symmetry to describe the space of column tabloids as an induced (multiplicity-free!) representation of S_{n+m}

 (In the language of symmetric functions:

 $$e_n(x)e_m(x) = \sum_{i=0}^{m} s_{2^{i}1^{n-i}}(x)$$

 by the Pieri Rule)

3. Compute the scalar action of η on each irreducible
(Brief) Motivation

Definition (Friedmann, 2011)

A Lie algebra of the n^{th} kind (LAnKe) is a vector space with an n-linear, anti-symmetric bracket and satisfying a generalized Jacobi Identity

$$[[x_1, \ldots, x_n], x_{n+1}, \ldots, x_{2n-1}] = \sum_{i=1}^{n} [x_1, \ldots, x_{i-1}, [x_i, x_{n+1}, \ldots, x_{2n-1}], x_{i+1}, \ldots, x_n]$$
(Brief) Motivation

Definition (Friedmann, 2011)

A *Lie algebra of the n^{th} kind* (LAnKe) is a vector space with an n-linear, anti-symmetric bracket and satisfying a generalized Jacobi Identity

$$[[x_1, \ldots, x_n], x_{n+1}, \ldots, x_{2n-1}] =$$

$$\sum_{i=1}^{n} [x_1, \ldots, x_{i-1}, [x_i, x_{n+1}, \ldots, x_{2n-1}], x_{i+1}, \ldots, x_n]$$

Friedmann, Hanlon, Stanley and Wachs initiated the study of the representations of the symmetric group on the multilinear component of the free LAnKe.
It turns out that the η relations are equivalent to the generalized Jacobi Identity in this n-ary Lie algebra.

Upshot:
We can use Fulton’s α map to construct a map between the representations of the symmetric group on the free LAnKe and relevant Specht modules.
It turns out that the η relations are equivalent to the generalized Jacobi Identity in this n-ary Lie algebra.

Upshot: We can use Fulton's α map to construct a map between the representations of the symmetric group on the free LAnKes and relevant Specht modules.
It turns out that the η relations are equivalent to the generalized Jacobi Identity in this n-ary Lie algebra.

Upshot:
We can use Fulton’s α map to construct a map between the representations of the symmetric group on the free LAnKe and relevant Specht modules.
It turns out that the η relations are equivalent to the generalized Jacobi Identity in this n-ary Lie algebra. Upshot:

We can use Fulton’s α map to construct a map between the representations of the symmetric group on the free LAnKe and relevant Specht modules.
It turns out that the η relations are equivalent to the generalized Jacobi Identity in this n-ary Lie algebra.
It turns out that the η relations are equivalent to the generalized Jacobi Identity in this n-ary Lie algebra.

Upshot: We can use Fulton’s α map to construct a map between the representations of the symmetric group on the free LAnKe and relevant Specht modules.
Friedmann, Hanlon, Stanley and Wachs prove that the representation of S_{2n-1} on the multi-linear component of the free LAnKe on $2n - 1$ generators is isomorphic to S^{2n-1}.
Friedmann, Hanlon, Stanley and Wachs prove that the representation of S_{2n-1} on the multi-linear component of the free LAnKe on $2n-1$ generators is isomorphic to S^{2n-1}.

Using the α map and η relations, we can give an alternate proof of this result via a direct isomorphism:

$$[[1, 2, 3], 4, 5] \mapsto \alpha \left(\begin{array}{cc}
1 & 4 \\
2 & 5 \\
3 &
\end{array} \right)$$
Thank you!

References:

Contact: Sarah Brauner, braun622@umn.edu