Enumerating Linear Systems on Graphs, Dynkin Diagrams and Beyond

Sarah Brauner
(Joint with David Perkinson and Forrest Glebe)

University of Minnesota

April 13, 2019
AMS Special Session on Divisors and Chip-Firing
Outline

1. Combinatorial question about effective divisors
2. Framework for answering this question
3. Answer via divisors
4. Answer via lattice points in polyhedra
5. Answer via Invariant Theory
A Combinatorial Question
The setup

\[G = (V, E) \text{ is a connected graph} \]
The setup

\[G = (V, E) \text{ is a connected graph} \]

A divisor \(D \) on \(G \) is an element in \(\text{Div}(G) = \mathbb{Z}V \cong \mathbb{Z}^n \)
$G = (V, E)$ is a connected graph

A divisor D on G is an element in $\text{Div}(G) = \mathbb{Z}V \cong \mathbb{Z}^n$

$D \in \text{Div}(G)$ and $D(v_i) \in \mathbb{Z}$ can be written

$$D = D(v_1)v_1 + \cdots + D(v_n)v_n$$
The setup

$G = (V, E)$ is a connected graph

A divisor D on G is an element in $\text{Div}(G) = \mathbb{Z}V \cong \mathbb{Z}^n$

$D \in \text{Div}(G)$ and $D(v_i) \in \mathbb{Z}$ can be written

$$D = D(v_1)v_1 + \cdots + D(v_n)v_n$$

The degree of D is $\text{deg}(D) = \sum_{v \in V} D(v)$
Linear equivalence: $D \sim D'$ if $\begin{vmatrix} 3 & -1 \\ 0 & 3 \end{vmatrix} \sim \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} \sim \begin{vmatrix} 0 & 2 \\ 0 & 0 \end{vmatrix}$
The setup

Linear equivalence: $D \sim D'$ if $D \xrightarrow{lending} D'$ borrowing

\[
\begin{array}{ccc}
3 & -1 & 0 \\
\text{\includegraphics[width=0.2\textwidth]{triangle}} & \sim & \text{\includegraphics[width=0.2\textwidth]{triangle}} \\
0 & 1 & 0
\end{array}
\]

$L : \mathbb{Z}^n \to \mathbb{Z}^n$ is the (discrete) Laplacian
Linear equivalence: \(D \sim D' \) if \(D \xrightarrow{\text{lending}} \xrightarrow{\text{borrowing}} D' \)

\[
\begin{array}{ccc}
3 & -1 & 1 & 0 & 0 & 2 \\
0 & \sim & 1 & \sim & 0
\end{array}
\]

\(L : \mathbb{Z}^n \rightarrow \mathbb{Z}^n \) is the (discrete) Laplacian

\(\xrightarrow{\text{lending}} \xrightarrow{\text{borrowing}} \) is actually adding and subtracting columns of \(L \)
The setup

Linear equivalence: \(D \sim D' \) if \(D \xrightarrow{\text{lending}} D' \xleftarrow{\text{borrowing}} D' \)

\[
\begin{array}{ccc}
3 & -1 & 0 \\
0 & \sim & 1 \\
1 & \sim & 0 \\
0 & 2 & 0
\end{array}
\]

\(L : \mathbb{Z}^n \to \mathbb{Z}^n \) is the \textit{(discrete) Laplacian}

\(\xrightarrow{\text{lending}} \xleftarrow{\text{borrowing}} \) is actually adding and subtracting columns of \(L \)

\(L \) is singular with \(\ker(L) = \mathbb{Z} \bar{1} \)
A divisor D is effective if $D(\nu) \geq 0$ for all $\nu \in V$
A divisor D is effective if $D(v) \geq 0$ for all $v \in V$

Complete linear system for $D \in \text{Div}(G)$:

$$|D| = \{ E \in \text{Div}(G) : E \sim D \text{ and } E \text{ is effective} \}$$

= all effective divisors linearly equivalent to D
A divisor D is **effective** if $D(v) \geq 0$ for all $v \in V$

Complete linear system for $D \in \text{Div}(G)$:

$$|D| = \{ E \in \text{Div}(G) : E \sim D \text{ and } E \text{ is effective} \}$$

= all effective divisors linearly equivalent to D

Goal: Enumerate $|D|$ for any graph G and divisor $D \in \text{Div}(G)$.
A complete linear system
The setup

Pic(G) is group of divisors on G up to linear equivalence

Pic(G) = coker(L)
The setup

Pic\((G)\) is group of divisors on \(G\) up to linear equivalence

\[
\text{Pic}(G) = \text{coker}(L)
\]

Fix a vertex \(q \in V\). Removing the \(q^{th}\) row and column of \(L\) gives

\[
\tilde{L} : \mathbb{Z}^{n-1} \to \mathbb{Z}^{n-1},
\]

the (non-singular!) reduced Laplacian
The setup

Pic\((G)\) is group of divisors on \(G\) up to linear equivalence

\[
\text{Pic}(G) = \text{coker}(L)
\]

Fix a vertex \(q \in V\). Removing the \(q^{th}\) row and column of \(L\) gives

\[
\tilde{L} : \mathbb{Z}^{n-1} \to \mathbb{Z}^{n-1},
\]

the (non-singular!) reduced Laplacian

Jac\((G)\) is group of degree 0 divisors on \(G\) up to linear equivalence

\[
\text{Jac}(G) = \text{coker}(\tilde{L})
\]
The setup

The setup

Pic(G) is group of divisors on G up to linear equivalence

$$\text{Pic}(G) = \text{coker}(L)$$

Fix a vertex $q \in V$. Removing the q^{th} row and column of L gives

$$\tilde{L} : \mathbb{Z}^{n-1} \rightarrow \mathbb{Z}^{n-1},$$

the (non-singular!) reduced Laplacian

Jac(G) is group of degree 0 divisors on G up to linear equivalence

$$\text{Jac}(G) = \text{coker}(\tilde{L})$$

$$\text{Pic}(G) \xrightarrow{\sim} \text{Jac}(G) \oplus \mathbb{Z}$$

$$[D] \mapsto ([D - \deg(D)q], \deg(D)).$$
The strategy

Write $\text{Pic}^+(G)$ by degree using $\text{Jac}(G)$

<table>
<thead>
<tr>
<th>deg</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>−1</td>
<td>−2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For a fixed vertex $q \in V$
The strategy

For a fixed vertex \(q \in V \)

<table>
<thead>
<tr>
<th>(\text{deg})</th>
<th>0</th>
<th>([0])</th>
<th>([D_2])</th>
<th>(\ldots)</th>
<th>([D_\kappa])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>([q])</td>
<td>([D_2 + q])</td>
<td>(\ldots)</td>
<td>([D_\kappa + q])</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>([2q])</td>
<td>([D_2 + 2q])</td>
<td>(\ldots)</td>
<td>([D_\kappa + 2q])</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>([3q])</td>
<td>([D_2 + 3q])</td>
<td>(\ldots)</td>
<td>([D_\kappa + 3q])</td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Pic}^+(G) \quad \leadsto \quad \text{Jac}(G) \]

Underlying idea:
\[\text{Pic}^+(G) \sim \text{Jac}(G) \oplus \mathbb{Z} \]

\[\frac{D - \deg(D)}{q, \deg(D)} \]
The strategy

For a fixed vertex $q \in V$

<table>
<thead>
<tr>
<th>deg</th>
<th>$[0]$</th>
<th>$[D_2]$</th>
<th>...</th>
<th>$[D_\kappa]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$[q]$</td>
<td>$[D_2 + q]$</td>
<td>...</td>
<td>$[D_\kappa + q]$</td>
</tr>
<tr>
<td>2</td>
<td>$[2q]$</td>
<td>$[D_2 + 2q]$</td>
<td>...</td>
<td>$[D_\kappa + 2q]$</td>
</tr>
<tr>
<td>3</td>
<td>$[3q]$</td>
<td>$[D_2 + 3q]$</td>
<td>...</td>
<td>$[D_\kappa + 3q]$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Underlying idea:

Pic$(G) \sim \text{Jac}(G) \oplus \mathbb{Z}$

$[D] \mapsto ([D - \deg(D)q], \deg(D))$.
The strategy

Use this setup to partition the set of effective divisors:

deg	0	$	D_2	$...	$	D_\kappa	$		
0	0									
1	$	q	$	$	D_2 + q	$...	$	D_\kappa + q	$
2	$2	q	$	$	D_2 + 2q	$...	$	D_\kappa + 2q	$
3	$3	q	$	$	D_2 + 3q	$...	$	D_\kappa + 3q	$
...						

$\text{Pic}^+(G) \leftarrow \text{Jac}(G)$
The strategy

Use this setup to partition the set of effective divisors:

| deg | 0 | $|D_2|$ | $|D_3|$ | $|D_κ|$ |
|-----|---|--------|--------|--------|
| 0 | 0 | | | |
| 1 | q| $|D_2 + q|$ | $|D_κ + q|$ | |
| 2 | $2q$| $|D_2 + 2q|$ | $|D_κ + 2q|$ | |
| 3 | $3q$| $|D_2 + 3q|$ | $|D_κ + 3q|$ | |
| ... | | | | |

$\textbf{Definition:}$ For every $[D] \in \text{Jac}(G)$, $\mathbb{E}_D := \bigcup_{k \geq 0} |D + kq|$
The strategy

Use this setup to partition the set of effective divisors:

deg	\(0\)	\(\left	D_2 \right	\)	\(\ldots\)	\(\left	D_\kappa \right	\)		
0	\(\left	q \right	\)	\(\left	D_2 + q \right	\)	\(\ldots\)	\(\left	D_\kappa + q \right	\)
1	\(\left	2q \right	\)	\(\left	D_2 + 2q \right	\)	\(\ldots\)	\(\left	D_\kappa + 2q \right	\)
2	\(\left	3q \right	\)	\(\left	D_2 + 3q \right	\)	\(\ldots\)	\(\left	D_\kappa + 3q \right	\)
\(\vdots\)	\(\vdots\)	\(\vdots\)	\(\vdots\)	\(\vdots\)						

Definition: For every \([D] \in \text{Jac}(G)\), \(E[D] := \bigcup_{k \geq 0} \left| D + kq \right|\)

Goal: For every \([D] \in \text{Jac}(G)\), compute \(\Lambda[D](z) := \sum_{k=0}^{\infty} \#D + kq |z^k\)
Primary and secondary divisors

Theorem. (B, Glebe, Perkinson)

For every graph G there is a **unique** finite set

primary divisors: $\mathcal{P} \subset \mathbb{F}_0$
Primary and secondary divisors

Theorem. (B, Glebe, Perkinson)

For every graph G there is a **unique** finite set

primary divisors: $\mathcal{P} \subset \mathbb{F}[0]

and for every $[D] \in \text{Jac}(G)$, there is a **unique** finite set

secondary divisors: $\mathcal{S}_D \subset \mathbb{F}[D]$
Primary and secondary divisors

Theorem. (B, Glebe, Perkinson)

For every graph G there is a unique finite set

primary divisors: $\mathcal{P} \subset \mathbb{F}_0$

and for every $[D] \in \text{Jac}(G)$, there is a unique finite set

secondary divisors: $\mathcal{S}_{[D]} \subset \mathbb{F}_D$

such that each $E \in \mathbb{F}_D$ can be written uniquely as

$$E = F + \sum_{P \in \mathcal{P}} a_P P$$

with $F \in \mathcal{S}_{[D]}$ and $a_P \in \mathbb{Z}_{\geq 0}$ for all $P \in \mathcal{P}$.
Primary and secondary divisors

Theorem. (B, Glebe, Perkinson)

For every graph G there is a **unique** finite set

$$\text{primary divisors: } \mathcal{P} \subset \mathbb{E}_{[0]}$$

and for every $[D] \in \text{Jac}(G)$, there is a **unique** finite set

$$\text{secondary divisors: } \mathcal{S}_{[D]} \subset \mathbb{E}_{[D]}$$

such that each $E \in \mathbb{E}_{[D]}$ can be written uniquely as

$$E = F + \sum_{P \in \mathcal{P}} a_P P$$

with $F \in \mathcal{S}_{[D]}$ and $a_P \in \mathbb{Z}_{\geq 0}$ for all $P \in \mathcal{P}$.

Corollary.

$$\Lambda_{[D]}(z) := \sum_{k=0}^{\infty} \# |D + kq| z^k = \frac{\sum_{F \in \mathcal{S}_{[D]}} z^{\deg(F)}}{\prod_{P \in \mathcal{P}} (1 - z^{\deg(P)})}$$
A rational simplicial pointed cone

$$\mathcal{K} = \{ p + \lambda_1 \omega_1 + \lambda_2 \omega_2 + \cdots + \lambda_n \omega_n : \lambda_1, \ldots, \lambda_n \geq 0 \}$$

generating rays = $$\{ \omega_1, \ldots, \omega_n \} \subset \mathbb{Z}^n$$

fundamental parallelepiped = $$\{ \lambda_1, \ldots, \lambda_n : 1 > \lambda_1, \ldots, \lambda_n \geq 0 \}$$
Effective divisors are determined by a system of linear equations:
Effective divisors are determined by a system of linear equations:

\[E \in \mathbb{E}_D \text{ if and only if there exists } f \in \mathbb{Z}^n \text{ and } t \in \mathbb{Z}_{\geq 0} \text{ such that } \]

\[E = D + Lf + tq \geq 0 \]

.
Effective divisors are determined by a system of linear equations:

\[E \in \mathbb{E}_D \text{ if and only if there exists } f \in \mathbb{Z}^n \text{ and } t \in \mathbb{Z}_{\geq 0} \text{ such that } \]

\[E = D + Lf + tq \geq 0 \]

Turn this into a polyhedra:

\[\mathcal{K}_D := \{(f, t) \in \mathbb{R}^n \times \mathbb{R} : Lf + tq \geq -D \text{ and } f_n = 0\} \subset \mathbb{R}^{n-1} \times \mathbb{R}. \]
\[\mathcal{K}_D := \{(f, t) \in \mathbb{R}^n \times \mathbb{R} : Lf + tq \geq -D \text{ and } f_n = 0\} \subset \mathbb{R}^n. \]

Theorem. (B, Glebe, Perkinson)

\(\mathcal{K}_D \) is a rational simplicial pointed cone and there are bijections
\[K_D := \{(f, t) \in \mathbb{R}^n \times \mathbb{R} : Lf + tq \geq -D \text{ and } f_n = 0\} \subset \mathbb{R}^n. \]

Theorem. (B, Glebe, Perkinson)

\(K_D \) is a rational simplicial pointed cone and there are bijections

\[
\mathbb{E}_{[D]} \leftrightarrow \text{lattice points of } K_D
\]

primary divisors \(\mathcal{P} \leftrightarrow \) generating rays \(\{\omega_1, \ldots, \omega_n\} \)

secondary divisors \(\mathcal{S}_{[D]} \leftrightarrow \text{lattice points of fundamental parallelepiped} \)
\[\mathcal{K}_D := \{ (f, t) \in \mathbb{R}^n \times \mathbb{R} : Lf + tq \geq -D \text{ and } f_n = 0 \} \subset \mathbb{R}^n. \]

Theorem. (B, Glebe, Perkinson)

\(\mathcal{K}_D \) is a rational simplicial pointed cone and there are bijections

\[E[D] \longleftrightarrow \text{lattice points of } \mathcal{K}_D \]

primary divisors \(\mathcal{P} \) \(\longleftrightarrow \) generating rays \(\{ \omega_1, \ldots, \omega_n \} \)

secondary divisors \(\mathcal{S}_D \) \(\longleftrightarrow \) lattice points of fundamental parallelepiped

Corollary.

Integer-point transform of \(\mathcal{K}_D \) rediscovers

\[\Lambda[D](z) := \sum_{k=0}^{\infty} \#|D + kq| z^k = \frac{\sum_{F \in \mathcal{S}_D} z^{\deg(F)}}{\prod_{P \in \mathcal{P}} (1 - z^{\deg(P)})} \]
Invariant theory

\[\Phi_{\Gamma, \chi}(z) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \frac{\chi(\gamma)}{\det(I_n - z\gamma)}. \]
Invariant theory

\[\Gamma \leq \text{GL}(\mathbb{C}^n) \text{ is a finite group} \]
Invariant theory

\[\Gamma \leq \text{GL}(\mathbb{C}^n) \text{ is a finite group} \]

Action of \(\gamma \in \Gamma \) on \(f \in \mathbb{C}[x] := \mathbb{C}[x_1, \ldots, x_n] \) via matrix multiplication of indeterminates:

\[\gamma \cdot f(x) := f(\gamma \cdot x). \]
Invariant theory

\(\Gamma \leq \text{GL}(\mathbb{C}^n)\) is a finite group

Action of \(\gamma \in \Gamma\) on \(f \in \mathbb{C}[x] := \mathbb{C}[x_1, \ldots, x_n]\) via matrix multiplication of indeterminates:

\[\gamma \cdot f(x) := f(\gamma \cdot x).\]

Character \(\chi : \Gamma \rightarrow \mathbb{C}^\times\)
Invariant theory

\(\Gamma \leq \text{GL}(\mathbb{C}^n) \) is a finite group

Action of \(\gamma \in \Gamma \) on \(f \in \mathbb{C}[x] := \mathbb{C}[x_1, \ldots, x_n] \) via matrix multiplication of indeterminates:

\[
\gamma \cdot f(x) := f(\gamma \cdot x).
\]

Character \(\chi : \Gamma \to \mathbb{C}^\times \)

The **invariant ring** for \(\Gamma \) is

\[
\mathbb{C}[x]^\Gamma := \{ f \in \mathbb{C}[x] : \gamma \cdot f = f \text{ for all } \gamma \in \Gamma \}.
\]
Invariant theory

$\Gamma \leq \operatorname{GL}(\mathbb{C}^n)$ is a finite group

Action of $\gamma \in \Gamma$ on $f \in \mathbb{C}[x] := \mathbb{C}[x_1, \ldots, x_n]$ via matrix multiplication of indeterminates:

$$\gamma \cdot f(x) := f(\gamma \cdot x).$$

Character $\chi : \Gamma \to \mathbb{C}^\times$

The invariant ring for Γ is

$$\mathbb{C}[x]^\Gamma := \{ f \in \mathbb{C}[x] : \gamma \cdot f = f \text{ for all } \gamma \in \Gamma \}.$$

The χ-relative invariants for Γ are

$$\mathbb{C}[x]_\chi^\Gamma := \{ f \in \mathbb{C}[x] : \gamma \cdot f = \chi(\gamma)f \text{ for all } \gamma \in \Gamma \}.$$
Want generators for $\mathbb{C}[x]^\Gamma_\chi := \{ f \in \mathbb{C}[x] : \gamma \cdot f = \chi(\gamma)f \text{ for all } \gamma \in \Gamma \}$
Want generators for $\mathbb{C}[x]_{\chi}^\Gamma := \{ f \in \mathbb{C}[x] : \gamma \cdot f = \chi(\gamma)f \text{ for all } \gamma \in \Gamma \}$

There exist algebraically independent *primary invariants*

$$p_1, \ldots, p_n \in \mathbb{C}[x]_{\chi}^\Gamma$$

and a list of *χ-relative invariants*:

$$q_1, \ldots, q_t \in \mathbb{C}[x]_{\chi}^\Gamma$$

such that

$$\mathbb{C}[x]_{\chi}^\Gamma = \bigoplus_{i=1}^t q_i \mathbb{C}[p_1, \ldots, p_n].$$
Back to divisors:

For a fixed $q \in V$

$$\mathbb{Z}^n = \text{Div}(G) \longrightarrow \text{Pic}(G) \longrightarrow \text{Jac}(G)$$

$$D \quad \mapsto \quad [D] \quad \mapsto \quad [D - \deg(D)q].$$
Invariant theory

Back to divisors:

For a fixed $q \in V$

$$\mathbb{Z}^n = \text{Div}(G) \longrightarrow \text{Pic}(G) \longrightarrow \text{Jac}(G)$$

$D \longmapsto [D] \longmapsto [D - \deg(D)q].$

Apply $\text{Hom}(\cdot, \mathbb{C}^\times)$:

$$\text{Jac}(G)^* \hookrightarrow \text{Pic}(G)^* \hookrightarrow \text{Div}(G)^* \cong (\mathbb{C}^\times)^n \subset GL(\mathbb{C}^n),$$
Back to divisors:

For a fixed $q \in V$

$$\mathbb{Z}^n = \text{Div}(G) \longrightarrow \text{Pic}(G) \longrightarrow \text{Jac}(G)$$

$$D \longmapsto [D] \longmapsto [D - \text{deg}(D)q].$$

Apply Hom(\cdot, \mathbb{C}^\times):

$$\text{Jac}(G)^* \hookrightarrow \text{Pic}(G)^* \hookrightarrow \text{Div}(G)^* \cong (\mathbb{C}^\times)^n \subset GL(\mathbb{C}^n),$$

This induces a representation

$$\rho : \text{Jac}(G)^* \longrightarrow GL(\mathbb{C}^n)$$
We have a representation $\rho : \text{Jac}(G)^* \longrightarrow \text{GL}(\mathbb{C}^n)$
We have a representation $\rho : \text{Jac}(G)^* \longrightarrow \text{GL}(\mathbb{C}^n)$

Action: $\Gamma := \rho(\text{Jac}(G)^*)$ acts on $\mathbb{C}[x]$
We have a representation \(\rho : \text{Jac}(G)^* \rightarrow \text{GL}(\mathbb{C}^n) \)

Action: \(\Gamma := \rho(\text{Jac}(G)^*) \) acts on \(\mathbb{C}[x] \)

Character: For every \([D] \in \text{Jac}(G)\)

\[[D] : \Gamma \rightarrow \mathbb{C}^\times \]

\[\rho(\varphi) \mapsto \varphi([D]) \]
Invariant Theory

Theorem (B, Glebe, Perkinson)
For every $[D] \in \text{Jac}(G)$, there are bijections

\[
\begin{align*}
[D] & \leftrightarrow \text{monomial } C\text{-basis for } C[x] \\
\Gamma[D] & \leftrightarrow \text{monomial primary invariants in } C[x] \\
P[D] & \leftrightarrow \text{monomial } [D]\text{-relative invariants in } C[x] \\
S[D] & \leftrightarrow \text{secondary divisors}
\end{align*}
\]

Corollary. Molien's Theorem gives a new expression for $\Lambda[D](z)$:

\[
\Lambda[D](z) = \sum_{k=0}^{\infty} \frac{\sum_{\text{divides } \phi(D) + kq} \phi(D) \det(I_n - z\rho(\phi(D)))}{\text{Jac}(G)}
\]
Theorem (B, Glebe, Perkinson)
For every $[D] \in \text{Jac}(G)$, there are bijections

\[E[D] \leftrightarrow \text{monomial } \mathbb{C}\text{-basis for } \mathbb{C}[x]^\Gamma_D \]

primary divisors $\mathcal{P} \leftrightarrow \text{monomial primary invariants in } \mathbb{C}[x]^\Gamma$

secondary divisors $\mathcal{S}[D] \leftrightarrow \text{monomial } [D]\text{-relative invariants in } \mathbb{C}[x]^\Gamma_D $
Theorem (B, Glebe, Perkinson)
For every \([D] \in \text{Jac}(G)\), there are bijections

\[
\mathbb{E}_{[D]} \leftrightarrow \text{monomial } \mathbb{C}\text{-basis for } \mathbb{C}[x]^{[D]}
\]

primary divisors \(\mathcal{P} \leftrightarrow \text{monomial primary invariants in } \mathbb{C}[x]^\Gamma\)

secondary divisors \(\mathcal{S}_{[D]} \leftrightarrow \text{monomial } [D]\text{-relative invariants in } \mathbb{C}[x]^{[D]}\)

Corollary.

Molien’s Theorem gives a new expression for \(\Lambda_{[D]}(z)\):

\[
\Lambda_{[D]}(z) := \sum_{k=0}^{\infty} \# |D + kq| z^k = \frac{1}{|\text{Jac}(G)|} \sum_{\varphi \in \text{Jac}(G)^*} \frac{\overline{\varphi([D])}}{\det(I_n - z \rho(\varphi))}
\]
Theorem (B, Glebe, Perkinson) On the cyclic graph with n vertices,

$$\#|kq| = \text{number of binary necklaces with } n \text{ black beads and } k \text{ white beads.}$$
The theory developed here holds in the broader context of chip-firing on certain types of M-matrices including:

- Chip-firing on Dynkin Diagrams
- Chip-firing on McCay-Cartan Matrices
Chip-firing on M-matrices

The theory developed here holds in the broader context of chip-firing on certain types of M-matrices including:

- Chip-firing on Dynkin Diagrams
- Chip-firing on McCay-Cartan Matrices

Need: An analogue of the Laplacian L and some technical conditions on its kernel so that there is an analog to

$$\text{Pic}(G) \cong \text{Jac}(G) \oplus \mathbb{Z}$$