Indeed linear transformations can be composed. So here's a natural question:

Given \(l_1, l_2 \) linear transformations with associated matrices \(A_1, A_2 \).

Given \(l_1 \circ l_2 \) with associated matrix \(B \), can we give matrix operation \(\ast \) so that \(A_1 \ast A_2 = B \)? i.e. what operation on matrices corresponds to composition?

Answer, of course, is matrix multiplication and explains our funny definition of matrix mult. in the first place.

But let's prove it carefully:

\[l_2 : \mathbb{R}^n \rightarrow \mathbb{R}^m \quad l_1 : \mathbb{R}^m \rightarrow \mathbb{R}^k \]

Part 1: If \(l_1, l_2 \) linear, then \(l_1 \circ l_2 \) linear

\[
l_1 \circ l_2 \left(c_1 \bar{u} + c_2 \bar{v} \right) = l_1 \left(c_1 l_2(\bar{u}) + c_2 l_2(\bar{v}) \right) \quad \text{since } l_2 \text{ lin.}
= c_1 l_1 \circ l_2(\bar{u}) + c_2 l_1 \circ l_2(\bar{v}) \quad \text{since } l_1 \text{ lin.}
\]

Part 2: To find matrix of \(l_1 \circ l_2 \), evaluate standard basis vectors \(\bar{e}_i \).

\[
l_1 \circ l_2 \left(\bar{e}_i \right) = l_1 \left(\text{ith column vector of } A_2 \right)
\]

Now it gets a little messy. Write this as

\[
\begin{bmatrix}
a_{11}^{(2)} \\
\vdots \\
a_{m1}^{(2)}
\end{bmatrix}
\]

\[
\begin{bmatrix}
a_{11}^{(1)} \\
\vdots \\
a_{m1}^{(1)}
\end{bmatrix}
\]

So (k) =

\[
\begin{bmatrix}
a_{11}^{(1)} a_{11}^{(2)} + \ldots + a_{1m}^{(1)} a_{m1}^{(2)} \\
\vdots \\
a_{11}^{(1)} a_{11}^{(2)} + \ldots + a_{1m}^{(1)} a_{m1}^{(2)}
\end{bmatrix}
\]

And note \(l_1 \left(\bar{e}_j \right) = j^{th} \text{ column of } A_1 \).
Now that we know all linear transformations \(L : \mathbb{R}^n \rightarrow \mathbb{R}^m \) are associated with \(m \times n \) matrix, ask questions about matrix mult., and answer with linear trans. knowledge.

Q1: Is matrix multiplication associative?

Proof 1: check it directly from definition.

Proof 2: composition of functions is associative.

Q2: Is matrix multiplication commutative?

Not in general. Find two linear transformations that don't commute.

Do example of reflection \(\circ \) rotation.

But some matrices do commute — think of examples — e.g., pair of rotations.

Q3: When does a linear transformation have an inverse?

Given \(L \) seek \(L' \) s.t. \(L \circ L' = \text{Id}_{\mathbb{R}^n \rightarrow \mathbb{R}^n} \)

\(L : \mathbb{R}^n \rightarrow \mathbb{R}^m \quad L' : \mathbb{R}^m \rightarrow \mathbb{R}^n \)

Non-examples: What about projection to a line?

No, since function is not onto and not one-one.

In fact, Hubbard and Hubbard define a linear transformation to be invertible if one-one and onto — hit every point in \(\mathbb{R}^m \) (this is equivalent to definition above) as these conditions ensure well-defined inverse.
You might be thinking that \(f: \mathbb{R}^n \rightarrow \mathbb{R}^m \) can only be one-one, onto if \(m = n \), i.e., if \(m > n \), can't map to all points.

Example: \(f: \mathbb{R} \rightarrow \mathbb{R}^2 \)

or if \(f: \mathbb{R}^2 \rightarrow \mathbb{R} \) then "not enough room". Some points in \(\mathbb{R}^2 \) must go to same place.

Supplementary point: True that only linear functions

\(l: \mathbb{R}^n \rightarrow \mathbb{R}^m \) that are invertible

However, there are onto functions \(f: \mathbb{R} \rightarrow \mathbb{R}^2 \)

"Fano curves", but the \(f \) is not linear (nor continuous)

Proposition: (1.3.14 in Hubbard and Hubbard) Let \(l \) be linear transformation with matrix \(A \)

\(l \) is invertible if and only if

\[AB = BA = I \]

there exist \(B \) s.t. \(A \cdot B = B \cdot A = I \)

Identify transformation as matrix:

\[\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \]

we say \(B \) is a "matrix inverse" for \(A \), write \(B = A^{-1} \).

Better to write:

\[A \cdot B = I_m \quad B \cdot A = I_n \]

Proof: Suppose \(A \) invertible with inverse \(B \). Show that linear map associates with \(B \).

To \(B \), call it \(l' \)'s the inverse of \(l \).

If \(y \in \mathbb{R}^n \) then \(\bar{y} = A \cdot \bar{y} \) = \(A \cdot B \cdot \bar{y} = l' \cdot \bar{y} \)

Given \(y \in \mathbb{R}^n \) then \(z = A \cdot \bar{y} \)

shows \(l' \) one-one

If \(x \in \mathbb{R}^n \) then \(\bar{x} = B \cdot \bar{y} \) = \(l' \cdot \bar{x} \)

shows \(l' \) onto
Other direction: If l invertible with inverse l' and assoc. matrix B, then since $l \circ l' = \text{Id}_{\mathbb{R}^m \rightarrow \mathbb{R}^n}$, then $A \cdot B = I_n$

Similarly $l' \circ l = \text{Id}_{\mathbb{R}^m \rightarrow \mathbb{R}^n}$ since $A \cdot B$ is matrix assoc. to $l \circ l'$

$\Rightarrow B \cdot A = I_m$.

One problem: Haven't showed l' linear yet, so can't assume l' is assoc. to a matrix B.

i.e. show if l linear with inverse l', then

for any $\vec{y}_1, \vec{y}_2 \in \mathbb{R}^m$, $c_1, c_2 \in \mathbb{R}$:

$l' (c_1 \vec{y}_1 + c_2 \vec{y}_2) = c_1 l'(\vec{y}_1) + c_2 l'(\vec{y}_2) = c_1 l'(\vec{y}_1) + c_2 l'(\vec{y}_2)$.

Hence:

$l \circ l' (c_1 \vec{y}_1 + c_2 \vec{y}_2) = c_1 l'(\vec{y}_1) + c_2 l'(\vec{y}_2)$

$= c_1 l \circ l' (\vec{y}_1) + c_2 l \circ l' (\vec{y}_2)$

$= l (c_1 l'(\vec{y}_1) + c_2 l'(\vec{y}_2))$

since l linear

Now use that l one-one, so if $l (\vec{v}) = l (\vec{u})$ then $\vec{v} = \vec{u}$.

i.e. $l' (c_1 \vec{y}_1 + c_2 \vec{y}_2) = c_1 l'(\vec{y}_1) + c_2 l'(\vec{y}_2)$ as desired.