Local maxima/minima of diff. functions.

In one-variable \(f : U \subseteq \mathbb{R} \to \mathbb{R} \), we find critical points:

(places where \(f \) not diff., e.g., sharp point — exclude those for now and just discuss \(f \) diff. on all of \(U \).)

Further test to decide if \(f \) has local max/min —

Second derivative test: if \(f'(a) = 0, f''(a) > 0 \) \(\Rightarrow \) local min at \(a \)

if \(f'(a) = 0, f''(a) < 0 \) \(\Rightarrow \) local max at \(a \)

if \(f'(a) = 0, f''(a) = 0 \) \(\Rightarrow \) inconclusive.

E.g., \(f(x) = \begin{cases} x^4 & \text{if } x > 0, \\ x^3 & \text{if } x < 0 \end{cases} \) is neither.

Same plan for \(f : U \subseteq \mathbb{R}^n \to \mathbb{R}^m \), diff. on \(U \)

Say \(f \) has critical point at \(a \in \mathbb{R}^n \) if \(\begin{bmatrix} \frac{\partial f(a)}{\partial x_1} \\ \vdots \\ \frac{\partial f(a)}{\partial x_n} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \) w. the \(1 \times n \) 0-matrix.

i.e., tangent hyperplane to graph is parallel to \(\mathbb{R}^n \) hyperplane.

picture: \(f : \mathbb{R}^2 \to \mathbb{R} \) with \(\begin{bmatrix} \frac{\partial f(a)}{\partial x_1} \\ \frac{\partial f(a)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \)

then tangent plane has equation \(z = f(a) \), i.e., a horizontal plane, parallel to \(xy \)-plane.

Remarks:

1. Solve for which \(a \in \mathbb{R}^n \) have
 \(\begin{bmatrix} \frac{\partial f(a)}{\partial x_1} \\ \vdots \\ \frac{\partial f(a)}{\partial x_n} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \)
 using Newton's method.

2. What about second derivative test?
Rephrase second derivative test as asking about quadratic coeff. in
Taylor expansion of f.

What is analogue of quadratic term in multi-variable expansion?

All terms whose total degree is 2.

Ex. $f: \mathbb{R}^2 \rightarrow \mathbb{R}$, $p^2_{f|a}$ has degree two terms $a_{2,0} x^2 + a_{1,1} xy$

Easy examples: $x^2 + y^2 = Q(x,y)$

```
Graph this by looking at slices, like

$x = 0$, $y = 0$, $y = x$
```

So if $p^2_{f|a}$ had top terms of form $x^2 + y^2$, suspect that f has local min at a.

Similarly $-x^2 - y^2 = Q(x,y)$ flips graph over x-y plane.

suggests f would have local max at a if these were top terms in $p^2_{f|a}$.

What about $Q(x,y) = x^2 - y^2$?

Graph a little hard to picture. Again think of slices.

```
Move in $x$ direction increase, in $y$ direction decrease so this is neither max nor min.
```

"saddle"
What about arbitrary looking top form like

\[x^2 + 2xy + y^2 \]

Write as \((x+y)^2 \). (> 0, suggests if
this appeared in
\[p^2 \]
then it \(\rightarrow \), that a
is local min.)

Plan: Complete the square.

\[x^2 + xy + \left(\frac{y}{2} \right)^2 = \left(x + \frac{y}{2} \right)^2 \]

so \[x^2 + xy + y^2 = x^2 + xy + \left(\frac{y}{2} \right)^2 + \frac{3y^2}{4} \]

\[= \left(x + \frac{y}{2} \right)^2 + \left(\frac{\sqrt{3}y}{2} \right)^2 \]

whereas \[x^2 + xy - y^2 = \left(x + \frac{y}{2} \right)^2 - \left(\frac{\sqrt{3}y}{2} \right)^2 \]

saddle in coords \(x + y/2 \)

could we have done it differently? No.

Theorem: Given quadratic form \(Q : \mathbb{R}^n \rightarrow \mathbb{R} \), \(F \) \(m = k + l \)
linearly indep. functions \(\alpha_1, \ldots, \alpha_m : \mathbb{R}^n \rightarrow \mathbb{R} \) s.t.

\[Q(x) = \alpha_1(x)^2 + \ldots + \alpha_k(x)^2 - \alpha_{k+1}(x)^2 - \ldots - \alpha_{k+l}(x)^2 \]

And # plus signs \(= k \) is independent of choice of \(\alpha_i \);

minus signs \(= l \) (intrinsic to \(Q \)).

Call the pair \((k, l)\) the "signature" of \(Q \). (Better: "footprint")

linearly independent linear functions \(\alpha_1, \ldots, \alpha_m \):

\[\text{identically as functions, } \int \alpha_i(x)^2 \text{ for all values } x \]
if \(\] then \(\alpha_1(x)^2 + \ldots + \alpha_m(x)^2 = 0 \) Check this by finding out if
\[c_1, \ldots, c_m \text{ with } c_1\alpha_1 + \ldots + c_m\alpha_m = 0 \]
then \(c_1 = 0, \ldots, c_m = 0 \). Check this by finding out if
\[\text{nxm matrix made from } \alpha_i \text{'s has full rank.} \]
prove that such form is possible by induction.

1 variable quadratic form is \(c \cdot x^2 \), \(c \in \mathbb{R} \). \(\checkmark \).

For \(n \) variable form, two cases:

(a) \(\exists \) term of form \(c_i \cdot x_i^2 \) for some \(c_i \in \mathbb{R} \), \(i \in \{1, \ldots, n\} \).

then gather terms with \(x_i \) and complete square.

What's left is in \(n-1 \) vars, so use induction hypothesis.

Easy to check resulting linear functions are independent by evaluating at \(c_i \).

Example: \(Q(\mathbf{x}) = x_1^2 + 2x_1x_2 + 6x_1x_3 - x_3^2 \)

Pick \(x_1 \): \(x_1^2 + (2x_2 + 6x_3) \cdot x_1 \rightarrow \) complete the square:

\[
\left(x_1 + x_2 + 3x_3 \right)^2 - \left(x_2 + 3x_3 \right)^2 - x_3^2. \checkmark
\]

(b) No square terms in \(Q \). Just mixed quadratic terms \(c_{ij} x_i x_j \).

Do initial substitution \(x_i \mapsto x_j + u \) with \(i \neq j \).

if for some non-zero \(c_{ij} x_i x_j \) is in \(Q \),

this monomial becomes \(c_{ij} (x_j^2 + ux_j) \). Revert to previous case, now with vars \(x_1, \ldots, x_n, u \) not \(x_i \).