On Tuesday, learned that uniform convergence $f_k \to f$ is great, but
best: Dominated convergence theorem — Pick R with
\[
|f_k(x)| \leq R \quad \forall x, \forall k,
\]
then if \(\lim_{k \to \infty} f_k = f \)
integrable
\[
\text{Supp } f_k(x) \subseteq B_R(0)
\]
then \(\lim_{k \to \infty} \int_{\mathbb{R}^n} f_k(x) \, d^n x = \int_{\mathbb{R}^n} f \)

Proposed definition of "Lebesgue integral" as applied to infinite sum of
integrable f_k:

If $f \triangleq \sum_{k=1}^{\infty} f_k$ with $\sum_{k=1}^{\infty} \int_{\mathbb{R}^n} |f_k(x)| \, d^n x < \infty \quad \text{(*)}$

then $\sum_{k=1}^{\infty} f_k$ converges to f almost everywhere. Define

\[
\int_{\mathbb{R}^n} f(x) \, d^n x \overset{\text{def}}{=} \sum_{k=1}^{\infty} \int_{\mathbb{R}^n} f_k(x) \, d^n x
\]

To make sure well-defined, if f_k, g_k satisfy (\ast) and $\sum_{k} f_k = \sum_{k} g_k$
so converge to same function up to measure 0.

then their Lebesgue integrals are equal.

To prove it, we need dominated convergence theorem.
0-th example: \(f_1 = f \) : Riemann integrable, \(f_2 = f_3 = \ldots = 0 \).

then Lebesgue of \(\sum_{k=1}^{\infty} f_k = \) Riemann int. of \(f \).

1st example: \(\int_{\mathbb{R}^n} \frac{1}{1 + |x|^{n+1}} \, d^n x \). If \(n = 1 \), \(\int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx = \pi \).

Not Riemann integrable because, though output is always \(\leq 1 \), support is not bounded.

Need to use infinite series \(\sum_{k=1}^{\infty} f_k \), with each \(f_k \) of bounded support.

E.g., since function is constant on sphere \(|x| = r \), break \(\mathbb{R}^n \) into space between spheres of radius \(2^k \).

\(f_1 := \frac{1}{1 + |x|^{n+1}} \) : 1 unit ball

\(f_2 := \frac{1}{1 + |x|^{n+1}} \) : 1 ball of radius 2

\(f_3 := \frac{1}{1 + |x|^{n+1}} \) : ball of rad. 1.

To show this is Lebesgue integrable, need to show:

\[\sum_{k=1}^{\alpha} \int f_k(x) \, d^n x < \infty. \]
Need to show: $\sum_{k=1}^{\infty} \int_{\mathbb{R}^n} f_k(x) |d^n x| = \sum_{k=1}^{\infty} \int_{\mathbb{R}^n} g_k(x) |d^n x|$

Prove difference is 0. So show

$$\lim_{l \to \infty} \sum_{k=1}^{l} \int_{\mathbb{R}^n} (f_k - g_k)(x) |d^n x| = 0$$

can be made arbitrarily small. (i.e. smaller than any $\epsilon > 0$)

Rewrite:

$$\lim_{l \to \infty} \int_{\mathbb{R}^n} H_l(x) |d^n x|$$

Done if we can bring limit inside. If H_l satisfies conditions of Dominated Convergence Theorem (i.e. we can find suitable R) Picture in \mathbb{R}^1: supported on $[-R, R]$ with values in $[-R, R]$ then done.

H_l's won't necessarily satisfy this, but truncated version does.

Order: Make tail $\sum_{k=M}^{\infty} \int |h_k|$

small, say $\delta < \epsilon$ for

Sufficiency large M. Then pick R depending on H_M

then for any $l > M$:

$H_l = H_l - H_l \text{trunc}(R) + \text{trunc}(R)$

$H_l - H_M - H_l \text{trunc}(R) + H_M = 0$

by dom-conv.

$H_l - H_M \leq \epsilon$ controllable

$\text{as } h_p \text{ are Riemann integrable}$
Clever idea: Map B_k : volume between sphere of radius 2^{k-1} and that of 2^{k-2}.

f_1 is different, since unit ball topologically different from annuli.

Map all annuli to annulus between $R=1$ and $R=2$. $\tilde{f}_k : x \mapsto 2^{k-2} x$ maps this annulus to support of f_k.

\[\int_{B_k} |f_k(x)| \, d^n x = \int_{B_k} \frac{1}{1 + |x|^m} \, d^n x \]

\[= \int_{B_2} \left(\frac{1}{1 + |x|^m \cdot \tilde{f}_k(x)} \right) \left| \text{det} D\tilde{f}_k(x) \right| \, d^n x \]

\[= \int_{1 + 2^{k-2} \cdot 1^m} \left(\frac{1}{1 + |x|^m \cdot \tilde{f}_k(x)} \right) \left| \text{det} D\tilde{f}_k(x) \right| \, d^n x \]

\[\leq \int_{B_2} 2^{\frac{(k-2)n}{(k-2)m}} \frac{1}{1 + |x|^m} \, d^n x \]

Need this sum over k to converge. Geometric series so need $m > n$.

\[\int_{B_k} \]