Defined $d_{M}X$ for X: compact subset of \mathbb{R}-manifold M.

and smooth boundary $d_{M}^{s}X$ (determined by odd smooth function $g: U \subseteq \mathbb{R}^{k} \to \mathbb{R}$ for each point $x \in d_{M}X$.)

So sets X we wish to consider have:

\[
\text{vol}_{k-1}(d_{M}^{s}X) < \infty
\]

\[
\text{vol}_{k-1}(d_{M}^{\text{n.s.}}X) = 0. \quad d_{M}^{\text{n.s.}}X: \text{non-smooth boundary} = d_{M}X \setminus d_{M}^{s}X.
\]

FACTS:

1. $\text{vol}_{k}(X) < \infty$ if X: piece with boundary.

2. If X is piece with boundary, then $g(X)$ is piece with boundary if $g: A \xi + \xi$ is linear map with A: invertible $n \times n$ matrix.

Running example in section: k: parallelogram anchored at $\xi \in \mathbb{R}^{n}$, P,

spanned by v_{1}, \ldots, v_{k}.

Think of it as sitting in k: hyperplane spanned by v_{1}, \ldots, v_{k} anchored at ξ.

this is our M.

To find $F: \mathbb{R}^{n} \to \mathbb{R}^{n-k}$ defining M, just pick A with $\ker(A) = \langle v_{1}, \ldots, v_{k} \rangle$

define $F(y) = A(y) - A(\xi)$

fixed rooted point of k: parallelogram.
Our function \(g \), locally defining boundary, is the linear function

\[\alpha_i : \mathbb{R}^n \to \mathbb{R} \text{ such that } \ker [A_i] = \text{span (k-1 vectors spanning boundary k-1 parallelogram)} \]

then additional inequality is

\[\alpha_i(x) \leq \alpha_i(y) \leq \alpha_i(x+y) \]

So \(g(y) = \alpha_i(y) - \alpha_i(x) \) or \(\alpha_i(y) = \alpha_i(x+y) \).

The non-smooth point is intersection of two k-1 planes, a k-2 plane which has k-1-volume equal to 0.

How do we orient boundary? (Need this to do oriented integration on \(\partial_M X \) required in Stokes' theorem)

Answer: Not so bad. Just use orientation on any open set \(U \subseteq M \) that contains our compact set \(X \).

(You even manifolds w/o global orientation are ok as long as we find orientation on \(U \supset X \)).

Idea: Have orientation on \(X \subset M \) k-manifold with \(T_X M \) having basis spanned by k vectors in \(\mathbb{R}^n \).

\(T_X \partial_M X \) will have k-1 vectors. Complete this to a basis of \(T_X M \) using one more vector.

\[(v_1, \ldots, v_{k-1}) \mapsto \Omega^M_X (v_{\text{special}}, v_1, \ldots, v_{k-1}) \]

What is \(v_{\text{special}} \)? Use our extra condition \(g(x) = 0 \) to pick consistent choice of \(v_{\text{special}} \).
If, given \(v \in T_x M \setminus T_x J^*_M X \), we have

\[
[Dg(x)] \cdot v > 0, \quad \text{this means } v \text{ points into domain } X
\]

\[
[Dg(x)] \cdot v < 0, \quad \text{then } v \text{ points outward from domain } X.
\]

Choose \(\nu_{\text{out}} \) to be \(\nu_{\text{special}} \) — that is, for each \(x \), pick \(\nu_{\text{out}} \) in \(T_x M \).

This is our orientation.

Example: \(M = \mathbb{R}^2 \), \(X : \text{compact} \)

\[
\Omega^2_x (\nu) := \text{sgn } \det (\nu_{\text{out}}, \nu)
\]

with \(\nu \in T_x \mathbb{R}^2 \)

\(\nu_{\text{out}} \) first means move counterclockwise from \(\nu_{\text{out}} \) to \(\nu \)

in pos. orientation.

Example 2: Surface \(M \subset \mathbb{R}^3 \) with orientation given by normal vector \(n(x) \).

with

\[
\Omega^2_M (\nu_1, \nu_2) := \text{sgn } \det [n(x), \nu_1, \nu_2]
\]

then set \(\nu_1 = \nu_{\text{out}} \) get

\[
\Omega^2_x (\nu) := \text{sgn } \det [n(x), \nu_{\text{out}}, \nu]
\]

Can do 3-manifolds as open charts of \(\mathbb{R}^3 \) bounded by surfaces as well.

Or 1-manifolds whose boundary is points, to recover FTC.