Math 8300 – Hecke Algebras – Problem Set 4
Due: Monday, December 5

1. Let G be the symplectic group Sp_4 over an algebraically closed field, as defined in Lecture 25.
 a) Determine the root datum associated to G explicitly.
 b) Give pictures of the root subgroups U_α as matrices inside GL_4 for your choice of positive roots.
 c) Prove that the group $N_G(T)/T$ is isomorphic to the finite Coxeter group of type B_2 (two generators s_1, s_2 with $(s_1 s_2)^4 = 1$), where T is the split torus contained in the diagonal matrices of GL_4.

2. In class, we had two definitions of induced representations for modules over the group algebra of a finite group (or equivalently modules for the group). One was via tensor products:
 \[\text{Ind}_H^G(V) = \mathbb{C}[G] \otimes_{\mathbb{C}[H]} V \]
 and one via functions
 \[\text{Ind}_H^G(V) = \{ f : G \to V \mid f(hg) = \pi(h) \cdot f(g) \} \]
 Show that the two definitions are equivalent.

3. Prove the geometric version of Mackey’s theorem given in Lecture 30:

 Theorem 1 (Mackey) Let G be a finite group, with subgroups H_1 and H_2 having representations (π_1, V_1) and (π_2, V_2) respectively. Then $\text{Hom}_G(\text{Ind}_{H_1}^G(V_1), \text{Ind}_{H_2}^G(V_2))$ is isomorphic to the space of all functions $\Delta : G \to \text{Hom}_\mathbb{C}(V_1, V_2)$ satisfying:
 \[\Delta(h_2gh_1) = \pi_2(h_2) \circ \Delta(g) \circ \pi_1(h_1). \]

4. Assuming Maschke’s theorem for Hecke algebras, as given in the notes for Lecture 31, give the details of the proof that the Hecke algebra $\mathcal{H}(G//B)$ over a field F is semisimple, with $G = GL_n(\mathbb{F}_q)$ and B the Borel subgroup of upper triangular matrices, if and only if
 \[\text{char}(F) \nmid q \prod_{i=2}^n (q^i - 1) / (q - 1). \]
 In particular, compute the order of the group G and the index of B inside it, and give details for the proof sketched in Lecture 31 (again assuming Maschke’s theorem).